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Abstract 10 

This study explores fully developed shell-side hydrodynamics and mass transfer past straight fiber 11 

bundles with non-uniform porosity in cross-flow. Simplified geometries made up by a checkerboard 12 

array of alternately high porosity and low porosity regions are considered. Simulations are 13 

performed for two domain sizes: a small geometry (26 fibers) and a large geometry (104 fibers). In 14 

the small geometry, the Darcy friction coefficient (fT) exhibits hydraulic isotropy at low transverse 15 

flow Reynolds numbers (ReT) but becomes dependent on the flow attack angle (θ) at higher ReT. In 16 

the large geometry, this dependency is observed at lower ReT. Non-uniform porosity, reduces fT at 17 

almost all ReT and θ in the small geometry, with the large geometry exhibiting a more complex 18 

behavior. Regarding mass transfer, up to ReT≈1-10 (depending on θ), a non-uniform porosity leads 19 

to lower Sherwood numbers compared to regular square arrays. However, at higher ReT, it enhances 20 

mass transfer. 21 

 22 

Keywords: Hollow fiber; non-uniform porosity; friction coefficient; Sherwood number; 23 

Computational Fluid Dynamics; cross flow.  24 

Self-archived version of the article published in Chemical 
Engineering Science: 

N. Cancilla, M. Ciofalo, A. Cipollina, A. Tamburini, G. Micale 
Straight fiber bundles with non-uniform porosity: shell-side hydrodynamics and mass 

transfer in cross flow, Chemical Engineering Science, 291, 2024, 119947. 

https://doi.org/10.1016/j.ces.2024.119947 

mailto:alessandro.tamburini@unipa.it


2 
 

1. Introduction 25 

The extensive adoption of hollow fiber membrane contactors across numerous applications, 26 

particularly in the field of separation processes technology, has kindled a growing interest in the 27 

detailed investigation of these devices to enhance their performance. These applications encompass 28 

a range of processes, including membrane distillation (Yang et al., 2012), gas separation (Ibrahim et 29 

al., 2018), filtration (Nakatsuka et al., 1996), reverse osmosis (Bansal and Gill, 1982), blood 30 

oxygenation (Teber et al., 2022) and hemodialysis (Cancilla et al., 2022). In hollow-fiber 31 

contactors, the interaction between two fluids occurs through the pores of a semipermeable 32 

membrane. The fibers themselves possess a cylindrical shape and are organized in bundles within a 33 

contactor or module, facilitating the separation of these two phases. The number of fibers within the 34 

module and the inner diameter of the shell housing are the key factors determining the packing 35 

density. 36 

Figure 1 offers a cross-sectional view of a hollow fiber module designed for hemodialysis 37 

applications. This image, obtained through a standard scanner, was created by injecting a two-38 

component resin into the shell side, allowing it to cure, and subsequently slicing a thin section for 39 

examination. 40 

 41 

 42 

 (a) (b) 43 

Figure 1: Cross section of a hollow-fiber bundle for hemodialysis applications, showing the random 44 

arrangement of the fibers. (a): whole bundle (~10,000 fibers, diameter ~40 mm, porosity ~0.5); 45 

the light horizontal band is an artifact resulting from the cutting process. (b): 88 mm square 46 

detail. The outer diameter of each fiber is ~280 μm. 47 

 48 
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In Figure 1(a), a substantial irregularity is evident within the large-scale arrangement of the 49 

fiber bundle. Notably, the peripheral region near the cylindrical housing displays a significantly 50 

lower packing density compared to the central region. Even within the central area, as illustrated in 51 

Figure 1(b), where the packing density seems to exhibit a more statistically uniform pattern, one 52 

can observe scattered gaps intermingled with clusters of densely packed fibers. This sporadic 53 

distribution is an inherent outcome of the randomic nature of the arrangement. Similar insights were 54 

also presented by Frank et al. (Frank et al., 2000). In their experimental studies involving a 55 

commercial hemodialysis module, they employed a much more sophisticated 3-D technique, the 56 

computational tomography. Their findings disclosed the presence of substantial variations in fiber 57 

packing: the most tightly packed fibers were concentrated in the core of the fiber bundle, while the 58 

regions with the lowest fiber density were situated along the perimeter. 59 

As early as 1979, Noda et al. (Noda et al., 1979) identified and characterized fluid 60 

maldistribution within the modules using tracer analysis. They correlated this issue with the 61 

presence of less densely packed fiber bundle regions. Moreover, they successfully simulated this 62 

behavior using a simple model based on the concept of a bypass. 63 

However, the prevailing method found in the literature for modeling a hollow fiber contactor 64 

involves the assumption that the fibers are organized in a structured lattice, often taking the form of 65 

squares or triangles, akin to the design seen in traditional shell-and-tube heat exchangers. Numerous 66 

researchers (Cancilla et al., 2021; Dierickx et al., 2001; Dwyer and Berry, 1970; Happel, 1959; 67 

Ishimi et al., 1987; Miyagi, 1958; Miyatake and Iwashita, 1991, 1990; Noda and Gryte, 1979; 68 

Sparrow and Loeffler, 1959) have extensively delved into topics concerning fluid dynamics and, in 69 

certain instances, mass transfer, focusing on fiber bundles assumed to be tightly packed in regular 70 

lattices. 71 

In a recent study, Sun et al. (Sun et al., 2022) explored by CFD the repercussions of deviating 72 

from an initially uniform distribution of fibers. They investigated how radial irregularities in 73 

porosity between the core region and the interface where fibers meet the housing impact the overall 74 

performance of a gas separation module in fully developed axial flow, finding a significant 75 

reduction in module performance. 76 

Other investigations explored entirely random arrangements (Bao et al., 1999; Bao and 77 

Lipscomb, 2002a, 2002b; Chen and Hlavacek, 1994; Rogers and Long, 1997). Among these, Bao 78 

and Lipscomb employed Voronoi tessellation (Voronoi, 1908) to enclose each fiber with a 79 

polygonal contour in random distributions. Their comprehensive study meticulously examined both 80 

fully developed conditions (Bao and Lipscomb, 2002a, 2002b) and the entry region (Bao et al., 81 

1999) in axial flow, with a specific focus on the effects of localized non-uniformity. Furthermore, 82 
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Chen and Hlavacek (Chen and Hlavacek, 1994) as well as Rogers and Long (Rogers and Long, 83 

1997) utilized Voronoi tessellation to arrange fibers, which were generated through a random 84 

sequential addition, within the circular section of the shell. These latter two papers addressed the 85 

issue of fluid maldistribution within the fiber bundle only in axial flow. 86 

Few researchers have investigated the effects of bundle non-uniformity in cross flow 87 

conditions. Among these, Howells (Howells, 1974) introduced a method for deriving averaged 88 

equations describing laminar flow within random arrays of aligned cylinders, both under axial and 89 

cross flow conditions. This approach utilized Brinkman’s model, which explicitly considers the 90 

flow around a single fiber, treating the effects of all other nearby fibers as a Darcy resistance. 91 

