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Abstract: The efficiency of Hybrid Electric Vehicles (HEVs) may be substantially increased if the
energy of the exhaust gases, which do not complete the expansion inside the cylinder of the internal
combustion engine, is efficiently recovered by means of a properly designed turbogenerator and
employed for vehicle propulsion; previous studies, carried out by the same authors of this work,
showed a potential hybrid vehicle fuel efficiency increment up to 15% by employing a 20 kW turbine
on a 100 HP rated power thermal unit. The innovative thermal unit here proposed is composed of
a supercharged engine endowed with a properly designed turbogenerator, which comprises two
fundamental elements: an exhaust gas turbine expressly designed and optimized for the application,
and a suitable electric generator necessary to convert the recovered energy into electric energy, which
can be stored in the on-board energy storage system of the vehicle. In these two parts, the realistic
efficiency of the innovative thermal unit for hybrid vehicle is evaluated and compared to a traditional
turbocharged engine. In Part 1, the authors present a model for the prediction of the efficiency of
a dedicated radial turbine, based on a simple but effective mean-line approach; the same paper
also reports a design algorithm, which, owing to some assumptions and approximations, allows
a fast determination of the proper turbine geometry for a given design operating condition. It is
worth pointing out that, being optimized for quasi-steady power production, the exhaust gas turbine
considered is quite different from the ones commonly employed for turbocharging application; for
this reason, and in consideration of the required power size, such a turbine is not available on the
market, nor has its development been previously carried out in the scientific literature. In the Part 2
paper, a radial turbine geometry is defined for the thermal unit previously calculated, employing
the design algorithm described in Part 1; the realistic energetic advantage that could be achieved
by the implementation of the turbogenerator on a hybrid propulsion system is evaluated through
the performance prediction model under the different operating conditions of the thermal unit. As
an overall result, it was estimated that, compared to a reference traditional turbocharged engine,
the turbocompound system could gain vehicle efficiency improvement between 3.1% and 17.9%,
depending on the output power level, while an average efficiency increment of 10.9% was determined
for the whole operating range.

Keywords: hybrid vehicle; compound engine; exhaust gas turbine; exhaust energy recovery

1. Introduction

The continuous growth of global population and the development of emerging
economies tend to increase the human consumption of natural resources and the environ-
mental impact of human activities. Among the negative effects of the latter, particularly
relevant is the release of greenhouse gases in the atmosphere, which causes the well-
known global warming and the related climate change. The European Union addresses
this challenge through the European Green Deal, which is a plan to make the EU the
first carbon-neutral continent by 2050, passing through the intermediate goal of 55% CO2
emissions cut by 2030 [1]. The data provided by the European Environment Agency (EEA)
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in 2018 showed that the transport sector is responsible for about 32% of the total CO2
emissions in the European Union [2]. As a consequence, actions are being taken to achieve
the reduction in pollutant emissions from road, rail, aviation, and waterborne transport [3].
In this framework, the authors performed a study aimed at investigating and designing a
system that allows better exploitation of the chemical energy contained in the fuel used
in internal combustion engines. In fact, as widely known, internal combustion engines
based on Otto or Diesel cycles do not complete the in-cylinder gas expansion down to
atmospheric pressure; as a result, hot and pressurized gas exits the cylinder during the
exhaust process, thus reducing by about 19% the energy transfer to the piston. Several
solutions have been implemented to recover the unexpanded gas energy; the Atkinson
cycle, for instance, allows a theoretical efficiency increase of 19% compared to the Otto
cycle with the same compression ratio. There is a major drawback though, as the Atkinson
cycle would require an engine displacement four times greater than that of the Otto cycle
engine, resulting in a 72% IMEP reduction. The Miller cycle, on the other hand, is meant to
provide a compromise between engine efficiency increase and power density depletion; as
example, adopting a compression ratio of 14 allows for attaining a theoretical 8% efficiency
increase compared to the Otto cycle, with a 25% IMEP reduction. It is also possible to
conceive more complex systems that involve turbomachinery, such as turbomechanical
and turboelectrical compounding [4–11], and turbocharging. Concerning turboelectrical
compounding, the approach usually followed for the automotive application is to install
an electrical generator on the turbocharger shaft with the aim to convert into electric power
the part of the mechanical power produced by the turbine that is not employed by the
turbocompressor [4–9]. In all of these cases, maximum efficiency increments within 6%
have been attained. In [9], an auxiliary turbogenerator was installed downstream from
the first turbine, reaching a maximum fuel economy improvement of 4%. In [10,11], the
implementation of an auxiliary turbogenerator in parallel with the main turbocharger
allowed for attaining efficiency improvement up to 9%. In these two papers (see also
Part 2 [12]), the authors investigated a different arrangement, which is particularly suitable
for hybrid propulsion architectures.

The architecture proposed by the authors is an innovative compound system in
which a specifically designed exhaust gas turbine connected to a proper electric generator
converts the unexpanded exhaust gas energy into electric energy, which is delivered
to the vehicle storage system. This energy can then be used for vehicle traction, but
also to power the supercharger, which is driven by an independent electric motor. The
architecture described is shown in Figure 1, and it is named Separated Electric Compound
Engine since the exhaust gas turbine and the compressor are mechanically decoupled,
thus letting their operating conditions be independent from each other. Different from the
turbomechanical and turboelectrical compound systems already described in the scientific
literature [4–11], in the system here proposed the two thermal machines (compressor and
turbine) are not connected together, thus ensuring the possibility to control and optimize
their operating conditions independently. It derives that the turbine always operates with
the maximum mass flow (no wastegate is involved) with the aim to convert as much energy
as possible from the exhaust gas, while the compressor is driven only if supercharging
is necessary. Moreover, since the rotational speed of the turbine is independent from
the engine and from the compressor, it can be optimally controlled and set to the best
value acting through the connected generator. In their preliminary studies [13,14], the
authors demonstrated that this system is very promising, as it may achieve overall vehicle
efficiency advantages up to 15% with respect to a reference hybrid propulsion system of the
same nominal overall output power (73.5 kW) equipped with a traditional turbocharged
engine. Furthermore, the authors showed that the contribution of the turbogenerator may
reach an impressive 33.9% share of the total power generated by the whole system, with
maximum power delivered of 20 kW; in this regard, it must be pointed out that in their
previous works, the exhaust gas turbine considered was supposed to be optimized for
steady-state operation, since in a hybrid propulsion system the thermal engine undergoes
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small speed and load variations. Quite differently, the turbines usually employed for
a turbocharging purpose provide only the power required by the compressor and are
designed for unsteady operation on account of the strong speed and mass flow variations,
owing to the wide and rapid speed and load variation in the thermal engine. This clarifies
that the turbogenerator here considered, and the whole hybrid propulsion system shown
in Figure 1, are not commercially available at the moment. The only commercially available
products are composed of a radial turbine for turbocharging application connected to an
electric generator [15–17] and are designed exclusively to supply the electric accessories of
traditional vehicles, thus producing maximum output power within 6 kW. Given the lack
of adequate references on the market, as indicated in the scientific literature, and in their
preliminary studies, the authors considered a constant turbine thermomechanical efficiency
ηT,tm (i.e., the product of the total to static isentropic efficiency ηt,s and the mechanical
efficiency ηm), i.e., independent of the turbine speed and pressure ratio; more in detail, in
their preliminary analysis, the authors considered two different levels of thermomechanical
efficiency, namely 0.70 and 0.75. These values are substantially higher than the efficiency of
a common turbocharging turbine on account of the more favourable working condition
already mentioned, which allows a design strategy aimed at maximizing the efficiency in
steady operation, and also permits the control module of the electric generator to operate
the turbine at its best efficiency speed ratio, regardless of the power produced. It is
also worth noting that in the preliminary evaluations performed [13,14], the efficiency
of the electric motor (0.90) employed to drive the supercharger was considered in the
evaluation of the power drained by the compressor, since it constitutes an ancillary device,
which burdens the overall energy balance of the engine; instead, concerning the turbine,
the efficiencies of the electric generator and of the battery charging were not considered
coherently with the approach followed for the main thermal engine, whose power output
was not reduced by generator efficiency or by battery-charging efficiency; the reason for this
approach is that the engine power split (i.e., part to the generator and part to the wheels)
should depend on the particular mechanical transmission adopted and was not defined
in the evaluation carried out. Moreover, both the generator and the battery-charging
efficiency can also be considered the same for the comparative hybrid propulsion system
equipped with the traditional turbocharged engine; on account of this, the authors decided
to fairly base the comparison on the overall mechanical output power produced. The
aim of the work reported in these two papers is to provide a more precise and reliable
estimation of the performances of the separated electric compound system by evaluating
the turbine efficiency in accordance with its operating condition [12]; this should improve
the reliability of the results obtained, which would not be influenced any more by the
simplifying assumption used in the preliminary studies, for which the turbine efficiency
was assumed to be constant. To this end, the turbine was analysed and designed by means
of a simple yet effective mean-line-based approach.

