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A B S T R A C T

Companies can use occasional drivers to increase efficiency on last-mile deliveries. However, as occasional
drivers are freelancers without contracts, they can decide at short notice whether they perform delivery
requests. If they do not perform their tasks, this is known as driver absenteeism, which obviously disrupts the
operations of companies. This paper tackles this problem by developing an auction-based system, including a
mitigation strategy to hedge against the absenteeism of occasional drivers. According to this strategy, a driver
can bid not only for serving bundles but also to act as a reserved driver. Reserved drivers receive a fee to
ensure their presence but are not guaranteed to be assigned to a specific bundle. The problem is modeled as a
two-stage stochastic problem with recourse activation. To solve this problem, this paper develops a self-learning
matheuristic (SLM) and an iterated local search (ILS) that exploits SLM as a local search operator. Through an
extensive computational study, this paper shows the clear dominance of the newly proposed approach in terms
of solution quality, run times, and customers’ perceived quality of service compared against three different
deterministic approaches. The Value of the Stochastic Solution, a well-known stochastic parameter, is also
analyzed. Finally, the identikit of the perfect reserved driver, based on data observed in optimal solutions, is
discussed.
1. Introduction and motivation

E-commerce is revolutionizing the way businesses operate, pro-
viding platforms to sell their products and services online all the
year around. This transformation has enabled sellers to reach global
customers, breaking down geographical barriers and opening up new
markets. E-commerce has also made shopping more convenient for
consumers, allowing them to purchase and receive their products at
home. With the rapid growth of technology and online shopping, e-
commerce is becoming increasingly essential for businesses to remain
competitive in today’s marketplace. Hence, last-mile delivery of parcels
is also becoming a huge business involving an ever increasing number
of delivery and courier companies. For example, the USA currently has
almost half a million delivery service companies expected to generate
157 billion dollars in 2023 with an annualized growth rate of 6.5%
during the period 2018–2023 (Ibisworld, 2023). On a global scale, the
percentage of online retail shopping currently amounts to 21% and is
expected to increase to 24% in 2026 (Statista, 2023). This growth is
expected to be generated by an unspecified number of online stores,
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which can reach 24 million Shepherd, 2023. Likewise, the global last-
mile delivery market size is expected to be 455 billion dollars in 2023
and is poised to grow by 166 billion in 2027 (Ibisworld, 2023).

While e-commerce giants (such as Amazon, ebay, or AliExpress)
have their own established distribution network, fulfilling such a high
number of deliveries generates several challenging issues for small- and
medium-sized companies. Running an owned delivery fleet could be
extremely costly for local delivery companies due to the high capital
and operations costs. Furthermore, in last mile delivery, demand is far
from being constant or regular, but often characterized by frequent
peaks of demand concentrated during special seasons (e.g., Christmas).
So, maintaining a fixed fleet for the whole year, which is also able
to handle demand peaks, would be too costly for the company. On
the other hand, an undersized fleet would force the company to reject
several requests during high-demand peaks, with a consequent huge
loss of revenue.

One of the attractive solutions adopted to reduce delivery cost is
to employ occasional drivers (ODs), who are freelancers without a
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Fig. 1. Auction framework with ODs submitting delivery and/or reservation bids.
fixed contract (Archetti et al., 2016; Triki, 2021; Bortolini et al., 2022;
Mancini and Gansterer, 2022; Wang et al., 2023). ODs are usually will-
ing to perform one or more deliveries, according to their availability,
for a little compensation. Thus, ODs are cheaper than corporate drivers
because they do not imply any fixed costs. Traditionally, ODs are paid
a flat price for every delivery. Alternatively, they are compensated
according to a distance-based catalogue, which often does not reflect
the willingness of the driver to serve any of the requests and neither
takes into account the synergies among the assigned deliveries (Le
and Ukkusuri, 2019; Cheng et al., 2023). To avoid this kind of distor-
tion, this paper proposes a mechanism based on the employment of
Combinatorial Auctions (CAs). In such a delivery system, the company
establishes an online platform, on which it advertises a set of poten-
tially overlapping bundles of deliveries to be fulfilled (Rechavi and
Toch, 2022). The available ODs join the platform, select the bundles
they are willing to serve and submit their bids to the auction with the
associated prices (Triki et al., 2023). Every OD can bid on an unlimited
number of bundles, but to avoid the over-exposure effect, only one
bid per OD can be accepted. After receiving all the bids, the company
clears the auction to identify the winning bids and communicates the
request assignments to the drivers through the platform (see Fig. 1).
The specific design of the CA to be implemented for the delivery-
OD assignments is crucial for the success of the platform operations.
We consider here a single-round, sealed-bid, first-price auction. This
means that the ODs submit secret bids whose prices cannot be seen
by the other ODs and the winners will be paid their suggested prices.
With this design, collusion among ODs can be avoided and the ODs
are encouraged to bid on their real costs to increase their chances of
resulting successful in the auction.

The company incurs a penalty for every unfulfilled request, whose
value is usually request-dependent. The goal of the company is to
minimize the overall cost, given by the sum of the cost of assigning
the bundles to the ODs plus the penalty costs.

The drawback of this system is the reliability of the ODs. Indeed, in
practice, some ODs bid on different platforms and, if they win in more
than one, they choose the most convenient deliveries, withdrawing all
2

the other assignments. Some others might submit bids but then do not
follow up the outcomes of the auction because of other obligations.
This situation is because ODs do not have regular contracts with the
company. Hence, they also do not need to promptly communicate
their absenteeism and neither can they be forced to pay no-showing
penalties.

The absenteeism of ODs could potentially induce a considerable
loss of profits for the company because of the missed service of some
deliveries and the consequent refund of unserved customers. Further-
more, the decrement of the company’s reliability reduces the quality
of service perceived by the customers, who may decide to rely on a
competing company having a higher reliability. Hence, the damage
from not fulfilling some requests not only affects the current profits
but can also negatively impact future demands (Figliozzi and Zhang,
2009).

The absenteeism of ODs falls under the broad field of service disrup-
tion for which several approaches such as robustness, flexibility, and
redundancy have been proposed in the literature to reduce its effect
(Albertzeth and Pujawan, 2018; Pahwa and Jaller, 2023). However,
the specific aspect of the absenteeism of drivers has itself received very
limited attention in the context of short-term delivery planning (Boysen
et al., 2021). In this study, a novel mitigation strategy is proposed,
based on the concept of the reservation of ODs to proactively hedge
against their possible absenteeism. The company allows the ODs to
submit not only delivery bids but also reserve bids (backups) to guaran-
tee their availability as a recourse resource during the delivery period.
Even though compensated for their availability, reserved drivers are
not assigned any delivery task during the planning phase but may be
requested to fulfill one of the bundles left unserved because of the ab-
senteeism of other ODs. In this case, the correspondent delivery bidding
price must be paid in addition to the reservation cost. Otherwise, i.e. if
no disruption occurs and the service of the reserved OD is not needed, a
compensation corresponding to her reserve bidding price must be paid
anyway for ensuring the availability. Every OD can choose to submit
only delivery bundles or also a bid to act as a reserved driver (see
Fig. 1).
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Reserve ODs do not need to remain idle while the decision maker is
aiting to observe the random scenario that will materialize. They only
eed to give priority to serve any assigned delivery in case of absence
f regular ODs. In some cases, no recourse deliveries are needed and
hen the reserve ODs will ensure some extra earning without being
sked to perform any delivery task, a fact that makes our approach
ery attractive for them.

It is worthwhile mentioning that the idea of involving dedicated
reserve ODs in the last-mile delivery is not a completely new approach.
ndeed, our idea was inspired by the power systems field that, for

decades, has successfully relied on implementing the auction mech-
anism to ensure the exchange of electricity between producers and
onsumers (see for example Beraldi et al., 2004 and Musmanno et al.,

2010). Electricity market operators typically run reserve auctions in
hich the bidding producers accept to remain available to satisfy peak
emand in case of sudden increase in the network’s consumption. While
ur study is clearly focused on the operational implications of the
roposed system, legal aspects are not covered here. These include
otentially regional restrictions in regards of data privacy, market reg-
lations, or labor laws. To the best of our knowledge, from legal point
f view, the newly proposed system does not differ from established
latform-based crowd delivery systems.

Clearly, during the phase of CA clearing and bundle assignment, the
extent of absenteeism among the ODs is not known in advance. Con-
sequently, such an absenteeism level will be represented as a discrete
random variable and the problem can be, thus, formulated as a two-
stage stochastic model. The first-stage decisions consist in assigning
the delivery bundles to the ODs and in selecting the backup drivers.
In the second-stage, once the ODs presence is revealed, the unfulfilled
delivery bundles are assigned to the reserved drivers, and the subset
of customers that still remain unserved is identified. The goal is to
minimize the overall costs related to both the first-stage decisions and
the expected value of the second-stage decisions over all the possible
cenarios.