Howells accounted for alterations in the mean flow, particularly in the near field, arising from the 92 

localized resistance characteristics. Consequently, he addressed the influence of a second fiber and 93 

averaged these effects across all its potential positions. The other authors who investigated cross 94 

flow conditions in random fiber distributions are Sangani and Yao (Sangani and Yao, 1988). They 95 

developed a numerical technique designed to compute the Darcy permeability in random 96 

arrangements of straight fibers, applicable to both axial and cross flow scenarios. This method was 97 

employed to investigate various configurations of periodic media, each composed of unit cells 98 

accommodating an increasing number of random fibers, ranging from 4 to 16. However, both these 99 

works have focused only on fluid dynamics, without delving into the issue of mass / heat transfer. 100 

A complete review of the subject is beyond the scope of the present paper. In Table 1, the 101 

studies mentioned above have been organized and classified according to the specific topics and 102 

issues being investigated. 103 

Despite this extensive literature, to the best of the authors’ knowledge, a comprehensive 104 

description of the effects of non-uniform porosity on fluid dynamics and mass transfer within fiber 105 

bundles in the context of cross flow is still missing. Besides its intrinsic scientific interest, the 106 

problem finds practical applications, e.g. in the field of liquid-liquid or gas-liquid extraction in 107 

hollow fiber membrane contactors (Cai et al., 2016; Li and Zhang, 2018; Schöner et al., 1998; 108 

Zheng et al., 2005), where the increase of the shell-side mass transfer coefficient and the lower shell 109 

side pressure drop with respect to the parallel flow modules (Jansen et al., 1994; Wickramasinghe et 110 

al., 1992) provided by cross flow may enhance the module’s performance. 111 

This work represents an intermediate step in a research project started some years ago. The 112 

present authors have investigated the fluid dynamics and mass transfer in bundles of fibers arranged 113 

in regular lattices (Cancilla et al., 2021) and the effects of varying bundle porosity (Cancilla et al., 114 

2023b). They have also explored the influence of non-uniform fiber distribution in axial flow 115 

(Cancilla et al., 2023a), considering simplified geometries made up by a checkerboard array of 116 
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alternately high porosity and low porosity regions, each provided with a regular square lattice of 117 

fibers. The outcomes revealed that non-uniformity results in a significant increase in Darcy 118 

permeability and in a more pronounced reduction in the mass transfer coefficient. In the present 119 

study, we focus on exploring the effects of non-uniform distribution, but within the context of 120 

purely transverse flow, employing the same geometries previously scrutinized. Hence, the current 121 

investigation aims at pointing and understanding the implications of this non-uniformity by 122 

simulating a few rather extreme scenarios, without the additional complexities introduced by 123 

random distributions. Future research endeavors will be directed towards simulating configurations 124 

involving fibers randomly distributed across the plane. 125 

 126 

Table 1: Literature works on the modelling of fiber bundles, divided according to the different issues 127 

investigated. 128 

Authors and Ref. 
Fiber 

arrangement 

Non-

uniformity 

Axial  

flow 

Cross 

flow 

Mass 

transfer 

(Miyagi, 1958) square     

(Happel, 1959) square     

(Sparrow and Loeffler, 1959) square, hexagonal     

(Dwyer and Berry, 1970) hexagonal    

(Howells, 1974) random     

(Noda and Gryte, 1979) hexagonal    

(Ishimi et al., 1987) square, hexagonal     

(Sangani and Yao, 1988) random     

(Miyatake and Iwashita, 1991, 1990) hexagonal    

(Chen and Hlavacek, 1994) random     

(Rogers and Long, 1997) random     

(Bao et al., 1999) random     

(Dierickx et al., 2001) square, hexagonal     

(Bao and Lipscomb, 2002a, 2002b) random     

(Cancilla et al., 2021) square, hexagonal     

(Sun et al., 2022) square     

(Cancilla et al., 2023a) square     

 129 

Regrettably, there is a conspicuous absence of experimental data in the existing literature for 130 

configurations closely resembling the one under investigation, rendering the task of validating our 131 

predictions unfeasible. Nevertheless, it is worth noting that numerical solutions for low Reynolds 132 

number steady laminar flow, achieved with meticulously refined grids and accurate numerical 133 

methods, can be considered virtually exact, often surpassing the precision attainable through 134 
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experimental measurements. 135 

 136 

2. Models and methods 137 

2.1 Modelling assumptions  138 

Numerical simulations were performed using the commercial finite volume code ANSYS 139 

CFX-18® (ANSYS, 2018). The modeling of the fiber bundle was guided by a set of simplifying 140 

assumptions: 141 

1. The flow is perpendicular to the fibers, laminar, fully developed and steady. 142 

2. The fibers are cylindrical, straight and parallel to the longitudinal z axis. 143 

3. All fibers are identical in diameter. 144 

4. All flow and concentration structures strictly adhere to the spatial periodicity of the fiber 145 

lattice. 146 

5. The physical properties of the fluid (density, dynamic viscosity and scalar diffusivity) are 147 

constant. 148 

The assumptions numbered from (1) to (4) facilitated the execution of simulations using the 149 

unit cell approach. Under this methodology, the computational domain comprised a recurrent and 150 

periodic unit of the bundle, encompassing a defined number of fibers (see Section 2.4).  151 

 152 

2.2 Governing equations  153 

The steady-state continuity and momentum equations for a Newtonian incompressible fluid 154 

can be written as: 155 

 0u   (1) 156 

 
2u u p u F        (2) 157 

where u  is the velocity vector, p is the pressure and F is a body force per unit volume acting along 158 

the flow direction, i.e. the driving pressure gradient compensating the large-scale pressure loss;  159 

and μ are the density and the dynamic viscosity of the fluid. 160 

The convection-diffusion transport equation assumed as the governing equation of the scalar 161 

field is given by: 162 

 
2

C
u C D C S     (3) 163 
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in which C is the scalar solute concentration and D is the diffusion coefficient of the solute in the 164 

fluid. The large-scale scalar gradient is compensated by the sink/source term SC, derived by a global 165 

balance of solute in the computational domain. A more detailed explanation of the periodic unit cell 166 

approach is given in (Cancilla et al., 2021). 167 

 168 

2.3 Physical properties and boundary conditions  169 

The fluid properties were set equal to those of water at 25°C, so that the density =997 kg/m3 170 

and the dynamic viscosity μ=8.89∙10-4 Pa∙s (Green and Perry, 2008). The study was conducted for a 171 

Schmidt number Sc=/(∙D) of 500, representative of mass transfer of many species in water (e.g., 172 

urea and NaCl (Klein et al., 1976; Vitagliano and Lyons, 1956)). The choice of a high Schmidt 173 

number causes mass transfer phenomena (i.e., the behavior of the Sherwood number) to depend 174 

sensitively on the details of the flow field, advective fluxes being generally dominant with respect 175 

to diffusive ones even at relatively low Reynolds numbers (of the order of 1 or less). Therefore, 176 

many of the results regarding mass transfer obtained in the present work are specific of high-Sc 177 

conditions and would not be observed at Schmidt numbers of the order of 1 (this includes heat 178 

transfer with ordinary fluids such as water and gases, having a Prandtl number of ~1). 179 

