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Abstract

Over the past two decades, international maritime transport has been
characterized by the advent of ever larger ships. This phenomenon is known
as naval gigantism. If, on the one hand, naval gigantism allows to reduce
transport costs by exploiting the economies of scale achievable by large ships,
on the other hand, it implies a series of operational issues. Indeed, due to
their large draft, such giant vessels are not allowed to enter small ports when
fully or near-fully loaded, and in some cases, they cannot enter such small
ports at all. In fact, their draft can strongly vary depending on the load on
board. This implies restrictions for vessels in accessing ports, which impact
not only at the strategical level on the fleet sizing problem, but also at the
tactical/operational level, on the sequence of port visits among each route.
In fact, given a set of ports that a ship has to visit, determining the optimal
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sequence of visits becomes a very challenging issue, as the sequence that
gives the shortest travel distance (i.e., the smallest travel cost) may prove
infeasible due to draft limit restrictions for accessing ports. Furthermore,
the same sequence of ports, which may be infeasible for a large ship, may
become viable if operated by a smaller ship. On the other hand, due to
the economy of scale, travel costs per load unit are generally much lower
for large ships than for small ones. Therefore, the draft restrictions also
affect the fleet sizing problem. In this paper, we introduce the Heterogeneous
Fleet Vehicle Routing Problem with Draft Limits (HF-VRP-DL). We propose
a mixed integer programming formulation and several valid inequalities to
strengthen it. Since the mathematical model is able to handle only small-
sized instances, to address larger instances we propose a Large Neighborhood
Search matheuristic (LNS) and an Iterated Local Search matheuristic (ILS).
Computational tests carried out show excellent performances of the proposed
approach. Further analysis is provided on the impact of the instance layout
on the computation time required to solve the problem to optimality.

Keywords: Routing, Heterogeneous Fleet, Draft Limits, Large
Neighborhood Search, Matheuristic, Maritime Transportation

1. Introduction and motivation

In the context of maritime logistics, routing and scheduling decisions are
affected by a combination of requirements, both organizational (e.g., contrac-
tual obligations, mandatory points of passage, demand requests, etc.) and
phisical (e.g., drafts, marine currents, sea and wind conditions, etc.). Partic-
ularly, the role of drafts in ship routing, which has traditionally characterized
maritime transportation, is becoming more and more important due to the
tendency to build ships of ever larger dimensions ([3]). As a consequence
of naval gigantism, the draft issue, which has been traditionally related to
tankers, bulk ships and GAS carriers ([5],[6]), now involves container vessels
as well ([12]). Some data can help to better understand the scale of the
phenomenon.

During the last decades, the size of container ships has grown at a faster
rate than all other ship types. In the 1996-2015 period, the average increase
in the size of container ships (in dead weight tons) was 90%, 55% for bulk
carriers and 21% for oil tankers ([17]). Modern container ships have a length
of 400 meters and are now able to carry more than 23,000 TEUs ([21]),
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designs for over 25,000 TEU ships are in the pipeline ([10]). However, it is
worth pointing out that although container ships are now the largest ships in
the world with regards to length, they still have smaller drafts than tankers
and bulk carriers.

In the maritime context, the draft of a ship is defined as the distance
between the surface of the water and the lowest point of the ship’s hull.
Higher drafts require deeper maritime access and port waters, which can be
a challenge for many ports. The needed draft of a ship may depend on several
factors that determine the minimum depth of water the ship can navigate
safely. Among the most influential factors, we can mention the depth of
the water, the tide at a particular time (of particular importance for some
ports), and the load on board. The latter varies based on the sequence of
visited ports in the route and may, thus, impose restrictions on the visiting
sequence, other than restrictions about the ports that can be visited within
the same route. If the draft of a ship, when approaching a port, is greater
than the draft limit allowed by the port, the ship can not enter it. The
same ship will be able to access that port only after having unloaded part of
its cargo in other ports and having reduced its draft to a limit that allows
safe access. This also implies that some ports with relatively small water
depths can still be able to accommodate large ships provided that these hold
a position within the ports sequence visit that allows for low loads.

This paper deals with the design of an optimal maritime network able to
efficiently connect a potential supply port to a set of receiving ports while
ensuring minimum transport costs and satisfying operational constraints re-
lated to draft limits. Each receiving port is characterized by a demand that
must be fulfilled in the planning horizon. Ships operating on the network
can be selected among a heterogeneous fleet characterized by different ca-
pacities. The problem faced consists into selecting how many ships of each
type to involve, and providing the routing plan for each ship, in compli-
ance with the draft-based constraints. The aim is to minimize total network
costs comprehensive of both port entering costs and travel costs (different
for each ship category). This problem can be modeled as a Heterogeneous
Fleet Vehicle Routing Problem with Draft Limits (HF-VRP-DL). To solve
the HF-VRP-DL, we propose a Mixed Integer Programming (MIP) model
and several Valid Inequalities (VI) to strengthen the formulation and reduce
computational times. Such model is effective only on small-sized instances.
To address larger instances we have designed a Large Neighborhood Search
(LNS) matheuristic and an Iterated Local Search (ILS) matheuristic. Com-
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putational results show the efficiency and effectiveness of the proposed ap-
proaches. The paper is organized as follows. Section 2 reports a review of
the literature on related topics. Section 3 provides a formal description of
the problem addressed. The proposed mathematical model and the Valid In-
equalities to strengthen it are presented in Section 4. Section 5 presents the
solution approaches developed. Section 6 is devoted to the presentation of
the experimental campaign while Section 7 reports the computational results.
Finally, the conclusions and future developments are discussed in Section 8.

