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Abstract. We consider a nonlinear Dirichlet equation driven by the sum of a p-
Laplacian and of a Laplacian (a (p, 2)-equation). The hypotheses on the reaction
f(z, x) are minimal and make the energy (Euler) functional of the problem coercive.
We prove two multiplicity theorems producing three and four nontrivial smooth solu-
tions respectively, all with sign information. We apply our multiplicity results to the
particular case of a class of parametric (p, 2)-equations.

1. Introduction

Let Ω ⊆ RN be a bounded domain with a C2-boundary ∂Ω. In this paper we study
the following nonlinear Dirichlet problem:

(1) −∆pu(z)−∆u(z) = f(z, u(z)) in Ω, u
∣∣
∂Ω

= 0, 2 < p.

In this problem ∆p denotes the p-Laplace differential operator defined by

∆pu = div(|∇u|p−2∇u) for all u ∈ W 1,p
0 (Ω).

So, in the left hand side of (1) we have the sum of two differential operators of different
nature. One is the p-Laplacian (a nonlinear operator) and the other is the Laplacian (a
linear operator). The resulting nonlinear differential operator is nonhomogeneous and
this is a source of difficulties in the analysis of problem (1). The resulting equation
is known in the literature as a (p, 2)-equation and is a particular case of the class of
the so-called double phase equations which arise in mathematical models of various
physical processes. As a characteristic example of such a model, we mention the work
of Zhikov [27] on the homogenization of composites consisting of two materials with
distinct hardening exponents which come up in elasticity theory. In problem (1) the
reaction term f(z, x) is a Carathéodory function (that is, for all x ∈ R, z → f(z, x) is
measurable and for a.a. z ∈ Ω, x → f(z, x) is continuous). The conditions on f(z, ·)
are minimal and make the energy (Euler) functional of the problem coercive. Using
variational methods based on the critical point theory combined with suitable truncation
and comparison techniques, we prove the existence of three nontrivial smooth solutions
all with sign information, namely a positive solution, a negative solution and a nodal
(sign changing) solution. If we strengthen the regularity of f(z, ·), more precisely, if
we assume that for a.a. z ∈ Ω, f(z, ·) ∈ C1(R) and use the theory of critical groups
(Morse theory), then we produce a second nodal solution, for a total of four nontrivial
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smooth solutions, all with sign information. Moreover, when the reaction term has the
following particular form

f(z, x) = λx− g(z, x)

with λ > 0 being a parameter, then our multiplicity results applied to this particular

case, guarantee that if λ > λ̂2(2) (with λ̂2(2) > 0 being the second eigenvalue of
(−∆, H1

0 (Ω)), then the equation has three or four nontrivial smooth solutions all with
sign information, depending on the regularity of g(z, ·). This particular right hand side
is a typical subdiffusive reaction in a nonlinear nonhomogeneous logistic equation.

We mention that recently (p, 2)-equations attracted considerable interest and there
have been various existence and multiplicity results for such equations. We men-
tion the works of Aizicovici-Papageorgiou-Staicu [1], Gasiński-Papageorgiou [6], He-Lei-
Zhang-Sun [9], Liang-Han-Li [12], Liang-Song-Su [13], Papageorgiou-Rădulescu [15, 16],
Papageorgiou-Vetro-Vetro [19, 20, 21], Papageorgiou-Zhang [23], Sun-Zhang-Su [25],
Zhang-Liang [26]. In particular [1, 15] also deal with coercive problems but under more
restrictive conditions on the source term f(z, x) which exclude from consideration logis-
tic equations. In [6, 16, 21], the authors deal with equations in which the reaction term
exhibits asymmetric behavior as x → ±∞. In [12, 13, 26] the authors prove on exis-
tence results for (p, 2)-equations. In [9] the equation is parametric and the approach is
based on flow invariant arguments and in [23] the authors deal with equations involving
a parametric concave term.

2. Mathematical Background

The main spaces in the analysis of problem (1) are the Sobolev spaces W 1,p
0 (Ω), H1

0 (Ω)
and the Banach space C1

0(Ω) = {u ∈ C1(Ω) : u
∣∣
∂Ω

= 0}. By ‖ · ‖ we denote the norm of

W 1,p
0 (Ω) and by ‖ · ‖1,2 the norm of H1

0 (Ω). On account of the Poincaré inequality we
have

‖u‖ = ‖∇u‖p for all u ∈ W 1,p
0 (Ω) and ‖u‖1,2 = ‖∇u‖2 for all u ∈ H1

0 (Ω).

The Banach space C1
0(Ω) is ordered, with positive (order) cone C+ = {u ∈ C1

0(Ω) :
u(z) ≥ 0 for all z ∈ Ω}. This cone has a nonempty interior given by

intC+ =

{
u ∈ C+ : u(z) > 0 for all z ∈ Ω,

∂u

∂n

∣∣∣∣
∂Ω

< 0

}
,

with n(·) being the outward unit normal on ∂Ω. Recall that C1
0(Ω) is dense in both

W 1,p
0 (Ω) and H1

0 (Ω).

Let Ap : W 1,p
0 (Ω) → W−1,p′(Ω) = W 1,p

0 (Ω)∗
(

1

p
+

1

p′
= 1

)
be the nonlinear map

defined by

〈Ap(u), h〉 =

∫
Ω

|∇u|p−2(∇u,∇h)RNdz for all u, h ∈ W 1,p
0 (Ω).

The next proposition summarizes the well-known properties of this map (see Gasiński-
Papageorgiou [4], p. 746).

Proposition 1. The map Ap(·) is bounded (that is, maps bounded sets to bounded sets),
continuous, strictly monotone (thus maximal monotone) and of type (S)+ (this means

that if un
w−→ u in W 1,p

0 (Ω) and lim supn→+∞〈Ap(un), un − u〉 ≤ 0, then un → u in

W 1,p
0 (Ω)).
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Also A ∈ L(H1
0 (Ω), H−1(Ω)) is the linear operator defined by

〈A(u), h〉 =

∫
Ω

(∇u,∇h)RNdz for all u, h ∈ H1
0 (Ω).

We will use the spectra of (−∆p,W
1,p
0 (Ω)) and of (−∆, H1

0 (Ω)). So, let us recall some
basic facts about them.

We start by considering the following nonlinear eigenvalue problem

(2) −∆pu(z) = λ̂|u(z)|p−2u(z) in Ω, u
∣∣
∂Ω

= 0.

We say that λ̂ ∈ R is an “eigenvalue” of (−∆p,W
1,p
0 (Ω)), if problem (2) admits

a nontrivial solution û ∈ W 1,p
0 (Ω), known as an “eigenfunction” corresponding to the

eigenvalue λ̂. There is a smallest eigenvalue λ̂1(p) > 0 which has the following properties:

(a) λ̂1(p) is isolated, that is, there exists ε > 0 such that the interval (λ̂1(p), λ̂1(p)+ε)
contains no eigenvalues;

(b) λ̂1(p) is simple, that is, if û, v̂ are two eigenfunctions corresponding to λ̂1(p),
then û = ξv̂ for some ξ ∈ R \ {0};

(c)

(3) λ̂1(p) = inf

[‖∇u‖pp
‖u‖pp

: u ∈ W 1,p
0 (Ω), u 6= 0

]
.

The infimum in (c) is realized on the corresponding one-dimensional eigenspace (see
(b)). The above properties imply that the elements of this eigenspace do not change
sign. By û1(p) we denote the positive, Lp-normalized (that is, ‖û1‖p = 1) eigenfunction

corresponding to λ̂1(p) > 0. From the nonlinear regularity theory and from the nonlinear
maximum principle (see Gasiński-Papageorgiou [4], pp. 737-738), we have that û1 ∈
intC+.

Using the Ljusternik-Schnirelmann minimax scheme, we can generate a whole strictly

increasing sequence {λ̂k(p)}k≥1 of eigenvalues such that λ̂k(p) → +∞ as k → +∞.
These are known as variational eigenvalues of (−∆p,W

1,p
0 (Ω)). We do not know if they

exhaust the spectrum σ̂(p) of (−∆p,W
1,p
0 (Ω)). The isolation of λ̂1(p) (see (a) above)

and the closedness of σ̂(p), imply that the second eigenvalue λ̂∗2(p) of (−∆p,W
1,p
0 (Ω)) is

well-defined by

λ̂∗2(p) = min
{
λ̂ ∈ σ̂(p) : λ̂1(p) < λ̂

}
.

