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Abstract

In this paper, we continue the study on the application of multinode Shepard
method to numerically solve elliptic Partial Differential Equations (PDEs)
equipped with various conditions at the boundary of domains of different
shapes. In particular, for the first time, the multinode Shepard method is
proposed to solve elliptic PDEs with Dirichlet and/or Neumann boundary
conditions. The method has been opportunely handled to efficiently work
dealing with scattered distribution of points and, to this aim, several exper-
iments in different 2d domains have been performed. Comparisons with the
analytic solution and the results generated by the Kansa’s RBF solvers have
been reported referring to Halton points. The results are very promising and
should be of interest for applications in the real world.

Keywords: Approximation by rational functions, Multinode Shepard
method, Collocation method, Elliptic PDEs

1. Introduction

As well known, every field in science and engineering uses models based
on differential equations: from biology to medicine, from physics to chem-
istry, and all engineering sciences. Despite the huge number of known Par-
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problems, only a few possess closed-form solutions and numerical methods
allow to represent such solutions with the help of adequate designed software
[1].

Elliptic PDEs are special kinds of second-order equations, which find
applications in almost all areas of mathematics, from harmonic analysis to
geometry to Lie theory, as well as numerous applications in physics, and
they have a well-developed theory. The Laplacian operator, in particular,
is a fundamental component in a large number of multi-dimensional linear
models of mathematical physics: to name a few, the Laplacian arises in
descriptions of various classical and quantum wave phenomena, as well as
models involving diffusion and viscosity effects [2].

Often the elliptic PDEs are coupled with boundary conditions, to define
a boundary value problem in which the solution of the given equation is
required to satisfy conditions, such as Dirichlet or Neumann conditions or
mixed ones, on the boundary of the problem domain.

The most popular numerical methods for solving PDEs are finite dif-
ference methods (FDMs), spectral methods, finite element methods (FEMs),
boundary element methods (BEMs), finite volume methods (FVMs). Despite
their popularity, classical methods based on local polynomial interpolation,
have low algebraic convergence rates. On the other hand, global polynomial
methods, have exponential convergence rates, but in any case a structured
grid is required. Radial basis functions (RBFs) [3, 4, 5] have been adopted
into the PDEs framework too [6, 7, 8]. The direct use of RBFs to solve
PDEs via collocation was first attempted by Kansa in 1990 [6] and widely
used in the applications. In this method, multiquadric RBFs were used to
approximate the solution, and point collocation was considered to enforce the
governing equation and boundary conditions [9]. In the last years, it has been
also investigated a generalization of the Kansa method, called polynomial-
augmented RBF, which consists of adding multivariate polynomials to the
RBF basis, and then imposing matching constraints [10, 11]. This approach
increases the accuracy of the approximation by high-degree polynomials and
stabilizes the system through the RBFs [12]. The RBFs collocation methods
do not require a grid and are powerful when one has to work with irregular
domains [13, 14, 15, 16, 17]. The disadvantages are that often the condi-
tion number of the collocation matrix is too large and severe ill-conditioning
results [18]. As shown in recent works [19, 20], these drawbacks do not oc-
cur in using the multinode Shepard (MS) method, instead of the RBFs, in
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In this paper, we continue our studies on the possible application of the
MS method to solve elliptic PDEs with Dirichlet or mixed boundary con-
ditions by considering domains of different shapes in 2d. In order to main-
tain the paper self-contained, we briefly outline the main features of the MS
method in Section 2. In Section 3, the MS method is used to efficiently
solve different elliptic PDEs, with Dirichlet boundary conditions, dealing
with scattered distribution of points, and comparisons with the analytic so-
lution and the results provided by Kansa’s RBFs solver are reported. Similar
experiments, using Halton points, have been conducted in Section 5 for the
case of elliptic PDEs with mixed boundary conditions. Finally, Section 6 is
devoted to conclusions and further perspective of work.

2. A brief overview on the multinode Shepard method

To maintain the paper self-contained, in this section, we shortly describe
the MS method, which is the main ingredient of the adopted numerical ap-
proach. The MS method is an accurate procedure for reconstructing func-
tions from scattered data, which arises by combining local interpolation poly-
nomials of a fixed degree with inverse distance weighted basis functions [19].

Let Ω ⊂ Rd, d ≥ 2, be a region (i.e. a non-empty connected open set), ∂Ω
its boundary, Ξ = {ξi}ni=1 ⊂ Ω∪ ∂Ω a finite set of pairwise distinct scattered
nodes and f = {fi}ni=1 the associated function values. Let r ∈ N and m =(
r+d
d

)
= dim

(
Pr(Rd)

)
, where Pr(Rd) denotes the space of polynomials of d

variables of total degree ≤ r.
We assume that a set {σj}sj=1 is given, such that for each j = 1, . . . , s,

σj = {ξjι}mι=1 ⊂ Ξ is unisolvent for the polynomial space Pr(Rd) and

s⋃

j=1

σj = Ξ (1)

(to shorten the notation, for each j = 1, . . . , s, we are denoting with jι = φj(ι)
the image of ι ∈ {1, . . . ,m} by an injective map φj from {1, . . . ,m} into
{1, . . . , n}).