2. Literature Review

Despite its relevance in maritime applications, the issue of draft limits in
ports, and the consequent limit imposed on the maximum load of a vessel
to enter a port, has received limited attention in the literature. This issue
has been explicitly addressed in a routing problem for the first time by [20]
who introduce the Traveling Salesman Problem with Draft Limits (TSP-DL),
considering only one vehicle. They propose a mathematical model and valid
inequalities to strengthen the formulation. The proposed approach performs
well on small-sized instances with a small percentage of nodes affected by
draft limits, but computational times explode when this percentage grows.
In [4], new formulations and a branch and cut approach are proposed for
the same problem, sensibly improving the state of the art. [22] propose a
Variable Neighbourhood Search (VNS) heuristic approach able to address
larger instances. [12] propose a Pick-up and Delivery version of the problem
in which each node may request either a pick-up or a delivery service. A
similar problem is studied in [2] considering visit time windows at customers.
The problem is motivated by a real-world application in chemical shipping.
[9] propose an extension of the TSP-DL where it is not mandatory to visit all
nodes, each node is associated with a profit and the goal is to maximize the
collected profit. The authors propose a Mixed Integer Linear Programming
formulation (MILP) able to address only small-sized instances and a VNS
heuristic to solve larger instances.

The literature on routing problems with draft limits involving more than
one vessel is even more limited. In [7], authors study a very complex maritime
routing problem with draft limits and penalties for time windows violation,
and vessel speed considered as a decision variable. They propose a mathe-
matical model too complex even to address small-sized instances and use a
Particular Swarm Optimization (PSO) to heuristically address the problem.
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Therefore, no optimal solutions are provided for this problem. The problem
treated in this paper is novel because it considers an heterogeneous fleet of
vessels among which to choose, each one characterized by different loading
capacity, fixed and unitary costs, and draft.

Although, in [5] and [6], the authors deal with fleet sizing for a maritime
routing problem with draft limits, they consider a fixed draft for each cate-
gory of vessels, which does not vary with the percentage of load on the ship.
Therefore, they model the problem as a standard VRP with Heterogeneous
fleet in which some ports can be visited only by a subset of the available
category of ships. This only impacts on the fleet sizing but does not affect
the visiting sequence within a route. Our paper extends these two docu-
ments by considering a more realistic feature whereby the ship’s draft varies
according to the load on board, and this affects the selection of ships but
also the sequence of visits within the routes. Indeed, given a subset of nodes
assigned to the same route, the sequence providing the shortest travel dis-
tance (and therefore the lowest cost) could turn out to be infeasible due to
draft limits restrictions. On the other hand, the available papers explicitly
dealing with load-dependent draft variations, address single vehicle problems
without possibility of choosing the size of the vehicle. Therefore, to the best
of our knowledge, this paper is the first attempt to integrate the fleet siz-
ing problem with draft limit constraints and load-dependent draft variations,
filling, hence, a gap in the current literature.

3. Problem Description

This study introduces a Heterogeneous Fleet Vehicle Routing Problem
with Draft Limits (HF-VRP-DL) in which a set of ports, I, must be served
starting from a depot. Each port i is characterized by a demand to be served,
Qi, and a draft limit representing the maximum draft of a ship allowed to
enter the port. Draft limits can prevent ships to enter some ports when they
are fully loaded, thus imposing constraints on the sequence of ports visited.
The fleet is composed by a set of heterogeneous ships, S, each characterized
in terms of load capacity, Qs, fixed costs to enter each port i, ris, unitary
sailing costs, cs, and empty and full load draft values. The actual draft of a
ship in a given time is calculated as the draft of the empty ship plus a linear
function of the load on board at the time. Based on these data, we are able
to compute, for each ship s and port i, the maximum allowed load, for s,
to safely access port i, Lis. Sailing times among each pair of ports, tij, and
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between the depot and each port, are known. The objective of the problem
addressed is to minimize the total network cost given by the sum of fixed
costs to access ports and the sailing costs.

4. Mathematical Model

In the following, we provide the mathematical formulation of the newly
introduced problem.

Table 1: List of parameters and variables involved in the
model

Sets
I = [1, Imax] set of ports
I0 = [0, Imax] set of ports including the depot
S = [1, Smax] set of ships
Parameters
Qs ship capacity (tons)
qi port demand (tons)
Lis maximum loading for ship s to access port i (tons)
tij sailing time between port i and port j (h)
cs hourly sailing cost for ship s (€/h)
ris access cost for ship s entering port i (€)
Variables
Xijs binary variables taking value 1 if arc ij is traversed by ship s
Yis binary variables taking value 1 if port i is served by ship s
lis loading of ship s entering port i
ui position of port i in the sequence of visited ports
ps total load for ship s

min
∑
i∈I0

∑
j∈I0

∑
s∈S

cstijXijs +
∑
i∈I

∑
s∈S

risYis (1)

∑
s∈S

Yis = 1 ∀i ∈ I (2)

∑
i∈I

qiYis ≤ Qs ∀s ∈ S (3)
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∑
i∈I0

Xijs = Yjs ∀j ∈ I ∀s ∈ S (4)

∑
i∈I0

Xijs =
∑
i∈I0

Xjis ∀j ∈ I ∀s ∈ S (5)

X0js ≤
∑
j∈I

Yjs ∀s ∈ S (6)

X0js ≥
∑
j∈I

Yjs/Imax ∀s ∈ S (7)

uj ≥ ui + 1− Imax(1−
∑
s∈S

Xijs) ∀i ∈ I ∀j ∈ I0 (8)

ljs ≥ lis − qi −Qs(1−Xijs) ∀i ∈ I ∀j ∈ I0 ∀s ∈ S (9)

lis ≤ Lis ∀i ∈ I ∀s ∈ S (10)

l0s =
∑
i∈I

qiYis ∀s ∈ S (11)

Xijs ∈ {0, 1} ∀i ∈ I0 ∀j ∈ I0 ∀s ∈ S (12)

Yis ∈ {0, 1} ∀i ∈ I ∀s ∈ S (13)

ui ∈ N+ ∀i ∈ I (14)

The objective function is reported in (1). Constraints (2) imply that each
port is assigned to a ship. Constraints (3) ensure that the maximum load
capacity of a ship is never exceeded. If a port is assigned to a ship s it
must be visited by that ship exactly once, as stated by Constraints (4) and
(5). Each ship must enter and exit the depot once if at least one port has
been assigned to it (Constraints (6) and (7)). The position of a port j in the
sequence of visits in the route is tracked by Constraints (8), while Constraints
(9) track the load of the ship when entering port j. This load must always be
lower than the maximum allowed load, as implied by Constraints (10). The
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load of a ship exiting the depot is equal to the sum of the demands of the
ports assigned to it (Constraints (11)). Finally, Constraints (12)-(14) specify
variables domain.