We know that λ̂∗2(p) = λ̂2(p), that is, the second eigenvalue and the second variational
eigenvalue coincide. Let ∂BLp

1 = {u ∈ Lp(Ω) : ‖u‖p = 1} and let M = W 1,p
0 (Ω) ∩

∂BLp

1 . Using this Banach manifold, we can have the following well-known minimax

characterization of λ̂2(p) (see, for example, Gasiński-Papageorgiou [7], p. 840).

Proposition 2. λ̂2(p) = inf γ̂∈Γ̂ max−1≤t≤1 ‖∇γ̂(t)‖pp where Γ̂ = {γ̂ ∈ C([−1, 1],M) :

γ̂(−1) = −û1(p), γ̂(1) = û1(p)}.

For the linear eigenvalue problem (p = 2), the situation is much better since we have

full knowledge of the spectrum σ̂(2) of (−∆, H1
0 (Ω)). We know that σ̂(2) = {λ̂k(2)}k≥1,

that is, the variational eigenvalues exhaust the spectrum. Each eigenvalue λ̂k(2), k ∈ N,
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has an eigenspace E(λ̂k(2)) which is a finite dimensional subspace of H1
0 (Ω). We have

the following orthogonal direct sum decomposition

H
1

0 =
⊕
k≥1

E(λ̂k(2)).

For every m ≥ 1 we set

Hm =
m⊕
k=1

E(λ̂k(2)) and Ĥm+1 =
⊕

k≥m+1

E(λ̂k(2)).

Evidently, Ĥm+1 = H
⊥
m and so we have

H1
0 (Ω) = Hm ⊕ Ĥm+1.

All eigenvalues have variational characterizations. More precisely we have

(4) λ̂1(2) = inf

[
‖∇u‖2

2

‖u‖2
2

: u ∈ Ĥ1
0 (Ω), u 6= 0

]
(see (3)),

and for m ≥ 2

λ̂m(2) = sup

[
‖∇u‖2

2

‖u‖2
2

: u ∈ Hm, u 6= 0

]
= inf

[
‖∇u‖2

2

‖u‖2
2

: u ∈ Ĥm, u 6= 0

]
.(5)

In (4) the infimum is realized on E(λ̂1(2)), while in (5) both the infimum and the

supremum are realized on E(λ̂m(2)). The eigenspaces E(λ̂k(2)) have the “Unique Con-

tinuation Property”, that is, if u ∈ E(λ̂k(2)) and u(·) vanishes on a set of positive mea-

sure, then u ≡ 0. Moreover, standard regularity theory implies that E(λ̂k(2)) ⊆ C1
0(Ω)

for all k ∈ N.
These properties lead to the following useful inequalities (see Gasiński-Papageorgiou

[7], Problem 5.117, p. 870).

Proposition 3. (a) If θ ∈ L∞(Ω), θ(z) ≤ λ̂m(2) for a.a. z ∈ Ω, θ 6≡ λ̂m(2), then
there exists c1 > 0 such that

‖∇u‖2
2 −

∫
Ω

θ(z)u2dz ≥ c1‖u‖2
1,2 for all u ∈ Ĥm.

(b) If η ∈ L∞(Ω), η(z) ≥ λ̂m(2) for a.a. z ∈ Ω, η 6≡ λ̂m(2), then there exists c2 > 0
such that

‖∇u‖2
2 −

∫
Ω

η(z)u2dz ≤ −c2‖u‖2
1,2 for all u ∈ Hm.

As we already mentioned in the Introduction, in order to produce additional nodal
solutions, we will use the theory of critical groups. So, let us briefly recall some basic
definitions and facts from that theory. For details we refer to the book of Papageorgiou-
Rădulescu-Repovs̆ [18].

So, let X be a Banach space and ϕ ∈ C1(X,R), c ∈ R. We introduce the following
sets:

ϕc = {u ∈ X : ϕ(u) ≤ c},
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Kϕ = {u ∈ X : ϕ′(u) = 0} (the critical set of ϕ),

Kc
ϕ = {u ∈ Kϕ : ϕ(u) = c}.

Let (Y1, Y2) be a topological pair with Y2 ⊆ Y1 ⊆ X and k ∈ N0. By Hk(Y1, Y2)
we denote the kth-relative singular homology group for the pair (Y1, Y2) with integer
coefficients. Given an isolated u ∈ Kc

ϕ, the “critical groups” of ϕ at u are defined by

Ck(ϕ, u) = Hk(ϕ
c ∩ U,ϕc ∩ U \ {u}) for all k ∈ N0,

with U being an isolating neighborhood, that is, ϕc ∩ U ∩ Kϕ = {u}. The excision
property of singular homology implies that the above definition is independent of the
choice of the isolating neighborhood U .

We say that ϕ ∈ C1(X,R) satisfies the “C-condition”, if the following property holds:

“Every sequence {un}n≥1 ⊆ X such that {ϕ(un)}n≥1 ⊆ R is bounded and (1 +
‖un‖X)ϕ′(un)→ 0 in X∗ as n→ +∞, admits a strongly convergent subsequence”.

Note that if ϕ ∈ C1(X,R), it is coercive and ϕ′ = A+K with A(·) of (S)+-type and
K(·) completely continuous, then ϕ satisfies the C-condition (see [18], p. 369). Suppose
that ϕ ∈ C1(X,R) satisfies the C-condition and inf ϕ(Kϕ) > −∞. Let c < inf ϕ(Kϕ).
The critical groups of ϕ at infinity are defined by

Ck(ϕ,∞) = Hk(X,ϕ
c) for all k ∈ N0.

This definition is independent of the choice of the level c < inf ϕ(Kϕ). Indeed if
η < c < inf ϕ(Kϕ), then from Corollary 5.3.13, p. 322, of Papageorgiou-Rădulescu-
Repovs̆ [18], we know that ϕη is a strong deformation retract of ϕc. Hence Corollary
6.1.24, p. 384, of Papageorgiou-Rădulescu-Repovs̆ [18] implies that

Hk(X,ϕ
c) = Hk(X,ϕ

η) for all k ∈ N0.

Now, suppose that ϕ ∈ C1(X,R) satisfies the C-condition and Kϕ is finite. We define

M(t, u) =
∑
k≥0

rank Ck(ϕ, u)tk for all t ∈ R, all u ∈ Kϕ,

P (t,∞) =
∑
k≥0

rank Ck(ϕ,∞)tk for all t ∈ R.

Then the Morse relation says that

(6)
∑
u∈Kϕ

M(t, u) = P (t,∞) + (1 + t)Q(t) for all t ∈ R,

with Q(t) =
∑

k≥0 βkt
k being a formal series in t ∈ R with nonnegative integer coeffi-

cients.
Finally, let us fix our notation. For x ∈ R, we set x± = max{±x, 0}. Then given

u ∈ W 1,p
0 (Ω) we set u±(z) = u(z)± for all z ∈ Ω. We have

u± ∈ W 1,p
0 (Ω), u = u+ − u−, |u| = u+ + u−.

Also, if u, v ∈ W 1,p
0 (Ω), with u ≤ v, then we set

[u, v] =
{
h ∈ W 1,p

0 (Ω) : u(z) ≤ h(z) ≤ v(z) for a.a. z ∈ Ω
}
.
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By intC1
0 (Ω)[u, v], we denote the interior in the C1

0(Ω)-topology of [u, v] ∩ C1
0(Ω). Fi-

nally given k,m ∈ N0, by δk,m we denote the Kronecker symbol defined by δk,m ={
1 if k = m,

0 if k 6= m,
and p∗ =


Np

N − p
if p < N,

+∞ if N ≤ p,
(the Sobolev critical exponent).

3. Three Nontrivial Solutions

In this section assuming only continuity on f(z, ·), we prove the existence of three
nontrivial smooth solutions all with sign information.

We start with the following conditions on the reaction f(z, x).

H(f)1: f : Ω× R→ R is a Carathéodory function such that f(z, 0) = 0 for a.a. z ∈ Ω
and

(i) |f(z, x)| ≤ a(z)[1 + |x|r−1] for a.a. z ∈ Ω, all x ∈ R, with a ∈ L∞(Ω)+,
p < r < p∗;

(ii) limx→±∞
f(z, x)

|x|p−2x
= −∞ uniformly for a.a. z ∈ Ω;

(iii) there exists a function θ ∈ L∞(Ω) such that

θ(z) ≥ λ̂1(2) for a.a. z ∈ Ω, θ 6≡ λ̂1(2),

lim inf
x→0

f(z, x)

x
≥ θ(z) uniformly for a.a. z ∈ Ω.

Under these general conditions on the reaction f(z, x), we can establish the existence
of constant sign solutions.