In this paper, the authors focused on radial turbines instead of multistage axial turbines
with a view to a good compromise between efficiency and overall machine size [18–20].
As the first step, the authors evaluated the Mass Flow Parameter (MFP) that resulted in
one of the preliminary studies [13], in order to identify the most suitable kind of turbine to
employ in this application.

As can be observed in Figure 2, the separated electric compound engine requires
multiple swallowing curves as a function of the pressure ratio βT. For this reason the
authors considered a variable nozzle turbine, capable to allow multiple mass-flow curves
through the variation in the nozzle angle [21].
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Figure 2. Operating points of the exhaust gas turbine for the separated electric compound engine
studied in [4] (mass flow parameter as a function of the turbine pressure ratio βT).

In the next part of the paper, the authors first present the mean-line prediction model
algorithm used to evaluate the turbine performance for all the operating conditions of
pressure ratio βT and rotational speeds n (and consequent mass flow G). Successively, the
design algorithm was adopted to determine the main geometric dimensions of the turbine
at the design-operating condition, as presented. As a final step, the authors present the
realistic performance of the separated electric compound engine evaluated by means of a
1D turbine performance prediction model applied to the design geometry.

2. Radial Turbine Performance Calculation Model

As mentioned, the model adopted for the prediction of the turbine performance is
based on mean-line analysis, according to which the flow is one-dimensional and is cal-
culated at the mean radius of the turbomachinery stage, where the fluid properties are
evaluated as reasonable average values across the full blade span. Mean-line analysis can
provide good estimation of the geometry and flow parameters through a turbomachine
in relatively short times. The authors adopted this approach since it represents the best
solution for a preliminary design and performance analysis of a turbomachine, and con-
stitutes the best compromise between reliability of the results and computational times.
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Indeed, as a final design step, more detailed aerodynamic performance evaluation could
be accomplished by means of CFD analysis, once the appropriate turbine geometry has
been defined through mean-line analysis. Figure 3 shows a schematic representation of the
whole radial turbine, which includes the volute (from Section 1 to Section 2), the distributor
nozzle (from Section 2 to 3), and the rotor (from Section 4 to 5).
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Figure 3. Schematic representation of turbine geometry, the numbers refer to the following main flow
sections: (1) volute inlet; (2) nozzle inlet; (3) nozzle outlet; (4) rotor inlet; (5) rotor exit.

In order to realistically assess the turbine efficiency, it was necessary to take into
account the actual operating conditions; most of the time, in effect, the turbine does
not operate at the design condition, since the pressure ratio and/or the rotational speed
may be substantially different from the design values. For a given turbine geometry,
the off-design operation will cause different mass flow rates and velocity triangles with
respect to the design condition, and as a consequence, the turbine will exhibit a different
overall performance, i.e., different output power and efficiency with respect to the design
point. With the aim to calculate the performance of the turbine for any possible operating
condition, it was necessary to evaluate the energy losses connected to the flow inside
the machine by identifying the entropy generation mechanisms and quantifying their
contribution in every phase of the fluid flow through the machine. The major contributions
to the entropy generation [19,21] are caused by incidence losses, passage losses (due to
friction, secondary flow and flow separation), tip leakage flow, and trailing edge losses,
which occur in the internal blade passages in each of the elements of the turbomachine
(volute, nozzle and rotor). All of these losses are conveniently quantified in terms of
differences between the actual static enthalpy at the exit of a stage and that of the equivalent
ideal isentropic process.

2.1. Analysis of the Volute

The purpose of the volute is to distribute the flow around the periphery of the turbine
providing uniform mass flow rate and uniform static pressure at the volute exit, thus
ensuring the proper exploitation of each rotor blade passage and avoiding unsteady radial
loading of the rotating system.

The static temperature at volute inlet T1 can be calculated from the application of the
first law of thermodynamics to a perfect gas:

T1 = TT1 −
c1

2

2·cp
(
TT1−1

) (1)
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where c1 is the absolute gas velocity at the volute inlet Section 1, and cp
(
TT1−1

)
is the spe-

cific heat at constant pressure evaluated at the average temperature TT1−1 = (TT1 + T1)/2
through the use of the Shomate equation, and the coefficients available in the NIST Chem-
istry WebBook [22]. It is worth noting that Equation (1) implies an iterative calculation,
since cp

(
TT1−1

)
requires the value of T1, which is the output of the equation. As a starting

value, cp
(
TT1−1

)
= cp

(
TT1
)

was assumed. Analogous iterations have been carried out for
similar evaluations performed in this paper.

Since for any given turbine pressure ratio βT = PT1/P5 and rotor speed n, the pressure
levels in the Section 1, Section 2, Section 3 and Section 4 (i.e., P1, P2, P3, and P4) are not
known a priori, all the absolute velocities in the same sections are initially unknown; for
this reason, each calculation procedure was started assuming an initial first attempt value
of 100 m/s for each of the unknown absolute velocities (c1, c2, c3, and c4); the values of these
velocities were then updated by successive iterations performed with the aim to obtain the
mass-flow convergence on all the turbine sections.

