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H I G H L I G H T S  

• Only GIST with specific genotypes are sensitive to imatinib. 
• Radiomics helps to correlate pre-treatment CT features to GIST mutational status, predicting response to imatinib treatment. 
• The developed radiomics signature improve treatment allocation, accuracy and appropriateness.  
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A B S T R A C T   

Objectives: To develop a mutation-based radiomics signature to predict response to imatinib in Gastrointestinal 
Stromal Tumors (GISTs). 
Methods: Eighty-two patients with GIST were enrolled in this retrospective study, including 52 patients from one 
center that were used to develop the model, and 30 patients from a second center to validate it. Reference 
standard was the mutational status of tyrosine-protein kinase (KIT) and platelet-derived growth factor α 
(PDGFRA). Patients were dichotomized in imatinib sensitive (group 0 - mutation in KIT or PDGFRA, different 
from exon 18-D842V), and imatinib non-responsive (group 1 - PDGFRA exon 18-D842V mutation or absence of 
mutation in KIT/PDGFRA). Initially, 107 texture features were extracted from the tumor masks of baseline 
computed tomography scans. Different machine learning methods were then implemented to select the best 
combination of features for the development of the radiomics signature. 

Abbreviations: ANOVA, Analysis of Variances; CT, Computed Tomography; FS, Feature selection; GISTs, Gastrointestinal Stromal Tumors; GIT, Gastrointestinal 
tract; GLCM, Gray level co-occurrence matrices; GLDM, Gray level dependence matrix; GLRLM, Gray level run length matrices; GLSZM, Gray level size zone matrix; 
IBSI, Image biomarker standardization initiative; KIT, Tyrosine-protein kinase; kNN, k-Nearest Neighbor; LASSO, Least Absolute Shrinkage and Selection Operator; 
NGTDM, Neighboring gray tone difference matrix; PDGFRA, Platelet-derived growth factor-α; RF, Random Forest; SVM, Support-Vector Machine; TKI, Tyrosine 
kinase inhibitor; WT, Wild-Type. 
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Results: The best performance was obtained with the 5 features selected by the ANOVA model and the Bayes 
classifier, using a threshold of 0.36. With this setting the radiomics signature had an accuracy and precision for 
sensitive patients of 82 % (95 % CI:60–95) and 90 % (95 % CI:73–97), respectively. Conversely, a precision of 80 
% (95 % CI:34–97) was obtained in non-responsive patients using a threshold of 0.9. Indeed, with the latter 
setting 4 patients out of 5 were correctly predicted as non-responders. 
Conclusions: The results are a first step towards using radiomics to improve the management of patients with 
GIST, especially when tumor tissue is unavailable for molecular analysis or when molecular profiling is 
inconclusive.   

1. Introduction 

Gastrointestinal stromal tumors (GISTs) are the most common sar-
comas of the gastrointestinal tract (GIT), despite representing less than 1 
% of all GIT malignant tumors [1]. They originate from the interstitial 
cells of Cajal [2], being the most frequent sites the stomach (50 %), small 
intestine (25 %), and rectum (5 %) [1]. About 80 % of GISTs harbor 
mutations in the gene encoding the transmembrane tyrosine-protein 
kinase (KIT) [3], in either exon 11 or 9. In 5–10 % of cases, mostly in 
GIST arising from the stomach, mutations involve the platelet-derived 
growth factor α (PDGFRA) gene [4], while in another 10–15 % of 
cases no mutations are detected in either KIT or PDGFRA (historically 
called KIT/PDGFRA Wild-Type – WT GISTs) [5]. 

The prognosis of GIST patients has been revolutionized by the advent 
of the first tyrosine kinase inhibitor (TKI), imatinib [6]. GIST mutational 
status represents a predictive factor of response to TKI along with 
prognostic relevance [7–9]. Exon 11 and exon 9 KIT mutations are 
imatinib-sensitive, with exon 9 mutations requiring a higher dose of the 
drug. PDGFRA mutations are also imatinib-sensitive, apart from exon 18 
D842V mutation, which is refractory to imatinib treatment, while WT 
GISTs could be considered mainly non-responsive to imatinib [1]. 

Small and localized GISTs are usually surgically removed, with 
optional adjuvant treatment performed depending on risk category [1]. 
In case of locally-advanced or metastatic GISTs, medical therapy is 
usually recommended up-front [1], following determination of the 
mutational status by means of tissue biopsy. Unfortunately, biopsy is 
usually not representative of the whole lesion, which may presents as a 
large and heterogeneous mass [10]. Moreover, retrieving adequate tis-
sue for accurate staging, assessment of mitotic count, and mutational 
analysis may not be trivial when the tumor is located in deep, difficult to 
access regions such as the small bowel [11]. 