To the best of our knowledge, this is the first work explicitly dealing
ith the problem of the absenteeism of ODs in the context of last-mile
elivery, with which the related literature is reviewed. Sections 3 and

4 present the deterministic and the stochastic problem, respectively.
The proposed solution approach is discussed in Section 5 followed
y the computational study presented in Section 6. Finally, conclud-

ing remarks and possible future avenues of research are reported in
Section 7.

2. Literature review

The research topic finds its roots in the field of (i) ODs in last-
ile delivery, (ii) staff absenteeism and service disruptions, and (iii)
itigation strategies to increase resilience in distribution operations.
he related literature in these topics is discussed in the following

sections.

2.1. ODs in last-mile delivery

ODs are non-regular drivers used by delivery companies to cover
parts of the end-to-end deliveries to reduce operational costs (Wang
et al., 2023). ODs can be either private freelancers using their own cars
or delivery services, or in-store customers with free capacity in their

cars that they use to ensure deliveries once leaving the store.
Inspired by real-life practices adopted by Walmart and Amazon,

Archetti et al. (2016) were the first to develop a vehicle routing
roblem-based model that involves ODs to cover a single delivery
ach. The authors develop two known metaheuristics (namely, Tabu
earch and variable neighborhood search) and embed them within a
ulti-start heuristic solution approach.

Since then, several new variants and extensions of the problem have
been proposed. For example, Macrina et al. (2017) allow every OD
3

s

to serve even multiple deliveries and impose time windows on each
delivery. The authors develop a hybrid algorithm combining a genetic
algorithm with a local search heuristic. Dahle et al. (2019) considered
a pick-up and delivery version of the problem. Di Puglia Pugliese et al.
(2022) focus on developing advanced and efficient approaches to solve
the same problem such as a machine-learning technique embedded
within a variable neighborhood search approach. Likewise, Ahamed
t al. (2021) propose a centralized deep reinforcement learning-based

method for assigning deliveries to the ODs.
Further extensions proposed by Macrina and Guerriero (2018),

Macrina et al. (2020) consist, respectively, in allowing the transship-
ment of shipments (see also Voigt and Kuhn, 2022) and in considering
the fleet fuel consumption minimization. This last aspect has also
been addressed by Al Hla et al. (2019) who suggest controlling the
rivers’ behavior to reduce the fuel consumption and the resulting

emissions. Lalang et al. (2019) consider a last-mile delivery system
ased on the employment of ODs only and extend the problem’s settings
o consider a multi-depot network. Dos Santos et al. (2022) propose an

integrated 2-echelon system in which smart lockers are used, besides
being used as collection points, are exploited as transshipment points
where customers, willing to act as occasional drivers, collect parcels to
be delivered on their way back home. A similar framework is proposed
in Yu et al. (2021), with the difference that customers may opt for a
pecific delivery option (home or locker) or let the company decide for

them. This problem setting has been extended in Yu et al. (2022), where
compatibility among lockers and customers is considered.

Few scholars, such as Arslan et al. (2019), address the dynamic
ariant of the problem. The authors consider the pickup operations

also, besides the delivery. The ODs have the option to express their
references in terms of detour length threshold or maximum number
f pickups/deliveries to be served (see also Behrend and Meisel, 2018).
hey claim that their exact method can achieve remarkable savings,
hich can reach 37% compared to the case in which only regular
rivers are employed. Yu et al. (2023) deal with a similar problem

by allowing simultaneous pickups and deliveries and considering the
fact that the ODs can have different skills. The dynamic variant of
the problem is also solved by Dayarian and Savelsbergh (2020), who
develop a rolling horizon framework to incorporate real-time details of
he in-store ODs, such as their arrival time and their available capac-
ty. Archetti et al. (2021) study a dynamic variant of the problem, in
hich drivers availability is known, while requests appear dynamically.

The stochastic version of the problem attracted the attention of a
few investigators who incorporate into the delivery planning (i) the
ncertainty related to the willingness of the ODs to serve the assigned

deliveries (Gdowska et al., 2018), (ii) the possible movement of the ODs
(Cheng et al., 2017), and (iii) also their availability (see Section 2.2).

For the sake of completeness, it is worth noting that besides the
above contributions, several other studies address the planning of
deliveries from a managerial point of view. These particularly focus
on analyzing the potential benefits of employing the ODs. A non-
exhaustive list of studies in this direction include (Horner et al., 2021;
Torres et al., 2022a) and Ausseil et al. (2022).

2.2. Service disruption and ODs absenteeism

The delivery industry, as any other transportation activity, is in-
vitably vulnerable and is subject to various disruptions from natural,
olitical, or human factors (Albertzeth et al., 2020; Pahwa and Jaller,

2023). While several aspects of disruption have been extensively stud-
ed in the context of last-mile delivery (see the review by Rivera-Royero

et al., 2022), the specific issue of absenteeism still did not attract
enough attention. Indeed, Boysen et al. (2021) claim, ’’Short-term
adaptations to account for absenteeism or demand peaks, e.g., during
end-of-season sales, are important problems that lack scientific decision
upport.’’
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Unlike the last-mile delivery, the curse of absenteeism and un-
availability had a paramount importance in several staff planning
problems such as that related to healthcare (Andrade-Michel et al.,
2021; Hosseini et al., 2023) or to education (King et al., 2015; Bakrania
et al., 2018). This is due not only to the importance these two sectors
ave in the daily life of any population but also to the remarkably
igh level of absenteeism by which they are often characterized. For
xample, Anderson (2022) reports an alarming rate of healthcare ab-

senteeism in Canada, which amounts to 14.7 days per worker per year,
hich is 32% higher than the national rate across all industries.

To the best of our knowledge, Haughton, 2009 is the only study
focusing on examining the problem of driver absenteeism in the trans-
ortation sector. The author, indeed, acknowledges an evident scarcity
f dealing with driver absenteeism in the scientific literature, which is

due to the fact that ‘‘Predominantly, the existing staffing and scheduling
models implicitly assume perfect job attendance records by workers.’’

owever, the author stresses the fact that this is not true and provides
several statistics from Canada, USA, New Zealand, and the UK to
show how the absenteeism of drivers can substantially disrupt the
transportation systems. He also argues that traditional approaches such
as hiring replacement drivers or adjusting schedules can be costly and
inefficient.

In the context of last-mile delivery with ODs, a few works incor-
porate the availability of crowd-shippers in the optimization models.

he first study (Dahle et al., 2017) develops a vehicle routing-based
mathematical model that involves dynamic ODs. They consider the
time and distance constraints of the deliveries, as well as the skills
nd availability of the ODs. More specifically, the authors assume that

the availability of ODs is a function of time and use historical data to
stimate the probability with which an OD is available at any given

time. The developed model results in a two-stage stochastic approach
that first generates a set of feasible routes using a fixed set of regular
rivers and then optimizes the incorporation of the ODs on these routes,
ased on their expected availability. The optimization uses a mixed-
nteger programming formulation that balances the trade-off between

the travel time and cost of using ODs versus regular drivers.
The second study is Torres et al. (2022a), in which the authors take

nto account both the stochastic nature of customers’ demand and the
uncertain availability of ODs. The resulting two-stage stochastic model
etermines, in the first stage, the assignment of customers to the ODs
nd then adopts a recourse action consisting in defining the routing of
he ODs, based on the observed demands and ODs’ availability. The
bjective is to minimize the expected cost of ensuring the deliveries

within their given time windows. The model also takes into account the
capacity of each OD and the maximum distance they can travel. The
authors propose a decomposition-based solution approach combined
with a scenario generation technique and then solve the stochastic
program for each scenario.

More recently, Silva et al., 2023 developed a data-driven method
n which both the uncertainty related to the orders of the customers
nd the availability of ODs is considered. The resulting model is a
wo-stage stochastic program that identifies, in its first stage, the fleet
outes with respect to the average values of the uncertain data. The
ecourse action consists of adjusting the vehicles routes while skipping
ny customer who has no delivery order or who has been outsourced
o ODs. The authors also incorporate probabilistic constraints to limit
he infeasibility due to the capacity restrictions.

A couple of additional works also proposed 2-stage stochastic mod-
els with uncertain availability of ODs while focusing on specific aspects
of the problem such as the location of mobile depots (Mousavi et al.,
2022) and the design of a personalized compensation scheme for each
OD (Hou et al., 2022).
4

2.3. Mitigation strategies

Like any other supply chain, the last-mile delivery industry is not
mmune to the dramatic effects of unavoidable disruptions (Muñoz-

Villamizar et al., 2021). In a 2011 survey, almost 600 practitioners
claimed that delivery chain disruptions were more observable in their
organizations than most other risks were (Katsaliaki et al., 2021). More-
over, this study also reported that even though 80% of the companies
expressed awareness of the effect of risk disruptions, only 40% of them
have adopted mitigation strategies to hedge against disruption.