Assuming an isentropic expansion from the total condition upstream from the turbine
(gas pressure PT1 and temperature TT1) to the static condition, it was possible to calculate
the static pressure at the volute inlet as:

P1 = PT1·
(

T1

TT1

) k(TT1−1)
1−k(TT1−1) (2)

where k
(
TT1−1

)
is the mean isentropic coefficient evaluated at the average temperature

TT1−1:

k
(
TT1−1

)
=

cp
(
TT1−1

)
cv
(
TT1−1

) =
cp
(
TT1−1

)
cp
(
TT1−1

)
− R′

(3)

where, according to Meyer’s relation, the specific gas constant R′ is the difference be-
tween the constant pressure and the constant volume specific heats cp and cv. It is worth
pointing out that, in the case of the isentropic transformation, the average temperature
TT1−1,is = (TT1 + T1,is)/2 should be considered; however, since the difference between T1
and T1,is not relevant, it results that the difference between k

(
TT1−1,is

)
and k

(
TT1−1

)
is neg-

ligible (less than 0.01%), as is the difference between cp
(
TT1−1,is

)
and cp

(
TT1−1

)
; the same

conclusion is obtained considering the turbine nozzle and the rotor, where the enthalpy
drops are higher; according to this observation the authors adopted the approximation to
use the average temperature of the actual evolution in place of the average temperature of
the isentropic evolution when calculating the thermochemical properties of the gas, i.e., the
specific heat at constant pressure and the isentropic coefficient.

The static density of the gas at the volute inlet ρ1 was then calculated by means of the
ideal gas law as function of P1 and T1 as:

ρ1 =
P1

R′·T1
(4)

Additionally, the mass-flow rate at the volute inlet G1 is:

G1 = ρ1·c1·A1 (5)

where A1 is the inlet volute area. The absolute gas velocity c1 was then corrected with the
aim to reduce the difference between the mass flow at the volute inlet G1 and outlet G2
(whose calculation is shown below), which is considered a mass-flow error:

c1,new = c1,old − (G1 − G2)· fC (6)

where fC is the factor adopted for the absolute velocity iterative corrections; the same
approach was followed for the correction of all the other absolute velocities, each one
correlated to a proper mass-flow error; once all the mass-flow errors reach a negligible
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value (i.e., less than 0.1% of the mass-flow), the solution is considered the final and the
calculation procedure is stopped. The convergence on the mass flow was reached acting on
the absolute velocities (c1, c2, c3, and c4) rather than on the static pressure levels (P1, P2, P3,
and P4) since the iterative correction performed on the static pressure values revealed some
calculation instabilities.

Concerning the flow within the turbine volute, the most common assumption usually
made is to consider a free vortex evolution; various extensions to the free vortex model,
however, have been proposed in the scientific literature to reproduce the actual flow
conditions, which are affected by friction, secondary flows, and mixing of the mainstream
flow with outer fluid in the proximity of the outlet section. Loss correlations and coefficients
may be used to account for deviations from the ideal evolution. Kastner and Bhinder [23]
represented the volute loss as a friction loss using conventional pipe-flow correlations. As
proposed by Baines [21], this loss item can be considered as the difference between the
actual static enthalpy at exit from the volute and that of the equivalent isentropic process:

∆hvol = h2 − h2,is =
1
2

C f ·
(

Lhyd,vol/Dhyd,vol

)
·c2 (7)

where c = (c1 + c2)/2 is the mean passage velocity (average value between inlet and
outlet velocity), Lhyd,vol and Dhyd,vol are the hydraulic length and diameter of the volute
respectively, while the coefficient of friction Cf is defined as:

C f = 0.054·
( c·Dhyd,vol

ν

)−0.25

(8)

where ν =
[
ν(T1) + ν(T2)

]
/2 is the mean kinematic viscosity of the fluid between the inlet

and outlet of the volute. The free vortex evolution can be hence modified to include the
effects of shear stresses due to friction by means of the following relation:

c1

c2u
=

r1

r2
+

2·π·C f ·r2·c2u

G
r1·(r1 − r2) (9)

which gives the tangential component of the absolute velocity at the volute outlet c2u. This
correlation is based on an analysis performed by Stanitz [24] on the flow in the vaneless
diffuser of a compressor, but being an analysis based on fundamental control volume, it
could be adapted to the flows in the turbine volutes. Obviously, the volute loss produces a
reduction in the actual fluid velocity at the volute outlet with respect to the ideal evolution,
as shown by the simple application of the first law of thermodynamics between volute inlet
and outlet sections:

c2 =

√
c1

2 + 2·
(

∆His(vol) − ∆hvol

)
=
√

c1
2 + 2·∆Hre(vol) (10)

where ∆His(vol) and ∆Hre(vol) are the isentropic and the actual enthalpy drop in the volute,
respectively. As already mentioned, however, the pressure level at the volute outlet P2 is
initially unknown, which means that the isentropic enthalpy drop is also unknown and
therefore the absolute velocity c2 as well, which, in turn, is required for the calculation of the
volute loss. The calculation procedure is hence based on successive iterative approximation;
the initial value of 100 m/s was assumed for the absolute velocity at nozzle inlet c2, which,
in turn, allowed for evaluating the gas temperature at the volute outlet T2 by the application
of the first law of thermodynamics:

T2 = T1 −
c2

2 − c1
2

2·cp
(
T1−2

) (11)

and the consequent actual enthalpy drop in the volute ∆Hre(vol):
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∆Hre(vol) = h1 − h2 = cp
(
T1−2

)
·(T1 − T2) (12)

Considering the isentropic transformation, the static pressure at nozzle outlet was
evaluated as:

P2 = P1·
(

1−
∆His(vol)

T1·cp
(
T1−2

))
k(T1−2)

k(T1−2)−1

(13)

where the isentropic enthalpy drop is obtained as the sum of the actual enthalpy drop
(Equation (12)) and the volute loss (Equation (7)):

∆His(vol) = ∆Hre(vol) + ∆hvol (14)

As already discussed, the mean constant pressure specific heat cp
(
T1−2

)
and the

mean isentropic coefficient k
(
T1−2

)
were both evaluated at the average temperature

T1−2 = (T1 + T2)/2. As done for the volute inlet (see Equation (4)), the fluid density at
the volute outlet section ρ2 was evaluated though the application of the ideal gas law as
a function of the pressure P2 and the temperature T2. The mass flow through the volute
outlet section G2 could be hence calculated as:

G2 = ρ2·c2m·A2 (15)

where the meridional component of absolute velocity at volute outlet c2m was evaluated as
a function of the tangential component of the absolute velocity c2u obtained by Equation (9):

c2m =
√

c22 − c2u2 (16)

Again, the absolute velocity at the volute outlet c2 was corrected with the aim to
reduce the mass-flow error between the volute outlet and nozzle outlet, i.e., (G2 − G3):

c2,new = c2,old − (G2 − G3)· fC (17)

Once the value of the absolute velocity at volute outlet c2 is updated, then the entire
calculation procedure from Equation (7) to Equation (17) is repeated until the mass-flow
error (G2 − G3) becomes negligible (i.e., less than 0.1% of G2).

