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Abstract: There is growing concern regarding the health and safety issues of endocrine-disrupting
chemicals (EDCs). Long-term exposure to EDCs has alarming adverse health effects through both
hormone-direct and hormone-indirect pathways. Non-chemical agents, including physical agents
such as artificial light, radiation, temperature, and stress exposure, are currently poorly investigated,
even though they can seriously affect the endocrine system, by modulation of hormonal action.
Several mechanisms have been suggested to explain the interference of EDCs with hormonal activity.
However, difficulty in quantifying the exposure, low standardization of studies, and the presence of
confounding factors do not allow the establishment of a causal relationship between endocrine disor-
ders and exposure to specific toxic agents. In this review, we focus on recent findings on the effects of
EDCs and hormone system modulators on the endocrine system, including the thyroid, parathyroid
glands, adrenal steroidogenesis, beta-cell function, and male and female reproductive function.
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1. Introduction

Endocrine disruptors are exogenous agents that interfere with endocrine actions,
having a deleterious effect on them and showing a direct cause–effect relationship in
exposed subjects, offspring, or subpopulations [1,2]. Fetal exposure to endocrine disruptors
occurs through the placenta [3] and breast feeding [4], while adults are exposed through
food, inhalation, and skin contact [5].

Endocrine disruptors may be derived from natural animal, human, or plant (phytoe-
strogen) sources. However, the best-known are chemical endocrine disruptors (EDCs).
EDCs include industrial ones (dioxins, polychlorinated biphenyls (PCBs) and alkyphe-
nols), agricultural ones (pesticides, herbicides, fungicides, and insecticides), phthalates,
bisphenol A (BPA), drugs (mitotane, ketoconazole, cardiac glycosides, nitrofurans, carba-
mazepine, and astazene), and heavy metals [6]. Non-chemical compounds are generally
represented by artificial light, radiation, temperature, and stress and can affect the en-
docrine system modulating hormonal functions [7–9]. EDCs mimic endocrine action by
binding to many hormone receptors of different endocrine glands acting as agonists or
antagonists [10]. Generally, there are two vehicles of interaction: membrane-bound receptors
and nuclear receptors [11]. EDCs that bind membrane receptors can disrupt non-genomic
signaling pathways.

However, endocrine disruptors should not be confused with endocrine modulators,
which are compounds interacting with hormonal systems, without disrupting them. En-
docrine modulators are generally quite benign to humans, even though it depends on the
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level in the finished product and the frequency of use. For example, many of us consume
coffee, chocolate, or soy, and yet these substances are well known to interact with the
hormonal system. However, if consumed in the conventional amounts they are harmless
for humans.

Today, EDCs are estimated to number above 4000, and there is increased pollution
from these chemicals. Consequently, human health through known or unknown effects of
these chemicals on hormonal systems is seriously involved. The principal cause able to
explain the impact of endocrine-disrupting chemicals on human health is considered to
be connected to the very high production and use of industrial and agricultural chemicals
and their capacity to influence endocrine function. Primarily, endocrine disruptors may
interfere with natural hormone synthesis, secretion, metabolism binding, elimination, and
transport [11]. EDCs can impact different hormonal targets including hormone production
and hormone receptor expression, acting as receptor agonists or antagonists. For instance,
BPA has been reported to act as an agonist when it binds to estrogen receptors (ERs) and
an antagonist binding to androgen receptors/an androgen receptor (AR). In addition,
there are chemical compounds that act as hormone modulators having an impact on
signaling pathways.

EDCs can affect the hormonal balance and result in developmental, reproductive, and
behavioral abnormalities [12,13]. Recent studies showed a link between EDC exposure
with obesity, metabolic syndrome, and type 2 diabetes [12,14].

The National Health and Nutrition Examination Survey (NHANES) database cross-
sectionally analyzed 1721 adults (see NHANES and Observational Studies) reporting a
positive association between diabetes and serum levels of 19 different persistent pollutants
(including organochlorine pesticides, OCPs) [15–19].

The aim of this review is to focus on current knowledge of EDCs and chemical and non-
chemical endocrine modulators on the endocrine system. We carefully evaluated the effects
on the thyroid, parathyroid glands, adrenal glands, beta-cells, testes, and ovaries. In this
paper, the main chemical and non-chemical compounds that may contribute to metabolic
disruption or hormonal modulation will be discussed on the basis of their demonstrated or
suggested action mechanisms.

2. Thyroid and Parathyroid Glands

Thyroid hormones are important for both development and metabolism in adult
vertebrates. Hence, thyroid function and thyroid hormone action are highly regulated
during both fetal life and adulthood. Proper thyroid function is dependent on physiological
environmental factors such as iodine, selenium, and iron. However, in food and the envi-
ronment there are some natural goiter-inducing agents that interfere with thyroid function
including thiocyanates and isoflavones, nitrates, chlorates, and perchlorates. Nowadays,
to the list of these natural thyroid interfering agents, several industrial chemicals, such as
heavy metals, phthalates, and furans, which can interfere with thyroid function or thyroid
hormone action, can be added.

