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Abstract: We here investigated the anti-inflammatory activity of a polymethoxylated flavone-containing
fraction (PMFF) from Citrus sinensis and of a prenylflavonoid-containing one (PFF) from Humulus
lupulus, either alone or in combination (MIX). To this end, an in vitro model of inflammatory bowel
disease (IBD), consisting of differentiated, interleukin (IL)-1β-stimulated Caco-2 cells, was employed.
We demonstrated that non-cytotoxic concentrations of either PMFF or PFF or MIX reduced nitric
oxide (NO) production while PFF and MIX, but not PMFF, also inhibited prostaglandin E2 release.
Coherently, MIX suppressed both inducible NO synthase and cyclooxygenase-2 over-expression
besides NF-κB activation. Moreover, MIX increased nuclear factor erythroid 2–related factor 2 (Nrf2)
activation, heme oxygenase-1 expression, restoring GSH and reactive oxygen and nitrogen species
(RONs) levels. Remarkably, these effects with MIX were stronger than those produced by PMFF
or PFF alone. Noteworthy, nobiletin (NOB) and xanthohumol (XTM), two of the most represented
phytochemicals in PMFF and PFF, respectively, synergistically inhibited RONs production. Overall,
our results demonstrate that MIX enhances the anti-inflammatory and anti-oxidative effects of the
individual fractions in a model of IBD, via a mechanism involving modulation of NF-κB and Nrf2
signalling. Synergistic interactions between NOB and XTM emerge as a relevant aspect underlying
this evidence.

Keywords: polymethoxylated flavones; prenylflavonoids; IBD; inflammation; oxidative stress; phy-
tochemicals

1. Introduction

Inflammatory bowel disease (IBD) is a group of relapsing, idiopathic and chronic
inflammatory conditions affecting the gastrointestinal tract [1,2]. It is globally prevalent,
with increasing incidence in the newly industrialized countries and strictly related to mass
consumption of refined sugars and ultra-processed food items, typical of the Westernized
diets [3].
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While the aetiology of IBD must be considered multifactorial and not clear yet, its
development markedly relies on a vicious cycle between oxidative stress and inflammation
that eventually impairs the gut barrier structure and function [2,4].

Indeed, alterations of the endocellular redox environment can generate a dysfunc-
tional activation of specific, redox-dependent signal transduction pathways that generates
constant and aberrant crosstalk between the immune cells and the intestinal epithelial
ones [4–6]. These molecular events are orchestrated by an amazingly complex cellular
machinery involving the activation of several redox-dependent transcription factors, with
nuclear factor erythroid 2-related factor 2 (Nrf2) and nuclear factor kappa-light-chain-
enhancer of activated B cells (NF-κB) being key players [7,8]. The first one is responsible for
maintaining the endocellular redox balance by activating the antioxidant response element
(ARE)-dependent transcription of antioxidant defence enzymes such as heme oxygenase-1
(HO-1), superoxide dismutase-1 (SOD-1) and glutathione S-transferases (GSTs) [9]. On
the other hand, NF-κB activation leads to the elaboration of a proinflammatory media-
tor system, including tumour necrosis factor-α (TNF-α), interleukin (IL)-1β, IL-6, IL-8,
prostaglandin E2 (PGE2) and to the over-expression of crucial, pro-inflammatory enzymes
such as inducible nitric oxide synthase (iNOS) and cyclooxygenase 2 (COX-2) [10].

Amongst the pro-inflammatory mediators, IL-1β has repeatedly been reported to play
a key role in the intestinal inflammatory response [11]. IL-1β is, indeed, a multifunctional
cytokine released by several cell types, including monocytes, macrophages, neutrophils and
endothelial cells. Increased levels of IL-1β have been found in the intestinal tissue of IBD
patients and linked to higher disease severity [12]. Accordingly, a number of effects of IL-1β
on intestinal epithelium have been reported both in vitro and in vivo. Indeed, Il-1β activates
specific, redox-sensitive, signal transduction pathways that increase the expression of a
wide range of pro-inflammatory genes such as those encoding for IL-8, IL-6, TNF-α and
iNOS [13,14]. Moreover, a dysfunctional intestinal epithelium can also contribute to the
pathogenesis of colitis-related cancer, non-alcoholic fatty liver disease, cardiovascular and
kidney diseases and cognitive impairment [15]. All considered, targeting inflammation
can be regarded, therefore, as a valid strategy to maintain and improve both intestinal and
overall health.

Therapeutical control of IBD is unfortunately limited to a pharmacological approach
(corticosteroids and immunomodulators) that is not free from adverse drug reactions [1].

A growing body of evidence strongly suggests that the administration of phytochem-
icals can support pharmacological therapies, especially for complex and multi-factorial
pathological conditions such as inflammation [16]. Indeed, combining anti-inflammatory
phytochemicals with standard drugs may reduce drug toxicity and realize a more effective
treatment. Moreover, also the combined use of different phytochemicals, targeting different
checkpoints of inflammatory diseases, could bring about an enhanced therapeutic outcome
by producing synergistic interactions [17].

Over the last decades, citrus (Citrus sinensis) fruits and hop (Humulus lupulus) have
been evaluated for their nutraceutical and health-promoting potential and reported to exert
a plethora of beneficial effects in several pathological conditions, including IBD [18–20].
The anti-inflammatory effects of citrus and hop strongly depend on their biologically
active polyphenols, able to interfere with crucial, redox-dependent signal transduction
pathways [21,22].