4.1. Valid Inequalities

In order to strengthen the mathematical formulation presented above, we
propose the following valid inequalities (VI).

V I1 : X0js ≤ 1− 1

TOTq

(
∑
i∈I

qiYis − Ljs) ∀j ∈ I ∀s ∈ S (15)

V I2 : Xijs = 0 ∀i ∈ I ∀j ∈ I ∀s ∈ S|qi + qj > Lis (16)

V I3 : ps − (ui − 1)qbig ≤ Lis +Qis(1− Yis) ∀i ∈ I ∀s ∈ S (17)

where ps and qbig represent the total load of a ship and the largest demand,
respectively, and can be computed as:

ps =
∑
i∈I

qiYis ∀s ∈ S (18)

qbig = max
i∈I

qi (19)

V I4 : ui ≤ I∗ ∀i ∈ I (20)

The first set of valid inequalities, V I1, implies that, for each port j,
if the total load of the ship s, to which it has been assigned, is greater
than the maximum allowed load for s to enter j, then j cannot be the first
port visited in the route. The second set, V I2, states that, for each ship
s and each pair of ports i and j, if the sum of their demand, qi and qj,
is greater than the maximum allowed load for s to enter i, then j cannot
be served immediately after i by ship s. Please note that this condition
could have been further strengthened, imposing that j cannot be served
at anytime after i by ship s but this would have implied the generation
of an exponential number of constraints, that would have made the model
intractable from a computational point of view, therefore we decided to keep
the initial version of V I2. The third set, V I3, allows to identify the earliest
position a port i can occupy in the visiting sequence, without violating draft
limit constraints, given the ship s to which it has been assigned and the set
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of ports assigned to it. Finally, V I4 states that the latest position a port can
assume in the visiting sequence is equal to the maximum number of ports
that can be assigned simultaneously to the same ship, I∗. This value can
be easily computed ordering the ports by demand in a non-decreasing order,
and counting how many ports, scrolling the ordered list, can be assigned to
the largest ship in the fleet, before to fill up its capacity.

5. Solution Approaches

The mathematical model proposed for the HF-VRP-DL is able to effi-
ciently handle only small-sized instances. To overcome this issue and address
larger instances, we propose an LNS matheuristic and an ILS matheuristic.
Matheuristics (MH) have become very popular in the last decade. They
cover different types of methods base on the common idea of hybridizing
mathematical programming and (meta)heuristics ([8, 1]). Within this large
family, two main groups can be identified. The first group contains sequen-
tial methods composed by two main phases. In general, in the first phase
a metaheuristic is used to exploit the solution space, while, in the second
one, a mathematical model is used to refine the obtained solution. This type
of matheuristics has been broadly applied to VRPs. A common procedure
is to generate promising solutions with a randomized heuristic and to pass
all obtained routes to a set partitioning formulation which selects the best
combination of them ([14, 18]). A slightly different framework has been used
to address the Electric VRPs in which a metaheuristic is used to build up
the routing plan, while a mathematical model is used to insert recharging
stops along the route ([19, 11]).

The second group of MH contains approaches in which the mathematical
model is directly used to explore the search neighborhood, thus allowing to
exhaustively explore very large neighborhoods in relatively small computa-
tional times. Large Neighborhood Search based MH have been successfully
applied to several routing problems ([13, 15, 16]). The MH proposed in
this paper belongs to this category of solution approaches. Differently from
[13, 15, 16], which operate on the customers assignment variables (to a ve-
hicle, a depot, a period, etc.) fixing only the assignment of most of the
customers and letting the model choose the assignment of the remaining cus-
tomers and building the routes, our approach directly works on arc variables,
destroy part of the current solution by removing some arcs. In this way, at
each iteration, we do not need to completely reoptimize the routing of the
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whole solution, but only of those parts of the solution affected by the per-
turbation. Clearly, the size of the explored neighborhood is still large but
smaller respect to the approaches proposed in the literature, though this al-
lows to explore them much faster. This kind of approach is specifically useful
when dealing with routing problems in which the number of customers that
can be served in a route is large, such as in maritime applications where the
capacity of the ships is very large respect to the port demand. On this kind
of problem, neighborhoods based on assignment variables would require too
much time to be exhaustively explored, while arcs variables based ones would
be more suitable.

5.1. An LNS Matheuristic for the HF-VRP-DL

We have designed an LNS Matheuristic in which we use a randomized
operator to partially destroy the solution, and we exploit the mathematical
model, presented in Section 4, to optimally rebuild a feasible solution start-
ing from the partial solution obtained and then inserting the removed nodes
in the most convenient position. A pure random arc removal operator would
provide certainly some improvements at the beginning of the search, espe-
cially when starting from a poor quality solution, but once we have reached
good quality solutions, it would frequently happen to remain trapped into lo-
cal minima. If, instead, we use a randomized arcs removal procedure aiming
at removing arcs which are spatially near to each others, the probability to
obtain an improving solution sensibly increases. The procedure we propose
works as follows. We run the mathematical model with a short time-limit
(15 s) and we keep the best solution obtained so far, Ω0, as the current best
solution, Ωbest. Then, at each iteration, we randomly select m ports and add
them to the set of ports to be removed from the solution, IR. Then, for
each i ∈ IR, we remove from the solution (destroying entering and exiting
arcs) all the ports within a certain radius, ρi, from i. The value of ρi varies
among ports and is computed as ρi = ανi where α is a parameter and νi
is the distance between i and its nearest port. Using a variable radius we
avoid situations in which the circle of radius ρ does not contain any ports
(for peripheral ports) or contains too many ports (for most central ones).
The partially destroyed solution obtained after the application of the destroy
operator, ΩR, is then passed to the model, fixing to 1 the variables corre-
sponding to the arcs selected in ΩR. Then, this over-constrained version of
the model is run to optimally complete the routes, inserting in the best po-
sition the ports that have been previously removed from the solution (i.e.,
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ports belonging to I − IR). If the newly obtained solution, Ωnew, is better
than Ωbest, it is kept as current best, otherwise it is discarded. This procedure
is repeated until the maximum number of iterations, ITERMAX is reached,
or after MAXNOIMPROV E iterations without any improvement.