The variables simulated by the unit cell approach are the velocity u  and the periodic 180 

component of the pressure p and of the scalar concentration C, so that periodic boundary conditions 181 

can be imposed to them between opposite boundaries of the computational domain. 182 

In regard to hydrodynamics, a no slip condition was imposed at the cylindrical walls of the 183 

fibers. In regard to mass transfer, a Neumann boundary condition was adopted: the scalar flux from 184 

the wall into the fluid was set to an arbitrary uniform value of 10-5 mol∙m-2∙s-1 (results are not 185 

affected by this value). This selection, as opposed to the Dirichlet boundary condition of imposed 186 

scalar concentration at the wall, aligns more closely with the actual operating conditions within a 187 

hollow fiber bundle. In the majority of applications related to membrane separation processes, such 188 

as hemodialysis, the resistance attributed to the membrane significantly outweighs that of the lumen 189 

and shell sides. Furthermore, this resistance is uniformly distributed circumferentially around each 190 

fiber. As a result, a near-uniform wall mass flux is expected. 191 

 192 

2.4 Computational domains and main definitions 193 

Two artificially designed cross-sectional geometries were simulated. The two computational 194 

domains, along with the definition of some relevant geometric quantities, are reported in Figure 2.  195 
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They comprise alternating square sections with varying porosities, organized in a 196 

checkerboard pattern. Within each section, the fibers were arranged in a square lattice. To account 197 

for symmetry, it was only necessary to include two low-porosity (“dense”) and two high-porosity 198 

(“loose”) square sections within the computational domain while enforcing lateral periodicity on the 199 

opposite sides. The same geometries were used by the authors to study the influence of the bundle 200 

non-uniform distribution on shell-side hydrodynamics and mass transfer for the case of purely axial 201 

flow (Cancilla et al., 2023a). The small and the large geometries share the same mean porosity . 202 

The former geometry comprises Nd=2nd
2=18 fibers in the “dense” region and Nl=2nl

2=8 fibers in the 203 

“loose” region, where nd and nl represent the number of fibers along each row or column of the 204 

respective square sub-region (the subscript d stays for “dense” and l for “loose”, respectively). 205 

Multiplying nl, nd by the same integer number (i.e., 2), a second geometry with 104 fibers was 206 

obtained. It was used to investigate the influence of the spatial scale of the non-uniformity. 207 

 208 

 209 

 (a) (b) 210 

Figure 2: Cross section of the computational domains representing a fiber bundle divided into “dense” 211 

and “loose” regions arranged in a checkerboard pattern. (a) “small” geometry with  212 

22 and 33= 26 fibers; (b) “large” geometry with 44 and 66= 104 fibers. nd and nl are the 213 

numbers of fibers along each row or column of the respective square sub-region. 214 

 215 

Pl and Pd are the pitches of the “loose” and “dense” regions, defined as the center-center 216 

distances between adjacent fibers. The side lengths of the “small” and “large” computational 217 

domains are L and 2L, respectively, whereas the dimension along the axial z direction was irrelevant 218 

and was arbitrarily established at 500 m. The outer diameter of the fibers d was set to 280 m, a 219 

typical value of commercial hemodialysis units. The mean porosity  is defined here as: 220 

nd=3 nl=2

nl

nd

L

Pl

Pd

L/2

L/2
d

d

x

g
Forcing term

y

Mean flow

q

F

2L
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  
tot

V

V
 (4) 221 

where V is the fluid volume and the total volume Vtot is obtained by adding the volume of the fibers 222 

to V. 223 

For each geometry in Figure 2, both the areas of the “dense” and “loose” square sub-regions 224 

and the diameters of the fibers are identical. Thus, the mean porosity can be expressed as the 225 

average of l and d: 226 

 
2

l d
 




  (5) 227 

In the present work, the mean porosity was set to =0.5, while l=0.69 and d=0.31. For a 228 

comprehensive understanding of all the complete equations that connect the parameters , d, l, d, 229 

nl, nd, Pl, Pd and L, please consult Reference (Cancilla et al., 2023a). 230 

According to Figure 2, one can define the cross flow attack angle, q, as the angle between the 231 

forcing term F and the x axis, and the mean flow angle, γ, as the angle between the mean flow and 232 

the x axis. Note that γ=q only in a hydraulically isotropic medium.233 

Consider u  as the superficial velocity vector, defined as the average of the local velocity u  234 

on the whole computational domain. It is also equal to the product of the mean porosity  by the 235 

average of u  over the fluid volume only (interstitial velocity). Throughout this paper, we will 236 

exclusively employ the superficial velocity, without reference to the interstitial velocity.  237 

In the case of purely cross flow, forcing terms acting in various directions within the xy cross-238 

sectional plane of the bundle are applied. The transverse flow Reynolds number ReT was calculated 239 

as: 240 

 Re
T

T

u d


  (6) 241 

using the mean superficial velocity uT projected onto the direction of the applied forcing term: 242 

 cos senq q 
T x y

u u u  (7) 243 

in which x
u  and y

u  denote the mean superficial velocities components along the x and y 244 

directions, respectively. 245 

The Darcy-Weisbach friction coefficient fT along the generic direction (T) within the cross-246 

sectional plane is here defined as: 247 
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 2

d d 2
T

T

p T d
f

u




/
 (8) 248 

Note that, based on the above definitions (6)-(8), one has: 249 

 
2

2
Re

T T

T

f
K d

   (9) 250 

where KT=μ T
u /|dp/dT| is the cross flow hydraulic (Darcy) permeability of the bundle when 251 

subjected to a forcing term directed along T. 252 

In regard to mass transfer, the average mass transfer coefficient is defined as: 253 

 
w b

J
U

C C
 (10) 254 

in which J  represents the wall-averaged molar flux at the wall, w
C  is the wall-averaged molar 255 

scalar concentration at the wall and Cb is the bulk molar concentration, computed as the mass flow-256 

weighted average of the scalar concentration on an arbitrary line cutting through the whole 257 

computational domain.  258 

Consistently, the average Sherwood number Sh is calculated as: 259 

 Sh
d

U
D

  (11) 260 

In this work, the dimensionless quantities ReT, fT and Sh are defined on the basis of the outer 261 

fiber diameter d. An effective alternative is to define these quantities on the basis of the hydraulic 262 

diameter Dh= 4V/S, in which S is the wet surface in the computational domain. However, for every 263 

lattice, the following relationship between Dh, d and  is valid: 264 

 
1

h
D

d







 (12) 265 

and given that, in the present study, the mean porosity is held constant at =0.5, according to Eq. 266 