Flavonoids in citrus juice mainly consist of flavanones and flavones, hesperetin, hes-
peridin, and naringin are the most abundant flavanones. Among the flavones, tangeretin
(TGT) and nobiletin (NOB) are commonly found as polymethoxylated flavones (PMF) in
citrus [23,24]. PMF are characterized by multiple methoxy (-OCH3) groups attached to the
flavone structure [25]. The number and positions of methoxy groups in PMF significantly
influence their bioactivity, with higher methoxy content enhancing hydrophobicity and
biological effects [26]. PMF are well-known for their diverse therapeutic properties, includ-
ing anti-cancer, anti-inflammatory, anti-dysmetabolic, neuroprotective, antimicrobial, and
antioxidative activities [26–29].
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Hops are a unique source of natural prenylated flavonoids (PF) [30]. These polyphe-
nols are characterized by the presence of a prenyl group (-C5H8) attached to different
positions of the aromatic ring of flavonoids, such as carbon 6 or carbon 8 [31]. The presence
of the prenyl group in these compounds plays a significant role in their biological activities
enhancing the hydrophobic nature of the molecules and modulating their interactions with
target sites such as biomembranes and/or proteins [32]. PF are redox-active molecules able
to modulate endocellular redox milieu and thus the redox-dependent signal transduction
pathways sustaining the inflammatory response and the dysmetabolic conditions [33,34].
Accordingly, PF exhibits various biological effects including antioxidant, antiviral, antibac-
terial, antidiabetic, anti-inflammatory, and estrogenic activities [35–43].

In the light of the strict interconnections between IBD, oxidative stress and inflam-
mation and considering the anti-oxidative and anti-inflammatory properties of PMF and
PF, we here investigated whether these polyphenols subclasses, alone or in combination,
display protective effects in an in vitro model of IBD. To this aim, we used selected fractions
of PMF (PMFF) and PF (PFF) isolated from the extracts of Citrus sinensis and Humulus
lupulus respectively, either alone or in combination (MIX) as elsewhere reported [44,45].
Moreover, differentiated Caco-2 cells, an established model of the human intestinal barrier,
were exposed to IL-1β either in the absence or in the presence of PMFF or PFF or MIX. A
number of inflammatory parameters, including pro-inflammatory mediators (NO, PGE2),
inducible inflammatory enzymes (iNOS and COX-2) and redox-dependent transcription
factors (NF-κB and Nrf2) were evaluated. Finally, considering that NOB is one of the major
compounds in the PMFF and Xanthohumol (XTM) is one of the main abundant compounds
identified in the PFF, we investigated the synergistic effects of NOB and XTM on reactive
oxygen and nitrogen species (RONs) levels.

Overall, our results demonstrate for the first time that the association between PMFF
and PFF enhances the anti-inflammatory and anti-oxidative effects of the individual frac-
tions in an in vitro model of IBD. The synergistic interactions between NOB and XTM
emerge as a relevant aspect underlying this evidence. A mechanistic basis for the observed
effects, involving inhibition of NF-κB signalling and stimulation of the Nrf2/HO-1 pathway,
is also suggested.

2. Materials and Methods
2.1. Reagents

Unless otherwise specified, all reagents and chemicals were purchased from Merck
(Milan, Italy) and of the highest purity grade available.

2.2. PMFF and PFF Isolation

PMFF and PFF were isolated from red-orange fruits and hop flowers, respectively,
according to Turdo et al. [35]. Briefly, Citrus sinensis fruits var. Tarocco, grown in Salerno, a
city located in the Campania region, Italy, was collected in the year 2021, hand-squeezed,
and the resulting juice clarified through centrifugation at 15,000× g for 15 min at 25 ◦C and
lyophilized. The hop flowers purchased in a local herbalist’s shop were degreased thrice
with hexane (1:25, w:v). The powdered samples of both preparations were subjected to three
sequential extractions with methanol (MeOH) for a duration of 10 min each. This extraction
process aimed to recover the polyphenolic compounds present in the samples. Finally,
PMFF and PFF were purified by reversed-phase semi-preparative liquid chromatography
as described by Turdo et al. [35].

2.3. Cell Culturing and Treatments

Human, colon adenocarcinoma-derived Caco-2 cells were purchased from Thermo
Fisher Scientific (Milan, Italy) and used between passages 15 and 20. Cells were grown
in 175 cm2 flasks in Dulbecco’s modified Eagle’s medium (DMEM), supplemented with
10% foetal bovine serum (FBS), 1% non-essential amino acids, 10 mM HEPES, 50 units/mL
penicillin, 50 mg/mL streptomycin, and maintained at 37 ◦C in 5% CO2. To obtain fully
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differentiated cells, they were seeded at a density of 1.25× 105 cells/mL in twenty-four-well
plates in DMEM for 21 d. The culture medium was replaced thrice a week. Cell viability
was routinely checked by the trypan blue exclusion method.

Before each treatment, differentiated Caco-2 cells were starved overnight in a serum-
free medium and then placed in DMEM supplemented with 2% FBS. Differentiated Caco-2
cells were, then, either left untreated (control) or stimulated with IL-1β (25 ng/mL) for
either 12, 24 or 48 h. When necessary, cells were preincubated for 1 h with either PMFF or
PFF in a concentration range between 2.5 and 20 µg/mL or with a combination of both
fractions (1:1, w:w, MIX) with each fraction at a concentration of 2.5 µg/mL.

2.4. Cell Viability

The cytotoxicity of PMFF or PFF against differentiated Caco-2 cells was determined by
the MTT colorimetric assay as previously reported [46]. This assay is based on the reduction
in 3-(4,5-dimethyl-2-thiazolyl)bromide-2,5-diphenyl-2-H tetrazolium to purple formazan
by the mitochondrial dehydrogenases of living cells. Briefly, cells were seeded into 96-
well plates (Corning Costar, Milan, Italy) at a density of 2.0 × 104 cells/cm2, incubated
overnight and then treated either in the absence (control) or in the presence of the fractions
for 24 or 48 h. Afterwards, the medium was carefully removed and 200 µL of 5 mg/mL
MTT was added. The supernatant was discarded after 2 h of incubation at 37 ◦C and the
formazan blue formed was dissolved in dimethyl sulfoxide. The absorbance at 565 nm that
characterise the formazan product was measured using a microplate reader (LTek, INNO,
Seongnam, Republic of Korea) and the value of control cells was taken as 100% of viability.
Each experiment was repeated three times in triplicate to obtain the mean values.