The topic of mitigation management to ensure supply chain re-
silience became very popular in recent years (Gurtu and Johny, 2021;
Hägele et al., 2023). The efforts have focused on defining both proac-
tive or reactive strategies based mainly on ensuring redundancy to
reduce the effect of disruptions and to ensure system reliability (see
the reviews by Ivanov et al., 2016; Katsaliaki et al., 2021). Yet, a
couple of studies that attempt to explicitly mitigate the effect of the
absenteeism of drivers – but not of ODs – do exist. The first attempt
n this direction is presented in Haughton, 2009, who proposed a

traditional strategy based on providing a reserve team of part-time
drivers. These are kept available to cover the unexpected absence of
drivers. Similarly, Diab et al. (2014) quantify the number of reserve
back-up drivers, known as extraboards, needed to substitute regular
drivers in case of absenteeism in the bus transit network of Ottawa,

anada. Finally, Wang and Ozbay (2023) develop a chance-constrained
optimization model as a mitigation strategy to take into account the
bsenteeism of drivers during hurricane evacuations.

2.4. Main contributions

This study proposes several novel features that can be summarized
as follows:

• As claimed by Pahwa and Jaller (2023), there is an evident
scarcity of studies considering ODs absenteeism in the context of
last-mile deliveries. The reason is that researchers and practition-
ers consider the employment of ODs as a mitigation strategy itself
to face demand peaks, shortage of regular drivers, etc. Thus, there
is a clear gap in defining mitigation strategies to deal with the
absenteeism of ODs and our study represents an attempt to fill in
this gap by anticipating and swiftly responding to such random
disruptions.

• We design a CA that allows the ODs to decide not only their
compensation but also the set of deliveries that strongly synergize
with their own trajectories. All previous studies adopt simplistic
schemes based on a fixed fee per delivery and/or per deviation
miles. In that case, the ODs do not have any capability to ne-
gotiate the delivery price or to express their willingness to serve
through choosing their tariffs (Cheng et al., 2023).

• We introduce for the first time the concept of reserve drivers who
are selected by the same mechanism of CAs and receive a fee
to ensure their presence for delivery whenever needed to hedge
against the absenteeism of regular ODs.

Some of the above features have been addressed separately in the
ifferent references cited within this section, but none of them has
ntegrated all the features together within the same decisional frame-
ork. This study has been inspired from one side by the works that

mplement CAs in last-mile deliveries (such as Triki, 2021 and Mancini
nd Gansterer, 2024), and from the other side, by those incorporating

the randomness in customers orders and drivers availability (Dahle
t al., 2017, Torres et al., 2022b, and Silva et al., 2023) and can be

considered as a more comprehensive investigation in both directions.
However, none of the approaches reviewed above can be straightfor-
wardly extended in order to take into account the possible absenteeism
of the ODs and, thus, to suggest mitigation strategies to avoid the
delivery disruptions.
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Table 1
Notation.

Sets 𝐼 Set of customers to be served

𝐾 Set of bundles of customers
𝐽 Set of ODs
𝐾 𝑖𝑗 Set of bundles submitted by OD 𝑗 containing customer 𝑖
𝐾𝑗 Set of bundles submitted by OD 𝑗

Parameter 𝑏𝑘𝑗 Price submitted by OD 𝑗 to serve bundle 𝑘

Variables 𝑌𝑘𝑗 Binary variable that assumes value 1 if bundle bid 𝑘 from
OD 𝑗 is accepted, 0 otherwise
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3. The deterministic problem

A set 𝐼 of customers is considered to be served, starting from a
ingle depot. The company offers, through an online platform, a set

of bundles of customers, in which each bundle contains a subset of
he customers that can be handled by a single driver. Such bundles are
onstructed by means of the corridors approach presented in Mancini

and Gansterer (2022), which has been shown to be able to provide more
attractive and profitable bundles with respect to classical clustering
approaches. The method identifies circular sectors, starting at a depot
nd assigns customers within a sector to a bundle. Being 𝛼 the angle
orresponding to this sector, the method splits 𝛼 in 𝑠 identical angles,
enerating 𝛼𝑠 identical sectors. If the demand within a potential bundle
xceeds the capacity of the associated vehicle, the bundle is split
nto feasible smaller bundles, by means of a clustering algorithm. The
undles are non-overlapping and cover all available customers. The
lgorithm is run for different values of 𝑠 obtaining different sets of
undles, which are then considered within the auction.

A set 𝐽 of ODs joins the auction on the platform and submits their
bids for the bundles they are interested in. 𝑏𝑘𝑗 indicates the price
offered by driver 𝑗 to serve bundle 𝑘. The set of bundles, containing
ustomers 𝑖, for which driver 𝑗 has bid is defined as 𝐾 𝑖𝑗 . The number

of bundles in 𝐾 𝑖𝑗 can potentially be quite high because it is in the
interest of the ODs to submit as many bids as possible, as long as they
are confident they can serve. However, as observed by Sheffi (2004),
generating competitive bids may be a complex task and, consequently,

any bidders reduce their operation in the auction by submitting a
imited number of trivial bundles. Similarly, the set of bundles for
hich driver 𝑗 has placed bids is defined as 𝐾𝑗 (i.e., 𝐾𝑗 =

⋃

𝑖∈𝐼 𝐾
𝑖𝑗).

he auction system selects the subset of bids to accept, such that
uction clearing costs are minimized, and every customer is assigned to
xactly one driver. To avoid the problem of overexposure, i.e. the case
n which the same driver wins several bundles but is unable to fulfill all
f them, additional constraints are imposed stating that at most, one bid
er driver can be accepted. This is in line with the literature on auction-
ased mechanisms in logistics (see Gansterer and Hartl, 2018, Gansterer
t al., 2020). However, in case of infeasibility, the decision maker may

decide to relax such a constraint by increasing the number of bids to
be accepted per driver to 2 or more.

The resulting decision problem is similar to the winner determi-
nation problem described in Gansterer et al. (2018). The decision
variables involved, named 𝑌𝑘𝑗 , represent acceptance/rejection decisions
of bids. Variable 𝑌𝑘𝑗 is binary and assumes a value of 1 if the bid from
driver 𝑗, to serve bundle 𝑘 is accepted, and 0 otherwise. Note that 𝑌𝑘𝑗
is defined only if driver 𝑗 has submitted a bid for bundle 𝑘. This way,
the number of variables involved is limited, avoiding the generation of
unnecessary variables. Our notation is summarized in Table 1.

The mathematical deterministic model can be expressed as follows:

min
∑

𝑗∈𝐽

∑

𝑘∈𝐾𝑗
𝑏𝑘𝑗𝑌𝑘𝑗 (1)

∑

∈𝐽

∑

𝑘∈𝐾 𝑖𝑗
𝑌𝑘𝑗 = 1 ∀𝑖 ∈ 𝐼 (2)

∑

𝑌𝑘𝑗 ≤ 1 ∀𝑗 ∈ 𝐽 (3)
5

𝑘∈𝐾𝑗
g

𝑌𝑘𝑗 ∈ {0, 1} ∀𝑗 ∈ 𝐽 , 𝑘 ∈ 𝐾 𝑗 (4)

The objective function minimizes the auction clearing cost, i.e. the
um of the values of the accepted bids. Constraints (2) ensure that each

customer belongs to exactly one accepted bid, and Constraints (3) imply
that at most, one bid per driver can be accepted. Finally, Constraints (4)
define the variables’ domain.

4. The stochastic problem

The overexposure phenomenon within the same auction system
an be avoided by adding Constraints (3). However, drivers cannot

be prevented from simultaneously participating in several auctions
organized by different companies. In this case, the overexposure may
still occur, and a driver who wins several auctions may be forced to
drop some of the assigned tasks. This situation could generate a high
absenteeism rate, which would strongly affect the delivery planning
f the company and risks some of the customers remaining unserved.

ODs, in contrast to regular drivers, do not have fixed contracts with
companies. Therefore, they do not incur a penalty if they withdraw
on short notice or do not show up. However, their absence negatively
influences their trustability level, 𝜏𝑗 , which is tracked by the company.
This index could be used by the company to determine the probability
of a specific driver fulfilling the planned service. This information is
mportant to build robust delivery plans. To limit the effect of the
bsenteeism of ODs, a mitigation-strategy-based reserving drivers is
roposed. The company considers the possibility of reserving some
rivers by compensating them to guarantee their availability during
he delivery period. Reserved (or backup) drivers are not assigned a

specific bundle in the planning phase but are requested to fulfill a
bundle of customers for whom delivery failed due to the absenteeism of
the designated driver. If the service of reserved drivers is not needed,
ompensation for ensuring availability must be paid anyway, since they
ccepted to not participate in other auctions with other companies
uring the same time period. Each driver can choose to bid only on
undles or also to become a reserved driver.