A convenient way to represent the unique polynomial Pj ∈ Pr(Rd), j =
1, . . . , s interpolating on σj = {ξj1 , . . . , ξjm} the data {fj1 , . . . , fjm} is as
follows

Pj(x) =
m∑

ι=1

ℓj,ι(x)fjι , x ∈ Rd,

3
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ℓj,ι (x) =
∑

|α|≤r

a(j,ι)α

(
x− ξ

(b)
j

)α

, (2)

are the Lagrange fundamental polynomials written in the Taylor basis cen-
tered at the barycenter ξ

(b)
j of σj and α ∈ Nm ∪ {(0, . . . , 0)} is a multi-index

(for more details see [21]). It is a well-known fact that

ℓj,ι
(
ξjκ

)
= δικ, j = 1, . . . , s, ι, κ = 1, . . . ,m. (3)

The existence of a covering {σj}sj=1 of Ξ is almost surely guaranteed [22].
In [19] we detailed a procedure to determine such a covering which consists
of considering, for each scattered point ξi, the set of m + q, q > 0, nearest
points and in choosing, among them, the subset of m discrete Leja points
computed by the algorithm presented in [23]. In terms of computational
cost and accuracy of the results, such a procedure can be much improved
by minimizing the number s of elements of the covering {σj}sj=1. In the
numerical experiments, we make use of the improved procedure.

The multinode inverse distance weighted basis functions based on the
covering {σj}sj=1 are defined as follows [24]

Wµ,j (x) =

m∏
ι=1

∥∥x− ξjι
∥∥−µ

s∑
l=1

m∏
λ=1

∥∥x− ξlλ
∥∥−µ

, j = 1, . . . , s, (4)

where µ > 0 is fixed. They are a partition of unity

s∑

j=1

Wµ,j (x) = 1, x ∈ Rd, (5)

and satisfy the following interpolation properties

Wµ,j (ξi) = 0 for all ξi /∈ σj,
∑

j∈Ji

Wµ,j (ξi) = 1, (6)

where we set

Ji = {j ∈ {1, . . . , s} : ξi ∈ σj}, i = 1, . . . , n.
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lowing differential properties

∇Wµ,j (ξi) = 0 for all ξi /∈ σj,
∑

j∈Ji

∇Wµ,j (ξi) = 0, (7)

and
HWµ,j (ξi) = 0 for all ξi /∈ σj,

∑

j∈Ji

HWµ,j (ξi) = 0, (8)

where, as usual, ∇Wµ,j (x) and HWµ,j (x) denote the gradient and the hes-
sian matrix of Wµ,j(x), respectively. Finally, they are rational functions
without singularities if µ is an even integer (for more details, see [24]).

The MS operator is a blend of local interpolation polynomials realized by
using multinode basis functions as follows

MSµ[f ] (x) =
s∑

j=1

Wµ,j (x)Pj (x) . (9)

Since the property (5) MSµ[·] reproduces polynomials of d variables of total
degree ≤ r, while (6) imply that MSµ[f ] interpolates data fi at ξi, i =
1, . . . , n. Moreover, by taking into account that for each j ∈ Ji there exists
a unique ι ∈ {1, . . . ,m} such that jι = i, with a little abuse of notation we
denote the polynomial ℓj,ι by ℓj,i and rewrite the MS operator as follows

MSµ[f ] (x) =
n∑

i=1

∑
j∈Ji

Wµ,j (x) ℓj,i (x) fi

=
n∑

i=1

Bµ,i (x) fi

(10)

where, for each i = 1, . . . , n we set

Bµ,i (x) =
∑

j∈Ji

Wµ,j (x) ℓj,i (x) . (11)

Functions Bµ,i (x) are linearly independent on the set {ξ1, . . . , ξn} since they
satisfy the Kronecker delta property

Bµ,i(ξk) = δki, k, i = 1, . . . , n. (12)

In the following, it is useful to split the sum over i in (10) in two parts, the
first one related to the interior points of the integration domain Ω and the

5
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generality, we can assume that the nodes in Ξ are ordered in such a way that
ξ1, . . . , ξnI

are the interior points and ξnI+1, . . . , ξn are the boundary points.
Therefore we have

MSµ[f ] (x) =

nI∑

i=1

Bµ,i (x) fi +
n∑

i=nI+1

Bµ,i (x) fi. (13)

3. Poisson problem with Dirichlet boundary conditions

In this section, we focus on the Poisson problem with continuous (or
piecewise continuous) Dirichlet boundary conditions

{
∆u (x) = f (x) , x ∈ Ω,
u (x) = g (x) , x ∈ ∂Ω,

(14)

and we assume, for µ > 2 even integer, that its approximate solution ũ is
represented by (13), that is

ũ (x) =

nI∑

i=1

Bµ,i (x) ũi +
n∑

i=nI+1

Bµ,i (x) ũi, (15)

where ũi = ũ(ξi), i = 1, . . . , n, are the unknown coefficients. To determine
these coefficients, we impose differential and boundary conditions to the ap-
proximate solution ũ on the interior nodes ξ1, . . . , ξnI

and boundary nodes
ξnI+1, . . . , ξn, respectively. that is

{
∆ũ(ξk) = f (ξk) , k = 1, . . . , nI ,
ũ (ξk) = g (ξk) , k = nI + 1, . . . , n.

(16)

By taking into account the representation of the candidate solution (15)
we can write (16) in matrix form as follows

Aũ = y (17)

where we set A = [Aki], k, i = 1, . . . , n, ũ = [ũ1, . . . , ũn]
T , y = [y1, . . . , yn]

T ,
with yk = f(ξk), k = 1, . . . , nI and yk = g(ξk), k = nI + 1, . . . , n.