(12) the definitions for ReT, fT and Sh based on d and Dh coincide. 267 

 268 

2.5 Domains discretization and numerical details 269 

The computational domain underwent discretization employing hybrid grids consisting of 270 
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hexahedral and prismatic volumes. The adoption of hybrid meshes was imperative due to the 271 

intricate nature of the geometries under consideration, which proved challenging to mesh solely 272 

consisting of hexahedra. Nevertheless, it is worth noting that the utilized grids predominantly 273 

consist of hexahedral volumes, as detailed in Table 2. 274 

 275 

Table 2: Summary of the grids employed. 276 

Geometry Number of finite volumes 
% of volume discretized 

 with hexahedra 

small ~780,000 99.6 

large ~3,120,000 99.7 

 277 

In Reference (Cancilla et al., 2021) grids comprising approximately 10,000 volumes per fiber 278 

in the xy plane yielded results for the friction and mass transfer coefficients that exhibited a 279 

deviation of less than 1% compared to those obtained with the finest grid tested, which consisted of 280 

approximately 128,000 volumes per fiber in the xy plane. Consistently, a value of ~10,000 finite 281 

volumes per fiber was chosen as appropriate for the grids employed for all simulations in the 282 

present work. Details of the grids used are shown in Figure 3. 283 

 284 

  285 

 (a) (b) 286 

Figure 3: Details of the mesh in the “loose” (a) and in the “dense” (b) regions. Each fiber is surrounded by 287 

an inflation layer that progressively refines the grid near the wall, to ensure a better resolution at 288 

the wall. 289 

 290 

In the context of the current study, which focuses on investigating the impact of non-uniform 291 

porosity on friction and mass transfer coefficients within the fully developed region, the employed 292 

geometries were primarily two-dimensional. Therefore, the extent of the computational domains 293 

along the longitudinal direction held no significance. To align with the ANSYS-CFX code 294 
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requirements, this extent was arbitrarily established at 500 μm and discretized using three finite 295 

volumes. 296 

All simulations were conducted with a double-precision approach and were stopped when the 297 

dimensionless residuals of all variables decreased below 1012. Advection terms were discretized by 298 

a two-point upwind scheme. To solve for pressure and velocity, a strongly coupled algorithm was 299 

employed. In this study, the number of iterations, in the form of pseudo-time steps, varied based on 300 

the flow rate and the system geometry. 301 

 302 

3. Results 303 

A substantial volume of simulations was carried out, involving variations in the transverse 304 

flow Reynolds number (ReT) and the flow attack angle (θ). It is important to note, as established in 305 

the existing literature (Williamson, 1996), that when ReT exceeds 50, vortex shedding phenomena 306 

originate within the fluid, leading to the breakdown of the assumption of steady-state flow. To 307 

circumvent the complexities associated with time-dependent solutions, the present study exclusively 308 

examined cases with ReT values ranging from 10-5 to 50. It is worth noting that within the 309 

computational domains under scrutiny, which consists of alternating square sections featuring 310 

varying porosities arranged in a checkerboard pattern with fibers positioned in a square lattice, the 311 

angular dependency of any parameter exhibits periodicity with a 90° period. However, it is 312 

sufficient to explicitly investigate flow attack angles within the range of 0° to 45° because the 313 

segment from 45° to 90° can be derived through symmetric reflection around the θ=45° axis. 314 

Within each set of input data, the primary performance parameters reported were the product 315 

between the Darcy friction coefficient and the Reynolds number (fT∙ReT) and the average Sherwood 316 

number (Sh). 317 

 318 

3.1 Hydrodynamics 319 

Figure 4(a, c) presents, in a semi-logarithmic scale, the product fT∙ReT as a function of ReT for 320 

various values of θ, for the small and the large geometry, respectively. In the small geometry, graph 321 

(a), until a Reynolds number of approximately ReT≈1 is reached, the Darcy friction coefficient (fT) 322 

is independent on the flow attack angle (θ) and exhibits an almost exact inverse dependence with 323 

ReT. This observation demonstrates that, at sufficiently low transverse Reynolds numbers (creeping 324 

flow), the fiber bundle under investigation behaves as a hydraulically isotropic medium, and the 325 

flow maintains a self-similar nature. At higher Reynolds numbers, when inertial forces become 326 

increasingly substantial, the behaviour of fT deviates from the (ReT)-1 trend and begins to exhibit a 327 
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dependence on the flow attack angle θ. In the large geometry, graph (c), the friction coefficient 328 

behaves as 1/ReT up to ReT≈1, but even at very low Re values (ReT→0) it depends on the flow 329 

attack angle θ (hydraulic anisotropy). 330 

 331 

 332 

 (a) (b) 333 

 334 

 (c) (d) 335 

Figure 4: Product fT·ReT (a, b) for the “small” geometry with 22 and 33 fibers and (c, d) for the “large” 336 

geometry with 44 and 66 fibers. (a, c) Semi-logarithm charts of fT·ReT as a function of the 337 

transverse flow Reynolds number ReT at different flow attack angles θ; (b, d) Product fT·ReT as a 338 

function of θ (in the periodic range 0-90°) at different values of ReT. 339 

 340 

It is noteworthy that at θ=45°, the friction coefficient at ReT=50 highly exceeds (~2.4 times 341 

for the small and ~2.7 times for the large geometry) the value predicted at low Reynolds numbers 342 
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(ReT→0).  343 

The relationship between the friction coefficient and the flow attack angle is more 344 

prominently displayed in Figure 4(b, d), which presents the product fT∙ReT as a function of θ for 345 

various values of the transverse flow Reynolds number, ReT. 346 

For the small geometry, graph (b), in accordance with the earlier observations, up to ReT≈1, θ 347 

exerts a minimal influence (indicating that the lattice behaves nearly as a hydraulically isotropic 348 

medium). However, as ReT increases, fT∙ReT exhibits a minimum at θ=0°-90°, while reaching a 349 

maximum at 45°. This is not true for the large geometry in graph (d): in this case, even at ReT<<1, 350 

fT∙ReT exhibits a dependence on θ. The peaking factor, i.e. the ratio of angular maximum to angular 351 

average, is ~1.21 for the small geometry, and ~1.12 for the large one at ReT=50. 352 

In order to highlight the influence of non-uniformity on the friction coefficient, Figure 5 353 

reports in a double logarithmic scale the product fT∙ReT as a function of ReT, for the small and the 354 

large geometries, in comparison with a regular square fiber arrangement at the same mean porosity 355 

ε=0.5. For the sake of brevity, just the cases for θ=0° (graph a) and 45° (graph b) are reported, but 356 

comparable plots and similar considerations also apply for the other angles investigated. In graph 357 

(c) the angular averaged values among all flow attack angles are reported. 358 

For θ=0° (graph a), the lowest value for the friction coefficient is reached with the small 359 

geometry: the curve fT∙ReT is always below that for a regular square bundle, in the whole range of 360 

ReT investigated. The minimum “small”-to-regular fT ratio is ~0.75 and is attained for ReT→0, 361 

while it approaches 1 at ReT=50. The behaviour of the large geometry is notably more intricate. The 362 

friction coefficient remains constant and ~5% below the curve for the regular square arrangement at 363 

the lowest ReT (≤1). Subsequently, it begins to rise, and when ReT exceeds 2, a reversal in hierarchy 364 

with respect to the regular square curve occurs. 365 

For θ=45° (graph b), up to ReT=1 the presence of a non-uniform porosity in the small domain 366 

reduces fT by ~25% as in the case θ=0°, consequently leading to an equivalent enhancement in the 367 

flow rate for any given applied pressure difference. For ReT =10, the variation in fT is as low as 368 

~17%. Unlike the case at θ=0°, the reversal in behaviour occurs for ReT≈20 and, at ReT=50, fT is 369 