2.5. Nitrite Assay

NO released by differentiated Caco-2 cells in the medium was evaluated as nitrite, by
using the Griess reagent as previously reported [47].

2.6. Estimation of Combination Index

The Chou and Talalay method [48] was employed to investigate the combined effect
of NOB and XTM. Differentiated Caco-2 cells were preincubated for 1 h with either NOB or
XTM (in a concentration range between 2.5 and 10 µg/mL) or with MIX, (in a concentration
range between 1 and 8 µg/mL). Cells were subsequently treated with IL-1β (25 ng/mL) for
24 h and NO released was determined.

The Combination Index (CI) was calculated using CompuSyn software, 2005 https://www.
combosyn.com/register_process.php (accessed on 18 July 2023), (ComboSyn, Paramus, NJ,
USA) to define the type of effect. CI is calculated for every fraction affected (f a) value, where
f a is defined as percentage inhibition/100. CI > 1, CI < 1 and CI = 1 indicate antagonism,
synergism and additive effects, respectively.

2.7. PGE2 Assay

PGE2 released by Caco-2 cells in the medium was measured by a PGE2 Enzyme
Immunoassay Kit (Cayman Chemical Corporation, Milan, Italy) in accordance with the
manufacturer’s instructions. Briefly, after treatment, cells were pelleted by centrifugation
at 450× g for 5 min at 4 ◦C. Supernatants were diluted at 1:2.5 with assay buffer. A 100 µL
sample, a 50 µL alkaline phosphatase PGE2 conjugate and a 50 µL monoclonal anti-PGE2
EIA antibody were, then, applied to a goat anti-mouse IgG-containing microtiter plate and
incubated at room temperature for 2 h. After washing, 200 µL of p-nitrophenyl phosphate
substrate solution was added and incubated at room temperature for 45 min. Finally, optical
density at 405 nm was measured on a microplate reader (LTek, INNO, Seongnam, Republic
of Korea). PGE2 concentrations in the samples were calculated from a PGE2 standard curve
(25–2000 pg/mL) that was run in parallel.

https://www.combosyn.com/register_process.php
https://www.combosyn.com/register_process.php
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2.8. Western Blot Analysis

Protein levels of COX-2, iNOS and HO-1 were evaluated as previously described [49]
with some modifications. Briefly, cells were lysed on ice-cold buffer containing 50 mM
Tris-HCl (pH 7.4), 150 mM NaCl, 1 mM EDTA, 1% Triton X-100, 24 mM sodium deoxy-
cholate, 0.01% SDS, 10 mM sodium pyrophosphate, 100 mM sodium fluoride, 10 mM
sodium orthovanadate, 1.5 µM aprotinin, 1 mM phenylmethanesulfonylfluoride (PMSF)
and 2.1 µM leupeptin. Lysates were centrifuged at 12,000× g at 4 ◦C for 10 min and the
supernatants were used for protein determination [50]. Sample buffer (62.5 mM Tris-HCl,
10% glycerol, 2% SDS, 33.2 mM dithiothreitol (DTT) and 0.01% bromophenol blue, pH 6.8)
was, then, added to the supernatants. Samples containing 50 µg protein were subjected to
SDS-PAGE electrophoresis on 8% acrylamide gels and then electroblotted onto nitrocellu-
lose membranes. Coloured protein markers were used to monitor the progress of protein
electrophoresis and to assess the transfer efficiency and the molecular weight of blotted
proteins (AmershamTM, ECLTM RainbowTM Marker-Full Range, VWR, Milan, Italy). Mem-
branes were blocked for 2 h in 5% (w:v) skimmed, dry milk and subsequently incubated in
the presence of the corresponding primary antibodies (Santa Cruz, Milan, Italy, 1:1000 dilu-
tion) overnight at 4 ◦C. After incubation for 90 min at room temperature in the presence of
secondary, HRP-conjugated antibodies (Dako, Milan, Italy, 1:10,000 dilution), proteins were
visualised by using an enhanced chemiluminescent substrate (1.1 mM luminol sodium salt,
2.0 mM 4-iodophenylboronic acid, 5.3 mM hydrogen peroxide and 0.1 M Tris–HCl, pH 8.6).
Chemiluminescent bands were evaluated with a C-Digit Blot Scanner (LI-COR, Lincoln,
NE, USA) and band intensities were analysed using LI-COR Image Studio 4.0.

To determine the protein levels of either cytosolic or nuclear p65 subunit and Nrf2,
corresponding fractions were prepared according to Seubwai et al. [51]. Briefly, cells were
lysed in hypotonic buffer (10 mM HEPES KOH at pH 7.9, 1.5 mM MgCl2, 10 mM KCl, 1 mM
EDTA, 1% NP-40, 0.5 mM DTT, 1 mM PMSF and 10 µg/mL aprotinin). After centrifugation
at 2600× g for 3 min at 4 ◦C, the supernatant containing the cytosolic fraction was collected.
The pellet was used as the nuclear fraction, lysed with nuclear lysis buffer (20 mM HEPES
KOH at pH 7.9, 10% glycerol, 420 mM NaCl, 1.5 mM MgCl2, 0.2 mM EDTA, 0.5 mM DTT,
1 mM PMSF and 10 µg/mL aprotinin) and incubated on ice for 30 min. The nuclear fraction
was obtained by centrifugation at 21,000× g for 10 min at 4 ◦C. Samples of the nuclear and
cytosolic fractions containing 50 µg protein were used for analyses of p65 and Nrf2 levels
as above described. All results were expressed as mean ± SD of the densitometric band
analysis obtained from three replicates. All results were normalised to β-actin or laminin B.
For each protein, a representative lane was selected to compose the figures.