The overall auction system is then composed of two phases: (i) in
he first phase, drivers submit bids for the bundles they are willing

to serve (regular auction) and eventually for the reserved driver role
(reserve auction); (ii) the company decides which bids to accept and
whom to reserve (recourse auction). After driver absences are revealed,
the company decides which bundle to assign to which reserved driver.
All non-served customers have to be rejected. Note that reserved drivers
can be assigned only to bundles for which they have submitted a bid
in the first-phase of the auction. The bid offered by driver 𝑗 to act as a
reserved driver is denoted as 𝑟𝑗 . If drivers are reserved but unused, their
ompensation will be equal to 𝑟𝑗 . Conversely, if designated to serve

a bundle 𝑘, their compensation will equal 𝑟𝑗 + 𝑏𝑗 𝑘. The overexposure
voidance rule holds also in the recourse auction, i.e. a reserved driver

can also be assigned at most one bundle. It is not necessary that each
eserved driver fulfills a bundle selected in the first phase. In fact,
 different set of bundles can be selected if more beneficial for the
ompany. An illustrative example is reported in Fig. 2, in which the
oal is to minimize the overall costs composed of costs related to
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Fig. 2. An illustrative example (depot: blue; customers: red; selected ODs and their bundles: green; reserved drivers: orange; drivers not selected: red). Subfigure (a) shows the
esult of the first phase. Subfigure (b) depicts the second phase, in which two selected drivers are absent and replaced by three reserve ODs serving different bundles.
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accepted bids (in the first and in the second phase), reservation costs,
nd rejection costs.

The above described decision problem can be formulated as a two-
stage stochastic model. In the first stage, bundles are assigned to
ODs and ODs are selected to be reserved. In the second one, when
the presence of ODs are revealed, unfulfilled customers are assigned
o reserved drivers, and a penalty is paid for customers remaining

unserved. The goal is to minimize the overall costs related to both
the first and the second stage decisions. A set of available scenarios,
𝑆, having cardinality |𝑆|, is considered. In each scenario, there is
nformation about drivers’ presence. This information is tracked by a
arameter, 𝛿𝑗 𝑠, which is equal to 1 if driver 𝑗 is present in scenario
and 0 otherwise. Scenarios are based on the estimated trustability

evels of drivers, 𝜏𝑗 , which is a parameter value between 0 and 1. This
arameter is computed based on historical data. For drivers accessing
he system for the first time, for whom historical data are unavailable,
𝜏𝑗 is initialized at a default value equal to the average trustability
level of the drivers in the system. Since the probability of being absent
s explicitly considered in the scenario generation, all scenarios have

the same probability of being realized. A penalty 𝑝𝑖 must be paid for
each scenario in which customer 𝑖 is rejected, i.e. neither served by a
river selected at the first stage nor by a reserved driver in the second
tage. The penalty may vary among customers due to their premium
tatus. In fact, premium customers are guaranteed that their order will
e delivered in time (i.e. one day after their ordering), while orders
rom standard customers must be fulfilled within five working days.
ustomer-dependent rejection costs are also considered. However, if

the obligation-to-serve scheme should be ensured, then it is enough
o impose a high penalty cost 𝑝𝑖 for all customers and the model will
elect, in this case, even more expensive bids in order to guarantee the

full service coverage.
Note that this model differs and introduces some novelty with

espect to classical two-stage stochastic models. In fact, in classical
odels, decisions are made at the first stage without perfect informa-

ion about some parameters, and, once perfect information is revealed,
ecourse actions to improve the solution are realized. In this problem,
owever, to gain the right to apply a recourse action at the second
tage, additional costs have to be paid at the first stage, and the set
f available recourse actions depends on the reservation choices in the
irst stage. In fact, if no drivers are reserved at the first stage, then no
ecourse actions will be available at the second. Reserved drivers can
e used to fulfill only bundles which they are willing to serve, i.e. for
hich they have submitted a bid in the first stage. Consequently, they

are able to cover only customers belonging to at most one bundle they
have bid for. If customers are unserviceable by any of the reserved
drivers, it means that they cannot be covered with a recourse action.

Since there is a substantial difference between classical two-stage
odels and this model, we define it as a Two-Stage Stochastic Model
6

c

with Recourse Activation. Not only is this new modeling framework valid
for this specific problem but it can also be seen as a general approach
suitable to model a broader class of problems in which, to be able to
access the recourse phase, one or more activation variables at the first
stage need to be selected after paying a cost.

4.1. The two-stage stochastic model with recourse activation

The first-stage (deterministic) decision variables related to the for-
ulation are as follows:

• 𝑌𝑘𝑗 : binary variable taking value 1 if a bid for bundle 𝑘 submitted
by OD 𝑗 is successful in the regular auction, and 0 otherwise

• 𝑅𝑗 : binary variable taking value 1 if OD 𝑗 is successful for a
mitigation delivery service in the reserve auction, and 0 otherwise

whereas the second-stage (recourse scenario-based) decision vari-
ables are:

• 𝑊𝑘𝑗 𝑠: binary variable taking value 1 if reserved OD 𝑗 will be
asked to serve bundle 𝑘 whenever a recourse action is needed for
mitigation under scenario 𝑠, and 0 otherwise

• 𝑍𝑖𝑠: binary variable taking value 1 if customer 𝑖 remains unserved
in scenario 𝑠, and 0 otherwise

The two-stage stochastic IP program can be formulated as follows.

min
∑

𝑗∈𝐽

∑

𝑘∈𝐾𝑗
𝑏𝑘𝑗𝑌𝑘𝑗 +

∑

𝑗∈𝐽
𝑟𝑗𝑅𝑗 +

∑

𝑠∈𝑆

1
|𝑆|

(
∑

𝑗∈𝐽

∑

𝑘∈𝐾𝑗
𝑏𝑘𝑗𝑊𝑘𝑗 𝑠 +

∑

𝑖∈𝐼
𝑝𝑖𝑍𝑖𝑠) (5)

∑

∈𝐾𝑗
𝑊𝑘𝑗 𝑠 ≤ 𝑅𝑗 ∀𝑗 ∈ 𝐽 , ∀𝑠 ∈ 𝑆 (6)

∑

∈𝐽

∑

𝑘∈𝐾 𝑖𝑗
𝛿𝑗 𝑠𝑌𝑘𝑗 +

∑

𝑗∈𝐽

∑

𝑘∈𝐾 𝑖𝑗
𝑊𝑘𝑗 𝑠 +𝑍𝑖𝑠 = 1 ∀𝑖 ∈ 𝐼 , ∀𝑠 ∈ 𝑆 (7)

∑

∈𝐾𝑗
𝑌𝑘𝑗 + 𝑅𝑗 ≤ 1 ∀𝑗 ∈ 𝐽 (8)

𝑌𝑘𝑗 ∈ {0, 1} ∀𝑗 ∈ 𝐽 , 𝑘 ∈ 𝐾 𝑗 (9)

𝑅𝑗 ∈ {0, 1} ∀𝑗 ∈ 𝐽 (10)

𝑊𝑘𝑗 𝑠 ∈ {0, 1} ∀𝑗 ∈ 𝐽 , 𝑘 ∈ 𝐾𝑗 , 𝑠 ∈ 𝑆 (11)

𝑍𝑖𝑠 ∈ {0, 1} ∀𝑖 ∈ 𝐼 , 𝑠 ∈ 𝑆 (12)

The objective function, reported in (5) minimizes the overall cost
for the company, computed as the sum of (i) the cost of the accepted
ids for ODs in the regular auction, (ii) the cost of reserving ODs, (iii)
he cost of accepted bids in the recourse auction, and (iv) the penalty
ost related to the unserved customers. Constraints (6) imply that the
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Fig. 3. Graphical representation of the overall auction process.
bid of an OD can be accepted in the recourse phase only if the OD
has been reserved in the first phase. Constraints (7) impose that each
customer who has not been successfully served either by a regular OD
selected in the first stage or by a reserved OD in the second stage
remains unserved. Constraints (8) ensure that if drivers are selected
for reservation, no bundles are assigned to them in the first stage.
Finally, Constraints (9)–(12) state that the decision variables should all
be binary. An explanatory draw illustrating the mode of operation of
the overall auction process is depicted in Fig. 3.

5. Solution approach

A broad class of algorithms use learning to improve their perfor-
mances. This class can be split into three categories. The first includes
algorithms that use different search operators and modify the probabil-
ity of selecting a specific one, based on the performances the operator
obtains during the search process. Thus, the algorithm learns from
past experience in the search process. The main and most known
member of this category is the Adaptive Large Neighborhood Search
(ALNS) proposed by Ropke and Pisinger (2006). Many extensions of
the ALNS have been proposed in the literature. For a complete survey
on ALNS algorithms and applications, interested readers are referred
to Windras Mara et al. (2022). A concept similar to that used in ALNS
is exploited in Hyper Heuristics (Burke et al., 2013), in which data
collected during the search process is used to guide the algorithm in
selecting which heuristic to use, instead of which search operator is
within the same heuristic. For a complete survey of Hyper Heuristics,
readers are referred to Drake et al. (2020).