~44% larger compared to the regular square lattice curve. The curve for the large geometry exhibits 370 

a notable distinction from the previous one, remaining above that for the regular square lattice at all 371 

values of ReT. For ReT≤1, the difference is ~8%, but it becomes much more pronounced as ReT 372 

increases and is ~144% at ReT=50. 373 

The angular averaged behaviour (graph c) is very similar to those already discussed and 374 

similar considerations also apply. The crossing between the regular square and the small geometry 375 

curves occurs at ReT≈30, and the reversal in hierarchy takes place at ReT >~40. On the other hand, 376 



15 
 

the curve for the large geometry remains above that for the regular square lattice at all ReT values. 377 

 378 

 379 

 (a) (b) 380 

 381 

 (c) 382 

Figure 5: Double logarithmic chart of the product fT·ReT as a function of the transverse flow Reynolds 383 

number ReT at θ=0° (a), θ=45° (b) and for the angular average (c). The graphs compare, for a 384 

porosity ε=0.5, the regular square lattice (squares) with the non-uniform “small” (circles) and 385 

“large” (diamonds) geometries.  386 

 387 

It can be concluded that the effect of a non-uniform porosity on the friction coefficient in 388 

cross flow is rather complex. It depends on the cross flow attack angle, the Reynolds number (ReT), 389 
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and the scale of the non-uniformity considered. For ReT<1, the product fT∙ReT remains constant. 390 

However, for higher values of ReT (particularly for ReT>10), it increases more rapidly in geometries 391 

that exhibit a non-uniform porosity compared to the case of a regular lattice. As the angle θ varies, 392 

the qualitative trend remains the same, but the quantitative details change. This behavior is at strong 393 

variance with that observed for axial flow in the same non-uniform geometries, in which a non-394 

uniform porosity always leads to a strong reduction of the friction coefficient (Cancilla et al., 395 

2023a). 396 

Simplified velocity maps and superimposed vector plots predicted at ReT=1 in the small 397 

geometry when the forcing term F  follows different directions are depicted in Figure 6.  398 

 399 

 400 
 (a) (b) 401 

 402 
 (c) (d) 403 

Figure 6: Simplified velocity maps and superimposed vector plots at ReT=1 predicted for the “small” 404 

geometry with 22 and 33 fibers when the forcing term F  is oriented at different angles. The 405 

direction of the forcing term F  is shown and the angle θ formed with the x axis is reported. 406 

Blue regions: velocity<average velocity; red regions: velocity>average velocity.  407 

F F
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F F
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Regions in which the velocity is larger than the average velocity (=0.0064 m/s) are indicated 408 

in red, regions where the velocity is smaller than the average velocity in blue. This representation is 409 

more effective than a continuous contour plot in order to show the flow topology. 410 

The average velocity remains the same as the direction of F varies, confirming the hydraulic 411 

isotropy at ReT=1. The fluid settles within the dense regions of the bundle, while it flows within the 412 

loose regions where peak values of several centimeters per second are reached. For all the simulated 413 

cross-flow attack angles, it appears that the dense regions are bypassed by the fluid, which 414 

perceives them as a single obstacle. However, the detachment and subsequent reattachment of the 415 

wake downstream of the fibers in the loose regions vary with changes in the forcing term direction. 416 

In particular, going from θ=0° to 45°, the fluid appears to shift from treating a pair of fibers as a 417 

single obstacle (maps a and b) to a complete detachment and reattachment on a fiber-by-fiber basis 418 

(maps c and d). 419 

Figure 7 reports maps of the velocity module, normalized with respect to its (interstitial) 420 

average, along with superimposed vectors in the small geometry for θ=45°, and four different 421 

values of the transverse flow Reynolds number. The maps show that, as ReT increases, the flow 422 

distributes itself increasingly among collateral channels between fibers, i.e., the relative importance 423 

of collateral pathways increases. 424 

A noteworthy feature of the flow patterns in Figure 6 and 7 is that in all cases the fluid flows 425 

mainly along preferential passages, mainly involving the “loose” regions, while some regions of the 426 

computational domain, including most of the “dense” regions, are essentially stagnant. This 427 

phenomenon, known in the literature as channeling, is typical of flow across fiber bundles, as 428 

already observed by various authors (Bao and Lipscomb, 2002a, 2002b; Li et al., 2016; Osuga et al., 429 

2004; Ronco et al., 1997; Sun et al., 2022) and is expected to occur also in randomly distributed 430 

fiber bundles. 431 

 432 
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 433 

Figure 7: False color maps of the velocity module normalized with respect to its (interstitial) average and 434 

superimposed vector plots at θ=45° predicted for the “small” geometry with 22 and 33 fibers 435 

when the transverse flow Reynolds number ReT ranges between 5 and 50. The direction of the 436 

forcing term F  is shown and the value of ReT is reported. 437 

 438 

3.2 Mass transfer 439 

In both the small and the large geometries, the Sherwood number (Sh) remains relatively 440 

uniform at all flow attack angles (θ) until a transverse Reynolds number of approximately 0.1 is 441 

attained. This observation suggests that at very low Reynolds numbers, the fiber bundle being 442 

studied demonstrates an isotropic behaviour, not only with regard to hydrodynamics, but also with 443 

regard to mass transfer. As the Reynolds number increases, Sh starts to show a correlation with the 444 

flow attack angle θ. Opposite to what was found for hydrodynamics, in regard to mass transfer the 445 

large geometry appears to be slightly less anisotropic with respect to the small geometry. 446 

This behaviour is illustrated in Figure 8, which depicts the simultaneous dependence of mass 447 

F F

ReT=5 ReT=10

ReT=30

F F

ReT=50

(a) (b)

(c) (d)



19 
 

transfer on the transverse flow Reynolds number and the cross flow attack angle. 448 

Graphs (a) and (c) illustrate the behavior of Sh as a function of θ for several ReT values  449 

(1∙10-5, 0.001, 0.01, 0.1, 1, 10, 30, and 50). For clarity, the entire periodic range θ=0°-90° is 450 

displayed, although the profiles of all quantities exhibit symmetry with respect to θ=45° so that the 451 

interval 0-45° contains all the relevant information. 452 

In the case of the small geometry (graph a), one can observe that: 453 

- for ReT<10-4, the Sh vs. θ curves collapse into the same asymptotic profile; 454 

- at all values of ReT, the Sherwood number profile versus θ presents relative minima both 455 

at θ=45° and at θ=0°-90° and maxima at θ≈20°-30° and, symmetrically, 60°-70°; 456 

- the degree of anisotropy with respect to mass transfer, expressed as (Shmax-Shmin)/Shavg, is 457 

~0.38 for ReT0, increases up to a maximum of ~1.05 for ReT1, and then decreases for 458 

larger ReT.  459 

In the case of the large geometry (graph c), the picture is more complex: 460 

- for ReT<10-4, the Sh vs. θ curves collapse into a single asymptotic profile as in the “small” 461 

geometry; 462 

- this asymptotic profile for ReT0 exhibits an absolute maximum for θ=45° and a shallow 463 

relative maximum for θ=0°-90° (not visible in Figure 8c); 464 

- at values of ReT between ~10-3 and ~30, the Sherwood number exhibits multiple maxima 465 

located at θ=45° and at θ15°-75° and multiple minima located at θ≈30°-60° and 0°-90°; 466 