A pseudocode of the above described LNS matheuristic is reported in
Algorithm 1.

The main advantage of this procedure respect to classical metaheuristics
is that a very large neighborhood can be efficiently explored at each iteration,
allowing to quickly move toward strongly better solutions, as reported in the
example in Fig. 1.

5.2. An ILS Matheuristic for the HF-VRP-DL

The ILS we propose shares the common basic idea of the LNS, but uses a
different arcs removal operator. It is composed of two phases: a deterministic
local search (LS) and a randomized diversification phase (DIV). Initially, we
run the mathematical model with a short timelimit (15 s) and we keep the
best solution obtained so far, Ω0, as the current best solution Ωbest. Then,
we start applying the LS and every time we remain trapped into a local
minimum, we apply DIV and restart the LS. The procedure terminates af-
ter ITERMAX iterations or after MAXNOIMPROV E iterations without
improvements. The LS works as follows: named λi the length of the longest
between the arc entering and the arc exiting port i, we define a score for
each port i, σi =

λi

νi
. Then, we remove from the current solution the m ports

with the highest scores, and let the model optimally reconstruct the solution
starting from the partial destroyed one. The newly obtained solution is kept
as current best. The procedure terminates as soon as no further improve-
ments are reached, i.e., when the reconstructed solution coincides with the
current best. The diversification phase, DIV, is performed randomly choosing
m ports to be removed from the solution together with their neighborhoods
within a radius ρi, where ρi = ανi. The best feasible solution obtained start-
ing by the partial destroy solution generated by DIV is kept as a current
solution even if it is worse than the current best, as usual in diversification
procedures.

A pseudocode of the above described ILS matheuristic is reported in
Algorithm 1, while procedure LS and DIV are enlightened in Algorithms 3
and 4.

11



Algorithm 1 A pseudocode for the LNS matheuristic
1: iter ← 1
2: NOIMPROV E ← 0
3: Ωbest ← Ω0

4: while iter ≤ ITERMAX and NOIMPROV E ≤
MAXNOIMPROV E do

5: IR = ∅
6: ΩR ← Ωbest

7: for pert ∈ 1..m do
8: randomly select a port j in I − IR

9: IR ← IR + {j}
10: end for
11: for i ∈ IR, j ∈ I − IR, do
12: if tij ≤ ρi then
13: IR ← IR + {j}
14: end if
15: end for
16: for i ∈ IR do
17: remove from ΩR the arcs entering and exiting from i
18: end for
19: fix all the arc variables active in ΩR equal to 1
20: run the over-constrained version of the model to optimize the remaining

variables obtaining a solution Ωnew

21: if Ωnew is better than Ωbest then
22: Ωbest ← Ωnew

23: NOIMPROV E ← 0
24: else
25: NOIMPROV E ← NOIMPROV E + 1
26: end if
27: end while
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Figure 1: An iteration of LNS Matheuristic
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Algorithm 2 A pseudocode for the ILS matheuristic
1: iter ← 1
2: NOIMPROV E ← 0
3: Ωbest ← Ω0

4: while iter ≤ ITERMAX and NOIMPROV E ≤
MAXNOIMPROV E do

5: if NOIMPROV E = 0 then
6: Ωnew ← LS(Ωbest)
7: if Ωnew is better than Ωbest then
8: Ωbest ← Ωnew

9: NOIMPROV E ← 0
10: else
11: NOIMPROV E ← NOIMPROV E + 1
12: end if
13: else
14: Ωnew ← DIV (Ωbest)
15: if Ωnew is better than Ωbest then
16: NOIMPROV E ← 0
17: else
18: NOIMPROV E ← NOIMPROV E + 1
19: end if
20: end if
21: end while
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Algorithm 3 A pseudocode for the local search procedure LS

Require: Ωbest

1: IR = ∅
2: ΩR ← Ωbest

3: for i ∈ I do
4: λi ← max(maxj(tij),maxj(tji))
5: end for
6: Define IW the set containing them ports with the largest value of lambdai
7: IR ← IR + IW

8: for i ∈ IR, j ∈ I − IR, do
9: if tij ≤ ρi then

10: IR ← IR + {j}
11: end if
12: end for
13: for i ∈ IR do
14: remove from ΩR the arcs entering and exiting from i
15: end for
16: fix all the arc variables active in ΩR equal to 1
17: run the over-constrained version of the model to optimize the remaining

variables obtaining a solution Ωnew

18: return Ωnew
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Algorithm 4 A pseudocode for the diversification procedure DIV

Require: Ωbest

1: IR = ∅
2: ΩR ← Ωbest

3: for pert ∈ 1..m do
4: randomly select a port j in I − IR

5: IR ← IR + {j}
6: end for
7: for i ∈ IR, j ∈ I − IR, do
8: if tij ≤ ρi then
9: IR ← IR + {j}

10: end if
11: end for
12: for i ∈ IR do
13: remove from ΩR the arcs entering and exiting from i
14: end for
15: fix all the arc variables active in ΩR equal to 1
16: run the over-constrained version of the model to optimize the remaining

variables obtaining a solution Ωnew

17: return Ωnew
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6. Experimental Campaign

We conducted an experimental campaign on a set of realistic instances
developed ad-hoc to investigate whether the layout of the instances could
influence the performance of the proposed approaches. The impact of the
layout of the instances on the computational performance was analyzed in
relation to the following features:

• number of ports involved in the network

• percentage of ports affect by draft-based restrictions

• tightness of total ship capacity with respect to the total demand of the
ports.