2.2. Analysis of the Nozzle

The nozzle consists of an annular ring of vanes that set the angle of approach of the
working fluid to the rotor and it works in conjunction with the volute to accelerate the fluid.
As in the case of the volute, nozzle losses ultimately lead to a reduction in outlet velocity
compared to the ideal evolution. It is possible to distinguish nozzle passage losses and
nozzle incidence losses. The nozzle passage loss is mainly caused by the action of friction
forces between the flow and the nozzle blade’s solid surface [25], which was determined by
the following equation:

∆hp(nozzle) = h3 − h3,is = 4· f ·
Lhyd,nozzle

Dhyd,nozzle
·(c)2 (18)

where Lhyd,nozzle and Dhyd,nozzle are the hydraulic length and diameter of the nozzle, respec-
tively, c = (c2 + c3)/2 is the mean passage velocity (average value between nozzle inlet
and outlet), and f is the friction factor, evaluated as:

f = 8


(

8
Re

)12
+


2.457 ln

 1(
7

Re

)0.9
+ 0.27·RR




16

+

(
37530

Re

)16


−1.5

1
12

(19)
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where Re is the average Reynolds number between the nozzle inlet and outlet, while RR
represents the wall relative roughness, for which the value of 0.0002 m is suggested by
Suhrmann et al. [26].

The nozzle incidence loss, on the other hand, arises whenever there is a difference
between the fluid-dynamic nozzle inlet angle α2,f and the nozzle geometric inlet angle α2,g;
a simple yet effective correlation for the calculation of the nozzle incidence loss is:

∆hi(nozzle) =
1
2

c2
2·sin2

(
α2, f − α2,g

)
(20)

As already observed in the case of the volute, the absolute velocity at nozzle outlet c3 is
related to the isentropic enthalpy drop in the nozzle ∆His(nozzle), to the actual enthalpy drop
∆Hre(nozzle) and to the losses ∆hp(nozzle) and ∆hi(nozzle) by the first law of thermodynamics
applied between the inlet and outlet sections of the nozzle (i.e., Section 2 and Section 3 of
Figure 3):

c3 =

√
c22 + 2·

(
∆His(nozzle) − ∆hp(nozzle) − ∆hi(nozzle)

)
=
√

c22 + 2·∆Hre(nozzle) (21)

Additionally, in this case, because the static pressure at the nozzle exit P3 and the
isentropic enthalpy drop are initially unknown, the absolute velocity at the nozzle outlet c3
could not be evaluated through Equation (21); the calculation procedure was also based on
a successive iterative approximation in this case, adopting a first attempt value of 100 m/s
also for the absolute velocity c3. The static temperature at nozzle outlet T3 was hence
calculated as:

T3 = T2 −
c3

2 − c2
2

2·cp
(
T2−3

) (22)

and the related actual enthalpy drop in the nozzle:

∆Hre(nozzle) = cp
(
T2−3

)
·(T3 − T2) (23)

The static pressure P3 at nozzle outlet was obtained through the isentropic transformation:

P3 = P2·
(

1−
∆His(nozzle)

T2·cp
(
T2−3

))
k(T2−3)

k(T2−3)−1

(24)

where the isentropic enthalpy drop ∆His(nozzle) was obtained from the actual enthalpy drop
and the losses in the nozzle:

∆His(nozzle) = ∆Hre(nozzle) + ∆hnozzle = ∆Hre(nozzle) + ∆hp(nozzle) + ∆hi(nozzle) (25)

The static density of the fluid at nozzle outlet ρ3 was evaluated by applying the ideal
gas law (see Equation (4)) as a function of the temperature T3 and pressure P3, thus allowing
evaluation of the mass flow at the nozzle exit G3:

G3 = ρ3·c3m·A3 (26)

where c3m is the meridional component of the gas velocity in the nozzle outlet section:

c3m = c3· sin(α3,g) (27)

and A3 the flow section normal to c3m. As already carried out for the volute, the absolute
velocity c3 was corrected on the basis of the mass-flow error:

c3,new = c3,old − (G3 − G4)· fC (28)
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and hence the calculation procedure from Equation (18) to Equation (28) was repeated until
the mass-flow convergence was reached.

2.3. Analysis of the Nozzle–Rotor Interspace

In a variable nozzle turbine, the swallowing capacity is controlled though the variation
in the nozzle passage section, which is obtained by the rotation of the nozzle blades; the
lower mass flows can be obtained adopting small opening angles; increasing the opening
angles allows the turbine to swallow higher mass flows. For this reason, a radial gap ∆r
between the nozzle exit radius r3 and the rotor inlet radius r4 is necessary (see Figure 4) to
allow the nozzle blades to rotate without causing any impact on the rotor.
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As can also be observed in Figure 4, the radial gap increases when the nozzle blades
reduce the opening angle, i.e., when the mass flow is reduced. This radial gap generates a
limited interspace between the nozzle outlet (Section 3) and rotor inlet (Section 4), where it
is plausible to assume an ideal free vortex evolution, according to which:

c4u = c3u
r3

r4
(29)

where the absolute velocity of the fluid at the rotor inlet c4 is related to the isentropic
enthalpy drop in the radial gap ∆His(gap):

c4 =
√

c32 + 2·∆His(gap) (30)

As in the previous cases, being initially unknown, the static pressure at the rotor inlet
P4, and hence the isentropic enthalpy drop in the radial gap, the absolute velocity c4 could
not be evaluated through Equation (30); an iterative calculation procedure was employed
in this case, also adopting a first attempt value of 100 m/s for the absolute velocity c4. The
static temperature at the rotor inlet T4 was then calculated as:

T4 = T3 −
c4

2 − c3
2

2·cp
(
T3−4

) (31)

The static pressure P4 could be instead obtained through the isentropic evolution from
the nozzle exit (condition 3) to rotor inlet (condition 4):

P4 = P3·
(

T4

T3

) k(T3−4)
k(T3−4)−1

(32)
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The density of the fluid at the rotor inlet could be hence calculated by the application
of the ideal gas law:

ρ4 =
P4

R′·T4
(33)

which, in turn, allowed calculation of the mass flow at the rotor inlet G4:

G4 = ρ4·c4m·A4 (34)

where A4 is the flow passage section at the rotor inlet, while the meridional component of
the absolute velocity c4m was obtained as:

c4m =
√

c4
2 − c4u

2 (35)

The absolute velocity c4 at rotor inlet was hence corrected on the basis of the mass-flow
error (G4 − G5):

c4,new = c4,old − (G4 − G5)· fC (36)

where G5 is the mass flow through the outlet section from the rotor. The calculation proce-
dure from Equation (29) to Equation (36) was repeated until the mass-flow convergence
was obtained.

2.4. Analysis of the Rotor

The rotor is composed of a set of rotating blades that constitute a rotating ring of
vanes, conceived to transform part of the fluid enthalpy and kinetic energy into mechanical
work, which, in turn, is transferred to the rotating shaft. In a moving stage, multiple
entropy generation mechanisms contribute to losses; the loss models mainly adopted in the
scientific literature when managing the rotor of a radial turbine are: rotor incidence loss,
passage loss, clearance loss, disc windage loss, and trailing edge loss [18–20].