2.9. Reactive Oxygen and Nitrogen Species (RONs)

Intracellular levels of RONs were measured by employing a fluorometric detection
kit (abcam, Milan, Italy; catalogue number ab113851) according to the manufacturer’s
instructions. The assay uses the cell-permeant reagent 2′,7′-dichlorofluorescin diacetate
that diffuses through cell membranes and is then deacetylated by cellular esterases to a non-
fluorescent compound. This latter is then oxidized by RONs into the highly fluorescent 2′,7′-
dichlorofluorescein and detected by fluorescence spectroscopy with excitation/emission at
485 nm/535 nm.

2.10. GSH Measurements

Intracellular GSH/GSSG levels were measured by employing a glutathione colorimet-
ric assay kit according to the manufacturer’s instruction (Invitrogen, Milan, Italy, catalogue
number EIAGSHC).

2.11. Statistical Analysis

Results were reported as mean ± SD. Statistical analysis was performed either by an
unpaired Student’s t-test or by ANOVA followed by Tukey’s post hoc test using Prism 8.0,
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GraphPad (San Diego, CA, USA). Results with a p-value < 0.05 were considered statisti-
cally significant.

3. Results
3.1. Evaluation of PMFF and PFF Chemical Composition

In this study, we employed a class-specific isolation approach using reverse-phase
semi-preparative liquid chromatography to purify PMFF from citrus juice and PFF from
hop flowers.

Fractionation techniques offer several advantages in terms of selectivity, cost-effectiveness,
and higher yields over the isolation and purification of individual compounds in the large-
scale production of functional ingredients. The isolation of single compounds often involves
additional steps that are time-consuming and costly. In contrast, fractionation methods
enable the production of larger quantities of bioactive fractions in a shorter time. This
approach allows for the selective collection of bioactive compounds based on their struc-
tural and chemical similarities. This means that compounds with similar properties and
potential benefits can be obtained together, enhancing the overall functionality of the
isolated fraction.

In the present study, we have isolated two aliquots, PMFF or PFF from citrus juice and
from hop flowers, respectively. The fractions were collected based on their elution times
and thus hydrophobicity. Figure 1 shows the chemical characterization of both PMFF and
PFF, including Total ion chromatogram, MS and MS/MS.
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Figure 1. TIC of PMFF isolated from Citrus sinensis (A); MS (B) and MS/MS (C) spectra of NOB. #1,
SIN; #2, Hexamethoxyflavone; #3, NOB; #4, Heptamethoxyflavone; #5, TGT. TIC of PFF isolated from
Humulus lupulus (D); MS (E) and MS/MS (F) spectra of XTM. #1, 5,7-Di-O-methyl-8-Prenylnaringenin;
#2, Ox-XTM; #3, XTM.

LC-MS/MS analysis of PMFF revealed the presence of several biomolecules, includ-
ing nobiletin (%peak area at 330 nm, 51.0% ± 0.2%), sinensetin (25.3% ± 0.1%), hex-
amethoxyflavone (3.8% ± 0.1%), heptamethoxyflavone (4.9% ± 0.1%), and tangeretin
(5.1% ± 0.3%). MS/MS spectrum showed the characteristic fragment ions of PMFF, dis-
playing a loss of a 31 Da group corresponding to CH3O.
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On the other hand, the PFF was primarily composed of xanthohumol (% peak area at
370 nm, 27.5%± 0.2%), ox-xanthohumol (21.8%± 1.4%), and 5,7-di-O-methyl-8-prenylnarin
genin (19.0% ± 1.2%). Figure 1E showed a typical fragmentation pattern of PFF, with the
negative charge retained on the A-rings, resulting from retro-Diels-Alder fragmentation.

3.2. Evaluation of PMFF and PFF Cytotoxicity, Alone or in Combination, on Differentiated
Caco-2 Cells

Before evaluating the anti-inflammatory potential of PMFF and PFF in our experimen-
tal system, their cytotoxicity on differentiated Caco-2 cells was assessed by MTT assay. To
this aim, cells were either left untreated (control) or incubated with either PMFF or PFF or
MIX in a concentration range between 2.5 and 20 µg/mL for 24 h.

As shown in Figure 2, when compared to control cells, neither treatment with PMFF,
nor with PFF nor with MIX significantly affected cell viability in the concentration range
tested and for the time period evaluated.
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Figure 2. Evaluation of cytotoxicity of PMFF, PFF or MIX on differentiated Caco-2 cells. Cell viability
was assessed after a 24 h treatment. Values obtained are the mean ± SD of three separate experiments
conducted in triplicates.

3.3. PMFF and PFF in Combination Inhibit NO and PGE2 Release in Differentiated,
IL-1β-Stimulated Caco-2 Cells

NO and PGE2 are regarded as two of the most relevant mediators in gastrointestinal
inflammatory diseases such as ulcerative colitis and Crohn’s disease [52,53].

The study then continued by assessing the effects of the two fractions on NO and
PGE2 released by the activated, intestinal cells in our experimental system. To this end,
differentiated Caco-2 cells were either left untreated (control) or stimulated with IL-1β
(25 ng/mL) for 24 h. When necessary, cells were preincubated with either PMFF (2.5 µg/mL)
or PFF (2.5 µg/mL) or MIX (2.5 µg/mL) for 1 h.