By the setting (11), by the properties (6)-(8) satisfied by the basis func-
tions Wµ,j and the Kronecker delta property (3) of the fundamental Lagrange

6



Journal Pre-proof
Jo
ur

na
l P

re
-p

ro
ofpolynomials ℓj,i, simple algebraic computations show that the entries of the

collocation matrix are

Aki = ∆Bµ,i (x) |x=ξk

=
∑
j∈Ji

∆ (Wµ,j (x) ℓj,i (x))|x=ξk

=
∑
j∈Ji

(Wµ,j (ξk)∆ℓj,i (ξk) + 2∇Wµ,j (ξk) · ∇ℓj,i (ξk))

k = 1, . . . , nI , i = 1, . . . , n,

(18)

Aki = 0, k = nI + 1, . . . , n i = 1, . . . , nI (19)

and finally
Aki = δki, k, i = nI + 1, . . . , n. (20)

Consequently
ũk = g(ξk), k = nI + 1, . . . , n

and the linear system (17) reduces to order nI with

Aki = ∆Bµ,i (x) |x=ξk , k, i = 1, . . . , nI , (21)

and

yk = f(ξk)−
n∑

i=nI+1

∆Bµ,i (x) |x=ξkg(ξi), k = 1, . . . , nI . (22)

We emphasize that the unknown vector is now related only to the Lapla-
cian of the functions Bµ,i(x), i = 1, . . . , nI which are linearly independent
on

{
ξ1, . . . , ξnI

}
by (12). However, the non singularity of the matrix A

for general configuration of collocation nodes {ξ1, . . . , ξn} is still an open
problem.

As a consequence of the polynomial reproduction property of the operator
MSµ, the following result can be stated.

Theorem 3.1. Let A be a non-singular matrix and assume that the problem
(14) admits a unique polynomial solution p ∈ Pr(Rd). Then

ũ = p. (23)

7
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have MSµ[p] = p and then ∆MSµ[p] = ∆p. Being ∆f = ∆p and g = p in
(14) the vector ũ = [p(ξ1), . . . , p(ξn)] is the unique solution of system (17)
and the thesis follows since, by (15)

ũ (x) =

nI∑

i=1

Bµ,i (x) p(ξi) +
n∑

i=nI+1

Bµ,i (x) p(ξi) = p(x). (24)

Remark 3.2. Theorem 3.1 holds in the case of more general BVPs for el-
liptic PDEs, when a covering {C1(∂Ω), . . . , Ct(∂Ω)} of ∂Ω by its pairwise
disjoint connected subsets and differential operators L,L1, . . . ,Lt are given,
such that problem





Lu (x) = f (x) , x ∈ Ω,
L1u (x) = g1 (x) , x ∈ C1(∂Ω),
...

...
Ltu (x) = gt (x) , x ∈ Ct(∂Ω),

(25)

admits a unique polynomial solution p ∈ Pr(Rd).

In the following, we assume d = 2 and set x = (x, y). Moreover, we fix
the value of µ to 4 in order to work with rational approximants satisfying
both properties (7)-(8). In Algorithm 1 we report the pseudocode for the
Multinode Shepard Collocation (MSC) method.

In the numerical experiments, provided in the following sections, we com-
pare the results obtained by using the MSC method with those obtained by
the Kansa method [6] with the following RBFs:

Hardy’s Multiquadric C∞ (MQ) φ (ρ) = (1 + c2ρ2)
1
2 ;

Inverse Multiquadric C∞ (IMQ) φ (ρ) = (1 + c2ρ2)
− 1

2 ;
Matérn C6 (M6) φ (ρ) = e−cρ (15 + 15cρ+ 6c2ρ2 + c3ρ3) ,

(26)
where ρ = ∥x∥ =

√
x2 + y2 and c > 0 is the shape parameter, which plays

an important role in the accuracy of the method and is set by means of
trial and error procedure [25, 26]. Moreover, we consider a comparison with
the polynomial-augmented RBF Kansa method [10], by adding a polynomial
term to get the same reproduction degree r as the MSC method.

8
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Require: A set of collocation points Ξ = {ξi}ni=1; r degree of the local
polynomial interpolants; m =

(
r+2
2

)
; m + q, q > 0, number of nearest

neighbour points for the selection of the covering {σj}sj=1

Ensure: Approximation of the solution u(x)
Step 1: Determine the minimal set {σj}sj=1 covering Ξ
Step 2: Compute the entrances of the collocation matrix by the formula
(21)
Step 3: Compute the entrances of the known term by the formula (22)
Step 4: Solve the linear system Aũ = y to compute the approximation
ũi of the solution u(x) at the collocation points ξi, i = 1, . . . , nI ,
Step 5: Reconstruct the approximation of u(x) through the MS approx-
imant in (15)

3.1. Elliptic problems on the unit disk with Dirichlet boundary conditions

We focus on the elliptic problem (14), with Ω = {(x, y) ∈ R2 : x2 + y2 ≤ 1}
being the unit disk centered at the origin, and

u (x, y) =
65

65 + (x− 0.2)2 + (y + 0.1)2
.

This problem has been approached in [13], in order to study the conditioning
of the collocation matrix, when the shape parameter c tends to 0, by means of
three slightly different variations of the Kansa pure collocation method. For
the aim of the paper [13], a small number of collocation points is sufficient.
In our experiment, we consider the set of 50 Halton points in [0, 1] × [0, 1],
moved into [−1, 1]× [−1, 1] by means of the affine map

x 7→ 2

(
x− 1

2

)
, x = (x, y) ∈ R2, (27)

from which we extract the subset of points that lie in the unit disk Ω. As
a result, we get nI = 41 interior points which we couple with nB = 22 uni-
formly distributed boundary points (see Figure 1 (left)). We compute the
mean absolute error and the condition number of the collocation matrix ob-
tained by using the Kansa method and the polynomial-augmented Kansa
method with RBFs in (26) with the best shape parameters (c = 0.11 for
the MQ, c = 0.21 for the IMQ and c = 0.31 for the M6) and the MSC

9
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3 10 10 16
4 15 1 9
5 21 4 9
6 28 5 7
7 3 8 6
8 45 3 4
9 55 3 2

Table 1: Parameter values for the experiment in Figure 2.