Within the same individual, thyroid hormone levels range within a narrow interval
and are strictly regulated by a genetic “set point”. By contrast, among different individuals
within a given population the reference range may vary up to 10-fold compared to the
individual range [20,21]. Hence, understanding these intra- and inter-individual variations
is an important prerequisite to evaluate the effect of EDCs on human thyroid function. The
thyroid function is regulated by a complex interplay between the hypothalamus (which
releases the hormone TRH), the pituitary gland (which releases TSH), and the thyroid
(which produces T4 and T3) [22]. The thyroid eminently secretes T4, which is converted
into T3 by type 1 and 2 deiodinases (Dio1 and Dio2) [23]. The effect of thyroid-specific
EDCs may occur at any level including the hypothalamus–pituitary–thyroid axis, thyroid
hormone synthesis, release, transport, metabolism, and action on target tissues. The
mechanism of interference is based mainly upon structural similarities between EDCs and
thyroid hormones. These peculiar features of thyroid hormone production and metabolism



Int. J. Mol. Sci. 2022, 23, 5710 3 of 20

make studies on EDCs very difficult [24] because EDC action may involve different targets
and does not necessarily imply a detectable change in thyroid hormone levels. Hence,
clinical manifestation of effects of EDCs on the thyroid may be very different compared to
those of traditional thyroid diseases.

Several micronutrients are important in thyroid hormone production [25–27] and may
also contribute to the effect of EDCs on thyroid hormone action. Iodine is crucial for thyroid
hormone synthesis and is entrapped into thyrocytes by the sodium/iodide symporter (NIS)
and several environmental chemicals may interfere with NIS function and iodine uptake,
including perchlorate, chlorate, nitrate, and thiocyanate. Chlorate and nitrate may be
present in water supplies, and thiocyanate in cigarette smoke and vegetables. Inhibition of
iodide uptake by these anions may be important in iodine-deficient areas [28] and pregnant
women [29]. Moreover, thiocyanates and isoflavones may inhibit the thyroperoxidase (TPO)
enzyme, which is essential for thyroid hormone synthesis [30,31].

EDCs can also reduce circulating levels of thyroid hormones inducing the liver en-
zymes responsible for T4/T3 clearance [32,33]. Further, they can influence thyroid hormone
binding to carrier proteins, such as phenolic compounds including PCBs and PBDEs [34–39].
EDCs such as halogenated biphenyls and biphenyl ethers, displaying a structure similar to
thyroid hormone, have been demonstrated to impact the thyroid hormone metabolism, while
others, such as the insecticide fipronil, have an impact on thyroid hormone transport [40].

The most widely studied EDCs having an effect on thyroid function include the ones
that will now be listed.

Perchlorate. Experimental studies indicate that human exposure to a perchlorate
level of about 5.0 mcg/kg/die is able to significantly reduce thyroid iodine uptake [41].
However, human toxicology studies suggest that only high doses of perchlorate are able to
significantly inhibit thyroid hormone synthesis [41]. Perchlorate may significantly affect
thyroid hormone action in newborn development [42], because infants are particularly
vulnerable to thyroid hormone insufficiency [43] and perchlorate levels may be very high
in breast milk [44]. In addition, a recent study found a relationship between exposure to
perchlorate of pregnant women and reduced cognitive function in newborns [29].

Polychlorinated biphenyls. In contrast with animal models, data in the literature
describing the relationship between PCB exposure and variations in thyroid hormone
levels in humans are scanty and controversial. On the other hand, a considerable number
of papers describe a correlation between fetal exposure to PCBs and a variety of cognitive
defects in children [45]. Hence, several authors hypothesize that PCBs may act as thyroid
hormone modulators on the signaling in the fetal nervous system.

Polybrominated diphenyl ethers. In a manner similar to PCBs, several studies indicate
a significant negative correlation between cord blood polybrominated diphenyl ether
(PBDEs) levels and cognitive function, with respect to full-scale, verbal, and performance
IQ [46]. Although several studies were able to detect significant levels of PBDEs in the
blood of pregnant women [47], in cord blood, and in breast milk [48,49], a direct effect on
human thyroid function remains elusive [50–53] and they can be currently considered as
hormone modulators.

Phthalates. Unlike PCBs and PBDEs, phthalates are able to significantly affect thyroid
function in exposed subjects. Indeed, several studies have described a correlation between
urinary levels of phthalates and thyroid function. In particular, some studies have described
a negative association between urinary phthalates and serum-free and total T4 [47,54].
Moreover, other studies have indicated that urinary phthalates are positively associated
with serum TSH [55], while another study found a positive correlation between phthalate
intake and serum TSH in Taiwanese children [56].

Interestingly, phthalates may behave as both a thyroid receptor (TR) agonist and a TR
antagonist [57].

Bisphenol A. Some recent epidemiological studies indicate that BPA exposure may
either enhance [58,59] or decrease [55,60] serum T4 levels in humans. These observations
are in line with in vitro data showing that BPA is a weak ligand for TRs, therefore acting
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as an indirect antagonist [61,62], and may also interfere with thyroid hormone action by a
nongenomic mechanism [63].