As shown in Figure 3A, with respect to control cells, IL-1β incubation resulted in a
significant increase in NO released by Caco-2 cells (p < 0.001). Conversely, when Caco-2
cells were pre-incubated for 1 h with either PMFF or PFF at 2.5 µg/mL and then stimulated
with IL-1β, a significant (p < 0.005) reduction in NO levels was observed with respect to
treated cells. Relevantly, pre-incubation with MIX totally prevented IL-1β-induced NO
release and brought its value back to control levels (Figure 3A).
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On the other hand, as shown in Figure 3B, a baseline level of PGE2 was observed in
control cells as a result of the constitutive cyclooxygenase 1 activity. Conversely, IL-1β
stimulation significantly (p < 0.001) increased PGE2 release when compared to control.
Interestingly, preincubation of Caco-2 cells with PMFF did not significantly affect PGE2
production with respect to IL-1β-treated cells. On the other hand, a significant (p < 0.02)
reduction was observed in the presence of PFF vs. treated cells. Relevantly, pre-incubation
with MIX totally prevented IL-1β-induced PGE2 release and brought its value back to.

3.4. PMFF and PFF in Combination Reduce iNOS and COX-2 Expression Levels in Differentiated,
IL-1β-Activated Caco-2 Cells

Since MIX treatment strongly decreased NO and PGE2 release from differentiated
IL-1β-activated Caco-2 cells, we then investigated whether PMFF or PFF treatment (either
individually or in combination) affected iNOS and COX-2 protein levels. To this aim,
differentiated Caco-2 cells were either left untreated (control) or stimulated with IL-1β
(25 ng/mL) for 24 h. When necessary, cells were preincubated with either PMFF (2.5 µg/mL)
or PFF (2.5 µg/mL) or MIX (2.5 µg/mL) for 1 h.

As shown in Figure 4, stimulation of cell monolayers with Il-1β induced a significant
(p < 0.001) increase in both iNOS and COX-2 protein levels as compared to control. On the
other hand, and coherently with the above-reported results on NO levels, co-incubation
of cells with either PMFF or PFF significantly reduced the IL-1β-induced upregulation of
iNOS (p < 0.005 and p < 0.001 respectively). Moreover, and in line with the observed effects
on PGE2 release, PMFF did not induce any significant inhibition on COX-2 overexpression,
while PFF treatment significantly reduced COX-2 protein levels (p < 0.001). Relevantly,
co-incubation with MIX reduced iNOS and COX-2 overexpression either to control levels
or below, respectively.
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Figure 4. Effect of PMFF, PFF or MIX on iNOS and COX-2 protein levels in differentiated, IL-1β
activated Caco-2 cells. Representative images of Western blot analysis (A). Densitometric analysis of
iNOS and COX-2 protein levels normalised for β actin levels (B). Values obtained are the mean ± SD
of three separate experiments. Means with different letters are significantly different with p < 0.05
(one-way Anova with Tukey’s post hoc test).

3.5. PMFF and PFF in Combination Potentiate the Inhibition of IL-1β-Dependent Activation of
NF-κB in Differentiated Caco-2 Cells

Our investigation next evaluated whether the reduction in IL-1β-induced COX-2
and iNOS over-expression by PMFF and PFF was associated with an inhibition of NF-κB
activation. To this aim, differentiated Caco-2 cells were either left untreated (control) or
stimulated with IL-1β (25 ng/mL) for 12 h. When necessary, cells were preincubated with
either PMFF (2.5 µg/mL) or PFF (2.5 µg/mL) or MIX (2.5 µg/mL) for 1 h. The translocation
of the p65 subunit to the nucleus was assessed as a marker of NF-κB activation.

As shown in Figure 5, when compared to control, stimulation with IL-1β resulted in
a significant increase in NF-κB nuclear translocation, evident from the increased nuclear
levels of p65 and the concomitant reduction in the cytosolic ones (p < 0.001). On the
other hand, PMFF or PFF pre-treatment induced a significant reduction in p65 nuclear
levels (p < 0.005 and p < 0.001, respectively). Interestingly, MIX preincubation completely
inhibited IL-1β-induced p65 nuclear translocation, restoring nuclear and cytosolic protein
levels to control ones.
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(one-way Anova with Tukey’s post hoc test).

3.6. PMFF and PFF in Combination Enhances the Nuclear Translocation of Nrf2 and the
Expression of HO-1 in Differentiated Caco-2 Cells

Taking into account the present results on the inhibition by PMFF and PFF of both
NF-κB activation and the expression of its downstream proinflammatory products, we next
investigated whether the two fractions, either alone or in combination, would also affect
Nrf2 signalling. To this aim, differentiated Caco-2 cells were either left untreated (control)
or stimulated with IL-1β (25 ng/mL) for 12 h. When necessary, cells were preincubated
with either PMFF (2.5 µg/mL) or PFF (2.5 µg/mL) or MIX (2.5 µg/mL) for 1 h. The nuclear
translocation of Nrf2 was assessed as a marker of its activation.

As shown in Figure 6, when compared to control cells, stimulation with IL-1β increases
Nrf2 nuclear translocation (p < 0.01). Interestingly, both PMFF and PFF individually
added, significantly increased Nrf2 activation (p < 0.05) with respect to IL-1β-treated cells.
Remarkably, a significant further increase in its nuclear levels was evident when PMFF and
PFF were added in combination (p < 0.001).