method varying the degree r of the local polynomial interpolants from 3 to
9. We stress that the polynomial term in the polynomial-augmented Kansa
method is chosen to get the same reproduction degree as the MSC method
for each r. The shape parameter c used in the simulations is chosen using
a trial and error procedure. The minimum degree r = 3 of the polynomial
interpolants is necessary to avoid local interpolants with constant Laplacian.
In its turn, the maximum degree r = 9 is determined by the total number
of collocation points, which does not allow the use of local polynomial inter-
polants of greater degree. The pointwise errors are computed at a set of 801
points distributed on concentric circles of radii i/8, i = 0, . . . , 8 (see Figure 1
(right)). The numerical results are displayed in Figure 2. For each value of
r, the covering {σj}sj=1 satisfying condition (1) is realized by minimizing the
number s of subsets. The values of q and s are reported in Table 1. As one
expects, by increasing the degree of the local polynomial interpolants, and
therefore the polynomial reproduction degree of the approximate solution
(15), the accuracy of the MSC method increases. In particular, the numer-
ical results, summarized in Figure 2 and in Figure 3, show an improvement
in the accuracy of the approximation of the MSC method from a value of
2.63e− 05 for r = 3 up to a value of 7.44e− 12 for r = 9 and a low condition
number which does not vary as the polynomial degree increases.

Finally, in Figure 4 we plot the error on the surface of the approximate
solutions obtained by the MSC method with r = 9, the Kansa M6 method,
and the polynomial-augmented Kansa IMQ method with r = 9 by using
n = 63 collocation points.

10
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Figure 1: Point distributions for the example in Section 3.1. Left: the set of nI = 41
Halton interior points in red with nB = 22 uniformly distributed boundary points in
blue. Right: the set of 801 evaluation points arranged on concentric circles of radii i/8,
i = 0, . . . , 8.
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Kansa MQ (pol)

Kansa IMQ (pol)

Kansa M6 (pol)

Figure 2: Semilog plots of the mean absolute error for the example presented in Section
3.1. The MSC method is with r from 3 to 9. The same values of r are for the polynomial-
augmented Kansa method (pol). The shape parameter for the RBFs in (26) are c = 0.11
for the MQ, c = 0.21 for the IMQ and c = 0.31 for the M6.
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Figure 3: Semilog plots of the condition number of the collocation matrices for the example
presented in Section 3.1. The MSC method is with r from 3 to 9. The same values of r are
for the polynomial-augmented Kansa method (pol). The shape parameter for the RBFs
in (26) are c = 0.11 for the MQ, c = 0.21 for the IMQ and c = 0.31 for the M6.

3.2. Elliptic problem on L-shaped domain with Dirichlet boundary conditions

Let us consider the L-shaped domain

Ω̄ = [0, 0.5]× [0, 1] ∪ [0.5, 1]× [0, 0.5]

and the function [27]

u(x, y) = sin(πx) cos
(πy

2

)

solution, on Ω̄, of the corresponding Poisson problem with Dirichlet bound-
ary conditions (14). To test how the MSC method performs in numerically
solving this problem, we consider the set of 500 Halton points in [0, 1]× [0, 1]
from which we extract the maximal subset of points that lie in the L-shaped
domain Ω. As a result, we get a set of nI = 376 interior points which we
couple with nB = 82 uniformly distributed boundary points, respectively
(see Figure 5). Moreover, the local polynomial interpolant degree r varies
from 4 to 11. For each value of r, the covering {σj}sj=1 satisfying condi-
tion (1) is realized by minimizing the number s of subsets. The values of
q and s are reported in Table 2. The Kansa method and the polynomial-
augmented Kansa method adopt the best shape parameters for the employed
RBFs (c = 1.9 for the MQ, c = 1.8 for the IMQ and c = 0.8 for the M6). The
shape parameters c used in the simulations are chosen using a trial and error
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MSC Kansa M6

polynomial-augmented Kansa
IMQ

Figure 4: Error on the surface of the approximated solution for the example presented in
Section 3.1. The MSC method, on the top left, is with r = 9. The Kansa M6 method is
on the top right and the polynomial-augmented Kansa IMQ method, on the bottom, is
with r = 9. The simulations use nI = 41 Halton interior points and nB = 22 uniformly
distributed boundary points

.
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Figure 5: L-shaped domain, for the example in Section 3.2, with the set of interior Halton
points in red and uniformly distributed boundary points in blue.

r m q s
4 15 10 87
5 21 14 70
6 28 9 52
7 36 13 44
8 45 4 32
9 55 9 29
10 66 15 29
11 78 18 24

Table 2: Parameter values for the experiment in Figure 6.

procedure. We stress that the polynomial term in the polynomial-augmented
Kansa method is chosen to get the same polynomial reproduction degree as
the MSC method for each r. The pointwise errors are evaluated at a set of
7500 points distributed on a regular grid on the L-shaped domain and the
mean absolute error and the condition number of the collocation matrices
are computed for overall methods. The numerical results are displayed in
Figure 6. In Figure 7 we represent the error on the surface of the approxi-
mate solution for the case r = 11. Finally, in Figure 8 we display the semilog
plot of the condition number of the various collocation matrices by varying
the polynomial reproduction degree r.
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Figure 6: Semilog plots of the mean absolute error for the example presented in Section
3.2. The MSC method is with r from 4 to 11. The same values of r are for the polynomial-
augmented Kansa method (pol). The shape parameter for the RBFs in (26) are c = 1.8
for the MQ, c = 1.9 for the IMQ and c = 1.4 for the M6.