The parathyroid gland has recently been suggested as a target for EDC action [61]. A
panel of EDCs has been tested in human parathyroid tumors by metabolomics and mass
spectrometry, showing that PCBs, PBDEs, and dichloro-diphenyl-trichloroethane (DDT)
derivatives were associated with parathyroid tumor growth, having an agonist hormonal
receptor action, and were negatively correlated with patients’ serum calcium [64]. Further
studies are needed to confirm the role of EDCs in the parathyroid gland.

Take home message: Much evidence indicates that a variety of natural and industrial
chemicals may interfere with thyroid hormone synthesis, transport, metabolism, and
clearance acting as receptor agonists or antagonists. Other chemical compounds, such as
PCBs and PBDEs can act as hormone modulators. The final effect of exposure to a single
EDC or a mixture of them may cause a reduction in thyroid hormone levels. The conflicting
results on this aspect may depend on both the predominant effect of the EDC combinations
and the partial adaptive response of the hypothalamus–pituitary–thyroid axis. Hence,
circulating levels of thyroid hormone may not be assumed as the hallmark of EDC effects
on the thyroid system.

3. Adrenal Glands

The adrenal gland is highly sensitive to EDCs due to specific biochemical features
including high vascularization, high lipophilicity due to fatty acid contents (steroid hor-
mones), and the presence of cytochrome P450 enzymes that produce free radicals and toxic
reactive compounds [65]. The human adrenocortical cell line H295R has been used to assay
many EDCs because it expresses all the enzymes necessary for steroidogenesis [66].

EDCs induce adrenocortical toxicity by stimulating or inhibiting steroidogenic en-
zymes such as the steroid acute regulatory protein (StAR), aromatase, 3β-, 11β-, and
17β-hydroxysteroid dehydrogenases [67,68]. EDCs with inhibitory effects on adrenal
steroidogenesis include etomidate, which was the first EDC identified, directly inhibit-
ing 11β-hydroxylase and consequently cortisol synthesis [69], as well as mitotane [70],
ketoconazole [71], cardiac glycosides [72], nitrofurans [73], and astazene [74]. By contrast,
other agents have proved to increase the activity of steroidogenesis enzymes; one of these
agents is PCB126, which can stimulate aldosterone biosynthesis and increase expression of
the angiotensin 1 (AT1) receptor, enhancing the angiotensin II responsiveness of adrenal
cells [75]. Similarly, lead has been reported to increase aldosterone synthesis, upregulating
the 11β-hydroxylase 2 [76]. Further, the herbicide (2-chloro-s-triazine herbicides) stimulates
expression of CYP19, which encodes aromatase, increasing adrenal estrogen secretion [77].

Recent studies have investigated the effects of the pesticide DDT at high and low
doses, proving it to be toxic and disruptive for the glomerulosa and reticularis zones. The
zona fasciculata was less damaged by low (supposedly non-toxic) exposure to DDT and its
metabolites but affected by toxic levels of exposure [78]. A study on prenatal and postnatal
exposure to low doses of DDT showed retarded development of the reticularis zona in
treated rats compared to controls, impairing sexual development, due to low expression
of β-catenin [79]. Another study showed that prenatal and postnatal exposure to low
doses of DDT reduced the development of the adrenal medulla and synthesis of tyrosine
hydroxylase, resulting in low epinephrine secretion [80].

Exposure to an antifungal agent, triadimefon, was tested in pregnant female rats. It
resulted in inhibition of development of the adrenal cortex in male fetuses secondary to
inhibition of synthesis of steroid hormones [81].

Recently, in addition to chemical EDCs, an important role of non-chemical compounds
has emerged, such as artificial light at night (ALAN). Chronic exposure to ALAN, even
for a short duration, activates the hypothalamus–pituitary–adrenal (HPA) axis, increasing
glucocorticoid concentrations, disturbing the circadian rhythm [7]. Currently, there are
no reported effects of radiation exposure to the adrenal gland, which appears to be quite
resistant to radiation exposure [82].
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Other chemical compounds, able to modulate adrenal cell signaling pathways include
phytoestrogens and xenoestrogens, which can indirectly impact adrenal steroidogenesis [83].

Take home message: EDCs have a significant impact on adrenal steroidogenesis.
They can act as receptor antagonists directly inhibiting 11β-hydroxylase and consequently
cortisol synthesis or agonists stimulating aldosterone biosynthesis by regulation of AT1 or
11β-hydroxylase 2 receptors. Further, some of them can stimulate the expression of CYP19,
increasing adrenal estrogen secretion. Non-chemical compounds including ALAN and
chemical agents such as phytoestrogens and xenoestrogens can act as hormonal modulators.

4. Pancreatic Beta-Cells

Very little is known about the pattern of interaction between endocrine disruptors
and pancreatic β-cell function. The most important evidence of interaction comes from
in vitro studies. According to the latter, xenoestrogens and in particular BPA are shown to
affect the signaling system of pancreatic β-cells by binding to the non-classical membrane
estrogen receptor at low, nanomolar concentrations [11,84]. An in vivo experiment aimed
at evaluating the impact of BPA on pancreatic β-cell function demonstrated that acute
administration of BPA in adult male mice induced a rapid change in glycemic balance,
with by a decrease in glucose levels and a rise in insulin levels. Moreover, after four-day
administration of BPA a significant intracellular content of insulin was found in treated
mice compared to untreated ones. When testing the mice for glucose tolerance, peripheral
insulin resistance was detected [85–87].