The rotor incidence loss is related to the incidence of the fluid flows approaching
the rotor passage; according to the mostly employed model, described by NASA [27], the
enthalpy variation ∆hin associated with the rotor incidence loss depends on the difference
between the actual fluid-dynamic angle β4,f and the optimum incidence angle β4,opt:

∆hin =
1
2

w4
2 sin2

(
β4, f − β4,opt

)
(37)

where w4 represents the relative velocity of the fluid at the rotor inlet; it is worth mentioning
that the optimum angle β4,opt is different from the geometric angle β4,g due to the motion
that the rotor induces in the flow approaching the blades. The optimum angle β4,opt can be
evaluated on the basis of the optimal tangential component of relative velocity w4u,opt:

β4,ott = arctan
(

w4u,opt

c4m

)
(38)

where
w4u,opt = c4u,opt − u4 (39)

The optimal tangential component of the absolute velocity c4u,opt in turn can be eval-
uated as a function of the peripheral linear velocity at the rotor inlet u4 by means of an
empirical equation proposed by Stanitz [28]:

c4u,opt = u4·
(

1− 1.98
NR

)
(40)

Hence, it results that the optimum angle β4,opt can be evaluated as:
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β4,ott = arctan
(
− 1.98·u4

NR·c4m

)
(41)

The rotor passage loss is a generic term aimed to quantify the losses due to friction
and secondary flow processes that occur in the passage through the rotor vanes; the
two contributions are usually incorporated into a single enthalpy variation ∆hp since there
is currently no way to isolate and measure their effects separately. In [21], the rotor passage
losses are quantified through:

∆hp =
1
2

Kp

{(
Lhyd,R

Dhyd,R

)
+ 0.68

[
1−

(
r5

r4

)2
]

cos β5

b5/ch

}
·
(

w4
2 + w5

2
)

(42)

where Lhyd,R and Dhyd,R are the hydraulic length and diameter of the rotor, respectively, β5
and b5 are the geometric angle and the blade height at rotor outlet, respectively, and chrot is
the rotor blade chord, which, according to [21] can be approximated as:

chrot =
lR

cos
(

β
) being tan

(
β
)
=

tan(β4) + tan(β5)

2
(43)

where Kp is a coefficient which, as suggested in [21], should be set to 0.11 on the basis of
some experimental data.

The clearance loss is the loss related to the fluid leakage from the rotor blade through
the clearance gap between the rotor and its shroud. This loss seems to be affected to a
greater extent by the radial clearance εr than by the axial clearance εx, and there appears to
be a cross-coupling effect between the two parameters. The authors evaluated the enthalpy
variation ∆hcl due to the rotor clearance loss as reported in [21]:

∆hcl = u4
3 NR

8π

(
KxεxCx + KrεrCr + Kxr

√
εxεrCxCr

)
(44)

where NR is the number of blades in the rotor, Cx and Cr are geometrical parameters, and
the three coefficients Kx, Kr, and Kxr should be set to 0.4, 0.75, and −0.3, respectively, as
indicated in [21], in agreement with the previously described influences of εr and εx on
rotor clearance loss.

The rotor disc windage loss is an external loss that expresses the power loss due to
friction between the back face of the turbine disc and the fluid entrapped in the interspace
between the rotor and its housing. According to [29], the enthalpy variation connected to
the rotor windage loss ∆hw can be modelled as:

∆hw = 0.25·K f ·
ρ·r4

2·u4
3

G5
(45)

where ρ is the average fluid density between inlet and outlet section of the rotor, G5 is the
turbine mass flow, and the coefficient Kf, as described in [30], depends on the Reynolds
number evaluated at the rotor inlet (Section 4 in Figure 3) and on the turbine geometry:

K f = 3.7
(

εb
b4

)0.1
·Re4

−0.5 if Re < 3·105 (46)

K f = 0.102
(

εb
b4

)0.1
·Re4

−0.2 if Re > 3·105 (47)

where εb is the clearance between the back face of the turbine disc and its housing, and b4
represents the blade height at rotor inlet.

Lastly, the trailing-edge loss [31] is related to the sudden expansion of the fluid when
it passes the trailing edge of the rotor. The expansion is due to the rapid flow section
increment caused by the end of the rotor blades. It is worth pointing out that this loss
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becomes numerically relevant if the fluid velocity is high, i.e., if the relative Mach number
M5,rel (evaluated on the basis of the relative velocity at the rotor exit w5) approaches 1. The
model here adopted by the authors calculates the enthalpy variation ∆ht related to the
trailing-edge loss as:

∆ht =
2

k(T5)
·M5,rel

2 ·
∆Prel

P5·
(

1 + w5
2

2·T5·cp(T5)

)(
k(T5)

k(T5)
−1 )

(48)

where P5 and T5 are the static pressure and temperature at the rotor exit (Section 5), M5,rel
is the previously mentioned relative Mach number in Section 5, k and Cp are the isentropic
coefficient and the specific heat, respectively (both evaluated at the temperature T5), and
∆Prel is the pressure drop caused by the sudden expansion, which, according to the model
adopted [31], is assumed to be proportional to the relative kinetic energy at the rotor exit:

∆Prel =
ρ5·w5

2

2

[
NR·t

π·(r5s − r5h)· cos β5

]
(49)

where r5s and r5h are the shroud and hub radii at rotor exit, respectively (see Figure 3), NR
the number of blades in the rotor, and t the blade thickness. In the calculation performed
on the rotor, the outlet static pressure P5 is known, being part of the boundary conditions
adopted (as resumed in Part 2 [12]); the isentropic enthalpy drop in the rotor can be hence
calculated as:

∆His(rotor) = cp
(
T4−5

)
·T4·

1−
(

P5

P4

) k(T4−5)−1
k(T4−5)

 (50)

Thus, the actual enthalpy drop in the rotor ∆Hre(rot) can be obtained:

∆Hre(rot) = ∆His(rot) − ∆hrot (51)

where ∆hrot is the sum of all the losses in the rotor (=∆hin + ∆hp + ∆hcl + ∆hw + ∆ht)
discussed from Equation (37) to Equation (49). The static gas temperature T5 at the rotor
outlet is hence:

T5 = T4 −
∆Hre(rot)

cp
(
T4−5

) (52)

and the consequent fluid density ρ5 obtained from the ideal gas law:

ρ5 =
P5

R′·T5
(53)

The actual enthalpy drop in the rotor also allows for calculation of the relative velocity
at rotor outlet w5 through the application of the first law of thermodynamics between
Section 4 and Section 5, in the relative reference system of the rotor:

w5 =
√

w4
2 + u52 − u4

2 + 2∆Hre(rot) (54)

where w4 is the relative velocity at the rotor inlet, u4 and u5 are the peripheral linear
velocities at the rotor inlet and outlet, respectively. Once calculated, the value of w5 is
updated in Equations (48) and (49), thus allowing an iterative solution. The meridional
component of the velocity w5 is:

w5m = c5m = w5· cos
(

β5,g
)

(55)

where β5,g is the geometric blade angle at rotor outlet (see Figure 5). The mass-flow rate
can be hence calculated:
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G5 = ρ5·c5m·A5 (56)

which, as already mentioned, is employed in Equation (36) for the iterative correction of
the absolute velocity at the rotor inlet c4. Since all the losses were expressed in terms of
enthalpy variations, it is possible to evaluate the total-to-static isentropic efficiency of the
stage as follows:

ηt,s =
∆Hr

∆Hid
=

∆Hid − ∆hrot − ∆hnozzle − ∆hvol − 1
2 c5

2

∆Hid
(57)

where the ideal enthalpy drop ∆Hid is calculated considering an isentropic expansion from
the inlet conditions (PT1, TT1) to the rotor exit static pressure P5:

∆Hid = cp
(
TT1−5,is

)
·(TT1 − T5,is) (58)

where
TT1−5,is =

TT1 + T5,is

2
(59)

T5,is = TT1

(
P5

PT1

) k(TT1−5,is)−1

k(TT1−5,is) (60)
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2.5. Mechanical Friction Losses

A radial inflow turbine needs at least a journal bearing for shaft rotation and an axial
thrust bearing that transfers the axial load of the turbine rotor to the machine frame [32].
The power dissipation in the journal bearing is primarily dependent on bearing geometry,
oil viscosity, rotational speed, and oil film thickness. Generally, the frictional power loss in
journal bearings can be estimated through Petroff’s equation [33] as:

POW J,B =
π

4
·µD3Lω2

h
(61)

where µ is the dynamic viscosity of the oil, ω is the rotational speed, L is the bearing
length, D is the bearing diameter, and h is the oil film thickness. The bearing diameter D
was obtained by designing the shaft for infinite life according to the procedure described
in [33], applying the Goodman criterion with a safety factor of 8. The material used for
the shaft is 40 NiCrMo 4430 steel, tempered at 540 ◦C, characterized by yield strength
1080 MPa, and an ultimate tensile strength of 1170 MPa. The oil chosen for this application
is Castrol 5W40 and its properties are evaluated at the working temperature of 90 ◦C.
Finally, bearing length L was determined referring to available data for the L/D ratios
applied in similar applications.

According to Petroff’s equation, the bearing diameter is the largest influencing factor
on power dissipation, followed by the rotational speed. However, decreasing the shaft
diameter is not advisable because of the rotor dynamic issues.
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The frictional power loss thrust bearings can be described by a modified Petroff’s
equation as follows:

POWT,B =
πµω2

2εth
·
(

rext,t
4 − rin,t

4
)

(62)

where rin,t denotes the inner radius, determined by shaft diameter D; rext,t is the outer
radius calculated by making reference to the rext,t/ rin,t ratios used in similar cases; and
εth is the axial clearance, for which a value of 0.095 mm was assigned according to [32].
Petroff’s equation reveals that the power dissipation is highly dependent on geometry, as
for the journal bearing. Larger bearing contact surfaces result in higher power losses.

3. Design of the Radial Inflow Turbine

In this chapter, the authors describe the procedure adopted to estimate the geometry
and flow parameters of the turbomachine for the design condition. The design process is
accomplished on the basis of predefined boundary conditions and operating parameters
such as total inlet pressure PT1, outlet static pressure P5, total inlet temperature TT1, mass-
flow rate G, and rotational speed of the turbine rotor n.

3.1. Rotor Design

Once the turbine design parameters and its boundary conditions have been defined,
the first calculation regards the discharge spouting velocity, i.e., the velocity associated with
the isentropic enthalpy drop from total inlet pressure PT1 to the final exhaust pressure P5:

C0s =
√

2·∆Hid =

√√√√√2·cp
(
TT1−5,is

)
·TT1·

1−
(

P5,is

PT1

) k(TT1−5,is)−1

k(TT1−5,is)

 (63)

where the average temperature is evaluated according to Equations (59) and (60).
Another important parameter is the velocity ratio νs:

νs =
u4

C0s
⇒u4 = νs·C0s (64)

Since the value of νs is initially unknown, in the design procedure the first attempt
value of 0.5 was assumed, which allows for determining u4 and, in turn, the radius of the
rotor inlet section.

r4 =
60·u4

2·π·n (65)

In the nominal design condition, the outlet flow should be characterized by a zero
swirl at the mean-line analysis, i.e., c5u = 0. As a result, the tangential component c4u of the
absolute velocity at rotor inlet could be computed by the application of the Euler equation,
once the stage total-to-static efficiency ηt,s is known:

c4u =
∆Hid·ηt,s

u4
(66)

It is obvious that, in the starting phase of the turbine design, the stage total-to-static
efficiency ηt,s is unknown (Equation (57)); for this reason, in the design procedure, a first
attempt value was obtained by the empirical formula proposed by Aungier [19]:

ηt,s = 0.87− 1.07·(ns − 0.55)2 − 0.5·(ns − 0.55)3 (67)

where the specific speed ns is:

ns =
2π·n·

√
Q5

60·(∆Hid)
0.75 (68)
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where the volume flow at rotor exit Q5 is the ratio between the mass flow G and the rotor
exit density ρ5:

Q5 =
G
ρ5

(69)

The fluid density at rotor outlet is calculated by means of the ideal gas law on the basis
of the static pressure P5 and of the rotor outlet temperature T5, the latter being computed
through the application of the first law of thermodynamics from Section 1 to Section 5 on
the basis of the actual enthalpy drop ∆Hr:

T5 = TT1 −
∆Hr

cp
(
TT1−5

) = TT1 −
∆Hid·ηt,s

cp
(
TT1−5

) (70)

As is usually adopted for radial inward turbines, the inlet blade angle β4g was consid-
ered to be 90◦ in this application. Concerning instead the inlet absolute flow angle α4, in
the best efficiency condition, it is substantially a function of the specific speed ns, as shown
in [34]. The data reported in [34] have been employed to obtain a numerical correlation [19]
used to obtain a first attempt value of the inlet absolute flow angle α4, which is successively
updated on the basis of the results:

α4 = 10.8 + 14.2·ns
2 (71)

Equations (66) and (71) allow for determining the meridional component of the fluid
velocity at rotor inlet:

c4m =
c4u

tan α4
= w4m (72)

The tangential component of relative velocity at the rotor inlet is hence:

w4u = c4u − u4 (73)

which allows for the determination of the fluid-dynamic relative flow angle:

β4 f = arctan
(

w4m
w4u

)
(74)

Once the absolute velocity at the rotor inlet is calculated (c4 =
√

c4u
2 + c4m

2), it is
possible to obtain an approximate evaluation of the thermodynamic state of the fluid at the
rotor inlet, as proposed in [19]. Assuming the losses upstream from the rotor to account for
about 25% of the total losses and considering a constant density flow, the total pressure at
rotor inlet PT4 can be estimated as:

PT4 = PT1 − ρT1·∆Hid
(1− ηt,s)

4
(75)

and the static pressure at rotor inlet P4 is hence:

P4 ≈ PT4 −
1
2
·ρ1·c4

2 (76)

The static enthalpy H4 and the temperature T4 at the rotor inlet may be evaluated as:

H4 = HT1 −
1
2

c4
2 (77)

T4 = TT1 −
c4

2

2·cp
(
TT1−4

) (78)
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The rotor inlet density ρ4 can be then calculated through the application of the ideal gas
law, employing the pressure and temperature evaluated in Equations (76) and (78), respec-
tively; the rotor inlet blade height can be hence obtained by the mass-flow rate equation:

b4 =
G

2πr4ρ4c4m
(79)

and the hub radius at rotor outlet can be obtained as:

rh5 = 0.3·r4 (80)

where the proportionality constant 0.3 is based on results from the optimization process, as
also confirmed in [35]. Following a correlation proposed in [19], the meridional component
of the absolute velocity at rotor outlet can be estimated as:

c5m = c4m·
[
1 + 5·(b4/r4)