The second category includes Machine-Learning-based heuristics.
Algorithms belonging to this category may differ greatly from each
other, but all follow a common philosophy. The main idea is to analyze
optimal solutions of several problem instances to derive knowledge
on the characteristics commonly seen in optimal solutions. This in-
formation then guides the search process. A detailed classification
of Machine-Learning-based heuristics is reported in Karimi-Mamaghan
et al. (2022).

The third category, to which our proposed algorithm belong to,
is composed by self-learning heuristics. Differently from Machine-
Learning-based heuristics, which need a training set of optimal solu-
tions to learn from, self-learning ones learn by themselves during the
search process on a single instance. Differently from ALNS and Hyper
Heuristics, that learn which operator/heuristic to use, self-learning
heuristics iteratively solve a simplified version of the model involving
only a subset of the variables, study how the obtained values of these
variables would impact the other variables, and modify the simplified
version of the problem, taking into account the information derived.
Due to their nature, these heuristics are suitable for addressing two-
stage stochastic problems. In fact, the simplified version of the problem
7

could include only first-stage decisions, whose impact on second-stage
decisions can be evaluated and the derived information used to guide
the first-stage problem by artificially modifying the contribution of
the variables to the objective function, or to a priori force some first-
stage variables to assume a specific value. An example of self-learning
heuristics is the Progressive Hedging method introduced by Rockafellar
and Wets (2017). This method is based on a decomposition approach
according to which each scenario is solved separately, giving lieu
to different first-stage choices. First-level variable coefficients in the
objective function are then artificially modified to achieve a consensus
among scenarios, guiding all the scenarios to converge towards a
common set of first-stage decisions. Another example is the consensus-
based matheuristic, first proposed by Mancini et al. (2022) and then
generalized by Mancini et al. (2023). In this method, each scenario
is solved separately, and first-stage variables are ranked according to
the number of scenarios in which they have been selected. Then, only
the most selected variables are open at the first stage and the problem
is iteratively solved, changing the variables selected at the first stage,
trying to achieve consensus among scenarios by inserting variables
preferred by the scenarios which are penalized most by the current
first-stage solution. The proposed self-learning matheuristic, denoted
SLM, does not require decomposition of the problem and solves each
scenario separately. In fact, the idea on which the method is based is
to iteratively solve the first stage problem, analyze the impact of first-
stage decisions on the second-stage costs, and modify the first-stage
variable costs accordingly to take into account this impact.

5.1. A self-learning matheuristic

A two-phases self-learning matheuristic is proposed to address the
two-stage stochastic problem with recourse activation. The phases are
sequentially executed for a fixed number of iterations, or until a stop-
ping criterion is reached. In the first phase, the deterministic problem
(1)–(3) is solved. Hence, all ODs are assumed to be present with a 100%
probability. The costs associated with bids (𝑏𝑗 𝑘) are substituted by the
perceived costs, 𝑏̃𝑗 𝑘, which are given by the actual bidding costs, 𝑏𝑗 𝑘,
plus an estimation of the recourse/mitigation cost incurred if the OD
would be absent (𝛾𝑗 𝑘). For simplicity, these costs are referred to as proxy
costs, and are all fixed to zero at the first iteration, since there is no a-
priori information about them, but they are updated during the search
process, based on a self-learning procedure.

In the second phase, the bundles selected in the first stage are
fixed (i.e. the values of the 𝑌𝑘𝑗 variables), according to the solution
obtained in the first phase, and the stochastic model are allowed to
optimize reservation-related and recourse-related variables. The set of
the selected 𝑌𝑘𝑗 bids at a given iteration 𝑡 is referred to as 𝑌𝑡. The
mitigation cost found in the second phase, defined as the sum of
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reservation costs (𝑅𝐶 𝑡) plus the second-stage bidding costs (𝑆 𝑆 𝐶 𝑡), is
then attributed to the failed bids according to their contribution to
these costs. For each accepted bid in the first stage, the number of
scenarios in which the corresponding OD, 𝑗, results to be absent, 𝑚𝑗
is calculated. Being 𝑀 =

∑

𝑗∈𝐽
∑

𝑘∈𝐾 𝑚𝑗𝑌𝑗 𝑘 the total number of failures,
the reservation cost associated with the selected bid 𝑌𝑘𝑗 is defined as
follows.

𝑟𝑐𝑗 𝑘 =
𝑚𝑗

𝑀
𝑅𝐶 𝑡 (13)

𝛽𝑡𝑗 is defined as the set of customers assigned in the regular auction to
driver 𝑗 in iteration 𝑡 and 𝐾̃𝑖 as the set of bundles containing customer
𝑖 and 𝑛𝑘 as the number of customers belonging to bundle 𝑘.

The second-stage cost associated with a bid of driver 𝑗 on bundle 𝑘,
𝑠𝑐𝑗 𝑘, is defined as

𝑠𝑠𝑐𝑗 𝑘 =
∑

𝑠∈𝑆

∑

𝑖∈𝛽𝑡𝑗

∑

𝑘′∈𝐾̃𝑖

∑

𝑗′∈𝐽

1
𝑛𝑘′

𝑤𝑗′𝑘′𝑠. (14)

The proxy cost 𝛾𝑗 𝑘 is then defined as:

𝛾𝑗 𝑘 = 𝑟𝑐𝑗 𝑘 + 𝑠𝑠𝑐𝑗 𝑘. (15)

For all the bids which do not belong to 𝑌𝑡, the proxy cost 𝛾𝑗 𝑘 is not
odified and takes the value of the previous iteration.

The method stops after a maximum number of iterations 𝑇 or when
a steady state is reached, meaning that modifying the proxy costs does
ot imply any change in the selected first-stage bids (i.e. 𝑌𝑡 = 𝑌𝑡−1).

Note that a steady state might differ from a local minimum as there is
no guarantee that the current solution at a given iteration 𝑡 is better
han the solution at iteration 𝑡 − 1, as happens in the case of the
rogressive Hedging method (Rockafellar and Wets, 2017).

The core idea of the approach is that the algorithm is self-adapting
its decisions, based on the information achieved by computing the
effect of a set of first-stage decisions on the recursion and mitigation
costs. The novelty of the approach is twofold. First, the method is able
to identify how much a single first stage decision is responsible for the
second stage and for the mitigation cost. If a first stage solution leads
to very high recourse and mitigation costs, this does not necessarily
imply that all the variables selected on the first stage should not be
selected, since the high second stage costs might be due to only a subset
of them. The identification of the single ‘‘bad’’ decisions made at the
first stage, allows us to exclude these from future solutions. The second
main element of novelty relates to the ability to identify the impact
of first-stage decisions not only on the recourse costs but also on the
mitigation cost needed to achieve them. The method terminates after a

aximum number of iterations (Itermax) or after a maximum number
f not improving iterations (NImax). In Fig. 4, the procedure of SLM is

illustrated.
8

A pseudocode of the algorithm is reported in Algorithm 1.

Algorithm 1 Self Learning Matheuristic (SLM)
1: 𝑌𝑡 ← {∅}
2: 𝛾̂ ← 0
3: 𝑡 ← 0
4: while 𝑡 < 𝑇 do
5: 𝛽 ← 𝑏̂ + 𝛾̂
6: 𝑌𝑡 ← 𝑟𝑒𝑔 𝑢𝑙 𝑎𝑟_𝑏𝑖𝑑 𝑠_𝑎𝑢𝑐 𝑡𝑖𝑜𝑛(𝛽)
7: if 𝑌𝑡 ≠ ̂𝑌𝑡−1 then
8: 𝛾̂ ← 𝑟𝑒𝑐 𝑜𝑢𝑟𝑠𝑒_𝑟𝑒𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛𝑏𝑖𝑑 𝑠_𝑎𝑢𝑐 𝑡𝑖𝑜𝑛(𝛽 , 𝑌𝑡)
9: 𝑡 ← 𝑡 + 1

10: else
11: 𝑡 ← 𝑇
12: end if
13: end while

The method can be generalized and easily adapted to a broad class
f two-stage stochastic problems with recourse activation, in which a
irect correlation between each first-stage decision and its impact on
he second stage can be established. Moreover, the algorithm can be
asily embedded in more complex metaheuristics, such as Iterated Local
earch (ILS), in which diversification operators are exploited to escape
rom steady states.

5.2. Iterated local search based on the self-learning matheuristic

To avoid a premature convergence towards a local minimum, our
proposal is to apply a diversification procedure, which is designed
similar to an ILS (Lourenço et al., 2018). Each time, SLM reaches
a steady state (i.e. 𝑌𝑡 = 𝑌𝑡−1), a random perturbation value 𝜇𝑗 𝑘 is
generated, taking values [0; 𝜇𝑀 𝐴𝑋] for all the bids belonging to the
current solution while fixing 𝜇𝑗 𝑘 = 0 for all those not selected in the
current solution. The proxy costs are then updated as 𝛾𝑗 𝑘 = 𝛾𝑗 𝑘 + 𝜇𝑗 𝑘.
This way, an attempt is made to artificially make not-selected bids more
attractive to push the model to select at least one of them and get out
of the steady state. If, despite the perturbations, no changes occur in
the set of selected bids, the perturbation is iteratively applied until a
change is reached. The procedure stops after a maximum number of
perturbations (𝑀 𝐴𝑋𝑃 𝐸 𝑅𝑇 ).