The potentiality of EDCs to affect the other important components of pancreatic islets,
i.e., alpha-cells, when low doses of BPA were added in cultured intact islets has also been
evaluated, which caused an impairment of Ca2+ signals exclusively in pancreatic alpha
cells. The latter cells were also negatively influenced in their secretion when low glucose
levels were reached, demonstrating alteration in the regulation of the crosstalk between
alpha and β-cells. These data confirmed that pancreatic cells are target cells for endocrine
disruptors, determining a stimulatory effect of insulin secretion and an inhibitory effect
on alpha cells, drastically reducing intracellular calcium ion oscillations induced by low
glucose levels [12,87].

From these observations it is conceivable that in type 1 diabetes mellitus (T1DM) the
autoimmune process affecting β-cells may be initiated by environmental contaminants,
such as per- and poly-fluoroalkyl substances (PFAS). In the literature, it has been reported
that in children and adolescents PFAS levels were higher at the onset of diabetes than in
healthy controls. It has also been hypothesized that prenatal exposure to PFAS causes
alteration of the lipid profile in infants, which in itself could increase the risk of insular
autoimmunity in T1DM [13,15,16].

However, it is very difficult to demonstrate a direct effect of exposure to EDCs on a
disease, especially when a large number of years elapse [11,12]. We can report the case
of a teenager who after having practiced a diet only based on fish to lose weight showed
alopecia and the typical signs and symptoms of T1DM with high-titer positivity of the
autoantibodies versus pancreatic β-cells. We assayed several EDCs in the hair, blood, and
urine and found a high amount of mercury in all the samples, but when we tested her
family, we also found high values in their samples and yet they did not develop T1DM
(personal unpublished data). Another case is that of a mother and daughter who developed
T1DM a few days apart after working in a wine cellar. The list of EDCs that could exert
a β-cytotoxic effect was very complex, although the negativity of the blood samples for
known viruses was confirmed both at the onset and in the following months (personal
unpublished data).

Due to the non-persistent nature of EDCs, the consistency of these chemicals has been
hypothesized but a wide range of within-person variability was confirmed. It remains
unclear how ubiquitous exposure levels change over time and how consistent exposure
remains over the course of multiple years [11,19,88–90].
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Although there are not many up-to-date studies in the literature, the first in vitro
experiments have confirmed the hypothesis that EDCs can act directly or indirectly on the
pathogenesis of diabetes, which is certainly the largest epidemic worldwide [11,85].

Beta cells are metabolically highly active, providing a defense mechanism which plays
a particularly important role in the maintenance of cell function and survival. Studies
conducted on rodent β-cell lines evaluated the effects of chemical compounds including
streptozotocin, alloxan, ninhydrin, and hydrogen peroxide [88].

Alloxan monohydrate (5,6-dioxyuracil or 2,4,5,6-tetraoxypyri-midine), an oxygenated
pyrimidine derivative, has shown to be toxic for β-cells mimicking glucose in structure
and showing a low-affinity GLUT2 glucose transporters. Alloxan enters β-cell and it
is metabolized in dialuric acid. Dialuric acid is oxidized to form hydrogen peroxide,
superoxide radicals, hydroxyl radicals, and an alloxan radical, which is an important
toxic intermediate in the redox cycling reactions. Ninhydrin, a stable analog of alloxan
is non-diabetogenic in rats. Interestingly, it shows a different toxicity depending on its
concentrations. At low concentrations, it is toxic for pancreatic β-cells only, while at high
concentrations, it is toxic for all types of endocrine cells and exocrine pancreatic cells [91].

By contrast, streptozotocin (2-deoxy-2-([(methylnitrosoamino) carbonyl] amino)-D-
glucopyranose), an antibiotic and antineoplastic agent produced by streptomyces achromo-
genes, is diabetogenic. It is an alkylating agent. Like alloxan, it enters β-cells via low-affinity
GLUT2 glucose transporters and has been shown to be nontoxic to RINm5F cells, which
do not express GLUT2. Prolonged exposure to streptozotocin causes an alkylation of
mitochondrial DNA and proteins, resulting in a decreased insulin secretion. Thus, strepto-
zotocin causes β-cells apoptosis by excessive DNA damage. A study conducted on human
1.1B4 cells has shown the molecular mechanisms of toxicity and cell damage mediated by
streptozotocin, alloxan, ninhydrin, and hydrogen peroxide. In addition, it has shown new
horizons for the treatment and possible prevention of β-cell loss in diabetes [91,92].