2
]

(81)

As already mentioned, the zero swirl flow is assumed at the turbine exit (i.e., c5u = 0)
in the nominal design condition, thus minimizing the exit kinetic energy losses at the rotor
outlet; as a consequence, the absolute velocity at rotor outlet is equal to the meridional
component, i.e., c5= c5m. The section area at the rotor outlet is then evaluated:

A5 =
G

ρ5·c5m
(82)

where the static density at rotor outlet, as noted previously, is calculated by means of the
ideal gas law, employing the static pressure P5 (imposed as boundary condition) and the
temperature calculated in Equation (70). The exit shroud radius rs5 is therefore:

rs5 =

√
A5

π
+ r2

h5 (83)

Then, the rotor outlet mean radius is:

r5 =
rs5 + rh5

2
(84)

The blade speed at the rotor outlet mean radius is:

u5 =
2·π·n

60
·r5 (85)

According to the zero swirl flow at the rotor outlet, the meridional component of
relative velocity coincides with the absolute velocity:

w5m = c5m = c5 (86)

and the tangential component of the relative velocity results:

w5u = −u5 (87)

As a last step, the relative blade angle β5g at the rotor outlet (which in the design
condition is equal to the flow angle β5f ) is determined:

β5g = β5 f = arctan
(

w5u

w5m

)
= arctan

(
−u5

c5

)
(88)

To complete the geometric design, the rotor axial length is defined through a further
empirical correlation provided by [19]:
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lR = 1.5·(rs5 − rh5) (89)

Glassman [36] introduced an empirical equation for the optimum number of radial
inflow turbine rotor blades NR:

NR =
π

30
(110− α4)· tan(α4) (90)

whose result, obviously, must be rounded to an integer value.
After the first iteration, Equations (63) to (90) have been updated employing the

stage total-to-static efficiency ηt,s obtained from the turbine performance calculation model
described in Equation (57) from the previous section. As already mentioned above, the
value of νs of the first iteration was imposed equal to 0.5, but successively optimized to
obtain the maximum efficiency of the stage.

3.2. Nozzle Design

The nozzle row sizing strategy requires that the nozzle passage width is constant and
is identical to the rotor inlet passage width determined from the rotor sizing procedure:

b3 = b4 (91)

The tangential velocity at the nozzle exit can be calculated by means of the conservation
of angular momentum between Section 3 and Section 4:

c3u = c4u·
r4

r3
(92)

where the r3 represents the radius at the nozzle exit. As already mentioned and shown in
Figure 4, this radius depends on the position of the distributor blades, i.e., on the angle
α3: when the distributor blades are closed (i.e., for the minimum mass flow rates), the
nozzle outlet flow angle α3 is at its minimum value and hence the radial gap ∆r reaches the
maximum amplitude. When the mass-flow rates are high, instead, the distributor blades
are in a “fully open” position, i.e., with the maximum angle α3, to which corresponds the
minimum radial gap ∆r. Since in this section the authors are giving the guidelines to define
the turbine geometry for a particular design operating condition, the radius at the nozzle
exit r3 is given by:

r3 = r4 + ∆rD (93)

where ∆rD denotes the radial gap value at the design operating condition, which can be
roughly obtained as:

∆rD = 4·b3· cos α3 (94)

It is worth pointing out that once the turbine geometry is defined, the maximum
swallowing capacity of the turbine must be verified according to the maximum allowed
distributor blade angle α3, which corresponds to a null radial gap; if it results that in this
condition the turbine is unable to swallow the required maximum mass-flow rates, then
the design must be corrected with a higher value for ∆rD.

For the turbine design procedure, the absolute velocity at nozzle outlet c3 was evalu-
ated assuming the absolute flow angle at nozzle outlet α3 equal to the rotor inlet absolute
flow angle α4 (i.e., considering a null radial gap):

c3 =
c3u

cos(90− α3)
=

c3u

cos(90− α4)
(95)

The meridional component of absolute velocity is then:

c3m = c3· sin(90− α3) (96)
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The static enthalpy H3 and the temperature of the gas T3 at the nozzle outlet are
computed as:

H3 = HT1 −
1
2

c3
2 (97)

T3 = T4 +

(
c4

2 − c3
2)

2·cp
(
T3−4

) (98)

Since the flow conditions at nozzle inlet are initially unknown, and aiming to induce
minimal incidence losses, at the design condition the inlet flow angle is assumed to be equal
to the inlet blade angle (i.e., α2f = α2g); moreover, a constant density flow between Section 2
and Section 3 is also assumed, which allows for calculating the meridional component of
the absolute velocity at the distributor inlet:

c2m ∼= c3m·
r3

r2
(99)

Aungier [19] suggested that the ratio of nozzle inlet to outlet radius r2/r3 lies between
1.1 and 1.7. In this work, the authors adopted a value of 1.3 to obtain a good compromise
between performance and overall size of the nozzle. Assuming the symmetrical nozzle
blade profile of Figure 6, simple geometric considerations based on the triangle generated
by the nozzle geometry (shown in Figure 7), allowed for calculating the nozzle inlet blade
angle α2,g as a function of the exit blade angle α3,g:

α2,g =
π

2
− arcsin

[
r3

r2
· sin

(π

2
+ α3,g

)]
(100)
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Application of Carnot’s theorem for the triangle shown in Figure 7 also allowed for
evaluating the length of the nozzle blade chord chnozzle:

r2
2 = r3

2 + chnozzle
2 − 2·r3·chnozzle· cos

(π

2
+ α3,g

)
(101)

⇒ chnozzle = 2·r3· cos
(π

2
+ α3,g

)
+

√(
2·r3· cos

(π

2
+ α3,g

))2
− 4·(r32 − r22) (102)

Once determined, the distributor inlet flow angle α2, the tangential component of
absolute velocity at the nozzle inlet, can be calculated as:

c2u =
c2m

tan α2
(103)

The absolute velocity at nozzle inlet is hence consequently calculated as c2 =
√

c2u2 + c2m2

Since the velocity triangle at the nozzle inlet just calculated is based on the approximate value
of c2m obtained from Equation (99), an iterative correction process based on the conservation of
mass-flow rate (G2 = G3) is necessary to obtain a more accurate value for c2m. For this purpose,
the static temperature and pressure at nozzle inlet are evaluated as:

T2 = T3 +

(
c3

2 − c2
2)

2·cp
(
T2−3

) (104)

P2 = P3·
(

T3

T2

) k(T2−3)
1−k(T2−3) (105)

where, as made previously, both the isentropic coefficient and the specific heat are evaluated
at the average temperature of the reference thermodynamic transformation (in this case
T2−3). The static density ρ2 of the working fluid at the nozzle inlet can hence be obtained
from the ideal gas law as a function of the temperature T2 and pressure P2. At this point
the meridional component of the absolute velocity at the distributor inlet is given by:

c2m =
G2

2πr2ρ2b2
=

G3

2πr2ρ2b2
(106)

Equation (106) represents an updated value of the meridional component of absolute
velocity at the nozzle inlet, evaluated on the basis of the mass-flow rate swallowing capacity
of the section. This value is replaced by the approximate value obtained from Equation (99),
thus iteratively recalculating the loop from Equation (100) to Equation (106), until final
convergence is achieved.