We have analyzed small instances with 15 ports and large instances with
25 ports. While in some contexts, like last-mile delivery, it is very common
to face instances with hundreds or even thousands of customers, in maritime
routing problems the number of nodes involved is much smaller (dozens),
since the number of ports in a specific geographical area is somehow limited.
In particular, in maritime routing problems involving very large ships, the
number of nodes is even smaller, since only large ports, with a deep seabed
can be entered with such ships, due to draft limits. It is worth noting that
maritime VRPs that are not affected by draft limits can be treated as stan-
dard VRP, since no limitations are imposed on the maximum load allowed
on the ship to enter a port, and are out of the scope of this paper. Maritime
VRPs in which access restrictions hold depending on the on-board load, as
the one studied in this paper, generally consider a very limited number of
nodes. In this application, we assume that small networks (15 ports) are
served by 3 ships (1 small, 1 medium, 1 large), medium networks (25 ports)
by 6 ships (2 small, 2 medium, 2 large) and large networks (50 ports) by 15
ships (5 small, 5 medium, 5 large) For what concerns the percentage of ports
affected by draft restrictions (DR), we generated two scenarios: LOWDR

where only 30% of ports are affected by draft limits and HIGHDR with 70%
of ports with draft limit restrictions. We made a similar choice for what
concerns capacity tightness (CT). In the LOWCT case the total demand cor-
responds to 30% of the total ships capacity, while, in the HIGHCT case, it
corresponds to 70%. Resuming, we have created four set of instances with
15 ports, one for each combination of the parameters DR and CT.
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• Set 1: LOWDR − LOWCT

• Set 2: LOWDR −HIGHCT

• Set 3: HIGHDR − LOWCT

• Set 4: HIGHDR −HIGHCT

Each set contains 10 instances with randomly generated coordinates for
the ports. In order to evaluate the contribution of the valid inequalities from
a computational point of view, we have tested the model without VIs and
with different combinations of VIs. More in detail, the following combinations
have been tested:

• without VIs

• considering each VI separately

• combining the VI that has been shown to work best with each of the
other VIs

• considering the four VIs together

In a second phase, we have detected the combination of layout parameters
that makes the problem more difficult to solve and we have generated one
set of 10 instances with 25 nodes sharing this layout. On this fifth set, we
compared the performance of the model with the best combination of valid
inequalities with the LNS and the ILS.

7. Computational Results

7.1. Small-sized instances

All the results on small-sized instances are reported in Tables 2-5, which
are organized as follows. In the first column is reported the instance ID, then
columns 2-4 report instance layout characteristics: number of ports, capacity
tightness and percentage of ports affected by draft limits. The objective of
the optimal solution (OF) is indicated in column 5, while the remaining
columns report the computational time (s) requested by each version of the
model. The best results in terms of computational times are enhanced in
bold. We compare the mathematical model without VIs with four versions
of the model, each with only one VI. As can be evinced from the results, all
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Table 2: Results on small-sized instances with LOW capacity tightness and LOW percent-
age of ports affected by draft limits (LOWDR − LOWCT )

INSTANCE PORTS TOTq/TOTQ % draft limits OF NO VI 1 2 3 4 1+4 2+4 3+4 1+2+3+4

1 15 0.3 30 328.1 9.80 10.73 9.73 6.74 3.73 4.74 3.67 2.98 3.00

2 15 0.3 30 280.5 17.07 2.84 16.94 17.86 5.63 6.21 5.65 5.63 4.34

3 15 0.3 30 341.4 6.27 8.46 6.10 7.71 3.18 3.73 3.14 12.41 17.19

4 15 0.3 30 275 2.93 4.18 3.00 4.38 0.83 1.42 0.83 1.69 1.42

5 15 0.3 30 357.5 2.37 2.78 2.36 1.83 2.82 1.17 2.89 1.08 1.00

6 15 0.3 30 329.6 6.58 3.81 6.79 4.67 1.83 0.98 1.86 4.56 5.98

7 15 0.3 30 320.7 9.02 10.22 9.19 8.46 6.24 5.87 6.19 3.06 3.12

8 15 0.3 30 310.6 11.64 9.92 11.89 7.97 6.90 5.10 6.85 5.43 8.81

9 15 0.3 30 367.6 9.53 4.24 9.55 2.68 6.62 0.84 6.58 3.81 2.68

10 15 0.3 30 272.7 1.64 2.82 1.58 1.45 1.05 1.14 1.05 1.26 1.25

318.37 7.6847 6.0001 7.7115 6.3751 3.8816 3.1201 3.8687 4.1898 4.8782

COMPUTATIONAL TIME

Table 3: Results on small-sized instances with LOW capacity tightness and HIGH per-
centage of ports affected by draft limits (LOWDR −HIGHCT )