Several studies have suggested that exposure to chemical agents results in increased
degranulation and/or a loss of β-cell identity as supported by the defect in insulin pro-
duction and the presence of polyhormonal cells in the pancreases of patients with T1DM.
These findings tend to support the concept of a “β-cell identity crisis”, where β-cells dedif-
ferentiate into other endocrine cells (α-cells or δ-cells) as a defense mechanism [93]. Along
with this β-cell identity crisis, levels of ‘semi’ β-cells that only express chromogranin A
(chromogranin-positive, hormone-negative (CPHN) cells) are increased in the pancreas
from patients with T1DM and T2DM and they are scattered throughout the pancreas re-
gardless of inflammation level. More recent findings suggest that the primary functions
of cytokines and nitric oxide are to protect islet endocrine cells from damage, and only
when regulation of cytokine signaling is lost does irreversible damage occur. In support
of this hypothesis, large increases in serum IL-1β values have been observed in response
to an acute infection or to BPA. Beta-cell islets are highly vascularized and receive the
majority of the pancreatic blood flow. This vascular architecture is essential for the control
of glucose homeostasis, but also leads to β-cells being bathed in IL-1β during an infection or
environmental insult. Furthermore, β-cells have limited capacity to proliferate. Therefore,
if cytokines were solely damaging for β-cells, we might expect a higher incidence of T1DM
than currently observed. In this light, cytokines may stimulate protective gene expression
in β-cells, and, through production of nitric oxide, protect β-cells from apoptosis or viral
infection or environmental insult [94].

Take home message: Pancreatic cells are target cells for EDCs, as alloxan compounds
and streptozocin, having a stimulatory effect on insulin secretion and an inhibitory effect
on alpha cells. Other agents, such as xenoestrogens and BPA can be involved in the
pathogenesis of T1DM acting like hormone modulators in the cell signaling pathway.
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5. Testes

Most EDCs have an estrogenic or anti-androgenic function [95–98].
The decrease in male semen quality has become a major concern in European countries.

Various studies have suggested a 7% decrease in fertility [98] due to reduced hormone
concentrations as well as worsening semen parameters [99]. A progressive reduction
in testicular volume in association with the worsening of seminal parameters has also
been reported. These changes could be related to increasing exposure to environmental
contaminants [99]. Many studies have demonstrated a significant worsening in semen
parameters in animals exposed to EDCs [100]. As stated before, EDCs classically act on the
AR or the ER. Their effects on the male reproductive system are due to interference with
production by, or functioning of, steroid hormones, in particular inhibition of 5α-reductase
and aromatase activities [96].

Phthalates are widely employed in many commercial products and have antiandro-
genic and estrogen-like effects that make them act as EDCs. Some studies have demon-
strated a reduction in androgen concentrations [101] and a decline in semen quality fol-
lowing exposure to phthalates [102]. In ex vivo studies, sperm motility was decreased
and long-term exposure to phthalates determined cytotoxicity [103]. Studies in human
populations have confirmed the reduction in sperm motility [102].

BPA is widely employed in manufacture of consumer products. It binds to ER-α and -β,
thereby determining some estrogenic activity [104] that potentially interferes with testicular
steroidogenesis; thus, making it a molecular target of BPA. In experimental studies BPA
binds AR, the thyroid hormone receptor, and the peroxisome proliferator-activated receptor
(PPAR)-γ [105]. BPA seems to be one of the greatest agents of interference with testicular
function and may impair either testicular development or testosterone production [98].
In animal models, BPA is not only able to reduce testosterone concentrations but also to
decrease sperm counts and motility and to worsen DNA damage [106]. In humans, many
studies have investigated the link between urinary BPA levels and semen parameters but
the results have been inconclusive [96].

During the last few decades many clinical studies have defined a harmful effect of
heavy metals on testicular function. Elevated mercury concentrations have been related
to infertility, with alterations of sperm count, motility, and morphology. These effects
are caused by detrimental effects on steroid hormone production and directly on Leydig
cells [107].

Lead (Pb) may also be involved in alteration of fertility because of a reduction in
seminal parameters. Moreover, patients with high Pb seminal concentrations had a lower
rate of fecundation with PMA. These alterations are due to multiple complex mechanisms
such as DNA fragmentation and many others [107].

Cadmium (Cd) can be found in waters or inhaled through cigarette smoking. It
has been suggested it is a potential disruptor of androgen action [108], and besides its
proatherogenic effects it may act as a potential chemical reducing testosterone production.
It seems that low Cd levels are also related to alterations in spermatic parameters because
of Cd accumulation in sperm [109]. Despite this, no studies that relate cadmium and
impaired testicular function [109] are present in the literature, so this aspect needs further
investigation in humans.

Recently, the incidence of male congenital development defects of the reproductive
system (i.e., hypospadias), infertility, and testicular germ cell cancer (TGCC) has been
growing, especially in developed countries [97]. Many studies using animal models have
confirmed EDC toxic effects, but human studies have been inconclusive in demonstrating a
causal link [97]. However, the strongest evidence is that EDC exposure during the prenatal
period increases the risk for reproductive disorders [110].

In particular, it seems that phthalates could interfere with normal testicular develop-
ment in rodent models, but the same effects have not been reported in human studies even
though antiandrogenic effects occur. PCBs have been related with urogenital abnormal
development in animal models [111]. The results on BPA are controversial [95]. Moreover,
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it seems that phthalates and BPA are negatively associated to adrenarche and pubarche
onset whenever exposure occurs during fetal growth [112].

Other compounds such as perfluorooctanoic acid (PFOA) and perfluoroctanesulfonic
acid (PFOS) seem to interfere with the Leydig and Sertoli cell functions, respectively [113,114].