Proposition 4. If hypothesis H(f)1 hold, then problem (1) has two constant sign
smooth solutions u0 ∈ intC+ and v0 ∈ −intC+.

Proof. Hypothesis H(f)1 (ii) implies that we can find M0 > 0 such that

(7) f(z, x)x ≤ −1 for a.a. z ∈ Ω, all |x| ≥M0.

Let β ≥M0 and consider the Carathéodory function f̂+(z, x) defined by

(8) f̂+(z, x) =

{
f(z, x+) if x ≤ β,

f(z, β) if β < x.

We set F̂+(z, x) =
∫ x

0
f̂+(z, s)ds and consider the C1-functional ϕ̂+ : W 1,p

0 (Ω) → R
defined by

ϕ̂+(u) =
1

p
‖∇u‖pp +

1

2
‖∇u‖2

2 −
∫

Ω

F̂+(z, u)du for all u ∈ W 1,p
0 (Ω).

From (8) it is clear that ϕ̂+(·) is coercive. Also, using the Sobolev embedding we see
that ϕ̂+(·) is sequentially weakly lower semicontinuous. So, by the Weierstrass-Tonelli
theorem, we can find u0 ∈ W 1,p

0 (Ω) such that

(9) ϕ̂+(u0) = inf[ϕ̂+(u) : u ∈ W 1,p
0 (Ω)].

On account of hypothesis H(f)1 (iii), given ε > 0, we can find δ ∈ (0, β) such that

F (z, x) ≥ 1

2
[θ(z)− ε]x2 for a.a. z ∈ Ω, all 0 ≤ x ≤ δ,
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where F (z, x) =
∫ x

0
f(z, s)ds. Since û1(2) ∈ intC+, we can find t ∈ (0, 1) small such

that 0 ≤ tû1(2)(z) ≤ δ for all z ∈ Ω. Then we have

ϕ̂+(tû1(2)) =
tp

p
‖∇û1(2)‖pp +

t2

2
λ̂1(2)‖û1(2)‖2

2 −
∫

Ω

F̂+(z, tû1(2))dz

≤ tp

p
‖∇û1(2)‖pp +

t2

2

[∫
Ω

[λ̂1(2)− θ(z)]û1(2)2dz + ε

]
(10)

(recall that ‖û1(2)‖2 = 1).

The hypothesis on θ(·) (see H(f)1 (ii)) implies that

γ0 =

∫
Ω

[θ(z)− λ̂1(2)]û1(2)dz > 0.

Choosing ε ∈ (0, γ0), from (10) we obtain

ϕ̂+(tû1(2)) ≤ c3t
p − c4t

2 for some c3, c4 > 0.

Since 2 < p, choosing t ∈ (0, 1) even smaller if necessary, we have

ϕ̂+(tû1(2)) < 0,

⇒ ϕ̂+(u0) < 0 = ϕ̂+(0) (see (9)),

⇒ u0 6= 0.

From (9) we have

ϕ̂′+(u0) = 0,

⇒ 〈Ap(u0), h〉+ 〈A(u0), h〉 =

∫
Ω

f̂+(z, u0)hdz for all h ∈ W 1,p
0 (Ω).(11)

In (11) we choose h = (u0 − β)+ ∈ W 1,p
0 (Ω). We have

〈Ap(u0), (u0 − β)+〉+ 〈A(u0), (u0 − β)+〉

=

∫
Ω

f(z, β)(u0 − β)+dz (see (8))

≤ 0 (see (7))

= 〈Ap(β), (u0 − β)+〉+ 〈A(β), (u0 − β)+〉,
⇒ u0 ≤ β.

On the other hand, if in (11) we choose h = −u−0 ∈ W 1,p
0 (Ω), we obtain 0 ≤ u0.

Therefore we have

(12) u0 ∈ [0, β], u0 6= 0.

From (8), (11) and (12) it follows that

(13) −∆pu0(z)−∆u0(z) = f(z, u0(z)) for a.a. z ∈ Ω, u0

∣∣
∂Ω

= 0.

From (13) and Theorem 7.1, p. 286, of Ladyzhenskaya-Ural′tseva [11] we have that
u0 ∈ L∞(Ω). So, we can apply Theroem 1 of Lieberman [14] and have that u0 ∈ C+\{0}.
Hypotheses H(f)1 (i), (iii) imply that if ρ = ‖u0‖∞, then we can find ξ̂ρ > 0 such that

(14) f(z, x) + ξ̂ρx
p−1 ≥ 0 for a.a. z ∈ Ω, all 0 ≤ x ≤ ρ.
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From (13) and (14) it follows that

∆pu0(z) + ∆u0(z) ≤ ξ̂ρu0(z)p−1 for a.a. z ∈ Ω.

Then the nonlinear maximum principle of Pucci-Serrin [24] (pp. 111, 120), implies
that u0 ∈ intC+.

For the negative solution, we consider the Carathéodory function f̂−(z, x) defined by

(15) f̂−(z, x) =

{
f(z,−β) if x ≤ −β,
f(z,−x−) if − β < x.

We set F̂−(z, x) =
∫ x

0
f̂−(z, s)ds and consider the C1-functional ϕ̂− : W 1,p

0 (Ω) → R
defined by

ϕ̂−(u) =
1

p
‖∇u‖pp +

1

2
‖∇u‖2

2 −
∫

Ω

F̂−(z, u)dz for all u ∈ W 1,p
0 (Ω).

Reasoning as we did with ϕ̂+(·), using this time (15), we produce a negative solution
v0 ∈ −intC+ for problem (1). �

In fact we can produce extremal constant sign solutions, that is, a smallest positive
solution and a biggest negative solution. These solutions will be used to produce a
nodal solution (see Section 4).

To generate the extremal constant sign solutions, we need to do some preliminary
work. Note that on account of hypotheses H(f)1 (i), (iii), given ε > 0 we can find
c5 > 0 such that

(16) f(z, x)x ≥ [θ(z)− ε]x2 − c5|x|r for a.a. z ∈ Ω, all x ∈ R.
This unilateral growth estimate on the reaction term, leads to the consideration of

the following auxiliary Dirichlet problem

(17) −∆pu(z)−∆u(z) = [θ(z)− ε]u(z)− c5|u(z)|r−2u(z) in Ω, u
∣∣
∂Ω

= 0.

Proposition 5. For all ε ∈ (0, γ0) (see the proof of Proposition 4), problem (17) has
a unique positive solution ũ ∈ intC+ and since the equation is odd ṽ = −ũ ∈ intC+ is
the unique negative solution of problem (17).

Proof. First we prove the existence of a positive solution. So, we consider the C1-

functional ψ̂+ : W 1,p
0 (Ω)→ R defined by

ψ̂+(u) =
1

p
‖∇u‖pp +

1

2
‖∇u‖2

2 +
c5

r
‖u+‖rr −

1

2

∫
Ω

[θ(z)− ε](u+)2dz for all u ∈ W 1,p
0 (Ω).

Since r > p > 2, we see that ψ̂+(·) is coercive. Also, it is sequentially weakly lower
semicontinuous. So, we can find ũ ∈ W 1,p

0 (Ω) such that

(18) ψ̂+(ũ) = inf[ψ̂+(u) : u ∈ W 1,p
0 (Ω)].

As in the proof of Proposition 4, we show that for t ∈ (0, 1) small and ε ∈ (0, γ0) we
have

ψ̂+(tû1(2)) < 0,

⇒ ψ̂+(ũ) < 0 = ψ̂+(0),

⇒ ũ 6= 0.
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From (18), we have

ψ̂′+(ũ) = 0,

⇒ 〈Ap(ũ), h〉+ 〈A(ũ), h〉 =

∫
Ω

[θ(z)− ε](ũ+)hdz − c5

∫
Ω

(ũ+)r−1hdz(19)

for all h ∈ W 1,p
0 (Ω). Choosing h = −ũ− ∈ W 1,p

0 (Ω) in (19), we obtain ũ ≥ 0, ũ 6= 0.
Therefore from (19) we infer that ũ is a positive solution of (17). As before the nonlinear
regularity theory (see [14]) and the nonlinear maximum principle (see [24]), imply that
ũ ∈ intC+.

We will show that this positive solution is unique. For this purpose we consider the
integral functional j : L1(Ω)→ R = R ∪ {+∞} defined by

j(u) =


1

p
‖∇u1/2‖pp +

1

2
‖∇u1/2‖2

2 if u ≥ 0, u1/2 ∈ W 1,p
0 (Ω),

+∞ otherwise.