In this context, the extraction of information from routinely acquired 
computed tomography (CT) scans of the whole tumor through radiomics 
analysis could represent a low-cost solution that might help the decision- 
making process [12]. In recent years, CT features [13] and radiomics 
signatures [14] have been successfully developed to predict the malig-
nant potential of GIST and for risk stratification. The use of radiomics to 
correlate image phenotype to the different molecular profiles of the 
tumor may have practical implications since it could, by instance, avoid 
the toxicity of therapy in patients with imatinib-resistant GIST. 

Therefore, the aim of this dual-center retrospective study is to 
develop and validate a radiomics signature to non-invasively differen-
tiate GIST harboring imatinib-resistant mutations from imatinib- 
sensitive genotypes, using features extracted from pre-treatment CT 
images. 

2. Materials and methods 

2.1. Study design and patients 

This retrospective study included patients with diagnosis of primary 
GIST between 2008 and 2021 from two centers in Italy: Candiolo Cancer 
Institute in Torino (center A) and University Hospital “Paolo Giaccone” 
in Palermo (center B). Patients from center A were used to train and tune 
the algorithms (construction set), while patients from center B were used 

to externally validate the radiomics models. The study was performed in 
accordance with the principles of the Declaration of Helsinki and the 
International Con-ference on Harmonization and Good Clinical Practice 
guidelines and was approved by the Institutional Review Board and 
Ethic Committee of both centers (Protocol CE IRCCS 257/2019 of 
September 25TH 2019 for Center A and protocol N◦ 2/2020 of February 
19th, 2020, for Center B). Informed consent was obtained from patients 
that were alive and traceable. 

Inclusion criteria were the following: 1) diagnosis of GIST confirmed 
by histo-pathological analysis including mutational profile; 2) avail-
ability of baseline contrast enhanced CT images in the portal venous 
phase; 3) lesions with maximum diameter ≥ 1.5 cm; 4) no previous 
medical treatment; 5) absence of other tumors. Exclusion criteria were 
the fol-lowing: 1) lack of preoperative imaging or unavailability of the 
portal venous phase; 2) low quality CT scans due to image artifacts or 
scan thickness of more than 3 mm; 3) lack of information on mutational 
status. 

2.2. Imaging technique 

Patients performed multiphasic contrast-enhanced CT imaging using 
the following scanners: 64-slice (Somatom Definition Flash, Siemens 
Healthineers) for center A and 16-slice (Bright- Speed, GE Medical 
Systems) or 128-slice (Somatom Definition AS, Sie-mens Healthineers) 
for center B. Post-contrast images were obtained after the intravenous 
administration of contrast medium (1.5–2 mL/kg of a nonionic contrast 
medium [370–400 mgI/mL]) injected at a rate of 3–5 mL/s, using an 
automatic power injector. Radiomics analysis was performed on the 
portal-phase acquisition, obtained with a delay of 60–70 s after the 
beginning of the contrast agent injection. CT scanning parameters were 
the following: X-ray tube voltage: 100–140 kV; tube current: 180–230 
mA; slice thickness ≤ 3 mm; field of view 300–350 mm; 512 × 512 
matrix. 

2.3. Reference standard 

Reference standard was the mutational status of KIT and PDGFRA. 
Patients were dichotomized according to imatinib sensitivity as follows:  

1. Group 0: imatinib sensitive patients, with KIT mutation or PDGFRA 
mutation different from exon 18 - D842V;  

2. Group 1: imatinib non-responsive patients, with PDGFRA exon 18 - 
D842V mutation and WT GISTs. 

2.4. Image segmentation and features extraction 

Three resident radiologists with at least 3 years of clinical experience 
in oncologic imaging, manually contoured the lesions using ITK-Snap 
[15] (http://www.itksnap.org). Segmentations were performed on all 
CT slices including the tumor and, if present, intralesional necrotic areas 
were removed. All segmentation masks were then reviewed by an 
experienced radiologist (> 20 years of experience in reporting CT scans) 
and revised if needed. Approximately 70 % of baseline segmentations 
were slightly revised (minor revisions of lesion boundaries), while 10 % 
of them were strongly revised (when other anatomic structures adjacent 
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to the lesions or necrotic areas were erroneously segmented). 
Before performing feature extraction, all GISTs masks were re- 

segmented between the 1st and the 99th percentile of the region-of- 
interest to remove outliers and noisy voxels that might bias the subse-
quent radiomics analysis, as previously reported [16]. Additionally, all 
images were discretized using a fixed number of bins (n = 32) to 
introduce a normalizing effect which may be beneficial when intensity 
units are arbitrary or differ among centers, and when image contrast is 
considered important [17]. We then computed the following 107 fea-
tures: (1) 14 shape-based; (2) 18 first-order intensity-based statistics, 
such as mean, 25th, 50th, 75th percentiles, skewness, kurtosis, intensity 
kurtosis, and intensity variance; (3) 24 derived from the gray level 
co-occurrence matrices (GLCM); (4) 16 derived from the gray level run 
length matrices (GLRLM); (5) 16 derived from the gray level size zone 
matrix (GLSZM); (6) 5 derived from the neighboring gray tone differ-
ence matrix (NGTDM); (7) 14 derived from the gray level dependence 
matrix (GLDM). All features were computed symmetrically for each of 
the 4 directions of a 2D image, and then averaged. Texture features were 
computed using PyRadiomics [18] that was compliant to the image 
biomarker standardization initiative (IBSI) [19]. 