4. Seepage flow in a heterogeneous and anisotropic medium

In hydrology, seepage flow refers to the flow of a fluid (water) in perme-
able soil layers such as sand. From the mathematical point of view, such a
problem is formulated by a PDE problem based on an extension of Darcy’s
law [28]. More precisely, the mathematical model for the seepage flow in a
heterogeneous and anisotropic medium corresponds to an elliptic operator
with variable coefficients coupled with Dirichlet boundary conditions





∂

∂x

[
a (x, y)

∂u

∂x

]
+

∂

∂y

[
b (x, y)

∂u

∂y

]
= f (x, y) , (x, y) ∈ Ω,

u (x, y) = g (x, y) , (x, y) ∈ ∂Ω
(28)

where the derivatives

v(x, y) = −a(x, y)
∂u

∂x
, w(x, y) = −b(x, y)

∂u

∂y
,

represent the Darcy’s velocity [27]. If a (x, y) = b (x, y) = k, k ∈ R\ {0},
the problem (28) becomes a Poisson problem with Dirichlet boundary con-
ditions. In applying the MSC method to approximate the solution u of the
problem (28), as before we distinguish between interior and boundary collo-
cation points. By the setting (11), by the properties (6)-(8) satisfied by the

15
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MSC Kansa IMQ

polynomial-augmented Kansa
IMQ

Figure 7: Error on the surface of the approximated solution for the example presented in
Section 3.2. The MSC method, on the top left, is with r = 11. The Kansa IMQ method
with c = 1.8 is on the top right and the polynomial-augmented Kansa IMQ method, on
the bottom, is with c = 1.8 and r = 11. The simulations use nI = 376 interior points and
nB = 82 uniformly distributed boundary points.
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Figure 8: Semilog plots of the condition number of the collocation matrices for the example
presented in Section 3.2. The MSC method is with r from 4 to 11. The same values of
r are for the polynomial-augmented Kansa method (pol). The shape parameter for the
RBFs in (26) are c = 1.8 for both RBF methods.

basis functions Wµ,j and the Kronecker delta property (3) of the fundamen-
tal Lagrange polynomials ℓj,i, simple algebraic computations show that the
entries of the collocation matrix are

Aki =

(
∂

∂x

[
a (x)

∂Bµ,i

∂x
(x)

]
+

∂

∂y

[
b (x)

∂Bµ,i

∂y
(x)

])∣∣∣∣
x=ξk

=
∂a

∂x
(ξk)

∑

j∈Ji

Wµ,j (ξk)
∂ℓj,i
∂x

(ξk)

+a(ξk)
∑

j∈Ji

(
∂Wµ,j

∂x
(ξk)

∂ℓj,i
∂x

(ξk) +Wµ,j (ξk)
∂2ℓj,i
∂x2

(ξk)

)

+
∂b

∂y
(ξk)

∑

j∈Ji

Wµ,j (ξk)
∂ℓj,i
∂y

(ξk)

+b(ξk)
∑

j∈Ji

(
∂Wµ,j

∂y
(ξk)

∂ℓj,i
∂y

(ξk) +Wµ,j (ξk)
∂2ℓj,i
∂y2

(ξk)

)

k = 1, . . . , nI , i = 1, . . . , n,

(29)

Aki = 0, k = nI + 1, . . . , n, i = 1, . . . , nI (30)

and finally
Aki = δki, k, i = nI + 1, . . . , n. (31)
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ũk = g(ξk), k = nI + 1, . . . , n

and the collocation linear system reduces to order nI with

Aki =

(
∂

∂x

[
a (x)

∂Bµ,i

∂x
(x)

]
+

∂

∂y

[
b (x)

∂Bµ,i

∂y
(x)

])∣∣∣∣
x=ξk

, k, i = 1, . . . , nI ,

(32)
and

yk = f(ξk)−
n∑

i=nI+1

(
∂

∂x

[
a (x)

∂Bµ,i

∂x
(x)

]
+

∂

∂y

[
b (x)

∂Bµ,i

∂y
(x)

])∣∣∣∣
x=ξk

g(ξi),

k = 1, . . . , nI .
(33)

4.1. A practical example

In line with [27], we set

a (x, y) = 2− x2 − y2, b (x, y) = ex−y,

and, on Ω̄ = [0, 1]× [0, 1], we consider the function

u (x, y) = xy(1− x)(1− y),

solution of the corresponding seepage flow problem (28) with

f (x, y) = −xex−y(1− x)(3− 2y) + 2y(1− y)(3x2 + y2 − x− 2).

In line with [27], we conduct the experiments by using nI = 113 interior
points and nB = 32 boundary points. In Figure 9 we display the error on
the surface of the approximated solution obtained by the MSC method with
local interpolation polynomial of degree r = 4 and those obtained by using
the Kansa MQ method with shape parameter c = 1.2 and the polynomial-
augmented Kansa MQ method with r = 4 and shape parameter c = 1.2. The
error is computed on a regular grid of 100×100 points on the solution domain
Ω̄. The covering {σj}sj=1 satisfying condition (1) is realized by minimizing
the number s of subsets. By setting m = 15 and q = 6 we get s = 30
subsets. Since the solution is a polynomial of degree 3, from Theorem 3.1 we
expect ũ = u and the obtained numerical results related to the absolute error
of 6.03e − 16 for the MSC method confirm the thesis of the Theorem (see
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Figure 9: Error on the surface of the approximated solution for the example presented in
Section 4.1. The MSC method, on the top left, is with r = 4. The Kansa MQ method
with c = 1.2 is on the top right and the polynomial-augmented Kansa MQ method, on
the bottom, is with c = 1.2 and r = 4. The simulations use nI = 113 interior points and
nB = 32 uniformly distributed boundary points.

Figure 9). By applying the Kansa MQ method we get a maximum absolute
error of 2.24e− 5 while the polynomial-augmented Kansa MQ method gives
a maximum absolute error of 9.07e− 16.