During puberty, many hormonal and clinical changes occur because of hypothalamus–
pituitary–gonadal axis activation. Exposure to several compounds could interfere with
puberty and thus delay it. Similar effects are exerted by dioxin-like compounds, organochlo-
rine pesticides, and Pb [115]. By contrast, PCBs could bring puberty forward [116]. Finally,
fetal exposure to PCBs seems to negatively influence genital maturation [117].

The distance between the anus and the genitalia—anogenital distance (AGD)—could
be considered a marker for EDC exposure [118] and a predictor for reproductive disorders
in adult life [119].

In murine models, phthalates, PCB, and other compounds with AR antagonist action
(i.e., vinclozolin) have been reported to affect male AGD [95] independently from the
doses tested [118,119]. Controversial results have been reported in epidemiological studies
involving humans [95]. Even though in some studies no correlation between AGD and
EDCs were reported, Swan et al. suggested that AGD was inversely related to urinary
concentrations of phthalate metabolites in 134 newborns [120]. This result was recently
confirmed in 2015 [121].

PFAS, due to their long half-life, could be considered a marker of prenatal exposure
despite measurement in newborns. Di Nisio et al. related direct exposure to them with
a 10% reduction in AGD and penile length [122]. Moreover, maternal exposure to PCBs
was associated with reduced penile length by Guo et al. [123]. However, this result is
not univocal: Leijs et al. did not find any correlation between penile length, PCBs, and
dioxin-like compound exposure [124].

As regards testicular cancer, evidence suggests that EDC exposure is one of the main
reasons for the 2–4-fold increase in the incidence of TGCC during the last 50 years [125].
1,1-dichloro-2,2-bis- ethylene (p,p’ DDE), a DDT metabolite, and PCBs serum levels have
been related to TGCC by some studies, while others have failed to establish a correlation,
so the results remain ambiguous [97]. Evidence of the occurrence of cryptorchidism and
hypospadias is poor. Some studies have related BPA and phthalic acid to hypospadias [126].
Similarly, pesticide exposure has been related to hypospadias and cryptorchidism by
Carbone et al. [127]. By contrast, Main et al. did not relate phthalate monoesters to cryp-
torchidism [128]. Similarly, PCBs have not been related to cryptorchidism [129]. Despite
extensive research on EDC exposure, information about the consequences is still limited and
a matter of debate, due to the limited number of human studies. However, animal models
have shown the different mechanisms through which EDCs [130,131] could interfere with
endocrine systems and how these alterations could be inherited by the next generations.

Take home message: In recent decades, worsening of semen quality related to envi-
ronmental exposure to different pollutants and interfering agents remains controversial.
Although robust evidence on the impact of EDCs on seminal quality in humans is lack-
ing, initial data suggest that chronic exposure to phthalates, BPA, dioxin-like, Pb- and
Cd-compounds represent a potential threat for male fertility, due to their interaction with
AR or ER and need attention from the andrologist in order to pursue preventive strategies
during adolescence and early adulthood.

6. Ovaries

EDCs, chemical, and non-chemical hormonal modulators have been reported to affect
the female reproductive system.

ALAN is an environmental endocrine modulator that reduces melatonin secretion,
increases estrogen/progesterone signaling, and reduces oocyte oxidation [7,132].

Non-ionizing (radio-frequency and extremely low-frequency) electromagnetic field
radiation exposure during embryonic development reduces release of estradiol and the
ability to reach a developmental stage, an essential prerequisite for reproductive success,
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and to resume meiotic maturation on in vitro mouse pre-antral follicles, impairing mam-
malian female reproductive potentiality [133]. Furthermore, it was observed in rats that
the nuclei of the oocytes became smaller and changed shape, ovarian follicles underwent
atresia and alteration, and differentiation of oocytes and folliculogenesis were affected,
resulting in decreased ovarian reserves, leading to infertility or reduced fertility [134].

Ionizing radiation effects, such as in oncological radiotherapy, are mainly local. Pelvic
irradiation has a gonadotoxic action with long-term effects leading to ovarian and uterine
carcinoma, ovarian insufficiency with follicular atrophy and follicular storage reduction,
and pubertal arrest, resulting in permanent or transitory reduction in fertility. The extent of
the damage depends on several factors such as younger age, exposure dose and time, and
associated chemotherapy, if present [135]. Brain irradiation can reduce pituitary perfusion
disrupting the hypothalamus–pituitary–ovary axis, leading to precocious puberty [8].

Stress has been studied as a non-chemical endocrine modulator for the reproductive
system in mice, able to activate the hypothalamus–pituitary–adrenal axis [136,137]. The
activated hypothalamus–pituitary–adrenal axis suppresses the hypothalamus–pituitary–
ovarian axis [138]. Moreover, stress can induce impairment in follicular and oocyte devel-
opment [139], blockage of ovulation, reduction in steroidogenesis [138], and an irregular
estrus cycle [140]. Stress also results in oxidative damage due to increased production
of ROS in the follicular fluid environment and significant reduction in the antioxidant
enzymes SOD, GST, GPx, 3β-HSDH, and breaks in the DNA in the ovary, resulting in an in-
crease in the percentage of apoptotic granulosa cells and early ovarian senescence [140,141].
Stressed rats showed a significant decrease in the number of small follicles, and serum
estradiol, AMH, and GnRH levels, prolonged estrous cycle, and increased serum FSH
levels. Furthermore, ovarian stroma revealed severe fibrosis, cortical thickening, and a
disorganized structure, while atretic follicles were markedly increased and the corpus
luteum exhibited fibrosis and an increase in number [142,143].