Let dom j = {u ∈ L1(Ω) : j(u) < +∞} (the effective domain of j(·)), let u1, u2 ∈
dom j and set u = [(1 − t)u1 + tu2]1/2 for t ∈ [0, 1]. In what follows for notational
economy we use

G0(t) =
1

p
tp +

1

2
t2 for all t ≥ 0 and G(y) = G0(|y|) for all y ∈ RN .

Note that G(·) ∈ C1(RN ,R) (recall that p > 2) and ∇G(y) = |y|p−2y+ y (that is, for
all u ∈ W 1,p

0 (Ω), div∇G(u) = ∆pu + ∆u). From Lemma 4 of Benguria-Brezis-Lieb [2]
we have

|∇u| ≤
[
(1− t)

∣∣∣∇u1/2
1

∣∣∣2 + t
∣∣∣∇u1/2

2

∣∣∣2]1/2

for a.a. z ∈ Ω,

⇒ G0(|∇u|) ≤ G0

([
(1− t)

∣∣∣∇u1/2
1

∣∣∣2 + t
∣∣∣∇u1/2

2

∣∣∣2]1/2
)

(since G0(·) is increasing).

The function t→ G0(t1/2) is convex (recall p > 2). Therefore we have

G0

([
(1− t)

∣∣∣∇u1/2
1

∣∣∣2 + t
∣∣∣∇u1/2

2

∣∣∣2]1/2
)

≤ (1− t)G0

(∣∣∣∇u1/2
1

∣∣∣)+ tG0

(∣∣∣∇u1/2
2

∣∣∣) ,
⇒ G(∇u) ≤ (1− t)G

(∣∣∣∇u1/2
1

∣∣∣)+ tG
(∣∣∣∇u1/2

2

∣∣∣) ,
⇒ j(·) is convex.

Also by Fatou’s lemma j(·) is lower semicontinuous.
Suppose that ỹ ∈ W 1,p

0 (Ω) is another positive solution of (17). Again we have ỹ ∈
intC+. Therefore ũ2, ỹ2 ∈ dom j. Also, if h ∈ C1

0(Ω), then for |t| < 1 small we have
ũ2 + t(h2 − ũ2) ∈ dom j and ỹ2 + t(h2 − ỹ2) ∈ dom j, and we can easily check that the
Gâteaux derivatives of j(·) at ũ2 and at ỹ2 in the direction ũ2 − ỹ2 exist. In particular
note that on account of Proposition 4.1.22, p. 274, of [18], we can find c̃ > 0 such that

ỹ ≤ c̃ũ.
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Therefore we have

0 ≤ ỹ

ũ
≤ c̃.

Recalling that ũ, ỹ ∈ intC+, it follows that∫
Ω

1

ũ
|∇ũ|p−2

(
∇ũ,∇(ũ2 − ỹ2)

)
RN dz < +∞,∫

Ω

ũ2 − ỹ2

ũ2
|∇ũ|pdz < +∞.

Moreover, using the chain rule and the nonlinear Green’s identity (see Gasiński-
Papageorgiou [4], p. 210), we have

j′(ũ2)(ũ2 − ỹ2) =
1

2

∫
Ω

−∆pũ−∆ũ

ũ
(ũ2 − ỹ2)dz,

j′(ỹ2)(ũ2 − ỹ2) =
1

2

∫
Ω

−∆pỹ −∆ỹ

ỹ
(ũ2 − ỹ2)dz.

The convexity of j(·) implies the monotonicity of j′(·). Recalling that ũ, ỹ are solu-
tions of (17), we obtain

0 ≤
∫

Ω

c5

[
ỹr−2 − ũr−2

]
(ũ2 − ỹ2)dz

⇒ ũ = ỹ.

This proves the uniqueness of the positive solution ũ ∈ intC+ of problem (17). Since
the equation is odd, we infer that ṽ = −ũ ∈ −intC+ is the unique negative solution of
(17). �

In what follows by S+ (resp. S−) we denote the set of positive (resp. negative)
solutions of problem (1). From Proposition 4 and its proof, we have ∅ 6= S+ ⊆ intC+

and ∅ 6= S− ⊆ −intC+.

Proposition 6. If hypotheses H(f)1 hold, then ũ ≤ u for all u ∈ S+ and v ≤ ṽ for all
v ∈ S−.

Proof. Let u ∈ S+ ⊆ intC+ and consider the following Carathéodory function

(20) e+(z, x) =

{
[θ(z)− ε]x+ − c5(x+)r−1 if x ≤ u(z),

[θ(z)− ε]u(z)− c5u(z)r−1 if u(z) < x,

with ε ∈ (0, γ0) (see the proof of Proposition 4). We set E+(z, x) =
∫ x

0
e+(z, s)ds and

consider the C1-functional ψ+ : W 1,p
0 (Ω)→ R defined by

ψ+(u) =
1

p
‖∇u‖pp +

1

2
‖∇u‖2

2 −
∫

Ω

E+(z, u)dz for all u ∈ W 1,p
0 (Ω).

From (20) it is clear that ψ+(·) is coercive. Also, it is sequentially weakly lower semi-
continuous. So, we can find ũ0 ∈ W 1,p

0 (Ω) such that

(21) ψ+(ũ0) = inf[ψ+(u) : u ∈ W 1,p
0 (Ω)].

As before (see the proof of Proposition 4), we have

ψ+(tû1(2)) < 0 for t > 0 small,

⇒ ψ+(ũ0) < 0 = ψ+(0) (see (21)),
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⇒ ũ0 6= 0.

From (21) we have

ψ′+(ũ0) = 0,

⇒ 〈Ap(ũ0), h〉+ 〈A(ũ0), h〉 =

∫
Ω

e+(z, ũ0)hdz for all h ∈ W 1,p
0 (Ω).(22)

In (22) we choose h = −ũ−0 ∈ W 1,p
0 (Ω) and obtain that ũ0 ≥ 0. Next in (22) we

choose h = (ũ0 − u)+ ∈ W 1,p
0 (Ω). We have

〈Ap(ũ0), (ũ0 − u)+〉+ 〈A(ũ0), (ũ0 − u)+〉

=

∫
Ω

(
[θ(z)− ε]u− c5u

r−1
)

(ũ0 − u)+dz (see (20))

≤
∫

Ω

f(z, u)(ũ0 − u)+dz (see (16))

= 〈Ap(u), (ũ0 − u)+〉+ 〈A(u), (ũ0 − u)+〉 (since u ∈ S+),

⇒ ũ0 ≤ u.

So, finally we have

(23) ũ0 ∈ [0, u], ũ0 6= 0.

From (20), (22), (23) it follows that ũ0 is a positive solution of (17), hence ũ0 = ũ ∈
intC+ (see Proposition 5). Therefore ũ ≤ u for all u ∈ S+. Similarly we show that
v ≤ ṽ for all v ∈ S−. �

Now we are ready to produce extremal constant sign solutions for problem (1).

Proposition 7. If hypotheses H(f)1 hold, then problem (1) has a smallest positive
solution u∗ ∈ intC+ and a biggest negative solution v∗ ∈ −intC+.

Proof. As in Filippakis-Papageorgiou [3] (see also Papageorgiou-Rădulescu-Repovs̆ [17]),
we have that S+ is downward directed (that is, if u1, u2 ∈ S+, then we can find u ∈ S+

such that u ≤ u1, u ≤ u2). Then invoking Lemma 3.10, p. 178, of Hu-Papageorgiou
[10], we can find a decreasing sequence {un}n≥1 ⊆ S+ such that

inf S+ = inf
n≥1

un.

We have

〈Ap(un), h〉+ 〈A(un), h〉 =

∫
Ω

f(z, un)hdz for all h ∈ W 1,p
0 (Ω), all n ∈ N,(24)

ũ ≤ un ≤ u1 for all n ∈ N (see Proposition 6).(25)

If in (24) we choose h = un ∈ W 1,p
0 (Ω) and use (25) and hypothesis H(f)1 (i), then

we have that
{un}n≥1 ⊆ W 1,p

0 (Ω) is bounded.

So, we may assume that

(26) un
w−→ u∗ in W 1,p

0 (Ω).

If in (24) we choose h = un − u∗ ∈ W 1,p
0 (Ω) and pass to the limit as n → +∞, then

using (26) we obtain

lim
n→+∞

[〈Ap(un), un − u∗〉+ 〈A(un), un − u∗〉] = 0,



12 NIKOLAOS S. PAPAGEORGIOU, CALOGERO VETRO, FRANCESCA VETRO

⇒ lim sup
n→+∞

[〈Ap(un), un − u∗〉+ 〈A(u∗), un − u∗〉] ≤ 0 (since A(·) is monotone),

⇒ lim sup
n→+∞

〈Ap(un), un − u∗〉 ≤ 0 (see (26)),

⇒ un → u∗ in W 1,p
0 (Ω) (see Proposition 1).(27)

So, if in (24) we pass to the limit as n→ +∞ and use (27), then

(28) 〈Ap(u∗), h〉+ 〈A(u∗), h〉 =

∫
Ω

f(z, u∗)hdz for all h ∈ W 1,p
0 (Ω).