Moreover, the condition number of the MSC method is 1.60e+03 against
a condition number of 8.12e+13 for the Kansa MQ method and of 7.80e+13
for the polynomial-augmented Kansa MQ.
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In this Section, we consider the Poisson problem with mixed boundary
conditions on different shaped domains. In particular, we analyze the case in
which the boundary conditions are constituted by both Dirichlet and Neu-
mann conditions. Due to the particular nature of such problems, the en-
trances of the collocation matrix depend on the Neumann conditions of the
specific problem and therefore we cannot give a general representation for it
as we do for the case of Dirichlet boundary conditions.

5.1. Poisson problem with mixed boundary conditions on the unit square

Let Ω̄ be the unit square [0, 1] × [0, 1]. In line with [5], we consider the
Poisson problem

∆u(x, y) = −5.4x in Ω (34)

with the mixed Dirichlet-Neumann conditions




∂

∂y
u(x, y) = 0, y = 0, 0 ≤ x ≤ 1, Γ1,

u(x, y) = 0.1, x = 1, 0 ≤ y ≤ 1, Γ2,

− ∂

∂y
u(x, y) = 0, y = 1, 0 ≤ x < 1 Γ3,

u(x, y) = 1, x = 0, 0 ≤ y ≤ 1, Γ4,

(35)

whose exact solution is
u (x, y) = 1− 0.9x3.

In Figure 10 we display the geometry domain of this problem. In applying the
MSC method to approximate the solution u of the problem (34) with bound-
ary conditions (35), we have to distinguish between interior and boundary
collocation points. Without loss of generality, we assume that the collocation
points are ordered as follows:

ξk ∈ Ω, k = 1, . . . , nI ;
ξk ∈ Γ1 ∪ Γ3, k = nI + 1, . . . , nI + nBN ;
ξk ∈ Γ2 ∪ Γ4, k = nI + nBN + 1, . . . , n;

where nBN is the number of collocation points on Γ1 ∪ Γ3. By the setting
(11), by the properties (6)-(8) satisfied by the basis functions Wµ,j and the
Kronecker delta property (3) of the fundamental Lagrange polynomials ℓj,i,
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Figure 10: The geometry domain of the problem in Section 5.1

simple algebraic computations show that the entries of the collocation matrix
are

Aki = ∆Bµ,i (x) |x=ξk

=
∑
j∈Ji

∆ (Wµ,j (x) ℓj,i (x))|x=ξk

=
∑
j∈Ji

(Wµ,j (ξk)∆ℓj,i (ξk) + 2∇Wµ,j (ξk) · ∇ℓj,i (ξk))

k = 1, . . . , nI , i = 1, . . . , n,

(36)

Aki =
∂Bµ,i

∂y
(ξk)

=
∑
j∈Ji

Wµ,j (ξk)
∂ℓj,i
∂y

(ξk)

k = nI + 1, . . . , nI + nBN , i = 1, . . . , n,

(37)

Aki = 0, k = nI + nBN + 1, . . . , n, i = 1, . . . , nI + nBN + 1, (38)

and finally
Aki = δki, k, i = nI + nBN + 2, . . . , n. (39)

By taking into account the Dirichlet boundary conditions (35) on Γ2 and Γ3,
we get

ũk = u(ξk), k = nI + nBN + 1, . . . , n,
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Aki = ∆Bµ,i (x) |x=ξk , k = 1, . . . , nI , i = 1, . . . , nI + nBN ,

Aki =
∂Bµ,i

∂y
(ξk) , k = nI + 1, . . . , nI + nBN , i = 1, . . . , nI + nBN

(40)
and

yk = −5.4ξxk −
n∑

i=nI+nBN+1

∆Bµ,i (x) |x=ξku(ξi), k = 1, . . . , nI ,

yk = −
n∑

i=nI+nBN+1

∂Bµ,i

∂y
(ξk)u(ξi) k = nI + 1, . . . , nI + nBN ,

(41)
where we assume ξk = (ξxk, ξ

y
k). In line with [5], we conduct the experiments

by using nI = 289 Halton points as interior nodes and nB = 64 uniformly
distributed boundary points. In Table 3 we report the maximum absolute
error emax, the mean absolute error emean and the root mean square error
eRMS evaluated at a grid of 40 × 40 points in [0, 1] × [0, 1] obtained by the
MSC method with local interpolation polynomial of degree r = 4, by the
Kansa MQ method with c = 1.1, the Kansa IMQ and M6 methods with
c = 1.2 and by the polynomial-augmented Kansa method with the same
shape parameter and r = 4. The covering {σj}sj=1 satisfying conditions (1)
is realized by minimizing the number s of subsets. By setting m = 15 and
q = 19 we get s = 69 subsets. Since the solution is a polynomial of degree
3, from Theorem 3.1 we expect ũ = u and the obtained numerical results
related to the maximum absolute error of 9.57e − 14 for the MSC method
confirm the thesis of the Theorem (see Figure 11). In Table 4 we report the
condition number of the methods adopted in the simulations. We note that
the MSC method gives rise to a collocation matrix with the lowest condition
number.