Classically, EDCs are the most widely studied of endocrine disruptors. Exposure
to BPA can cause female fertility problems related to impairment of folliculogenesis and
steroidogenesis, alterations in ovarian morphology, changes in uterine morphology and
function with endometriosis, grafting and embryo implantation difficulties [144–147]. BPA
can interfere with steroidogenesis with dose-dependent and species-dependent effects,
as described in several articles conducted on sheep, zebrafish, and mice [148,149]. In
particular, studies carried out on interstitial cells of rat ovarian theca have shown that
exposure to low doses of BPA (0.1–10 µM) increases progesterone levels with increased
expression of cytochrome P450 enzymes involved in steroidogenesis. By contrast, exposure
to high doses of BPA (1–100 µM) leads to a reduction in aromatase, resulting in reduced
levels of estradiol [150].

In addition, at high doses (above 200 µM), BPA determines activation of the aryl
hydrocarbon receptor (AHR) signaling pathway with reduced expression of the enzymes
involved in synthesis of estradiol and increased expression of the enzymes that metab-
olize it [151]. Human studies have shown that exposure to BPA, even at low doses, is
able to modify the morphology of granulosa cells and reduce the levels of testosterone,
progesterone, estrogen, and gonadotropins [152]. Finally, BPA is able to mimic the action of
estrogen by bonding competitively with ERs and thus increasing estrogen function. This
action mechanism causes a change in expression of ERs and consequently of their target
genes, with dysfunction of the female reproductive system [153].

In vitro studies have shown that Di- (2-ethylhexyl) phthalate (DEHP) promotes pri-
mordial follicle recruitment and follicle growth via the phosphatidylinositol 3-kinase (PI3K)
pathway. This effect is likely to be mediated by its metabolite: mono- (2ethylhexyl) phtha-
late (MEHP) [154]. Moreover, exposure to DEHP leads to a reduction in estradiol levels,
probably through lower expression of Cyp19a1, as confirmed by in vivo (mice) and in vitro
studies [155]. The pesticide methoxychlor is able to increase the expression of AMH which,
in physiological conditions, acts by recruiting the primordial follicle [156].
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Interesting, especially for its transgenerational effects, is 2,3,7,8-Tetrachlorobenzo-p-
dioxin (TCDD), which is generated, in a collateral manner, in the processes of pesticide
production and waste incineration. In this regard, in 2020, Yu K. et al. showed that
exposure of female rats to TCDD caused an increase in serum AMH levels with reduction
of primordial follicles in the second generation [157]. Furthermore, TCDD also interferes
with the pituitary–ovary axis, modifying the secretion of prolactin (PRL) in the follicular
and luteal phases and enhancing luteinizing hormone (LH) secretion in the follicular
phase [158].

Phenols induce apoptosis and autophagy of the cells of the rat ovary granulosa; thus,
promoting ovarian failure and follicular atresia [159]. Furthermore, Yu PL et al. studied the
effect on rats of exposure to low doses of nonylphenol (NP), highlighting an increase in
progesterone expression in granulosa cells [160]. Studies carried out on pregnant women
have analyzed the effect of NP on the hypothalamus–pituitary–ovary axis, revealing an
inversely proportional relationship between urinary NP levels and plasma concentrations
of LH [161]. Exposure to high concentrations of NP in the second trimester of pregnancy
can also cause small gestational age (SGA) and low neonatal weight and body length at
birth [161,162].

Among heavy metals, the best known are Pb, arsenic, and mercury (Hg). In particular,
Pb affects the morphology of the ovary and reduces the number of primary follicles,
interfering with follicular growth [163,164]. Cadmium (Cd) can cause impaired expression
of hypothalamic genes, high concentrations of LH, and low concentrations of AMH in
plasma, and abnormal follicular growth with associated reduction of antral follicles. The
main results of these effects are alteration of the estrus cycle, premature ovary failure (POF),
and polycystic ovary syndrome (PCOS) [165,166].

With regard to Hg, studies have shown that it can increase the incidence of sponta-
neous abortion, preterm birth, and congenital malformation. Furthermore, in 2019, a study
carried out on rats revealed that Hg can also impair the estrous cycle and follicular growth
with decreased antral follicles and increased follicular atrophy, as well as increased cystic
ovarian follicles [167–169].

Another important EDC is diethylstilbestrol (DES), a non-steroidal estrogen used in
the past as an anti-abortive drug. It has a transgenerational action as exposure to DES
during pregnancy can impair development of the reproductive system, increasing the risk
of developing cervical and/or vaginal clear cell adenocarcinoma in daughters [170,171].