A pseudocode of the algorithm is reported in Algorithm 2.
Algorithm 2 Iterated Local Search (ILS)
1: 𝑡 ← 0
2: while 𝑡 < 𝑇 do
3: 𝛾̂ ← 𝑀 𝐿𝑆(𝛾̂)
4: 𝛾̂ ← 𝛾̂ + 𝜇̂
5: 𝑡 ← 𝑡 + 1
6: end while

These two newly proposed matheuristics are compared with a more
classical Variable Neighborhood Search (VNS), properly adapted to
handle our problem, which will be described in the next section.
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6. Computational study

For the computational study, 4 sets of 10 instances each are used.
he first two have 20 customers and 200 and 400 scenarios, respec-

tively, while the others have 40 customers and 200 and 400 scenarios,
respectively. All of them include 20 ODs. The final destinations and
customers’ locations of both ODs are generated randomly. Instances are
publicly available at Mancini et al. (2024).

Bundles of customers, which are given as input, are generated
ollowing the corridors-based approach introduced by Mancini and
ansterer (2022), which has been shown to be effective in generating
ttractive bundles. Although our system allows drivers to autonomously
nter their bids based on their own preferences, in order to simu-
ate realistic drivers’ bidding behavior, we use the automatic bidding
ystem provided by Mancini and Gansterer (2022). It considers the

two following parameters: (i) flexibility, which represents the maximum
cceptable detour for a driver 𝜔 from the path from the depot to
er final destination, and (ii) willingness to work (𝜙𝜔), where 𝜙𝜔 = 1
escribes a neutral behavior (truthful bidding) where the ODs’ bids
eflect exactly the actual detour implied. In case of a lower willingness
i.e., 𝜙𝜔 > 1), bid prices are increased since the ODs agree to perform a
elivery only for a very high compensation. Values smaller than 1 (𝜙𝜔 <
) indicate that the driver reduces the bid price to have a greater chance
f winning the order. The value of a bid 𝑘𝑗 is calculated as the detour
ength, 𝛿𝑘𝑗 , needed by driver 𝑗 to serve bundle 𝑘, multiplied by a unitary
istance cost 𝑐𝑢, plus a fixed cost 𝑐𝑓 for each customer belonging to
he bundle. This value is further multiplied by the willingness-to-work
arameter (𝜙𝑗) associated with the OD who submitted the bid:

𝑏𝑘𝑗 = (𝑐𝑢𝛿𝑘𝑗 + 𝑐𝑓 |𝜏𝑘|)𝜙𝑗 . (16)

The flexibility level, instead, only indirectly impacts the bidding
process. In fact, an OD places a bid for a bundle only if the related
etour 𝛿𝑘𝑗 , is lower than the maximum value allowed (𝛿𝑀 𝐴𝑋

𝑗 ) which
orresponds to the OD’s flexibility level.

For what concerns reservation bidding, we generate bids as an
nteger number randomly selected in the interval [1,10]. We considered
hese values to be uncorrelated to the willingness to work. In fact, for
xample, a driver could have a very low willingness to work (i.e., ac-
epts only very high compensation) but at the same time could be
vailable to guarantee her presence for a relatively small compensation.
t could also happen that a driver with a very high willingness to work
akes a very competitive bids for the regular auction but asks a high

ompensation for acting as a reserved driver, since she does not want
o risk to ensure her availability bearing the risk to not be assigned to
ny order and receive just a very low fee for the reservation.

For each set, a basic version is used with a medium trustability level,
hich is uniformly distributed in [0.6,1] and medium rejection costs,
hich are uniformly distributed in the set {5,10,15,20}. There are four
dditional versions for each set. In the first two, rejection costs are kept
onstant on the respective level of the basic set, whereas low [0.6,
.8] and high [0.8, 1] trustability levels are considered, respectively.
imilarly, in the third and fourth version, a medium trustability level
taken from the basic set) is assumed, while rejection costs are low {5,
0} and high {15, 20}, respectively. Hence, in total, this study is based
n 200 instances.

In SLM, the maximum number of iterations 𝐼 𝑡𝑒𝑟𝑚𝑎𝑥 is fixed to 100,
while 𝑁 𝐼 𝑚𝑎𝑥 is fixed to 10. In ILS, the maximum size of perturbation
𝑀 𝐴𝑋 is fixed to 1, while the maximum number of perturbations,

i.e. the stopping criterion, is fixed to 10.
Four analyses have been performed. The first one aims at comparing

he performance of both SLM and ILS (which is based on SLM as
xplained in Section 5.2), with the exact model solved by a commercial

solver. The second analysis is devoted to analyzing the advantage of
applying the proposed mitigation strategy. In the third one, the optimal
solution of the stochastic problem (SP) is compared with those obtained
9

b

by applying three different deterministic approaches. This analysis is
used to determine a well-known and broadly used stochastic indicator:
the Value of the Stochastic Solution (VSS), which measures the benefit
achievable by solving the stochastic problem instead of its deterministic
counterpart (Birge and Louveaux, 2011).

Both the second and the third analysis are performed for different
average trustability levels of ODs as well as different average rejection
costs. This procedure analyzes the impact of these parameters. The last
analysis aims at finding an identikit of the perfect reserved driver by
analyzing the optimal solutions.

All experiments use a machine equipped with a 11th Gen Intel Core
7-1185G7 with 32 GB of RAM. The mathematical model is run under

Xpress 8.13 with standard settings and a time limit of 3600 s. The
ptimality gap tolerance was set to 10−5, which is the common default
alue.

6.1. Performance comparison

In this section, we compare the optimal solution obtained by solving
the mathematical model (MODEL) by means of a commercial solver,

ith the best solution obtained by SLM, by ILS in which SLM is used
as local search, and by a more classical VNS.

Here we briefly describe the structure of the VNS. It is based on
the same framework of SLM in which, at each iteration, a determin-
istic problem is solved considering that the perceived cost of each
bid is composed by actual bidding cost plus an estimation of the
recourse/mitigation cost (proxy cost). But differently from SLM, where
proxy costs are learned during the search process, here they are con-
sidered as further variables in the solution space. At the first iteration,
as in SLM, proxy costs are all fixed equal to 0 and the corresponding
deterministic problem is solved. Then a random perturbation in the
range [-0.5; 0.5]*𝜌 is applied to all the bids, and then the deterministic
model is solved again. The parameter 𝜌 is initially set equal to 1 and
it is multiplied by 2 every time we fail obtaining an improvement. As
soon as an improvement is found, the value of 𝜌 is restored to 1. The
rocedure terminates once the maximum value of 𝜌 = 𝜌𝑀 𝐴𝑋 = 16 is
eached, or after a maximum number of iterations, 𝑇 .

Results are reported in Table 2, which is organized as follows. For
MODEL, for each basic set of instances, the value of the optimal solution
and the total time elapsed (in seconds) are reported, whereas for SLM,
ILS, and VNS the percentage gap to the optimal solution and the time
elapsed (in seconds) are reported.

Both approaches (SLM and ILS) show a good performance with more
han 90% reduction of computational times. As expected, ILS guaran-
ees lower gaps, but it is more than twice slower than SLM. For both
ethods, the gap to MODEL decreases when increasing the instances

ize. Both of them also scale well and are suitable for addressing larger
nstances that MODEL cannot handle. VNS is always outperformed by
LM and ILS, both in terms of solution quality and computational times,
howing the benefit achievable using the self learning mechanism. Such
enefit becomes much larger for instances with a larger number of
ustomers and/or of scenarios, showing also a better scalability of SLM
nd ILS with respect to VNS.

6.2. Analysis of the proposed mitigation strategy

This analysis aims to quantify the cost reduction achievable by
pplying the proposed mitigation strategy based on the reservation
f drivers. To that end, the solution of SP is compared with three
eterministic versions of the problem, in which we do not allow reser-
ation, and therefore, we clear the regular auction and then, once
ossible driver absences are revealed, we simply reject those customers
elonging to bundles that remained unserved.

The first one, named DP, simply consists of solving the deterministic
roblem described in Section 3. Hence, the acceptance of a subset of
ids that minimizes the regular auction clearing costs is optimized,
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Table 2
Comparison of MODEL, SLM, ILS, and VNS. Instances are denoted as XXcYYYs, with XX being the number of customers and YYY the number
of scenarios. OF indicates the objective function value.