- at the largest ReT investigated (50), the secondary minima at θ≈30°-60° and 0°-90° 467 

disappear while the maximum at θ=45° turns to a minimum, so that the Sherwood number 468 

exhibits only two minima at θ≈45° and 0°-90° and two maxima at θ≈20°-70°; 469 

- the degree of anisotropy with respect to mass transfer, expressed as (Shmax-Shmin)/Shavg, is 470 

more uniform than in the small geometry, exhibiting values of ~0.3-0.5 in the range 471 

ReT=0.01 - 10, while it decreases both for ReT below 0.01 and for ReT above 10; it is 472 

~0.09 for ReT0, and ~0.18 for ReT=50. 473 

 474 
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  475 
 (a) (b) 476 

  477 

 (c) (d) 478 

Figure 8: Sherwood number Sh (a, b) for the “small” geometry with 22 and 33 fibers and (c, d) for the 479 

“large” geometry with 44 and 66 fibers. (a, c) Sh as a function of θ (in the periodic range 0-480 

90°) at different value of ReT; (b, d) Sh as a function of the transverse flow Reynolds number 481 

ReT at different flow attack angles θ. The insets show a double logarithmic enlargement in the 482 

range 10-4<ReT<1. 483 

 484 

Graphs b) and d) report Sh as a function of ReT for four different values of θ (0°, 15°, 30° and 485 

45°), for the small and the large domains, respectively. 486 

In the small geometry (graph b), both for θ=0° (symmetry direction) and for intermediate flow 487 

attack angles, such as 15° and 30°, Sh increases ~twice as ReT increases from 10 to 50; the 488 

increment is larger, from ~14 at ReT=10 to ~50 at ReT=50 (i.e., ~3.5-fold), for the case of θ=45° 489 

(second symmetry direction). The inset in Figure 7b reports (in a log-log scale) the behaviour of Sh 490 

at very low ReT (from 10-4 to 1); it shows that, at all flow attack angles q, Sh tends to an asymptotic 491 

value as ReT0, but a difference in Sh between different values of q persists, confirming the 492 

existence of an asymptotic anisotropy in mass transfer. 493 
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In the large geometry (graph d), the anisotropy in Sh is less marked; the Sh curves for all 494 

angles q remain closer to one another in the range ReT=10 to 50. The Sherwood number increases 495 

from 20-30 at ReT=10 to ~64-78 at ReT=50 (i.e., from 2.3 to 3.7 times, much as in the small 496 

geometry). As the inset for low ReT shows, also in this case Sh tends to asymptotic values for 497 

ReT0, but now the asymptotic angular distribution of Sh is more isotropic than in the small 498 

geometry (but not completely isotropic), as it is also shown by Figure 8c. 499 

In order to highlight the effect of non-uniformity on mass transfer, Figure 9 shows in double 500 

logarithmic charts the Sherwood number as a function of ReT, for the small and the large 501 

geometries, in comparison with a regular square fiber array at the same mean porosity ε=0.5. For 502 

the sake of brevity, just the cases for θ=0° (graph a) and 45° (graph b) are reported, but equivalent 503 

plots and analogous considerations also apply for the others cross flow angles studied. In graph (c) 504 

the angular averaged values among all flow attack angles are reported. 505 

For θ=0° (graph a), with both the non-uniform geometries under study, Sherwood numbers 506 

(Sh) remain constant up to ReT≈0.001, exhibit a transitional behaviour in the range 507 

0.001<ReT<0.01, and subsequently increase following a power law with slope ~1/2 for the small 508 

geometry and ~4/5 for the large geometry. 509 

On the contrary, the regular square lattice exhibits a much flatter dependence on ReT, with 510 

only a small increase of Sh form very low ReT up to ReT≈10. 511 

Up to ReT=0.1, the Sherwood number exhibits its lowest value in the large geometry. 512 

Conversely, the Sherwood number obtained with the small geometry falls between the previously 513 

mentioned value and the corresponding value computed for a regular square array under the same 514 

flow conditions. For ReT<~1, non-uniform porosity has a detrimental impact on mass transfer. In 515 

the case of the small geometry, as ReT→0 the Sherwood number decreases by ~16 times compared 516 

to that of a regular square array, while for the large geometry, Sh is reduced by a staggering 100 517 

times (Sh≈4 in the regular bundle, Sh≈0.04 in the large geometry). These findings align with those 518 

previously discussed by the authors (Cancilla et al., 2023a) concerning purely axial flow. In that 519 

scenario, the transition from a regular square arrangement to the small and large domains resulted in 520 

a reduction of the fully developed values of Sh by a factor of ~25 (small geometry) and 100 times 521 

(large geometry), respectively. 522 

 523 
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  524 

 (a) (b) 525 

 526 

 (c) 527 

Figure 9: Sherwood number Sh as a function of the transverse flow Reynolds number ReT in transverse 528 

flow at θ=0° (a), θ=45° (b) and for the angular average (c). The graph shows, for porosity ε=0.5, 529 

the comparison among the regular square lattice (squares) and the non-uniform “small” (circles) 530 

and “large” (diamonds) geometries. 531 

 532 

For ReT>0.1 the behaviour of Sh is more complex. The curves intersect each other within the 533 

range of ReT values between 0.1 and 1, and when ReT is larger than ~3, the hierarchy is completely 534 

reversed, the lowest Sh value being predicted for the regular square case and the highest one for the 535 

large geometry. Consequently, at high Reynolds numbers, the influence of a non-uniform porosity 536 

on mass transfer proves advantageous, leading to the potential achievement of a Sh enhancement by 537 

3 to 6.5 times compared to that of a regular square bundle (ReT=50). 538 

For θ=45° (graph b), the curves of the Sherwood number exhibit a qualitatively similar 539 

behaviour. In the case of the small geometry, Sh begins to rise at ReT=0.01, showing a power-low 540 

Regular vs. dense-loose (small-large comparison q =0°) - porosity 0.5

0.01

0.1

1

10

100

1E-05 1E-04 0.001 0.01 0.1 1 10 100

ReT

S
h

regular square

small
large

q =0°

Regular vs. dense-loose (small-large comparison q = 45°) - porosity 0.5

0.01

0.1

1

10

100

1E-05 1E-04 0.001 0.01 0.1 1 10 100

ReT

S
h

regular square

small
large

q =45°

Angular averages

0.01

0.1

1

10

100

1E-05 1E-04 0.001 0.01 0.1 1 10 100

ReT

S
h

regular square

small

large



23 
 

relationship of slope ~3/4 in the range 1<ReT<50. With the large geometry, the value of Sh for 541 

ReT→0 is lower but the rate of increase is similar, with a slope of about 3/4 in the range 542 

0.1<ReT<10. Contrariwise, the regular array geometry exhibits a much flatter ReT-dependence of 543 

Sh, and even a slight decrease in the range 10-3<ReT<10-2. As ReT→0, a non-uniform porosity has 544 

an even more significant effect on mass transfer for θ=45° than for θ=0°. In the small geometry, the 545 