3.3. Volute Design

The purpose of this section is to describe the analytical procedure adopted by the
authors for the design of the main geometric dimensions of the volute, as made in the
previous sections; also, in this case, an iterative procedure was repeated until final value
convergence was obtained. The volute inlet velocity (Section 1 of Figure 3) is calculated by
the conservation of the angular momentum:

c1 =
r2

r1
·c2u (107)

Since the value of the radial distance r1 of the volute inlet section from the turbine axis
is unknown in the initial phase of the design process, at first attempt it is assumed equal to
r2. This assumption allows for evaluation of the static temperature at the volute inlet:

T1 = TT1 −
c1

2

2·cp
(
T1−2

) (108)
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Assuming an isentropic expansion from the total condition to the static condition, it is
also possible to calculate the static pressure:

P1 = PT1·
(

T1

TT1

) k(T1−2)
1−k(T1−2) (109)

The density of the working fluid is then obtained through the application of the
ideal gas law as a function of P1 and T1. The area of the volute inlet section can hence
be estimated:

A1 =
G

ρ1·c1
(110)

As a general rule, the volute may have an elliptical section, as reported in Figure 8; the
axial semi-axis Ax is then:

Ax =
A1

B·
( 3

4 π + 1
) (111)

while the radial distance r1 is:
r1 = r2 + Bx (112)
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The radial semi-axis Bx is calculated on the basis of the volute aspect ratio AR:

AR =
Ax

Bx
⇒Bx =

Ax

AR
(113)

In this work, the authors adopted an aspect ratio AR = 1, in accordance with the values
of 0.75 ≤ AR ≤ 1.5 recommended in [19]. Once the volute section aspect ratio is established,
then the calculation loop from Equation (107) to Equation (113) is iteratively repeated
until the value of the radius r1 reaches convergence. Therefore, after the volute design is
completed, it is possible to estimate the total axial length of the stage as:

∆Z(ST) = lR + (2·Ax)− b2 (114)

3.4. Design Calculation Procedure

With the aim to explain the whole calculation procedure adopted for the radial turbine
design, Figure 9 shows a flowchart summarizing the main steps followed by the authors
for the definition of the turbine geometry, which are listed below:
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The input data (total pressure and temperature at turbine inlet, mass flow) are fed to
the algorithm design block.

The algorithm design block estimates a first attempt value for the total-to-static effi-
ciency of the turbine.

The total-to-static efficiency of the turbine is employed by the algorithm design block
to define the turbine geometry.

The turbine geometry is fed to the performance prediction model for the realistic eval-
uation of all the energy losses, giving as a final result the realistic total-to-static efficiency.

The realistic total-to-static efficiency of the turbine is compared with the input effi-
ciency employed in step (3):

If their difference is greater than the convergence value, then the calculation restarts
from step (3) by employing the new total-to-static efficiency for the new geometry evaluation.

If their difference is less than or equal to the convergence value, the calculation is
stopped and the last turbine geometry is adopted as the final result.

4. Conclusions

The aim of this two-part work is a reliable evaluation of the realistic advantages
connected to the implementation of a properly designed turbogenerator for exhaust en-
ergy recovery in a hybrid propulsion system. In this Part 1, the authors focused on the
design approach to determine the turbine geometry and on the definition of a proper
thermomechanical model for the turbine performance estimation. A radial inflow turbine
with variable nozzle geometry was adopted in consideration of its capability to allow
an adequate control on both mass flow and turbine speed of rotation. The performance
evaluation model was based on the simple mean-line approach, with the aim to obtain
fast but reliable predictions. With the aim to accurately estimate both the thermodynamic
and the mechanical efficiencies, it comprises the most widely recognized energy loss sub-
models. The design algorithm shares the same structure, but is characterized by a number
of assumptions and simplifications that allow a rapid definition of the turbine geometry
suitable for the task considered. Both the algorithm and the performance prediction model
have been employed in Part 2 [12] to define the turbine geometry according to boundary
conditions obtained on a previously studied hybrid propulsion system, and to trace the
efficiency map of the turbine. The realistic energetic advantages of the turbocompound
engine were hence evaluated [12] on the basis of the realistic turbine efficiencies predicted
by the model, and revealed to range between 3.1% and 17.9% depending on the output
power level, with a 10.9% average efficiency increment of the realistic turbocompound
engine on its best efficiency curve.

Author Contributions: Conceptualization, E.P. and S.C.; methodology, E.P.; software, S.C.; validation,
S.C., A.S. and M.C.; formal analysis, M.C.; investigation, A.S.; data curation, S.C.; writing-original
draft preparation, S.C.; writing-review and editing, E.P.; visualization, M.C.; supervision, E.P.; funding
acquisition, E.P. All authors have read and agreed to the published version of the manuscript.



Energies 2023, 16, 1030 23 of 25

Funding: Department of Engineering—University of Palermo: FFR_D26_PREMIO_GRUPPO_
RICERCA_2020_PIPITONE.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

Symbols and Abbreviations
Symbols

A Area m2

AR Aspect ratio -
Ax Axial semi-axis m
b Blade width m
Bx Radial semi-axis m
c Absolute velocity m/s
c0s Spouting velocity m/s
ch Chord m

cp Constant pressure specific heat
[

J
kg·K

]
cv Constant volume specific heats

[
J

kg·K

]
Dhyd Hydraulic diameter m
EVO Exhaust valve open
G Mass flow rate kg/s
H Specific enthalpy J/kg
IMEP Indicated mean effective pressure bar
IVC Inlet valve closure
k Specific heat ratio -
Lhyd Hydraulic length m
lr Rotor axial length m
M Mach number -
MFP Mass flow parameter -
n Rotational speed rpm
NR Number of rotor blades -
P Pressure Pa
POW Power W
r Radius M
Re Reynolds number -
RR Wall relative roughness M
t Trailing edge blade thickness M
T Temperature K
u Peripheral velocity m/s
w Relative velocity m/s

Greek letters
α Absolute flow angle -
β Relative flow angle -
βT Pressure ratio -
η Efficiency -
ρ Density kg/m3

ω Rotational speed rad/s
∆h Enthalpy losses J/kg
∆H Enthalpy drop J/kg
ε Clearance gap m
ν Kinematic viscosity m2/s
νs Velocity ratio -



Energies 2023, 16, 1030 24 of 25

Subscripts
1 Total
2 Nozzle inlet
3 Nozzle exit
4 Rotor inlet
5 Rotor exit
a Axial
b Blade
cl Clearance
f Fluid-dynamic
h Hub
id Ideal
in Incidence
is Isentropic
J,B Journal bearing
m Meridional
nozzle Nozzle
p Passage
r Radial
re Real
rel Relative
rot Rotor
s Shroud
t Trailing edge
T Total
tm Thermomechanical
T,B Thrust bearings
t,s Total-to-static
t,t Total-to-total
u Peripheral
vol Volute
w Windage
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