To further characterise the antioxidative response of the cells, induced by the fractions,
the effect of PMFF and PFF on the protein expression of HO-1, an antioxidant enzyme
representative of the transcriptional activity of Nrf2, was then evaluated. To this end,
Caco-2 cells were treated as above described and stimulated with Il-1β for 24 h. As shown
in Figure 6, with respect to control cells, stimulation with IL-1β increases HO-1 protein
levels (p < 0.001). Moreover, preincubation with either PMFF or PFF induced a significant
HO-1 protein over-expression with respect to IL-1β-treated cells (p < 0.01). Relevantly, MIX
treatment generated a significantly higher increase in HO-1 protein levels with respect to
cells incubated in the presence of the individual fractions (p < 0.001).



Antioxidants 2023, 12, 1621 11 of 19

Antioxidants 2023, 12, x FOR PEER REVIEW 11 of 19 
 

(control) or stimulated with IL-1β (25 ng/mL) for 12 h. When necessary, cells were prein-
cubated with either PMFF (2.5 µg/mL) or PFF (2.5 µg/mL) or MIX (2.5 µg/mL) for 1 h. The 
nuclear translocation of Nrf2 was assessed as a marker of its activation. 

As shown in Figure 6, when compared to control cells, stimulation with IL-1β in-
creases Nrf2 nuclear translocation (p < 0.01). Interestingly, both PMFF and PFF individu-
ally added, significantly increased Nrf2 activation (p < 0.05) with respect to IL-1β-treated 
cells. Remarkably, a significant further increase in its nuclear levels was evident when 
PMFF and PFF were added in combination (p < 0.001). 

To further characterise the antioxidative response of the cells, induced by the frac-
tions, the effect of PMFF and PFF on the protein expression of HO-1, an antioxidant en-
zyme representative of the transcriptional activity of Nrf2, was then evaluated. To this 
end, Caco-2 cells were treated as above described and stimulated with Il-1β for 24 h. As 
shown in Figure 6, with respect to control cells, stimulation with IL-1β increases HO-1 
protein levels (p < 0.001). Moreover, preincubation with either PMFF or PFF induced a 
significant HO-1 protein over-expression with respect to IL-1β-treated cells (p < 0.01). Rel-
evantly, MIX treatment generated a significantly higher increase in HO-1 protein levels 
with respect to cells incubated in the presence of the individual fractions (p < 0.001). 

 
Figure 6. Effect of PMFF, PFF or MIX on either Nrf2 nuclear translocation or cytosolic levels of HO-
1 in differentiated, IL-1β-activated Caco-2 cells. Representative images of Western blot analysis (A). 
Densitometric analysis of either Nrf2 or HO-1 protein levels normalised for laminin b or β actin 
levels, respectively (B). Values obtained are the mean ± SD of three separate experiments. Means 
with different letters are significantly different with p < 0.05 (one-way Anova with Tukey’s post hoc 
test). 

  

Figure 6. Effect of PMFF, PFF or MIX on either Nrf2 nuclear translocation or cytosolic levels of HO-1
in differentiated, IL-1β-activated Caco-2 cells. Representative images of Western blot analysis (A).
Densitometric analysis of either Nrf2 or HO-1 protein levels normalised for laminin b or β actin levels,
respectively (B). Values obtained are the mean ± SD of three separate experiments. Means with
different letters are significantly different with p < 0.05 (one-way Anova with Tukey’s post hoc test).

3.7. PMFF and PFF in Combination Enhances the Antioxidative Response in Differentiated,
IL-1β-Activated Caco-2 Cells

By regulating the expression of key antioxidative enzymes, Nrf2 is a key modulator
of cellular redox balance [54]. Finally, we measured both endocellular RONs and GSH
levels in our experimental system. To this aim, differentiated Caco-2 cells were either left
untreated (control) or stimulated with IL-1β (25 ng/mL) for 24 h. When necessary, cells
were preincubated with either PMFF (2.5 µg/mL) or PFF (2.5 µg/mL) or MIX (2.5 µg/mL)
for 1 h. As shown in Figure 7, with respect to control cells, treatment with IL-1β caused
a significant increase in RONs levels and a decrease in the GSH/GSSG ratio, indicating
a redox unbalance of cells towards a more oxidized state (p < 0.001). Interestingly, pre-
treatment with either PMFF or PFF (2.5 µg/mL) significantly counteracted the IL-1β-
induced RONs production and the reduction in GSH/GSSG ratio (p < 0.001 and p < 0.05,
respectively). Remarkably, MIX pre-treatment totally prevented the IL-1β-induced redox
unbalance, by restoring RONs levels and GSH/GSSG ratio back to control values.
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different letters are significantly different with p < 0.05 (one-way Anova with Tukey’s post hoc test).

3.8. NOB and XTM in Combination Synergistically Counteract Endocellular Redox Unbalance in
Differentiated, IL-1β-Activated Caco-2 Cells

As NOB and XTM were identified as the most abundant compounds of the PMFF
and the PFF, respectively, we finally investigated whether the redox-modulating effects
exerted by the two fractions were associated with the ability of these phytochemicals to
synergistically reduce the IL-1β-induced RONs production in our experimental system.

To this aim, we followed the Chou–Talalay Combination Index (CI) model, based
on the median effect equation. The CI values for the different inhibition fractions (fa) of
RONs production and represented the data as a function of the measured effect (Figure 8B).
According to Chou–Talalay, values of CI > 1, CI < 1 and CI = 1 indicate an antagonistic, syn-
ergistic or additive effect, respectively. In our study the CI values measured for the release
of RONs by IL-1β-stimulated Caco-2 cells, were all far below 1, indicating a synergistic
inhibitory effect of NOB and XTM in a wide range of concentrations.