Sherwood number experiences a reduction of approximately 80-fold in comparison to its regular 546 

array value (Sh≈14). In the case of the large geometry, Sh undergoes an even larger reduction, 547 

decreasing by ~325-fold (Sh≈0.043) when compared to that of a regular square array. Unlike the 548 

case at θ=0°, the intersection of the Sh curves occurs at an earlier point, specifically at ReT≈0.1. 549 

However, the reversal in hierarchy occurs later, at ReT values exceeding approximately 20, and 550 

when ReT=50 simulations indicate a notable enhancement in Sh, ~2.7 (small geometry) to ~4 (large 551 

geometry) times larger than that of a regular square bundle. 552 

The angular averaged behaviour (graph c) is very similar to those already discussed and 553 

similar considerations also apply. With the small geometry, the Sherwood number starts to increase 554 

at ReT=0.01, exhibiting a power-law relationship with a slope of ~3/5. The large geometry shows a 555 

lower Sh value for ReT→0, but the rate of increase is larger, with a slope of about 0.7 in the range 556 

0.1<ReT<50. The regular array geometry shows a much shallower ReT-dependence of Sh, even 557 

indicating a slight increase with a slope of ~0.23 in the range 1<ReT<30. 558 

The crossing of the Sh profiles occurs at ReT≈1, and the reversal in hierarchy takes place at 559 

ReT values larger than ~40. When ReT=50, simulations indicate an increase in Sh of approximately 560 

1.2 times larger for the small geometry and approximately 1.6 times larger for the large geometry 561 

compared to a regular square bundle. Consequently, when considering angle-averaged values of the 562 

Sherwood number, the enhancement is shifted toward higher ReT values, and it appears to be 563 

softened. 564 

Figure 10 shows maps of the dimensionless concentration in the large geometry for the 565 

transverse flow Reynolds number ReT=1 and two values of the cross flow attack angle, i.e. 15° and 566 

30°, corresponding to the highest (~6.5) and lowest (~3.8) Sherwood number (see Figure 8c). 567 

The dimensionless concentration is defined here as:  568 

 *

b

C
C

C
 (13) 569 

where Cb is the mass flow-weighted average of the scalar concentration on an arbitrary cross 570 

section, i.e. the bulk concentration. 571 

Note that in Figure 10 the same scale is used for both maps. For either value of θ, the “dense” 572 

regions, where the fluid flows with lower velocities, are characterized by higher dimensionless 573 
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concentrations and vice versa (i.e., little mixing). For θ=15° the map exhibits a flatter distribution 574 

of the dimensionless concentration, while for θ=30° it exhibits a broader range of C* values. 575 

 576 

 577 
 (a) (b) 578 

Figure 10: False color maps of the dimensionless concentration and superimposed vector plots at ReT=1 579 

predicted for the “large” geometry with 44 and 66 fibers when the forcing term F  is 580 

oriented at different angles. The direction of the forcing term F  is shown and the angle θ 581 

formed with the x axis is reported. 582 

 583 

Figure 11 provides insights into how the flow, even at such low Reynolds numbers, has a 584 

significant impact on the scalar distribution. It reports maps of the dimensionless concentration in 585 

the large geometry for a cross flow attack angle of 45° and three different values of the transverse 586 

flow Reynolds number (1∙10-5, 0.001 and 0.01, respectively). Corresponding maps for the small 587 

geometry are qualitatively similar and are not shown for the sake of brevity. 588 

 589 

 590 
 (a) (b) (c) 591 

Figure 11: Dimensionless concentration predicted for the “large” geometry with 44 and 66 fibers for 592 

θ=45° and three values of the transverse flow Reynolds number: (a) ReT=1∙10-5; (b) ReT=0.001; 593 

(c) ReT=0.01. 594 
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At ReT=1∙10-5 (map a), the distribution is nearly symmetrical between the upstream and 596 

downstream the dense and the loose regions. However, at ReT=0.001 and 0.01, which are still 597 

hydrodynamically creeping flows (maps b and c), the effects of advection break this symmetry, 598 

resulting in a noticeably asymmetric scalar distribution. This behaviour can be attributed to the high 599 

Schmidt number (500): the transverse Péclet number, ReT∙Sc, is 0.005 in case (a), while it is 0.5 in 600 

case (b) and 5 in case (c). These last two values, while small, are not negligible. Even at such low 601 

ReT, the concentration distribution does not exhibit a centrally symmetric configuration as one 602 

would observe in pure diffusion or purely axial flow. 603 

Figure 12 presents the Sherwood number as a function of the cross flow attack angles (θ) at 604 

various ReT for both the regular square array and the small non-uniform geometry. 605 

 606 

 607 

Figure 12: Sherwood number Sh as a function of the flow attack angles θ (in the periodic range 0-90°) at 608 

different value of the transverse flow Reynolds number ReT. The graph shows, for porosity 609 

ε=0.5, the comparison among the regular square lattice (solid lines) and the “small” geometry 610 

with 22 and 33 fibers (broken lines). 611 

 612 

The comparison reveals that up to ReT=10 the dashed curves, which are the non-uniform 613 

small geometry, consistently exhibit lower values of the Sherwood number across all cross flow 614 

attack angles, in comparison with the solid curves which are for the regular square lattice. The sole 615 

exceptions to this trend occurs at ReT=10 for θ=0°-90°, where Shnon-unif≈14 while Shunif≈7, and at 616 

ReT=50 both for θ=0°-5° or θ=85°-90° (symmetrically) and for θ=35°-55°. On average, the 617 

reduction in Sh is ~2-fold for ReT=10 but increases at low ReT and is as large as ~3 for ReT=1 and 618 
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~10 for ReT=0.1. However, the reduction in the Sherwood number is far smaller than that observed 619 

in axial flow (Cancilla et al., 2023a), where it can be as high as 25 (small geometry) and 100 (large 620 

geometry) at ReT=10. 621 

Thus, the presence of non-uniform porosity leads to a reduction in the Sherwood number and, 622 

consequently, a decrease in mass transfer compared to the scenario with a bundle of uniformly 623 

distributed fibers with regular porosity. Furthermore, when comparing the curves with the same ReT 624 

(e.g., the green lines for ReT=0.1), it is evident that the profiles in the case of non-uniform porosity 625 

are, on average, flatter than those in the case of uniform porosity. This implies that, in regard to 626 

mass transfer, non-uniformity tends to reduce the anisotropy compared to the situation with uniform 627 

porosity. This effect is even more pronounced when considering the large geometry as can be 628 

inferred by comparing graphs (a) and (c) in Figure 8.  629 

The decrease in overall mass transfer coefficients due to the uneven distribution of porosity, 630 

which leads to the flow being diverted towards regions with higher porosity (commonly known as 631 

channeling), has also been experimentally verified by several researchers. For instance, Ronco and 632 

co-workers (Ronco et al., 1997) noted that the inclusion of spacing yarns between the fibers in 633 

hemodialyzers improved module performance by mitigating channeling. Additionally, irregularities 634 

in flow and concentration distribution in hemodialyzers resulting from non-uniform porosity were 635 

explored using imaging techniques like proton magnetic resonance (Osuga et al., 2004). The 636 

reduction in the efficiency of toxin removal due to uneven flow distribution was quantitatively 637 

characterized through the combined use of imaging techniques and computational fluid dynamics 638 