INSTANCE PORTS TOTq/TOTQ % draft limits OF NO VI 1 2 3 4 1+4 2+4 3+4 1+2+3+4

1 15 0.3 70 328.8 10.65 5.93 9.73 9.87 4.21 6.02 4.21 2.81 2.75

2 15 0.3 70 280.5 27.11 19.90 16.94 11.60 2.24 2.39 2.15 7.06 11.23

3 15 0.3 70 341.9 11.32 7.34 6.10 8.21 4.69 4.83 4.69 7.08 3.60

4 15 0.3 70 275 2.99 3.98 3.00 7.22 2.44 3.48 2.23 0.89 1.45

5 15 0.3 70 357.5 1.91 1.87 2.36 4.50 1.06 1.32 1.05 1.99 2.82

6 15 0.3 70 329.6 7.96 9.38 6.79 9.26 12.83 18.88 12.71 4.88 7.54

7 15 0.3 70 320.7 7.61 6.80 9.19 8.80 4.77 7.47 4.57 3.35 9.72

8 15 0.3 70 310.6 10.87 8.99 11.89 14.18 7.00 7.30 6.99 5.44 6.78

9 15 0.3 70 367.6 2.90 5.91 9.55 4.10 5.67 1.08 5.60 1.08 0.93

10 15 0.3 70 272.7 6.65 6.23 1.58 3.96 4.91 1.62 4.98 3.54 2.12

318.49 8.9985 7.6322 7.7115 8.1705 4.9828 5.4401 4.9183 3.8131 4.8947

COMPUTATIONAL TIME

the VIs are useful to reduce computational times but the best performance
is obtained with VI 4. For this reason, we have tested the combination of
VI 4 with each one of the other VIs. The best VIs configuration turned out
to be the combination of VIs 3 and 4. Finally, we have tested all the VIs
together. This set-up performs better than the model without VIs but it is
outperformed by the combination 3-4, which results to be the global best
set-up.

Regarding the impact of the layout on the computational times, we
can deduct from the results that the first three sets (LOWDR − LOWCT ,
LOWDR −HIGHCT and HIGHDR −LOWCT ) show a similar behavior and
all the instances belonging to them can be solved in very few seconds. The
HIGHDR −HIGHCT combination, instead, turned out to be more difficult
to be solved, requiring, on average 96 seconds to be solved to the optimality.
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Table 4: Results on small-sized instances with HIGH capacity tightness and LOW per-
centage of ports affected by draft limits (HIGHDR − LOWCT )

INSTANCE PORTS TOTq/TOTQ % draft limits OF NO VI 1 2 3 4 1+4 2+4 3+4 1+2+3+4

1 15 0.7 30 400.8 1.50 1.41 1.48 3.61 1.38 0.89 1.35 2.98 1.72

2 15 0.7 30 385.4 33.72 17.32 31.88 15.45 22.51 20.17 20.38 5.63 9.98

3 15 0.7 30 437.9 5.84 8.18 5.71 24.78 8.18 9.08 7.90 12.41 4.82

4 15 0.7 30 383.5 34.89 25.26 33.08 28.69 16.70 7.89 16.35 1.69 15.72

5 15 0.7 30 472 7.92 5.88 7.31 8.09 2.51 2.93 2.47 1.08 3.34

6 15 0.7 30 433.3 5.63 3.81 5.15 6.39 5.33 2.84 4.93 4.56 5.71

7 15 0.7 30 451.9 52.91 31.81 48.32 49.71 30.01 29.53 29.79 3.06 27.63

8 15 0.7 30 421.6 14.40 20.56 14.21 27.34 11.86 9.35 11.90 5.43 10.18

9 15 0.7 30 569.5 72.32 48.03 68.97 69.77 34.68 67.71 33.18 3.81 44.60

10 15 0.7 30 373.8 17.85 13.93 17.37 19.26 10.44 9.81 10.42 1.26 11.51

432.97 24.6974 17.618 23.3477 25.3077 14.3575 16.0199 13.8657 4.1898 13.5205

COMPUTATIONAL TIME

Table 5: Results on small-sized instances with HIGH capacity tightness and HIGH per-
centage of ports affected by draft limits (HIGHDR −HIGHCT )

INSTANCE PORTS TOTq/TOTQ % draft limits OF NO VI 1 2 3 4 1+4 2+4 3+4 1+2+3+4

1 15 0.7 70 458.1 29.867 16.526 28.769 38.949 10.132 5.385 10.051 12.729 9.279

2 15 0.7 70 523.4 545.952 509.138 521.994 522.317 636.593 595.288 605.364 301.013 512.538

3 15 0.7 70 545.3 183.2 205.241 170.693 235.057 180.362 175.471 171.197 224.129 230.837

4 15 0.7 70 432.4 97.237 116.912 95.457 94.755 60.708 63.009 57.558 92.514 95.376

5 15 0.7 70 579 86.379 78.861 82.992 93.02 57.511 53.148 54.845 45.784 99.356

6 15 0.7 70 504.6 80.064 79.874 79.471 118.052 87.021 89.709 84.763 42.67 35.907

7 15 0.7 70 479.2 95.124 123.372 92.235 152.319 79.106 78.861 75.19 83.194 61.708

8 15 0.7 70 474 63.645 65.677 61.16 59.047 18.526 27.29 17.665 62.551 57.45

9 15 0.7 70 584.6 105.442 128.975 96.178 114.139 62.318 53.418 62.147 90.584 115.462

10 15 0.7 70 363.7 11.99 10.841 11.167 5.948 3.995 4.331 4.086 6.911 7.723

494.43 129.89 133.5417 124.0116 143.3603 119.6272 114.591 114.2866 96.2079 122.5636

COMPUTATIONAL TIME
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7.2. Medium-sized instances

Starting from the results obtained on small-sized instances, we have de-
cided to analyze, for large instances, only the combination of parameters
HIGHDR−HIGHCT because it turned out to be the most challenging one.
The goal of this analysis was to compare the performance of the best set-up
of the mathematical model (with VIs 3 and 4) to the LNS and the ILS, both
in terms of efficiency and effectiveness.