In addition from (25) we have

(29) ũ ≤ u∗.

Then from (28), (29), we conclude that u∗ ∈ S+ ⊆ intC+, u∗ = inf S+. Similarly,
we produce the biggest negative solution v∗ ∈ −intC+ of (1). Note that the set S−
is upward directed (that is, if v1, v2 ∈ S−, then there exists v ∈ S− such that v1 ≤ v,
v2 ≤ v, see [3]). �

Now that we have the extremal constant sign solutions, we can produce a nodal
(sign changing) solution for problem (1). To do this, we need to strengthen a little the
condition on f(z, ·) near zero. So, the new hypotheses on f(z, x) are the following:

H(f)2: f : Ω×R→ R is a Carathéodory function such that f(z, 0) = 0 for a.a. z ∈ Ω,
hypotheses H(f)2 (i), (ii) are the same as the corresponding hypotheses H(f)1 (i), (ii)
and

(iii) λ̂1(2) < η0 ≤ lim infx→0
f(z, x)

x
≤ lim supx→0

f(z, x)

x
≤ η̂0 uniformly for a.a.

z ∈ Ω.

In what follows u∗ ∈ intC+ and v∗ ∈ −intC+ are the two extremal constant sign
solutions of problem (1) produced in Proposition 7. The idea is to produce a nontrivial
solution y0 of (1) such that y0 ∈ [v∗, u∗], y0 6∈ {v∗, u∗}. On account of the extremality
of u∗ and v∗, such a nontrivial solution will necessarily be nodal.

Proposition 8. If hypotheses H(f)2 hold, then problem (1) admits a nodal solution
y0 ∈ [v∗, u∗] ∩ C1

0(Ω).

Proof. Using the extremal constant sign solutions u∗ ∈ intC+ and v∗ ∈ −intC+ (see
Proposition 7), we introduce the following truncation of the reaction f(z, ·)

(30) k(z, x) =


f(z, v∗(z)) if x < v∗(z),

f(z, x) if v∗(z) ≤ x ≤ u∗(z),

f(z, u∗(z)) if u∗(z) < x.

We also consider the positive and negative truncations of k(z, ·), namely the functions

(31) k±(z, x) = k(z,±x±).

All three functions are Carathéodory functions. We set

K(z, x) =

∫ x

0

k(z, s)ds and K±(z, x) =

∫ x

0

k±(z, s)ds

and consider the C1-functionals ϕ, ϕ± : W 1,p
0 (Ω)→ R defined by

ϕ(u) =
1

p
‖∇u‖pp +

1

2
‖∇u‖2

2 −
∫

Ω

K(z, u)dz,
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ϕ±(u) =
1

p
‖∇u‖pp +

1

2
‖∇u‖2

2 −
∫

Ω

K±(z, u)dz for all u ∈ W 1,p
0 (Ω).

Using (30) and (31), we can easily show that

Kϕ ⊆ [v∗, u∗] ∩ C1
0(Ω), Kϕ+ ⊆ [0, u∗] ∩ C+, Kϕ− ⊆ [v∗, 0] ∩ (−C+).

The extremality of u∗ and v∗ implies that

(32) Kϕ ⊆ [v∗, u∗] ∩ C1
0(Ω), Kϕ+ = {0, u∗}, Kϕ− = {0, v∗}.

Note that ϕ+ is coercive and sequentially weakly lower semicontinuous. So, we can
find û∗ ∈ W 1,p

0 (Ω) such that

ϕ+(û∗) = inf
[
ϕ+(u) : u ∈ W 1,p

0 (Ω)
]
< 0 = ϕ+(0) (see hypothesis H(f)2 (iii)),

⇒ û∗ 6= 0.

Since û∗ ∈ Kϕ+ , from (32) it follows that û∗ = u∗ ∈ intC+. Note that ϕ
∣∣
C+

= ϕ+

∣∣
C+

.

Hence we have

u∗ is a local C1
0(Ω)-minimizer of ϕ,

⇒ u∗ is a local W 1,p
0 (Ω)-minimizer of ϕ(33)

(see Gasiński-Papageorgiou [5], Proposition 2.6). Similarly using this time the functional
ϕ−, we show that

(34) v∗ is a local W 1,p
0 (Ω)-minimizer of ϕ.

We may assume that ϕ(v∗) ≤ ϕ(u∗) (the reasoning is similar if the opposite inequality
holds using this time (29) instead of (28)) and also that Kϕ is finite (otherwise on
account of (32) we already have an infinity of smooth nodal solutions). Using Theorem
5.7.6, p. 367, of Papageorgiou-Rădulescu-Repovs̆ [18], we can find ρ ∈ (0, 1) small such
that

(35) ϕ(v∗) ≤ ϕ(u∗) < inf[ϕ(u) : ‖u− u∗‖ = ρ] = mρ, ‖v∗ − u∗‖ > ρ.

The functional ϕ(·) is coercive (see (30)). Therefore

(36) ϕ(·) satisfies the C-condition.

Then (35) and (36) permit the use of the mountain pass theorem. So, we can find
y0 ∈ W 1,p

0 (Ω) such that

(37) y0 ∈ Kϕ ⊆ [v∗, u∗] ∩ C1
0(Ω) and mρ ≤ ϕ(y0).

From (37) we see that if we can show that y0 6= 0, then y0 ∈ C1
0(Ω will be the desired

smooth nodal solution of (1). Therefore in what follows, we show that y0 6= 0. From
the mountain pass theorem, we have

(38) ϕ(y0) = inf
γ∈Γ

max
0≤t≤1

ϕ(γ(t)),

where Γ = {γ ∈ C([0, 1],W 1,p
0 (Ω)) : γ(0) = v∗, γ(1) = u∗}. From (38) we see that if

we can produce a path γ∗ ∈ Γ such that ϕ
∣∣
γ∗
< 0, then ϕ(y0) < 0 = ϕ(0) (see (38))

and so we have y0 6= 0. Hence our aim is to construct such a path γ∗ ∈ Γ. We define
M = H1

0 (Ω) ∩ ∂BL2

1 and let Mc = M ∩ C1
0(Ω). We consider the following two sets of

continuous paths

Γ̂ = {γ̂ ∈ C([−1, 1],M) : γ̂(−1) = −û1(2), γ̂(1) = û1(2)} ,
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Γ̂c = {γ̂ ∈ C([−1, 1],Mc) : γ̂(−1) = −û1(2), γ̂(1) = û1(2)} .

From Papageorgiou-Winkert [22] (see the Claim in the proof of Theorem 4.5), we

have that Γ̂c is dense in Γ̂. So, using Proposition 2, we see that given δ > 0, we can

find γ̂0 ∈ Γ̂c such that

(39) max
−1≤t≤1

‖∇γ̂0(t)‖2
2 ≤ λ̂2(2) + δ.

On account of hypothesis H(f)2 (iii), we see that if δ > 0 is small, we can find

η̃0 > λ̂2(2) + δ and δ0 ∈ (0, δ) such that

(40) F (z, x) ≥ 1

2
η̃0x

2 for a.a. z ∈ Ω, all |x| ≤ δ0.

Since γ̂0 ∈ Γc and u∗ ∈ intC+ and v∗ ∈ −intC+, we can find λ ∈ (0, 1) small such
that

(41) λγ̂0(t) ∈ [v∗, u∗] and λ|γ̂0(t)| ≤ δ0 for all t ∈ [−1, 1].

Then we have

ϕ(λγ̂0(t)) ≤ λp

p
‖∇γ̂0(t)‖pp +

λ2

2

[
λ̂2(2) + δ − η̃0

]
(see (39), (40), (41))

≤ λpc6 − c7λ
2 for some c6, c7 > 0, all t ∈ [−1, 1].

Since p > 2, choosing λ ∈ (0, 1) even smaller if necessary, we have

ϕ(λγ̂0(t)) < 0 for all t ∈ [−1, 1].

If we set γ0 = λγ̂0, then γ0 is a continuous path in Mc ⊆ W 1,p
0 (Ω) which connects

−λû1(2) and λû1(2) and we have

(42) ϕ
∣∣
γ0
< 0.