(Li et al., 2016). Recently, Sun et al. (Sun et al., 2022) predicted that channeling phenomena, 639 

arising from the bypass formed in the fluid flow pattern between the fiber bundle and the module 640 

housing, have a detrimental impact on module performance. 641 

In summary, the impact of non-uniform porosity on mass transfer in cross flow is a rather 642 

intricate matter. It hinges on various factors, including the cross-flow attack angle, Reynolds 643 

number (ReT), and the length scale of the non-uniformity in consideration. For ReT<0.001, the 644 

Sherwood number remains constant and falls far below the values achieved in a regular fiber 645 

distribution. At higher ReT values, Sh begins to increase, and upon reaching a critical ReT threshold, 646 

its growth becomes more rapid in configurations that incorporate non-uniform porosity when 647 

contrasted with a lattice featuring uniform porosity. While the qualitative trend persists as the angle 648 

θ changes, the specific ReT value at which the curves intersect varies. 649 

 650 

 651 

 652 
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Conclusions 653 

This study focuses on non-uniform porosity within fiber bundles, particularly in cross-flow 654 

conditions, which is a less-explored area in the existing literature. The impact of non-uniform 655 

porosity on both hydrodynamics and mass transfer is examined at varying Reynolds numbers and 656 

flow attack angles. 657 

The simulated model channel was conceptually divided into alternating “dense” and “loose” 658 

regions, arranged in a checkerboard pattern, with each region containing a regular array of fibers. 659 

Fully developed simulations were performed, assuming periodic boundary conditions between all 660 

opposing faces of the computational domain. Two distinct sizes for the “dense” and “loose” regions 661 

were taken into account: one involving 22 and 33 fibers (referred to as the small geometry), and 662 

the other consisting of 44 and 66 fibers (designated as the large geometry). These configurations 663 

are, of course, highly artificial, but reflect some aspects of the local irregularities actually occurring 664 

in large real bundles of randomly packed fibers while allowing, thanks to their well defined 665 

geometry, a quantitative non-statistical assessment of the influence of non-uniformity. 666 

In regard to hydrodynamics, a non-uniform porosity had a complex effect on the friction 667 

coefficient, influencing it differently in small and large geometries. Overall, non-uniform porosity 668 

led to a reduction in the Darcy friction coefficient (fT), especially at lower Reynolds numbers. In the 669 

small geometry, the friction coefficient remained relatively uniform with the flow attack angle (θ) at 670 

low Reynolds numbers (ReT<1), indicating hydraulic isotropy. At higher Reynolds numbers, fT 671 

exhibited dependency on the flow attack angle. In contrast, the large geometry showed such 672 

dependency even at low Reynolds numbers (ReT1). By comparison, regular fiber arrays in cross-673 

flow exhibited hydraulic isotropy for all ReT≤~1. 674 

In regard to mass transfer, a non-uniform porosity generally led to lower Sherwood numbers 675 

(Sh) compared to regular square arrays, especially at low Reynolds numbers. However, at high 676 

Reynolds numbers, non-uniform porosity could enhance mass transfer in certain scenarios. In the 677 

small geometry, the Sherwood number remained almost uniform with respect to the flow attack 678 

angle θ at very low Reynolds numbers, indicating mass transfer isotropy. As the Reynolds number 679 

increased, Sh correlated more and more with θ. The large geometry exhibited less anisotropy in 680 

mass transfer compared to the small geometry, a behaviour opposite to that observed for the friction 681 

coefficient. 682 

These findings highlight the significance of non-uniform porosity in influencing fluid 683 

dynamics and mass transfer in cross-flow hollow fiber contactors, with implications for various 684 

applications, such as liquid-liquid or gas-liquid extraction. 685 

Obtaining accurate measurements of local flow and, to an even greater extent, mass transfer in 686 
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geometries resembling those under investigation would present significant challenges. Nevertheless, 687 

numerical solutions for flow and mass transfer under conditions of low Reynolds numbers 688 

(characterized by steady laminar flow) can be considered virtually exact when achieved with well-689 

resolved grids and accurate numerical methods. In fact, these numerical solutions tend to be more 690 

accurate than any conceivable measurement. Furthermore, although there is a lack of experimental 691 

data for the specific conditions examined in this study, the overarching conclusions drawn here, 692 

such as the reduction of both friction and mass transfer coefficients in non-uniform bundles (at least 693 

for the case of purely axial flow) in comparison to uniform ones, have been validated by numerous 694 

studies in the existing literature. These studies encompass a range of approaches, including 695 

experimental, theoretical, and computational analyses, as exemplified by the works of Lipscomb 696 

and co-workers (Bao et al., 1999; Bao and Lipscomb, 2002a, 2002b). 697 

This paper primarily focused on scalar transfer, considering it as mass transfer and 698 

characterizing it with Schmidt and Sherwood numbers. However, the same problem can be 699 

reinterpreted as a heat transfer process, with the associated numbers being Prandtl and Nusselt 700 

numbers. This expanded viewpoint allows the conclusions to be applicable to a broader range of 701 

applications, including mini-heat exchangers and various heat transfer devices. 702 
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 709 

Nomenclature 710 

C concentration (mol m-3) 711 

C* dimensionless concentration (-) 712 

D scalar diffusivity (m2 s-1) 713 

d outer diameter of a fiber (m) 714 

Dh hydraulic diameter (m) 715 

F  forcing term compensating the large-scale pressure gradient (Pa) 716 

f Darcy-Weisbach friction coefficient (-) 717 

J mass flux at the wall (mol m-2 s-1) 718 

K Darcy permeability (m2) 719 



29 
 

L length along x and y directions (m) 720 

N number of fibers (-) 721 

n number of fibers on each side (-) 722 

P pitch (center-center distance between adjacent fibers) (m) 723 

p pressure (Pa) 724 

Pe Péclet number, Re·Sc (-) 725 

Re Reynolds number (-) 726 

S wet surface of the computational domain (m2) 727 

SC source term compensating the large-scale concentration gradient (mol m-3 s-1) 728 

Sc Schmidt number (-) 729 

Sh Sherwood number (-) 730 

T cross flow direction (-) 731 

U local shell side mass transfer coefficient (m s-1) 732 

u  velocity vector (m s-1) 733 

V volume (m3) 734 

x, y Cartesian coordinates in cross section orthogonal to the fibers (m) 735 

z Cartesian coordinate along the axial direction (m) 736 

 737 

Greek symbols 738 

γ mean flow angle (deg) 739 

ε mean porosity (-) 740 

θ cross flow attack angle (deg) 741 

μ dynamic viscosity (Pa s) 742 

ρ density (kg m-3) 743 

 744 

Subscripts 745 

b bulk (mass flow averaged) 746 

d “dense” (low porosity) 747 

l “loose” (high-porosity) 748 

T cross flow direction 749 

tot total 750 

w wall 751 

x, y coordinates 752 

 753 
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Averages 754 

  surface average 755 

  volume average 756 
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