7.2.1. Algorithms’ parameters tuning

Since both proposed algorithms are parametric, we performed prelimi-
nary tests to tune the parameters involved. The algorithm depends on two
parameters: 1) m, which is the number of nodes involved by the destroy op-
erator and 2) α, which is the proximity threshold, used to identify the nodes
to involve in the diversification phase in the ILS. We first analyze how the
variation of a single parameter influences the performance of the algorithms,
and then study the combined effect of the two parameters. In Figure 2, we
report a graphic of the average objective function found by the ILS depend-
ing on the parameter m. We have considered 3 values of m: {3, 5 and 7}.
All the tests have been carried out considering a fixed value of α = 1.5. In
Figure 3 we report average computational times variation depending on m.
As can be evinced from the graphic, m=3 provides a too small neighborhood
and the algorithm immediately remains trapped in local minima. Since the
neighborhood size is very small, computational times are very short, but the
quality of the solutions provided is very low. The value m=5 provides the
best results, outperforming m=7, both from efficiency and from effectiveness.
In fact, when the size of the neighborhood is very large, the mathematical
model requires longer times to exhaustively explore them, which justify the
larger computational times reported in Figure 3. Moreover, a larger pertur-
bation in the diversification phase, can yield to poor quality solutions. We
do not explicitly reports tuning parameters results for the LNS since the
graphics was almost completely overlapping with those related to ILS, both
for what concerns solution quality and computational times, showing exactly
the same trend. Finally, from this analysis, we can conclude that the best
choice is to fix m=5.

We also analyzed the influence of the proximity parameter, α, testing the
values {1, 1.25, 1.5, 2}. We recall to the reader that α is used to determine
the set of nodes which, basing on the nodes removed from the solution by the
destroy operator, are candidate to be reallocated by the model. The larger
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Figure 2: Impact of m on the solutions’ quality for a fixed value of α = 1.5.
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Figure 3: Impact of m on the computational time for a fixed value of α = 5.
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Figure 4: Impact of α on the solutions’ quality for a fixed value of m = 5.
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the value of α the larger the number of candidate nodes. The value of m
has been fixed equal to 5, which has been proved to be the best value in the
above described analysis. As shown in Figure 4, the best configuration is to
set α = 1.5. Smaller values will include too few nodes as candidate and yield
the algorithm to quickly converge to local minima, as proved by the very
short computational times (see Figure 5). Larger values of α involve a large
number of candidate solutions, strongly slowing the algorithm.

A third analysis has been conducted to determine the effect of the com-
bination of m and α on the algorithm’s performance. Results are reported in
Table 6. The best global results are obtained fixing m = 5 and α = 1.5. In
Figure 6, we plot for each value of m the variation of performance depending
on α. We can easily note that the trend does not depend on the value of α. It
is worth notice that the parameter that mostly influences the performance is
m, while the effect of the variation of α is much more limited. Whichever the
value of α, the best configuration for m is 5, by a large amount. Similarly,
whichever the value of m, the best configuration for α is 1.5. This proves that
the two parameters’ impacts are uncorrelated and that there is no mutual
interaction. Last, but not least, it is worth notice that all the configurations
with m = 5 strongly outperform the others, while this does not hold for α.
This proves that the most influencing parameter is m.
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Figure 5: Impact of α on the computational time for a fixed value of m = 5.
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Table 6: Average results for different combinations of m and α

m
3 5 7

α

1.25 609.89 512.33 534.22
1.5 579.36 445.13 474.55
1.75 589.16 459.23 489.91
2 603.94 497.89 507.33
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Figure 6: Impact of α on the computational time for different values of m.
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7.2.2. Comparison with the model

Results are resumed in Table 7, which is organized as follows. We report
the objective function (OF) of the best solution found by the mathemati-
cal model within a time limit of 3600 seconds, the best lower bound (LB)
obtained so far, the time frame (TF) on which the best solution has been
found and the total computational time elapsed (TIME). For both LNS and
ILS, we report the gap with the best solution obtained by the model (BEST
GAP), the average gap (AVG GAP) obtained over 10 runs, the average time
on which the best solution was found (AVGTF) and the average computa-
tional time elapsed (AVG TIME). The value of the parameters used in ILS
and LNS are m = 5 and α = 1.5. The initial solution is computed running
the model for 15 seconds and keeping the best solution obtained so far. The
mathematical model was unable to optimally solve any of the ten medium-
sized instances within the set time limit; an average residual optimality gap
of 11% emerged. Both LNS and ILS matheuristics showed very good perfor-
mances, obtaining the same solution of the mathematical model in nine out
of ten cases, and further improving the solution obtained by the model in the
remaining one. Both matheuristics turned out to be robust with a very small
gap (0.97% for LNS, 0.19% for ILS) between the average objective function
they obtained over 10 runs and the best solution of the mathematical model.
From the point of view of computational efficiency, both matheuristics are
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Table 7: Comparison of model, LNS and ILS on medium-sized instances

OF LB TF TIME BEST GAP AVG GAP AVG TF AVG TIME BEST GAP AVG GAP AVG TF AVG TIME

I1 455 431.289 375.788 3600 0.00% 0.92% 138.03 171.85 0.00% 0.23% 76.89 160.89

I2 435.4 396.444 1447.36 3600 0.00% 1.54% 102.78 160.19 0.00% 0.09% 88.97 161.89

I3 427.5 398.983 1088.9 3600 0.00% 1.07% 119.22 169.36 0.00% 0.89% 110.92 159.33

I4 389 313.762 2594.18 3600 0.00% 1.89% 128.32 183.64 0.00% 0.23% 88.67 180.91

I5 444.6 417.267 1060.88 3600 0.00% 0.61% 121.74 161.62 0.00% 0.00% 101.43 154.33

I6 483.4 439.5 1653.43 3600 0.00% 0.85% 72.62 112.89 0.00% 0.00% 70.11 120.23

I7 409.9 354.847 198.696 3600 0.00% 0.00% 49.67 114.8 0.00% 0.00% 39.78 117.78

I8 464.9 414.255 1396.61 3600 0.00% 0.23% 83.17 135.77 0.00% 0.11% 77.12 144.44

I9 447.8 408.557 1436.58 3600 0.00% 1.10% 103.08 182.92 0.00% 0.16% 89.9 190.87

I10 485.4 426.428 1789.56 3600 ‐1.34% 1.46% 94.68 150.84 ‐1.34% 0.17% 90.8 155.55

444.29 400.1332 1304.198 3600 ‐0.13% 0.97% 101.331 154.388 ‐0.13% 0.19% 83.459 154.622

MODEL +3 4 LNS ILS

more efficient than the mathematical model. The latter took on average
1304 seconds to find the best solution, while LNS and ILS achieved it on
average in 101 and 83 seconds, respectively (see Table 7). In conclusion,
both methods performed very well and showed strong robustness. Although
ILS slightly outperforms LNS, there is no statistically significant difference
in their performance, which means that both can be considered valid and
high-performing tools to solve the problem.