Antioxidants 2023, 12, 1621 13 of 19

Antioxidants 2023, 12, x FOR PEER REVIEW 13 of 19 
 

exerted by the two fractions were associated with the ability of these phytochemicals to 
synergistically reduce the IL-1β-induced RONs production in our experimental system. 
To this aim, we followed the Chou–Talalay Combination Index (CI) model, based on the 
median effect equation. The CI values for the different inhibition fractions (fa) of RONs 
production and represented the data as a function of the measured effect (Figure 8B). Ac-
cording to Chou–Talalay, values of CI > 1, CI < 1 and CI = 1 indicate an antagonistic, syn-
ergistic or additive effect, respectively. In our study the CI values measured for the release 
of RONs by IL-1β-stimulated Caco-2 cells, were all far below 1, indicating a synergistic 
inhibitory effect of NOB and XTM in a wide range of concentrations. 

 
Figure 8. Effect on RONs release in IL-1β-stimulated Caco-2 cells of NOB (0.5–2.0 µM), XTM (0.5–
2.0 µM), and NOB combined with XTM (molar ratio of 1:1) (A) and plot of the combination index 
vs. fraction of the inhibitory effect (B). Cells were pre-treated individually or in combination with 
NOB and XTM for 1 h. The interactions on inhibitory effects were analysed using the median-effect 
analysis program where CI > 1, CI < 1 and CI =1 indicate an antagonistic, synergistic or additive 
effect, respectively. 

4. Discussion 
This work falls within the intense research on the advantage of combining different 

phytochemicals to improve the health benefits of single compounds. While the anti-in-
flammatory effects of PMFF and PFF are well established and both classes of compounds 
have been shown to exert significant protective effects in several in vitro and in vivo mod-
els of intestinal diseases, no study has yet evaluated their efficacy when added in combi-
nation with such experimental systems. Interestingly, we here demonstrate that a combi-
nation of PMFF and PFF exerts more effective anti-inflammatory effects in IL-1β-activated, 
intestinal cells with respect to a treatment with either PMFF or PFF alone. Inhibition of the 
redox-dependent NF-κB/Nrf2 activation and of their downstream signalling axis appears 
as key mechanisms underlying the PMFF- and PFF-mediated anti-inflammatory effects. 

NO is a pleiotropic free radical messenger molecule, responsible for several physio-
logical functions of the gastrointestinal mucosa such as the maintenance of perfusion, the 
regulation of microvascular epithelial permeability and the modulation of the immune 
response [52]. Increased output production of NO by intestinal cells, however, has been 
correlated to intestinal injury, mucosal inflammation, and enterocyte apoptosis through 
mechanisms correlated to the increased nitrosative stress and DNA damage [52,55,56]. 
Along these lines, the ability of PMFF and PFF to inhibit NO release in our in vitro model 
of IBD appears remarkable. Moreover, our data are in agreement with published evidence 
demonstrating the effectiveness of NOB and XTM to reduce NO production in an in vivo 

NOB
XTM
NOB+XTM

NOB+XTM

A B

Figure 8. Effect on RONs release in IL-1β-stimulated Caco-2 cells of NOB (0.5–2.0 µM), XTM
(0.5–2.0 µM), and NOB combined with XTM (molar ratio of 1:1) (A) and plot of the combination index
vs. fraction of the inhibitory effect (B). Cells were pre-treated individually or in combination with
NOB and XTM for 1 h. The interactions on inhibitory effects were analysed using the median-effect
analysis program where CI > 1, CI < 1 and CI =1 indicate an antagonistic, synergistic or additive
effect, respectively.

4. Discussion

This work falls within the intense research on the advantage of combining different
phytochemicals to improve the health benefits of single compounds. While the anti-
inflammatory effects of PMFF and PFF are well established and both classes of compounds
have been shown to exert significant protective effects in several in vitro and in vivo models
of intestinal diseases, no study has yet evaluated their efficacy when added in combination
with such experimental systems. Interestingly, we here demonstrate that a combination of
PMFF and PFF exerts more effective anti-inflammatory effects in IL-1β-activated, intestinal
cells with respect to a treatment with either PMFF or PFF alone. Inhibition of the redox-
dependent NF-κB/Nrf2 activation and of their downstream signalling axis appears as key
mechanisms underlying the PMFF- and PFF-mediated anti-inflammatory effects.

NO is a pleiotropic free radical messenger molecule, responsible for several physio-
logical functions of the gastrointestinal mucosa such as the maintenance of perfusion, the
regulation of microvascular epithelial permeability and the modulation of the immune
response [52]. Increased output production of NO by intestinal cells, however, has been
correlated to intestinal injury, mucosal inflammation, and enterocyte apoptosis through
mechanisms correlated to the increased nitrosative stress and DNA damage [52,55,56].
Along these lines, the ability of PMFF and PFF to inhibit NO release in our in vitro model
of IBD appears remarkable. Moreover, our data are in agreement with published evi-
dence demonstrating the effectiveness of NOB and XTM to reduce NO production in an
in vivo model of colitis, and the efficacy of SIN and TGT in a number of in vitro models of
immunological dysfunctions in several cell types [19,57–61].

PGE2 is one of the most relevant downstream products of COX-2 enzymatic activity.
Together with NO, it modulates several physiological intestinal functions such as stimu-
lation of mucus, bicarbonate secretion, mucosal blood flow, leucocyte recruitment, fever
and pain [62,63]. At the same time, multiple lines of evidence demonstrated that PGE2
is a key mediator of IBD, exerting significant pro-inflammatory and tumor-promoting
effects [53]. Indeed, PGE2 overproduction by intestinal cells has been reported to exacer-
bate the inflammatory process, inducing the disruption of the intestinal epithelial barrier
function and promoting proinflammatory Th17 cell signalling [64,65]. Interestingly, our
results demonstrated that PFF, but not PMFF, is able to significantly reduce the release of
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PGE2 in our experimental system. Relevantly, when PMFF acts in combination with PFF
the phytochemicals exert a much more evident anti-inflammatory response, reducing PGE2
levels to control. This evidence further reinforces the concept that the association between
the two fractions can be envisaged as a rational and effective anti-inflammatory strategy
for the treatment of IBD.