MODEL SLM ILS VNS

OF TIME %GAP TIME %GAP TIME %GAP TIME

20c200s 60.41 30.21 5.65% 0.55 4.26% 3.72 5.99% 26.77
20c400s 61.05 84.9 5.69% 1.36 5.08% 13.35 6.68% 67.17
40c200s 122.56 64.39 4.05% 2.86 2.79% 9.69 4.18% 27.69
40c400s 123.03 276.53 3.53% 7.44 2.84% 20.12 7.23% 77.12
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Table 3
Average percentage gap achieved by solving DP, TDP, and ATDP compared against SP
for different average drivers trustability (TRUST) levels.

TRUST SP DP TDP ATDP

LOW 71.89 39.75% 35.50% 35.62%
MEDIUM 60.41 32.04% 22.18% 22.74%
HIGH 54.57 19.52% 21.88% 21.88%

Table 4
Average percentage gap achieved by solving DP, TDP, and ATDP compared against SP
for different average drivers rejection costs (RC).

RC SP DP TDP ATDP

LOW 58.54 17.34% 12.30% 13.44%
MEDIUM 60.41 32.04% 22.18% 22.74%
HIGH 63.22 42.47% 30.68% 30.81%

neglecting the information about the trustability of ODs. The set of
elected bids is then given as input to the availability scenario of each

OD, which is then analyzed separately. Customers who were included
in a bid from a driver who is absent, are then automatically considered
unserved, since no recourse actions are allowed.

The second deterministic problem, TDP, minimizes a modified func-
ion of the auction clearing costs, in which the value of each bid is

adapted by the trustability of the bidding driver. This can be obtained
ubstituting the objective function reported in (1) by

min
∑

𝑗∈𝐽

∑

𝑘∈𝐾𝑗
𝑏𝑘𝑗 (1 − 𝜏𝑗 )𝑌𝑘𝑗 . (17)

By this, the trustability level of its bidder positively influences the
attractiveness of a bid. As in the previous case, the selected bids are
used to evaluate the actual costs of each scenario, assuming that all
the customers, included in a bid assigned to an absent driver, remain
unserved.

Finally, for the third deterministic problem, named ATDP, an addi-
tional constraint is added, which imposes that the average trustability
level of selected drivers cannot be lower than the average level of all the
ODs, named 𝜏. This allows accepting potentially risky drivers (due to
their low trustability), as long as the trustability of all selected drivers
eaches a threshold, which is given by the average trustability of all

participating drivers. This restriction can be imposed by adding the
following constraint.
∑

∈𝐽

∑

𝑘∈𝐾𝑗
𝜏𝑗𝑌𝑘𝑗 ≥ 𝜏

∑

𝑗∈𝐽

∑

𝑘∈𝐾𝑗
𝑌𝑘𝑗 (18)

All the models (SP,DP, TDP, and ATDP) are solved to optimality by
a commercial solver. Therefore, in this analysis, we always compare
optimal solutions.

Tables 3 and 4 report the average value of SP and the average gap
chieved by each deterministic approximation, for the variants of the
rustability level of the average drivers and of the average rejection
osts, respectively.

As can be observed in Table 3, the advantage of using the proposed
mitigation strategy for drivers absenteeism is very strong. This applies
even if the average trustability level of drivers is high. This is further
upported by the results reported in Table 4, which show that the
10
approach clearly dominates even if customers’ rejection costs are low.
Summarizing, it can be stated that the mitigation strategy outperforms
not only the naive deterministic strategy (which neglects the trustabil-
ity of drivers), but also deterministic strategies in which the trustability
evel is taken into account. TDP and ATDP have been further observed
o show very similar performance. Both seem to yield more robust
ispatching plans than DP does in case of the average trustability level
f low and medium ODs. However, if the average trustability is high,
he DP strategy, which neglects trustability and focuses only on the
inimization of the clearing costs of bids, performs slightly better than

he other two policies that do take trustability into account. Hence, in
hese cases the absenteeism phenomenon has less impact than that the
idding values have.

Another important observation relates to the percentage of rejected
ustomers, which can be a key indicator of the quality of service.
oreover, a high rejection rate could potentially lead to a loss of

ustomers, who, unsatisfied by the service, might choose to purchase
rom other companies. After SP is solved for the basic scenario, a
ejection rate of only 1.69% is achieved. Note that by applying DP,
DP, and ATDP, 19.10%, 11.24%, and ATDP 11.24%, respectively, are
btained.

6.3. Comparison with deterministic problems with recourse policy

An indicator commonly used to determine the importance of consid-
ring the uncertainty in the problem by solving its stochastic variant,
s the Value of the Stochastic Solution (VSS). The higher the value of
SS, the higher the need to resort to stochastic optimization. Following

he definition given in Maggioni and Wallace (2012), the VSS can be
seen as a measure of the advantage achievable by solving the stochastic
problem instead its deterministic counterpart, where all random input
variables are replaced by their means. Let us define as the EEV the
expected value of the solution of the deterministic problem applied
to all the second-stage scenarios, and as RP the expected value of the
olution of the two stage recourse stochastic problem. Thus, according

to Maggioni and Wallace (2012), the VSS can be defined as EEV-RP.
However, if replacing random input variables by their means makes
perfectly sense when those variables are continuous, this deterministic
approximation is meaningless when dealing with binary variables, as in
our problem. In fact, a driver can be either present or absent (0 or 1),
and no presence implication can be associated with any fractional value
in this context. In such cases, the EEV can be obtained considering a
reference problem (see Mancini et al., 2023) consisting into an associated
deterministic problem which is more meaningful respect to considering
the expected values of the random variables. The above defined DP,

DP, and ATDP all belong to the category of reference problems in
ur context. In this analysis we use the above mentioned deterministic
pproaches (DP, TDP, and ATDP) to determine the outcome of the
egular auction, then we fix the value of these decision variables, and
et the SP model optimize the reservation and the recourse auctions.

These approaches are based on the integration of deterministic and
stochastic solution methods and have the advantage to handle un-
certainty better than pure deterministic approaches, but, at the same
time, require a smaller computational effort with respect to a pure
stochastic approach and, therefore, are more suitable to address large-

sized instances. We then calculate the VSS with respect to all the three
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Table 5
PVSS analysis. Average percentage gaps achieved by solving DP, TDP, and ATDP with
ecourse actions compared against SP for different drivers’ trustability levels.
TRUST SP DP TDP ATDP

LOW 71.89 9.43% 7.03% 8.79%
MEDIUM 60.41 10.05% 10.12% 10.29%
HIGH 54.57 6.72% 19.54% 6.72%

Table 6
PVSS analysis. Average percentage gaps achieved by solving DP, TDP, and ATDP with
ecourse actions compared against SP for different rejection costs (RC).
RC SP DP TDP ATDP

LOW 58.54 9.34% 10.50% 10.08%
MEDIUM 60.41 10.16% 10.12% 10.29%
HIGH 63.22 10.33% 9.14% 9.48%

combined deterministic–stochastic approaches. We report the average
optimal objective function achieved by the stochastic problem, SP,
and the average gap to all three deterministic strategies (i.e. VSS/RP),
ince we believe that, in this context, this is more significant than the

absolute value of VSS. We call this value Percentage VSS (PVSS). Low
aps show that the value of the stochastic problem is not so relevant
nd that the problem can easily be approximated with the deterministic
ounterpart. Conversely, high PVSS values show that the stochastic
omponent cannot be neglected. Differently from the previous analyses

in which the deterministic strategies do not allow any recourse action,
here the deterministic problems (DP, TDP, and ATDP) are solved to
derive the set of bids to select in the regular auction and let the SP
model make the optimal decisions in the reserve and the recourse
auction. Note that the set of available recourse actions depends on the
ecisions made in the reserve auction.

Results are reported in Tables 5 and 6. The results of the analysis
show relatively high values of PVSS (near to 10% on average), in-
dependently of the average level of trustability of the drivers and of
the average rejection cost. This proves the importance of solving the
stochastic problem instead of its deterministic counterpart. Differently
from the previous analyses, in which a clear dominance of TDP and
ATDP with respect to DP was observed, enabling recourse actions,
the three deterministic strategies to select regular auction bids show a
very similar performance. This observation means that recourse actions
re useful to recover from poor decisions made at the first stage.

Moreover, all the three deterministic strategies, if enabling recourse
actions, can achieve small rejection rates (for the basic scenario) of
2.32%, 1.77%, and 2.09% for DP, TDP, and ATDP, respectively, which
are comparable with the ones obtained by SP (1.69%). These rates
prove that recourse actions can provide very competitive solutions from
the customers satisfaction point of view but are much more expensive
for the companies. In fact, concerning the total cost for the company,
lthough enabling recourse actions reduces the gap to SP from 27%
o 10%, the resulting gap is still considerable and fully justifies the

implementation of a stochastic model.