Next we will produce a continuous path in W 1,p
0 (Ω) which connects λû1(2) and u∗

and along which the functional ϕ is negative. To this end let

a = ϕ+(u∗) = inf ϕ+ < 0 = ϕ+(0).

From (32) we see that

K0
ϕ+

= {0} and ϕa+ = {u∗}.
Invoking the second deformation theorem (see Papageorgiou-Rădulescu-Repovs̆ [18],

Theorem 5.3.12, p. 317), we can find a deformation h : [0, 1]× (ϕ0
+ \K0

ϕ+
) → ϕ0

+ such
that

h(0, u) = u for all u ∈ ϕ0
+ \K0

ϕ+
= ϕ0

+ \ {0},(43)

h(1, ϕ0
+ \ {0}) = u∗ = ϕa+,(44)

ϕ+(h(t, u)) ≤ ϕ+(h(s, u)) for all 0 ≤ s ≤ t, all u ∈ ϕ0
+ \ {0}.(45)

Note that

ϕ+(λû1(2)) = ϕ(λû1(2)) = ϕ(γ0(1)) < 0 (see (42)),

⇒ λû1(2) ∈ ϕ0
+ \ {0}.

So, we can define

γ+(t) = h(t, λû1(2))+ for all t ∈ [0, 1].



MULTIPLE SOLUTIONS FOR A CLASS OF COERCIVE (p, 2)-EQUATIONS 15

This is a continuous path in W 1,p
0 (Ω) and γ+(t) ≥ 0 for all t ∈ [0, 1]. Moreover, we

have
γ+(0) = λû1(2) (see (43)), γ+(1) = u∗ (see (44)).

So, the continuous path γ+ connects λû1(2) and u∗. Finally along this path we have

ϕ(γ+(t)) = ϕ+(γ+(t)) ≤ ϕ+(λû1(2)) = ϕ(λû1(2)) < 0

for all t ∈ [0, 1] (see (42), (45)),

⇒ ϕ
∣∣
γ+
< 0.(46)

Similarly we produce a continuous path γ− in W 1,p
0 (Ω) which connects −λû1(2) and

v∗ and along which we have

(47) ϕ
∣∣
γ−
< 0.

We concatenate γ−, γ0, γ+ and we have a continuous path γ∗ in W 1,p
0 (Ω) which

connects v∗ and u∗ and along which we have

ϕ
∣∣
γ∗
< 0 (see (42), (46), (47)).

Therefore we conclude that

y0 6= 0 (see (38)),

⇒ y0 ∈ C1
0(Ω) is a nodal solution of (1), y0 ∈ [v∗, u∗].

�

We can improve the conclusion of this proposition, if we strengthen further the con-
ditions on f(z, ·) near zero.

So, the new conditions on the reaction f(z, x) are the following:

H(f)3: f : Ω×R→ R is a Carathéodory function such that f(z, 0) = 0 for a.a. z ∈ Ω,
hypotheses H(f)3 (i), (ii), (iii) are the same as the corresponding hypotheses H(f)2 (i),
(ii), (iii) and

(iv) for every ρ > 0, there exists ξ̂ρ > 0 such that for a.a. z ∈ Ω, the function

x→ f(z, x) + ξ̂ρ|x|p−2x

is nondecreasing on [−ρ, ρ]

Proposition 9. If hypotheses H(f)3 hold, then problem (1) has a nodal solution y0 ∈
int C1

0 (Ω)[v∗, u∗].

Proof. From Proposition 8, we already have a nodal solution y0 ∈ [v∗, u∗] ∩ C1
0(Ω).

Let ρ = max{‖u∗‖∞, ‖v∗‖∞} and let ξ̂ρ > 0 be as postulated by hypothesis H(f)3

(iv). Take ξ̃ρ > ξ̂ρ. Then we have

−∆py0 −∆y0 + ξ̃ρ|y0|p−2y0

= f(z, y0) + ξ̃ρ|y0|p−2y0

≤ f(z, u∗) + ξ̃ρu
p−1
∗ (see hypothesis H(f)3 (iv))

= −∆pu∗ −∆u∗ + ξ̃ρu
p−1
∗ for a.a. z ∈ Ω.(48)

Let a : RN → RN be defined by

a(y) = |y|p−2y + y for all y ∈ RN .
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Hence div a(∇u) = ∆pu+ ∆u for all u ∈ W 1,p
0 (Ω). Also, a ∈ C1(RN ,RN) (recall that

p > 2) and

∇a(y) = |y|p−2

[
I + (p− 2)

y ⊗ y
|y|2

]
+ I for all y ∈ RN ,

⇒ (∇a(y)ξ, ξ)RN ≥ |ξ|2 for all y, ξ ∈ RN .

Since u∗, y ∈ C1
0(Ω) are solutions of problem (1) and y ≤ u∗, we can apply the

tangency principle of Pucci-Serrin [24] (Theorem 2.5.2, p. 35) and have

(49) y(z) < u∗(z) for all z ∈ Ω.

Note that

f(z, y0) + ξ̂ρ|y0|p−2y0 + (ξ̃ρ − ξ̂ρ)|y0|p−2y0

≤ f(z, u∗) + ξ̂ρu
p−1
∗ + (ξ̃ρ − ξ̂ρ)up−1

∗ for a.a. z ∈ Ω.

If we set
h = (ξ̃ρ − ξ̂ρ)[up−1

∗ − |y0|p−2y0],

then we have that 0 ≺ h in the sense that for every compact K ⊆ Ω, we can find cK > 0
such that

cK ≤ h(z) for all z ∈ K (see (49)).

Then from (48) and Proposition 3.2 of Gasiński-Papageorgiou [8], we infer that
u∗ − y0 ∈ intC+. Similarly, we show that y0 − v∗ ∈ intC+. We conclude that
y0 ∈ intC1

0 (Ω)[v∗, u∗]. �

Now we can state our first multiplicity theorem for problem (1).

Theorem 1. (a) If hypotheses H(f)2 hold, then problem (1) has at least three nontrivial
solutions u0 ∈ intC+, v0 ∈ −intC+, y0 ∈ [v0, u0] ∩ C1

0(Ω) nodal.
(b)If hypotheses H(f)3 hold, then problem (1) has at least three nontrivial solutions

u0 ∈ intC+, v0 ∈ −intC+, y0 ∈ intC1
0 (Ω)[v0, u0] nodal.

4. Four Nontrivial Solutions

In this section by improving the regularity of f(z, ·) and by using tools from the
theory of critical groups (Morse theory), we produce a second smooth nodal solution,
for a total of four nontrivial smooth solutions, all with sign information.

The new hypotheses on the reaction f(z, x) are the following:

H(f)4: f : Ω × R → R is a measurable function such that for a.a. z ∈ Ω, f(z, 0) = 0,
f(z, ·) ∈ C1(R) and

(i) |f ′x(z, x)| ≤ a(z)[1+|x|r−2] for a.a. z ∈ Ω, all x ∈ R, with a ∈ L∞(Ω), p < r < p∗;

(ii) limx→±∞
f(z, x)

|x|p−2x
= −∞ uniformly for a.a. z ∈ Ω;

(iii) f ′x(z, 0) = limx→0
f(z, x)

x
uniformly for a.a. z ∈ Ω and there exist m ∈ N, m ≥ 2,

δ > 0 and θ ∈ L∞(Ω) such that

if m ≥ 3, then λ̂m(2) ≤ θ(z) for a.a. z ∈ Ω, θ 6≡ λ̂m(2),

if m = 2, then λ̂2(2) < ess infΩ θ,

θ(z)x2 ≤ f(z, x)x ≤ λ̂m+1(2)x2 for a.a. z ∈ Ω, all |x| ≤ δ
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and when x 6= 0 the last inequality is strict on a set of positive measure;

(iv) for every ρ > 0, there exists ξ̂ρ > 0 such that for a.a. z ∈ Ω, the function

x→ f(z, x) + ξ̂ρ|x|p−2x

is nondecreasing on [−ρ, ρ]

Remark 1. Evidently hypothesis H(f)4 (iii) covers also the case where

lim
x→0

f(z, x)

x
= λ̂m+1(2) uniformly for a.a. z ∈ Ω.

So, we can have resonance at zero with respect to any eigenvalue λ̂m+1(2) with m ∈ N,
m ≥ 2.

Proposition 10. If hypotheses H(f)4 hold, then problem (1) has a second nodal solution
ŷ ∈ intC1

0 (Ω)[v∗, u∗].