5.2. Poisson problem with mixed boundary conditions on an elliptical domain

Let us consider the elliptical domain

Ω̄ =

{
(x, y) ∈ R2 :

x2

a2
+

y2

b2
≤ 1

}

with major and minor semiaxes a and b and, on it, the function [29, 30]

u(x, y) = −
(

a2b2

a2 + b2

)(
x2

a2
+

y2

b2
− 1

)
,
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emax emean eRMS

MSC 9.57e− 14 2.70e− 14 3.53e− 14
Kansa MQ 3.19e− 06 6.33e− 07 7.91e− 07
Kansa IMQ 2.51e− 06 4.60e− 07 5.96e− 07
Kansa M6 6.57e− 05 2.31e− 06 5.27e− 06
Kansa MQ (pol) 9.08e− 11 2.68e− 11 3.23e− 11
Kansa IMQ (pol) 1.84e− 09 5.98e− 10 7.10e− 10
Kansa M6 (pol) 3.53e− 13 7.53e− 14 1.06e− 13

Table 3: Maximum absolute error emax, mean absolute error emean and root mean
square error eRMS for the example presented in Section 5.1. The MSC method and the
polynomial-augmented Kansa methods (pol) are with r = 4, c = 1.2 for the Kansa’s IMQ,
M6, polynomial-augmented IMQ and M6 methods, while c = 1.1 for the Kansa’s MQ and
polynomial-augmented MQ methods.

Condition number
MSC 6.41e+ 05
Kansa MQ 1.55e+ 19
Kansa IMQ 2.28e+ 19
Kansa M6 1.11e+ 14
Kansa MQ (pol) 5.16e+ 21
Kansa IMQ (pol) 1.47e+ 19
Kansa M6 (pol) 1.09e+ 14

Table 4: Condition number for the example presented in Section 5.1. The MSC method
and the polynomial-augmented Kansa methods (pol) are with r = 4, c = 1.2 for the
Kansa’s IMQ, M6, polynomial-augmented IMQ and M6 methods, while c = 1.1 for the
Kansa’s MQ and polynomial-augmented MQ methods.
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Figure 11: Error on the surface of the approximated solution for the example presented
in Section 5.1. The MSC method, on the top left, is with r = 4. The Kansa IMQ method
with c = 1.2 is on the top right and the polynomial-augmented Kansa M6 method, on
the bottom, is with c = 1.2 and r = 4. The simulations use nI = 289 interior points and
nB = 64 uniformly distributed boundary points.
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∆u(x) = −2, x ∈ Ω,
∂u

∂x
= 0, x = 0,

∂u

∂y
= 0, y = 0,

u(x) = 0, x ∈ ∂Ω∖ (0, y) ∪ (x, 0) .

(42)

As specified in [31], the problem (42) provides a function u from which the
angle of twist of a cylindrical shaft of an elliptical cross-section under torsion
can be calculated. Moreover, since the solution of (42) is expected to be
symmetric with respect to x and y, it is sufficient to solve it in the first
quadrant of the ellipse. To this aim, in the experiments we consider the set
of 100 Halton points in [0, 1] × [0, 1], moved into [0, a] × [0, a] by means of
the affine map

x 7→ ax x = (x, y) ∈ R2,

from which we extract the subset of points that lie in the first quadrant of the
ellipse of semiaxes a and b. The collocation matrix can be obtained similarly
to the one discussed in Section 5.1. By following [29], in the first experiment
we set a = 10, b = 8 and we get nI = 67 interior points which we couple with
nB = 44 boundary points (see Figure 12 (left)). We compute the maximum
absolute error emax, the mean absolute error emean and the root mean square
error eRMS by evaluating the pointwise errors at a set of 161 points in the
first quadrant distributed on concentric ellipses of semiaxes ai/16 and bi/16,
i = 0, . . . , 16 (see Figure 12 (right)). The numerical results, obtained by the
MSC method with local interpolation polynomials of degree r = 3, the Kansa
method with the RBFs in (26) and the polynomial-augmented Kansa method
with r = 3, are reported in Table 5. The best shape parameter is c = 0.1
for all the RBFs. The covering {σj}sj=1 satisfying condition (1) is realized by
minimizing the number s of subsets. By setting m = 10 and q = 10 we get
s = 26 subsets. In this case the values for the condition number are reported
in Table 6, which shows again the best conditioning for the MSC method.

Finally, in Figure 13 we display the error on the surface of the approxi-
mated solution obtained by the MSC method, the Kansa MQ method and
the polynomial-augmented Kansa IMQ method. In the second experiment,
we set a = 2 and b = 1 and we get nI = 40 interior points which we couple
with nB = 24 boundary points. The related numerical results are reported
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Figure 12: Set of nI = 67 Halton interior points in red with nB = 44 boundary points in
blue (left) and set of 161 evaluation points in the first quadrant distributed on concentric
ellipses of semiaxes 10i/16 and 8i/16, i = 0, . . . , 16 used for the example presented in
Section 5.2.

in Table 7, where the best shape parameter for the Kansa MQ is c = 0.3, for
the Kansa IMQ is c = 0.2 and for the Kansa M6 is c = 0.1.

5.3. Poisson problem with mixed boundary conditions with no polynomial
exact solution

Let Ω̄ = [0, 1]× [0, 1]. In line with [30], we consider the Poisson problem

∆u(x, y) = (λ2 + ν2)eλx+νy, (x, y) ∈ Ω, (43)

with the mixed Dirichlet-Neumann boundary conditions




u(x, y) = eλx+νy, y = 0, 0 ≤ x ≤ 1,
u(x, y) = eλx+νy, y = 1, 0 ≤ x ≤ 1,
∂u(x, y)

∂x
= λeλx+νy, x = 0, 0 < y < 1,

∂u(x, y)

∂x
= λeλx+νy, x = 1, 0 < y < 1,

(44)

whose exact solution is
u(x, y) = eλx+νy.

By following [30, 6], we set λ = 2 and ν = 3. In this case, the collocation
matrix is the same as the one discussed in Section 5.1 with ∂

∂x
in place of ∂

∂y
.