Genistein is a phytoestrogen isoflavone that acts by binding to the estradiol receptor
and increasing its expression in the ovary. This phytoestrogen determines an impairment of
folliculogenesis, decreases the number of follicles (primordial, primary, and secondary), and
promotes recruitment of antral follicles [172,173]. Moreover, some studies have revealed a
non-monotonous dose-dependent effect of genistein in the production of steroid sex hor-
mones. In this connection, low serum levels of genistein cause an increase in progesterone,
while high concentrations of genistein result in its reduction [174,175].

EDC mixtures can damage several metabolic processes, even at low doses when
compared to the effects of the single chemical agents [176,177]. They can mimic the
normal hormone (LH, FSH, testosterone, and estrone) functions, hence disturbing the
normal reproductive process and interfering with female sexual maturity and the estrogen
cycle [178].

In vitro exposure of cultured mouse follicles to a mixture of phthalate metabolites
(MEP, MEHP, MBP, MiBP, MiNP, and MBzP) upregulated Cyp1a1, an estradiol-metabolizing
enzyme, increased expression of Star, while it decreased all downstream enzymes [179].

A mixture of phthalates (MEP, MEHP, MBP, MiBP, MiNP, and MBzP) affects cell cycle
regulators, apoptotic factors, and several receptors and receptor-associated genes, inhibiting
growth of mouse antral follicles [180]. Likewise, prenatal exposure to a different quinary
phthalate mixture (DEP, DEHP, DBP, DNOP, DIBP, and BBP) induced increased uterine
weight, cystic ovaries, disrupted the estrous cycle, and reduced fertility in female rats [180].
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A combination of microplastics and heavy metals caused significant alteration in the
hypothalamic–pituitary–gonadal axis and consequent follicular atresia with empty follicles
in female fish [181].

In rats, a mixture of soy isoflavones (genistein + daidzein + glycetin) decreased the
primordial and primary follicle number, and increased follicular atresia, large antral follicles,
and multiple and binuclear oocytes. Moreover, less estradiol and progesterone and more
cholesterol and cortisol are observed in exposed rats [182].

Furthermore, EDC mixtures can have transgenerational phenotype effects, not pro-
duced directly by the chemicals to which subjects are exposed [183,184]. Ternary plasticizer
mixtures (BPA + DEHP + DBP) aggravated the epigenetic transgenerational inheritance in
adult rats. Epimutations, i.e., differential DNA methylation regions in gene promoters, and
a significant increase in abnormalities, such as polycystic ovaries, primordial follicle loss,
and primary ovarian insufficiency, were observed in subsequent generations [185,186].

Moreover, pharmaceutic mixtures (CBZ + DIC + EE2 + MET and EE2 + NOR) are
believed to disturb the androgen/estrogen level balance, reducing the age at first reproduc-
tion, limiting reproductive fertility, and hence reproductive success. A reduced number of
offspring was observed in crustaceans for up to four generations [183,187].

In female juvenile trout, a pharmaceutic mixture of paracetamol, carbamazepine,
diclofenac, irbesartan, and naproxen significantly increased serum 11-ketotestosterone and
estradiol, ovarian expression of Esr1, and steroidogenic factors Cyp17a1, Cyp19a1, and
Hsd11B [188].

Take home message: Non-chemical agents, such as ALAN, radiation, and stress have
an inhibitory effect on estrogen production and signaling, acting as hormone modulators.
EDCs can act in a non-monotonous dose-dependent way, stimulating or inhibiting ER. No-
tably, BPA and ginestein at high doses can have an inhibitory effect on ER and at low doses
can have a stimulatory effect on ER. Further, ECD mixtures can have transgenerational
effects modifying the phenotype of offspring generations.

7. Conclusions

We reviewed current knowledge of EDCs and chemical and non-chemical hormone
modulators in the endocrine system. The complex mechanisms of regulation of endocrine
disruptors and endocrine function are still only partially investigated. There are many
difficulties and limitations in research on EDCs and this may be related to difficulty in
translation of what happens in humans. Clear evidence was obtained from animal, bio-
chemical, and human studies that some specific chemicals may affect hormone activity
with important consequences for public health. However, the critical question is whether
the level of exposure humans encounter is sufficient to produce demonstrable and harmful
effects, and this presently remains unclear.

Long-term studies are required to clarify and explain the dose–effect relationship
between chemical endocrine disruptors and endocrine disease. EDCs may interfere with
the endocrine system at different steps of hormone production, regulation, transport, and
action, acting as antagonists or agonists of hormone action (Figure 1).

Several lines of research are ongoing about identification of reliable biomarkers of
hormone action in human tissues to be used in epidemiological studies. Finally, given the
importance of all hormones in regulating many body functions, there is an urgent need for
novel biomarkers, detectors, and assays for early detection of EDC effects.

Non-chemical agents, such as ALAN, radiation, stress, and temperature can impact
the endocrine system acting as hormone modulators, while chemical agents can have a
disrupting or hormone modulating action.

In the near future, it would be necessary to use specific methods to screen the ago-
nist/antagonist potential of EDCs on endocrine receptors and the hormonal modulation
effect of chemical and non-chemical agents, in order to start a targeted therapy.
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