The present effects of PMFF and PFF on NO and PGE2 levels mirror their effects on
both iNOS and COX-2 expression, observed in our experimental system. Indeed, and
coherently with the ability of both fractions to inhibit the release of NO, either PMFF or
PFF counteract IL-1β-induced iNOS over-expression. Conversely, and in line with the
incapacity of PMFF to inhibit PGE2 release, this fraction is not able to reduce COX-2 levels.
Remarkably, only the contemporaneous presence of both PMFF and PFF results in the
inhibition of both enzymes, reducing iNOS or COX-2 expression to control levels or even
below, respectively. These effects, obtained only when the fractions were combined, appear
of particular interest as both these pro-inflammatory enzymes are dramatically upregulated
in IBD patients. Indeed, intestinal chronic inflammation can orchestrate the development
of a tumour-supporting microenvironment that promotes tumour initiation, progression
and metastasis. Remarkably, COX-2 over-expression plays a key role in IBD-associated
colon rectal cancer (CRC) being strongly associated with worse survival among CRC
patients [66,67]. Therefore, the simultaneous inhibition of iNOS and COX-2 is crucial to
achieve maximal protection as demonstrated in chemically-induced colitis [68], colitis-
related carcinogenesis and CRC development in patients with IBD [69–71]. Within this
scenario, these results relevantly underlie how important is the combination of the PMFF
and PFF, which appears necessary to achieve the contemporary inhibition of both iNOS
and COX-2.

The IL-1β-induced rapid transcription of iNOS, COX-2 and several other crucial genes
involved in the inflammatory response, strongly involves the activation of the redox-
sensitive transcription factor NF-κB [72]. A growing number of evidence has revealed
how critical is the role of NF-κB activation on both the onset and the progression of
IBD [73,74]. Upon activation, the protein translocates from the cytoplasm to the nucleus,
where binds to specific DNA sequences, initiating the transcription of its downstream
target genes [75]. Interestingly, our results indicate that both PMFF and PFF are able to
inhibit NF-κB activation and, more importantly, that only when are added in combination
do they bring back the nuclear levels of the transcription factor to control values. These
effects can be related to previously published evidence showing that XTM inhibits NF-κB
nuclear translocation by counteracting IκBα phosphorylation both in vitro and in vivo [20]
and to the ability of NOB, SIN and TGT to inhibit the NF-κB pathway [18,76–80].

Nrf2 is a key transcription factor controlling many aspects of cell homoeostasis in
response to oxidative and toxic insults. Indeed, Nrf2 modulates the transcription of several
cytoprotective, detoxification and antioxidant genes such as HO-1 [54,81]. NOB, SIN,
TGT and XTM have been previously demonstrated to positively modulate Nrf2 activation
and HO-1 protein levels in other experimental systems [82–89]. Accordingly, our results
demonstrate that either PMFF or PFF can further increase the IL-1β-induced Nrf2 activation
and HO-1 over-expression in an in vitro model of IBD. Remarkably, present data also show,
for the first time, that the combination of both fractions results in an enhanced antioxidative
response (in terms of Nrf2 activation and HO-1 overexpression) with respect to the one
induced by the treatment with the single fractions, in our experimental system.

Moreover, a growing number of evidence demonstrates that the Nrf2 function is strictly
integrated and interconnected with NF-κB signalling [90]. Indeed, Nrf2 can negatively
regulate the NF-κB activation pathway, counteracting NF-κB-related pro-inflammatory
response and oxidative injury [91,92]. Along these lines, it is tempting to speculate that the
inhibition of NF-κB observed in this work may be related to the activation of Nrf2 and the
subsequent overexpression of HO-1 by PMFF and PFF treatment.

GSH is a ubiquitous intracellular peptide with diverse functions that helps to scavenge
RONs, reduces peroxides and reacts with electrophilic compounds providing cells with
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multiple defences against RONs and their by-products [93]. Consistent with the activation
of the Nrf2/HO-1 axis by PMFF and PFF, our results also showed for the first time, in
an in vitro model of IBD, a significant amelioration of the endocellular oxidative stress,
in terms of RONs reduction and GSH levels increase. These results are in line with the
antioxidative effects exerted by the phytochemicals of both fractions in other IBD-unrelated
experimental models either in vitro or in vivo [82,84,86–89,94]. Relevantly, these effects
were significantly more evident when both fractions were combined and might well be
related to the Nrf2-dependent enhancement of the endogenous antioxidant defence systems
by the phytochemicals, especially when present in combination.

Finally, our current results relevantly demonstrate for the first time the ability of NOB
and XTM, the most abundant components of PMFF and PFF, respectively, to synergistically
reduce the IL-1β-induced RONs production in differentiated and activated Caco-2 cells.
While suggesting that the redox-modulating effects exerted by the two fractions could be
associated with the synergistic interactions between these phytochemicals, this evidence
could also foster further research aimed to explore other relevant synergistic interactions
between the phytochemicals of PMFF and PFF.

5. Conclusions

As a whole, our data support the concept that phytocomplexes can potentiate the
health effects of their single components. Indeed, we here demonstrate for the first time that
PMFF and PFF exert more effective anti-inflammatory effects in an in vitro model of IBD
when added in combination. Modulation of the redox-dependent NF-κB/Nrf2 activation
and of their downstream signalling axis appears key mechanisms underlying the PMFF-
and PFF-mediated anti-inflammatory effects. Synergistic interactions between NOB and
XTM emerge as a relevant aspect underlying this evidence.
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