Proof. From Theorem 1(b) we already have three nontrivial solutions

u∗ ∈ intC+, v∗ ∈ −intC+, y0 ∈ intC1
0 (Ω)[v∗, u∗] nodal.

We use the functional ϕ ∈ C1(W 1,p
0 (Ω)) from the proof of Proposition 8. Recall that

u∗ ∈ intC+ and v∗ ∈ −intC+ are local minimizers of ϕ (see (33), (34)). Therefore

(50) Ck(ϕ, u∗) = Ck(ϕ, v∗) = δk,0Z for all k ∈ N0.

Let ρ = max{‖v∗‖∞, ‖u∗‖∞} and choose a cut-off function ξ ∈ C2
c (R) such that

0 ≤ ξ ≤ 1 and ξ
∣∣
[−ρ,ρ]

≡ 1.

We set f̂c(z, x) = f(z, ξ(x)). Then f̂c(·, ·) is measurable and for a.a. z ∈ Ω, f̂c(z, 0) =

0, f̂c(z, ·) ∈ C1(R). We set F̂c(z, x) =
∫ x

0
f̂c(z, s)ds and consider the functional ϕ̂c :

W 1,p
0 (Ω)→ R defined by

ϕ̂c(u) =
1

p
‖∇u‖pp +

1

2
‖∇u‖2

2 −
∫

Ω

F̂c(z, u)dz for all u ∈ W 1,p
0 (Ω).

We have ϕ̂c ∈ C2(W 1,p
0 (Ω)), it is coercive (hence satisfies the C-condition) and

ϕ̂c

∣∣∣
[v∗,u∗]

= ϕ
∣∣∣
[v∗,u∗]

, ϕ̂′c

∣∣∣
[v∗,u∗]

= ϕ′
∣∣∣
[v∗,u∗]

.

Recall that we assume that Kϕ is finite. Otherwise on account of (32) we already have
an infinity of smooth nodal solutions and so we are done. We consider the homotopy

ht(u) = h(t, u) = (1− t)ϕ(u) + tϕ̂c(u) for all (t, u) ∈ [0, 1]×W 1,p
0 (Ω).

Suppose we could find {tn}n≥1 ⊆ [0, 1] and {un}n≥1 ⊆ W 1,p
0 (Ω) such that

(51) tn → t, un → y0 in W 1,p
0 (Ω) and (htn)′(un) = 0 for all n ∈ N.

We have

〈Ap(un), h〉+ 〈A(un), h〉 =

∫
Ω

[(1− tn)f(z, un) + tnf̂c(z, un)]hdz for all W 1,p
0 (Ω),

⇒ −∆pun(z)−∆un(z) = (1− tn)f(z, un(z)) + tnf̂c(z, un(z)) for a.a. z ∈ Ω,

un
∣∣
∂Ω

= 0 for all n ∈ N.
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As before (see the proof of Proposition 4), from Ladyzhenskaya-Ural′tseva [11] (p.
286), we have

‖un‖∞ ≤ c8 for some c8 > 0, all n ∈ N.
Invoking Theorem 1 of Lieberman [14], we can find α ∈ (0, 1) and c9 > 0 such that

(52) un ∈ C1,α
0 (Ω), ‖un‖C1,α

0 (Ω) ≤ c9 for all n ∈ N.

Since C1,α
0 (Ω) ↪→ C1

0(Ω) compactly, from (51) and (52) it follows that

(53) un → y0 in C1
0(Ω).

We know that y0 ∈ intC1
0 (Ω)[v∗, u∗]. So, we will have

un ∈ [v∗, u∗] for all n ≥ n0 (see (53)).

This contradicts the fact that Kϕ is finite (see (32)). Therefore (51) cannot hap-
pen and then the homotopy invariance of critical groups (see Papageorgiou-Rădulescu-
Repovs̆ [18], Theorem 6.3.6, p. 413) implies that

Ck(h0, y0) = Ck(h1, y0) for all k ∈ N0,

⇒ Ck(ϕ, y0) = Ck(ϕ̂c, y0) for all k ∈ N0.(54)

We know that y0 is a critical point of ϕ of mountain pass type (see the proof of
Proposition 8). Invoking Theorem 6.5.8, p. 431, of Papageorgiou-Rădulescu-Repovs̆
[18], we have

C1(ϕ, y0) 6= 0,

⇒ C1(ϕ̂c, y0) 6= 0 (see (54)).(55)

Recall that ϕ̂c ∈ C2(W 1,p
0 (Ω)). Then from (55) and Papageorgiou-Rădulescu [15] (see

the proof of Proposition 3.5), we have

Ck(ϕ̂c, y0) = δk,1Z for all k ∈ N0,

⇒ Ck(ϕ, y0) = δk,1Z for all k ∈ N0 (see (54)).(56)

Consider the coercive C2-functional σ̂ : H1
0 (Ω)→ R defined by

σ̂(u) =
1

2
‖∇u‖2

2 −
∫

Ω

F (z, u)dz for all u ∈ H1
0 (Ω).

Let σ = σ̂
∣∣
W 1,p

0 (Ω)
. Since W 1,p

0 (Ω) ↪→ H1
0 (Ω) densely, from Theorem 6.6.26, p. 444, of

Papageorgiou-Rădulescu-Repovs̆ [18], we have

(57) Ck(σ, 0) = Ck(σ̂, 0) for all k ∈ N0.

Claim: Ck(σ, 0) = δk,dmZ for all k ∈ N0 with dm = dimHm, Hm =
⊕m

k=1 E(λ̂k(2)) (see

H(f)4 (iii)). Let β ∈ (λ̂m(2), λ̂m+1(2)) and consider the C2-functional σ̂0 : H1
0 (Ω)→ R

defined by

σ̂0(u) =
1

2
‖∇u‖2

2 −
β

2
‖u‖2

2 for all u ∈ H1
0 (Ω).

We consider the homotopy ĥ(t, u) defined by

ĥ(t, u) = (1− t)σ̂(u) + tσ̂0(u) for all (t, u) ∈ [0, 1]×H1
0 (Ω).
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Let 0 < t ≤ 1 and let u ∈ C1
0(Ω) with ‖u‖C1

0 (Ω) ≤ δ where δ > 0 is as in hypothesis

H(f)3 (iii). In what follows by 〈·, ·〉H we denote the duality brackets for the pair
(H1

0 (Ω), H−1(Ω) = H1
0 (Ω)∗). We have

(58) 〈ĥ′u(t, u), h〉H = (1− t)〈σ̂′(u), h〉H + t〈σ̂′0(u), h〉H .

We consider the following orthogonal direct sum decomposition:

H1
0 (Ω) = Hm ⊕ Ĥm+1 with Hm =

m⊕
k=1

E(λ̂k(2)), Ĥm+1 = H
⊥
m.

So, if u ∈ H1
0 (Ω), then it admits a unique sum decomposition

u = u+ û with u ∈ Hm, û ∈ Ĥm+1.

In (58) we choose h = û−u ∈ H1
0 (Ω). Exploiting the orthogonality of the component

spaces, we have

(59) 〈σ̂′(u), û− u〉H = ‖∇û‖2
2 − ‖∇u‖2

2 −
∫

Ω

f(z, u)(û− u)dz.

From hypothesis H(f)3 (iii) we have

θ(z) ≤ f(z, x)

x
≤ λ̂m+1(2) for a.a. z ∈ Ω, all 0 < |x| ≤ δ.

Setting y = û− u, we have

f(z, u)(û− u) = f(z, u)y

=
f(z, u)

u
uy

≤

{
λ̂m+1(2)[û2 − u2] if uy ≥ 0,

θ(z)[û2 − u2] if uy < 0
(see hypothesis H(f)4 (iii))

≤ λ̂m+1(2)û2 − θ(z)u2 for a.a. z ∈ Ω.

We use this in (59) and obtain

〈σ̂′(u), û− u〉H ≥ ‖∇û‖2
2 − λ̂m+1(2)‖û‖2

2 −
[
‖∇u‖2

2 −
∫

Ω

θ(z)u2dz

]
≥ 0 (see (5)).

Also, we have

〈σ̂′0(u), û− u〉H = ‖∇û‖2
2 − β‖û‖2

2 −
[
‖∇u‖2

2 − β‖u‖2
2

]
≥ c10‖u‖2 for some c10 > 0 (see Proposition 3).

Therefore for 0 < t ≤ 1, we have

〈ĥ′u(t, u), û− u〉H ≥ tc10‖u‖2 > 0 if u 6= 0.

So, u = 0 is isolated inKĥ(t,·) ⊆ C1
0(Ω) (by standard regularity theory) for all t ∈ (0, 1].