6.4. Out-of-sample scenario analysis

The drawback of the VSS is that it is computed analyzing the same
set of scenarios which were used in the stochastic problem. In other
words, the solution obtained by SP is perfectly tuned on those scenarios,

hile the deterministic problems are solved without exploiting any
information about the set of scenarios on which they will be evaluated
and this could yield an advantage to the SP. Therefore, to have a fairer
comparison of the approaches we perform an analysis of out-of-sample
scenarios. For this, we consider a new set of scenarios (out-of-sample
scenarios), generated from the same distribution as the in-sample ones.
The number of these scenarios is much smaller than the ones of the
in-sample set, since the scope of our analysis is to verify if the optimal
11
Table 7
Comparison of SP against the deterministic problems on out-of-sample scenarios.

INSTANCE SP DP TDP ATDP

1 51.65 50.31 62.22 62.22
2 43.77 44.80 46.03 46.03
3 66.38 84.76 84.76 76.01
4 82.52 82.52 82.52 82.52
5 49.28 49.28 49.86 49.86
6 54.62 54.62 54.62 54.62
7 60.19 62.49 62.49 62.49
8 62.27 69.78 65.41 65.41
9 66.12 69.31 66.12 66.12
10 42.53 42.53 42.53 42.53

AVG 57.93 61.04 61.65 60.78

PVSS 5.37% 6.43% 4.92%

solution of SP performs well also on scenarios which do not exactly
correspond to the large set of in-sample scenarios on which it has
een computed. In Table 7, we report, for each instance, with medium
lexibility and medium rejection costs, the value of the optimal solution

obtained by the different approaches. The last two rows report the
average results and the gap between the SP solution and each one of
the deterministic problems. It should be noted that, when comparing on
out-of-sample scenarios, the relation 𝑆 𝑃 ≤ 𝐸 𝐸 𝑉 , which is always true
for in-sample scenarios, does not necessarily hold anymore. Our results
show a value of PVSS around 5%–6% which means that considering
the stochastic problem is worth the computational effort. SP obtains
the best performance in 9 over 10 instances, and it is only slightly
outperformed by DP (but clearly outperforms TDP and ATDP) on the
remaining one. Conversely, all the three deterministic approaches per-
form very well in some instances but very bad on other ones (e.g., the
third one). However, given the increasing computational efforts needed
by SP on very large instances, the three deterministic approaches, and
in particular ATDP, could be a suitable tool to address very large
instances which cannot be handled by SP, providing good quality
results. Comparing the three deterministic approaches, it is important
to point out that ATDP, which explicitly takes into account drivers’
trustability, by ensuring a minimum average level of trustability among
selected ODs, is performing better than DP that totally neglects the
trustability aspect. What is surprising is that TDP, which weights the
offers of the drivers by their trustability, is performing worse than
DP. This means that the weight given by TDP to trustability in the
decision process, is too large. In fact, this weighting system strongly
penalizes good offers provided by low trustable drivers, neglecting
the fact that, thanks to the recourse policy allowed by the reserving
options, accepting those offers could be convenient. This means that
it could happen that reserved drivers can cover the customers who
remained unserved at a reasonably low cost, in case of OD’s absence. In
fact, the reservation option effectively mitigates the impact of drivers
absenteeism, making drivers’ trustability a less crucial element in the
decision process.

6.5. Perfect identikit of reserved drivers

The last analysis covers the identification of a perfect identikit of
reserved drivers. For this, the characteristics of the reserved drivers
are analyzed in the basic version of the first set of instances with 20
customers, 200 scenarios, medium flexibility, and medium rejection
costs. The average results are reported in Table 8. The characteristics
recorded are as follows.

• Flexibility (FLEX), which is given by the maximum detour (in Km)
the driver is willing to accept.

• Willingness to work (WILL), which represents how much drivers
are willing to make a discount with respect to their true costs;
a willingness level of 1 indicates no discount (i.e., the bid is
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Table 8
Average values (AVG) and ranges (RANGE) of parameters describing reserved drivers
haracteristics in obtained optimal solutions.

FLEX WILL 𝜏𝑗 𝑟𝑗
AVG 6.89 0.77 0.74 2.11
RANGE [1;10] [0.6;1] [0.6;1] [1;10]

truthful=. A willingness less than 1, however, means that the
driver is willing to offer a discount to have a higher probability
to be selected.

• Trustability level (𝜏𝑗), computed as the number of times the
driver being present divided by the number of times this driver
being selected. If a drivers are new in the system and has no
historical data, they are assigned a default trustability level equal
to the average among all the drivers registered in the system. This
default value is kept until they win a minimum number of bids,
which are then used to calculate their individual values.

• The value of the reservation bids (𝑟𝑗), computed as the price the
driver is offering to act as a reserved driver.

In Table 8, the average and the range of values of these four
parameters are reported for all the drivers selected as reserved drivers.

What can be observed is that the main characteristic of a reserved
driver is cheapness. In fact, the most relevant parameter is the reser-
vation cost. A reserved driver shows an average reservation cost of
2.11, while the average value across all the drivers’ population is 5.5.
Willingness to work is not very relevant since the perfect driver has
a value slightly lower than the average. The flexibility seems to be
important as the average value is 6.89, while the average among all
drivers is 5, but not as relevant as reservation cost. Finally, trustability
negatively influences the probability of a driver being selected as a
reserved driver. This is not unexpected. In fact, highly reliable drivers
do not need to be reserved, as the probability they will be present is
very high. The reservation is more effective if applied to drivers who
are not reliable, to eliminate a potentially higher risk of absenteeism.

While our computational study focuses on algorithmic aspects, sev-
ral managerial insights of practical relevance are derived (e.g., optimal
dentikits of drivers). These insights together with the strengths of the
roposed auction system could be used by last-mile platform providers
o offer high value services to their customers. While the underlying
ecision problems are extremely challenging, our study shows that the
roposed methods are applicable to real world problems.

7. Conclusions and future research

This paper studied the assignment of bundles of customer requests
to ODs through an auction-based system under the presence of un-
certain drivers. An absenteeism mitigation strategy is proposed for

Ds based on reservation of the driver. According to this strategy,
drivers can bid not only for serving bundles which they find attractive
but also to act as a reserved driver. Reserved drivers receive a fee
to guarantee their presence but are not guaranteed to be assigned
to a specific bundle. The problem has been modeled as a two-stage
stochastic problem with recourse activation. The model involves three
types of auctions: (i) the regular auction in which bids are selected, (ii)
the reserve auction in which reserve drivers are selected, and (iii) the
recourse auction in which unserved customers are assigned to reserved
drivers, due to the absence of other ODs. The first two auctions take
place at the first stage, while the third one at the second stage, once
absences are revealed.

This model differs from classical two-stage stochastic models be-
ause, to be allowed to implement recourse actions, an additional
ctivation cost (here represented by reservation of drivers) has to

be paid. Moreover, the set of available recourse actions depends on
the decision made within the reservation auction, and therefore on a
12
different stage. In fact, the set of bundles of customers a driver is willing
to serve affects the possible recourse actions available. If a customer is
ot inserted in the set of bundles serviceable by reserved customers, it
annot be covered by a recourse action, which means that, in the case
f the absence of the regular driver to which it has been assigned, it
ust be rejected by the company.

To solve this problem, a self-learning matheuristic (SLM) and an ILS
which exploits SLM as a local search operator) were developed. Both
ethods show a very good performance within short computational

imes. A rich computational analysis is also presented, in which the
ffectiveness of applying the reservation strategy was first analyzed,
ith respect to solving a deterministic problem without the possibility
f recourse actions. Furthermore, the stochastic approach was com-
ared with three different deterministic approximations, two of which
ake drivers’ trustability levels into account. Results showed that the
dvantage of applying the newly proposed reservation strategy yields
uge benefits both in terms of costs for the company and in terms of
ercentage of customers rejected. The latter decreases from 19.10% to

only 1.69%.
The second analysis relates to a well-known stochastic parameter

(VSS). The solution of the stochastic model was compared with three
strategies based on solving the regular auction as a deterministic prob-
lem and then forcing the stochastic model to select the bids selected
by the deterministic one, letting it free to optimize the reservation and
recourse decisions. Even in this case the stochastic solution significantly
utperforms the other approaches, showing the importance of explicitly
ddressing the stochastic nature of the problem. The stochastic solution
lso performs well, with respect to deterministic approximations, when
pplied on out-of-samples solutions.

The last analysis aimed at providing the identikit of the perfect
reserved driver, based on data observed in optimal solutions.

Future developments from a methodological point of view could
ddress the generalization of the two-stage stochastic problem with
ecourse activation to a broad class of problems. This approach would

mainly apply to situations, in which the effects of disruptions can be
educed by applying mitigation strategies. From an application point
f view, analyzing dynamic problems would be interesting, in which
ultiple auctions take place in different points in time during the plan-
ing horizon. Finally, empirical studies (e.g., real-word observations
f driver behavior) would be worthwhile integrated in order to gain
eeper insights on the impact of the human factor.
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