Since the size of the perturbation addressed in both LNS and ILS is
a parameter of the algorithm and does not vary depending on the size of
the instances, the computational times required by both approaches do not
strongly increase with the size of the instance. Therefore, even very large
instances can be addressed by these methods. Conversely, the mathematical
model becomes intractable, from a computational point of view, as the size
of the instances increases.

7.3. Large-sized instances

This section analyzes the results on a set of 10 large-sized instances, with
50 ports and 15 ships (5 small, 5 medium and 5 large).

In Table 8, we compare the results obtained by the model with those
obtained by LNS and ILS. Since both LNS and ILS contain a random com-
ponent, we performed 10 runs for each instance and plotted the best and
the average value. The model is not able to solve any instance to optimality
within the imposed time-limit of 3600 seconds, and the reached optimality
gap is always very high (in some cases higher than 50%). Both LNS and
ILS show very good performances, providing solutions with an average cost
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Table 8: Comparison of model, LNS and ILS on large-sized instances

OF LB TF TIME BEST GAP AVG GAP AVG TF AVG TIME BEST GAP AVG GAP AVG TF AVG TIME
I1 972.5 545.839 1097.85 3600 ‐35.70% ‐34.87% 694.056 768.174 ‐35.70% ‐35.49% 306.418 438.464
I2 1092.8 521.827 998.9 3600 ‐43.14% ‐42.76% 279.779 387.079 ‐42.96% ‐42.63% 57.183 107.561
I3 960.7 553.589 988.89 3600 ‐29.34% ‐29.19% 216.071 253.732 ‐29.11% ‐28.90% 382.291 540.294
I4 842.2 506.996 972.37 3600 ‐20.08% ‐19.36% 288.343 404.379 ‐20.08% ‐19.48% 451.003 511.953
I5 1137.6 591.865 1005.12 3600 ‐25.76% ‐25.18% 224.257 250.341 ‐25.71% ‐25.54% 541.729 681.074
I6 1005.7 561.827 1015.21 3600 ‐12.86% ‐12.61% 67.219 132.301 ‐12.95% ‐12.61% 92.708 162.224
I7 933.7 534.435 1989.09 3600 ‐28.71% ‐28.54% 267.37 386.056 ‐28.71% ‐28.57% 290.946 327.932
I8 1050.9 573.624 2989.9 3600 ‐34.10% ‐33.40% 163.81 256.337 ‐34.10% ‐33.77% 309.112 407.554
I9 891.5 606.729 3006.76 3600 ‐26.69% ‐26.58% 364.743 498.057 ‐26.34% ‐25.78% 136.869 231.131
I10 927.5 556.19 3330.17 3600 ‐25.56% ‐25.20% 254.297 346.152 ‐25.56% ‐24.96% 483.064 556.239

981.51 555.29 1739.43 3600.00 ‐28.19% ‐27.77% 281.99 368.26 ‐28.1% ‐27.77% 305.13 396.44

MODEL +3 4 LNS ILS

that is 28% lower than the model. Both matheuristics are very robust and
strongly independent by the random seed. In fact, average results, over 10
runs, only slightly differ from best results. Computational times are very
similar for the two approaches, since both of them are capable to find the
best solution in around 300 seconds on average.

We can conclude that, while the mathematical model becomes intractable
as the size of the instances increases, both matheuristics scale very well both
in terms of efficiency and effectiveness. Since there is no statistically signifi-
cant difference between the performances of LNS and ILS, both can be seen
as powerful tools for solving the problem.

8. Conclusions and Future Developments

This paper introduced the Heterogeneous Fleet Vehicle Routing Problem
with Draft Limits (HF-VRP-DL). The problem treated presents several nov-
elties with respect to the existing literature: (i) it extends the maritime rout-
ing problem with heterogeneous fleet by considering draft limit restrictions to
access ports and (ii) it extends the Traveling Salesman Problem with Draft
Limits by introducing an heterogeneous fleet. To address the HF-VRP-DL,
this paper proposed a mixed-integer programming model and several Valid
Inequalities to strengthen it. Since this formulation allowed to efficiently
handle only small-sized instances (up to 15 nodes), a Large Neighborhood
Search (LNS) matheuristic and an Iterated Local Search (ILS) matheuristic
were designed to address larger instances (25 nodes). Computational tests,
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carried out on realistic instances, showed the utility of the valid inequali-
ties, and excellent performances of both LNS and ILS, either in terms of
efficiency and of effectiveness. The proposed heuristic approaches, belonging
to the family of model-based matheuristics, are innovative because, differ-
ently from previous works in the literature, they directly work with routing
variables based neighborhood, instead of assignment variables based neigh-
borhoods. From a methodological point of view, the proposed approaches
can be adapted to solve several Vehicle Routing Problems, especially those
in which routes contain a large number of customers, for which the visit se-
quencing problem becomes more difficult, and for which assignment variables
based matheuristic generally fail. The performed computational tests also
investigated the impact of the layout of the instances on the performance
of the different solution approaches. The instances characterized by a high
percentage of ports affected by draft restrictions, and high tightness of the
total ship capacity with respect to the total demand of the ports, turned
to be the most challenging. However, both matheuristics have been proved
to be effective and robust also for the solution of these instances. Further
extensions of the research could include the analysis of a multi-depot version
of the problem, and the adaption of the developed approaches to different
Vehicle Routing Problems, in particular those in which the routes contain a
large number of nodes, for which the sequencing of the visits becomes more
difficult, and assignment variables based matheuristic generally fail.
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