Next let t = 0. Again we show that u = 0 is isolated in Kĥ(0,·) = Kσ̂ ⊆ C1
0(Ω).

Arguing indirectly, suppose that we could find {un}n≥1 ⊆ H1
0 (Ω) such that

(60) {un}n≥1 ⊆ Kσ̂ and un → 0 in H1
0 (Ω).
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Then the regularity theory and the compact embedding of C1,α
0 (Ω) (0 < α < 1) into

C1
0(Ω) imply that

un → 0 in C1
0(Ω) (see (60)),

⇒ |un(z)| ≤ δ for all z ∈ Ω, all n ≥ n0,

⇒ θ(z)un(z)2 ≤ f(z, un(z))un(z) ≤ λ̂m+1(2)un(z)2

for a.a. z ∈ Ω, all n ≥ n0 (see hypothesis H(f)4 (iii)).

Hence we have

(61) f(z, un)(ûn − un) ≤ λ̂m+1(2)û2
n − θ(z)u2

n for a.a. z ∈ Ω, all n ≥ n0.

Since un ∈ Kσ̂ (see (60)), we have

〈A(un), h〉 =

∫
Ω

f(z, un)hdz for all h ∈ H1
0 (Ω), all n ∈ N.

Choosing h = û− u ∈ H1
0 (Ω) and using (61), we obtain

0 ≤ ‖∇ûn‖2
2 − λ̂m+1(2)‖ûn‖2

2 = ‖∇un‖2
2 −

∫
Ω

θ(z)u2
ndz

≤ −c11‖un‖2 for all n ≥ n0 (see Proposition 3),

⇒ un = 0 and un = ûn ∈ E(λ̂m+1(2)) for all n ≥ n0.

The Unique Continuation Property of E(λ̂m+1(2)) implies that

ûn(z) 6= 0 for a.a. z ∈ Ω, n ≥ n0.

Using this fact and hypothesis H(f)4 (iii), we have

λ̂m+1(2)‖ûn‖2
2 =

∫
Ω

f(z, ûn)ûndz < λ̂m+1(2)‖ûn‖2
2 for all n ≥ n0,

a contradiction. So, we conclude that u = 0 is isolated in Kσ̂ = Kĥ(0,·).

The homotopy invariance property of critical groups implies

(62) Ck(σ̂, 0) = Ck(σ̂0, 0) for all k ∈ N0.

Recall that β ∈ (λ̂m(2), λ̂m+1(2)). So, Proposition 6.6.19, p. 440, of Papageorgiou-
Rădulescu-Repovs̆ [18], implies that

Ck(σ̂0, 0) = δk,dmZ for all k ∈ N0, with dm = dimHm,

⇒ Ck(σ̂, 0) = δk,dmZ for all k ∈ N0 (see (62)),

⇒ Ck(σ, 0) = δk,dmZ for all k ∈ N0 (see (57)).

This proves the Claim. Note that

|ϕ(u)− σ(u)| ≤ 1

p
‖∇u‖pp,

|〈ϕ′(u)− σ′(u), h〉| =
∣∣∣∣∫

Ω

|∇u|p−2(∇u,∇h)RNdz

∣∣∣∣
≤
∫

Ω

|∇u|p−1|∇h|dz for all h ∈ W 1,p
0 (Ω),

⇒ ‖ϕ′(u)− σ′(u)‖∗ ≤ ‖∇u‖p−1
p .
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Using the C1-continuity property of critical groups (see Papageorgiou-Rădulescu-
Repovs̆ [18], Theorem 6.3.4, p. 17), we have

Ck(ϕ, 0) = Ck(σ, 0) for all k ∈ N0,

⇒ Ck(ϕ, 0) = δk,dmZ for all k ∈ N0.(63)

Since ϕ(·) is coercive, we have

(64) Ck(ϕ,∞) = δk,0Z for all k ∈ N0.

Suppose that Kϕ = {u∗, v∗, y0, 0}. Then (50), (56), (63), (64) and the Morse relation
with t = −1 (see (6)), imply that

2(−1)0 + (−1)1 + (−1)dm = (−1)0,

⇒ (−1)dm = 0, a contradiction.

So, there exists ŷ ∈ Kϕ, ŷ 6∈ {u∗, v∗, y0, 0}. As we did for y0 (see Proposition 9), we
show that

ŷ ∈ intC1
0 (Ω)[v∗, u∗] and ŷ ∈ C1

0(Ω) is nodal.

�

Now we can state the second multiplicity theorem for problem (1).

Theorem 2. If hypotheses H(f)4 hold, then problem (1) has at least four nontrivial
solutions u0 ∈ intC+, v0 ∈ −intC+, y0, ŷ ∈ intC1

0 (Ω)[v0, u0] nodal.

5. A Special Case

In this section we present an application of our multiplicity theorems (Theorems 1
and 2), to the following parametric (p, 2)-equation:

(65) −∆pu(z)−∆u(z) = λu(z)− g(z, u(z)) in Ω, u
∣∣
∂Ω

= 0, λ > 0.

We impose the following conditions on the perturbation g(z, x).

H(g)1: g : Ω× R → R is a Carathéodory function such that g(z, 0) = 0 for a.a. z ∈ Ω
and

(i) |g(z, x)| ≤ a(z)[1+ |x|r−1] for a.a. z ∈ Ω, all x ∈ R, with a ∈ L∞(Ω), p < r < p∗;

(ii) limx→±∞
g(z, x)

|x|p−2x
= +∞ uniformly for a.a. z ∈ Ω;

(iii) limx→0
g(z, x)

x
= 0 uniformly for a.a. z ∈ Ω;

(iv) for every ρ > 0, there exists ξ̂ρ > 0 such that for a.a. z ∈ Ω, the function

x→ ξ̂ρ|x|p−2x− g(z, x)

is nondecreasing on [−ρ, ρ].

Then from Theorem 1(b), we infer the following multiplicity theorem for problem
(65) (a subdiffusive nonlinear logistic equation).

Proposition 11. If hypotheses H(g)1 hold, then for all λ > λ̂2(2) problem (65) has at
least three nontrivial solutions u0 ∈ intC+, v0 ∈ −intC+, y0 ∈ intC1

0 (Ω)[v0, u0] nodal.
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We can improve this multiplicity result by strengthening the regularity of g(z, ·). So,
the new conditions on g(z, x) are the following:

H(g)2: g : Ω × R → R is a measurable function such that for a.a. z ∈ Ω, g(z, 0) = 0,
g(z, ·) ∈ C1(R) and

(i) |g′x(z, x)| ≤ a(z)[1+|x|r−2] for a.a. z ∈ Ω, all x ∈ R, with a ∈ L∞(Ω), p < r < p∗;

(ii) limx→±∞
g(z, x)

|x|p−2x
= +∞ uniformly for a.a. z ∈ Ω;

(iii) g′x(z, 0) = limx→0
g(z, x)

x
= 0 uniformly for a.a. z ∈ Ω;

(iv) same as hypothesis H(g)1 (iv).

Using Theorem 2, we can formulate the following multiplicity result for problem (65).

Proposition 12. If hypotheses H(g)2 hold, then for all λ > λ̂2(2) problem (65) has at
least four nontrivial solutions u0 ∈ intC+, v0 ∈ −intC+, y0, ŷ ∈ intC1

0 (Ω)[v0, u0].
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[8] L. Gasiński and N.S. Papageorgiou, Positive solutions for the Robin p-Laplacian problem with
competing nonlinearities, Adv. Calc. Var., doi.org/10.1515/acv-2016-0039

[9] T. He, Y. Lei, M. Zhang and H. Sun, Nodal solutions for resonant and superlinear (p, 2)equations,
Math. Nachr., DOI: 10.1002/mana.201700163

[10] S. Hu and N.S. Papageorgiou, Handbook of Multivalued Analysis. Vol. I. Theory, Kluwer Academic
Publishers, Dordrecht, The Netherlands (1997).

[11] O. Ladyzhenskaya and N. Ural′tseva, Linear and Quasilinear Elliptic Equations, Academic Press,
New York, (1968).

[12] Z. Liang, X. Han and A. Li, Some properties and applications related to the (2, p)-Laplacian
operator, Bound. Value Probl., 2016:58 (2016), 17 pp.

[13] Z. Liang, Y. Song and J. Su, Existence of solutions to (2, p)-Laplacian equations by Morse theory.
Electron. J. Differential Equations, 2017: 185 (2017), 9 pp.

[14] G.M. Lieberman, Boundary regularity for solutions of degenerate elliptic equations, Nonlinear
Anal., 12 (1988), no. 11, 1203–1219.
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