To test how the MSC method performs in numerically solving this problem,
we consider the set of nI = 500 Halton points in [0, 1] × [0, 1] coupled with
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emax emean eRMS

MSC 1.25e− 12 1.59e− 13 3.14e− 13
Kansa MQ 1.49e− 04 3.91e− 05 6.83e− 05
Kansa IMQ 1.03e− 03 3.45e− 04 5.49e− 04
Kansa M6 3.94e− 03 8.57e− 04 1.66e− 03
Kansa MQ (pol) 6.68e− 08 3.28e− 08 4.75e− 08
Kansa IMQ (pol) 4.56e− 10 2.29e− 10 3.31e− 10
Kansa M6 (pol) 6.31e− 09 3.06e− 09 4.52e− 09

Table 5: Maximum absolute error emax, mean absolute error emean and root mean
square error eRMS for the example presented in Section 5.2. The MSC method and the
polynomial-augmented Kansa methods (pol) are with r = 3, c = 0.1 for the Kansa and
polynomial-augmented Kansa methods. The collocation points lie in the first quadrant of
the ellipse of semiaxes a = 10 and b = 8.

Condition number
MSC 2.16e+ 04
Kansa MQ 9.34e+ 17
Kansa IMQ 8.20e+ 17
Kansa M6 1.55e+ 13
Kansa MQ (pol) 1.55e+ 19
Kansa IMQ (pol) 1.35e+ 20
Kansa M6 (pol) 2.38e+ 17

Table 6: Condition number for the example presented in Section 5.2. The MSC method
and the polynomial-augmented Kansa methods (pol) are with r = 4, c = 1.2 for the
Kansa’s IMQ, M6, polynomial-augmented IMQ and M6 methods, while c = 1.1 for the
Kansa’s MQ and polynomial-augmented MQ methods.
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IMQ

Figure 13: Error on the surface of the approximated solution for the example presented
in Section 5.2. The MSC method, on the top left, is with r = 3. The Kansa MQ method
with c = 0.1 is on the top right and the polynomial-augmented Kansa IMQ method, on
the bottom, is with c = 0.1 and r = 3. The simulations use nI = 67 interior points and
nB = 44 uniformly distributed boundary points. The collocation points lie in the first
quadrant of the ellipse of semiaxes a = 10 and b = 8.
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MSC 5.77e− 15 2.85e− 15 4.15e− 15
Kansa MQ 1.90e− 05 5.67e− 06 9.44e− 06
Kansa IMQ 1.53e− 04 4.59e− 05 7.16e− 05
Kansa M6 3.70e− 05 1.34e− 05 2.07e− 05
Kansa MQ (pol) 2.02e− 11 1.32e− 11 1.74e− 11
Kansa IMQ (pol) 7.47e− 11 4.85e− 11 6.41e− 11
Kansa M6 (pol) 2.30e− 12 1.51e− 12 2.01e− 12

Table 7: Maximum absolute error emax, mean absolute error emean and root mean
square error eRMS for the example presented in Section 5.2. The MSC method and the
polynomial-augmented Kansa methods (pol) are with r = 3, c = 0.3 for the Kansa MQ
and polynomial-augmented MQ, c = 0.2 for the Kansa IMQ and polynomial-augmented
IMQ and c = 0.1 for the Kansa M6 and polynomial-augmented M6. The collocation points
lie in the first quadrant of the ellipse of semiaxes a = 2 and b = 1.

nB = 84 uniformly distributed boundary points, respectively. Moreover, the
local polynomial interpolant degree r varies from 4 to 11. For each value
of r, the covering {σj}sj=1 satisfying condition (1) is realized by minimizing
the number s of subsets. The values of q and s are reported in Table 8.
The Kansa method and the polynomial-augmented Kansa method adopt the
best shape parameters for the employed RBFs (c = 2.1 for the MQ, c = 1.6
for the IMQ and c = 0.4 for the M6). The shape parameters c used in the
simulations are chosen using a trial and error procedure. We stress that the
polynomial term in the polynomial-augmented Kansa method is chosen to
get the same polynomial reproduction degree as the MSC method for each r.
The pointwise errors are evaluated at a set of 40 × 40 points distributed on
a regular grid on [0, 1]× [0, 1] and the mean absolute error and the condition
number of the collocation matrices are computed for overall methods. The
numerical results are displayed in Figure 14. In Figure 16 we represent the
error on the surface of the approximated solution for the case r = 11. Finally,
in Figure 15 we display the semilog plot of the condition number of the various
collocation matrices by varying the polynomial reproduction degree r.

6. Conclusion and future perspectives of work

In this paper, we investigated on the multinode Shepard method for solv-
ing elliptic boundary value problems equipped with Dirichlet and/or Neu-
mann boundary conditions on two-dimensional domains of different shapes.
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r m q s
4 15 12 112
5 21 11 83
6 28 4 58
7 36 10 57
8 45 18 47
9 55 11 43
10 66 5 30
11 78 9 29

Table 8: Parameter values for the experiment in Figure 14.
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Figure 14: Semilog plots of the mean absolute error for the example presented in Section
5.3. The MSC method is with r from 4 to 11. The same values of r are for the polynomial-
augmented Kansa method (pol). The shape parameter for the RBFs in (26) are c = 2.1
for the MQ, c = 1.6 for the IMQ and c = 0.4 for the M6.
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Figure 15: Semilog plots of the condition number of the collocation matrices for the
example presented in Section 5.3. The MSC method is with r from 4 to 11. The same
values of r are for the polynomial-augmented Kansa method (pol). The shape parameter
for the RBFs in (26) are c = 2.1 for the MQ, c = 1.6 for the IMQ and c = 0.4 for the M6.

The method performs very well by reaching good approximation accuracy
comparable with or better than the one reached by the RBF Kansa methods
with or without polynomial precision. We highlight the particular feature
of the MSC method, which gives rise to a collocation matrix with a low
condition number.
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