2.5. Features selection and radiomics model development 

Feature selection (FS) was carried-out to select the most performing 
radiomics features among all extracted ones, to remove irrelevant data, 
reduce dimensionality, increase learning accuracy, improve results 
comprehensibility and reduce the risk of over-fitting [20,21]. The 
following methods for FS were tested and compared: Pearson Correla-
tion, One Way ANOVA (Analysis of Variances) test, Least Absolute 
Shrinkage and Selection Operator (LASSO), ANOVA + LASSO and 
Importance computed through Random Forest (RF). Each FS algorithm 
was then combined with different statistical classifier, including 
Bayesian, Support-Vector Machine (SVM), k-Nearest Neighbor (kNN), 
and RF. Since KIT mutation is much more common than PDGFR-α mu-
tation and WT status, we decided to use a balanced dataset to train the 
algorithms, thus avoiding biasing the output towards the most repre-
sented group. To this scope, from the whole construction set (i.e., center 
A) we created a balanced training set using all non-responsive patients 
(less numerous group) and an equal number of sensitive patients (most 
numerous group). The following 16 models were finally trained by 
exploring all combinations of FS method and classifiers: Anova+SVM, 
Anova+Bayes, Anova+KNN, Pearson+SVM, Pearson+Bayes, Pear-
son+KNN, Lasso+SVM, Lasso+Bayes, Lasso+KNN, Joined+SVM, Join-
ed+Bayes, Joined+KNN, Importance+SVM, Importance+Bayes, 
Im-portance+KNN, RF. All models were fine-tuned, i.e., 
hyper-parameters were selected, by using a k-fold stratified 
cross-validation (k = 4) approach on the balanced training set. 

2.6. Statistical analysis 

Performances of each model were computed on the whole con-
struction set (i.e., the whole center A) using the following metrics: 1) 
accuracy for imatinib sensitive: defined as the number of correctly 
classified imatinib sensitive patients over the total number of imatinib 
sensitive patients; 2) accuracy for imatinib non-responsive: defined as 
the number of correctly classified imatinib non-responsive patients over 
the total number of imatinib non-responsive patients; 3) precision for 
imatinib sensitive: defined as the number of correctly classified imatinib 
sensitive patients over the total number of patients classified as imatinib 
sensitive; 4) precision for imatinib non-responsive: defined as the 
number of correctly classified imatinib non-responsive patients over the 
total number of patients classified as imatinib non-responsive; 5) 
balanced accuracy: defined as the average between the accuracy in 
detecting imatinib sensitive and imatinib non-responsive patients. To 
evaluate these metrics, the radiomics score produced by each model was 
dichotomized using the Youden Index, a commonly used measure of 

overall diagnostic effectiveness that optimizes accuracy on both groups 
[22]. 

After training and fine-tuning all combinations, we discarded all 
models that did not reach at least 60 % on all metrics and/or that 
showed overfitting (i.e., accuracy on the less represented group equal to 
100 %), and/or that selected a number of features at least 5 times larger 
than the number of patients in the training, as previously suggested 
[23]. Finally, the best performing model was chosen as the one with the 
highest balanced accuracy on the construction set (the whole center A). 
Once the best model was selected, its performances were also evaluated 
on the external validation set (center B) using the same metrics, 
computed using, as threshold of the radiomics score, both the Youden 
Index and the threshold that maximizes accuracy on sensitive patients. 
Differences in performances between the construction and the valida-
tion set and between accuracy and precision between the two groups 
were assessed using the "N-1" Chi-squared test. A p-value < 0.05 was 
considered statistically significant. 

3. Results 

The study flowchart is shown in Fig. 1. The final dataset was 
composed of 82 patients, of whom 52 from center A and 30 from center 
B. Patients from center A (63.4 % of the dataset) were imaged with a 64- 
slice scanner (Somatom Definition Flash, Siemens Healthineers); pa-
tients from center B were imaged with a 16-slice scanner (Bright- Speed, 
GE Medical Systems. 12 patients, 14.6 % of the dataset) or a 128-slice 
scanner (Somatom Definition AS, Siemens Healthineers. 18 Patients, 
22 % of the dataset). 

Overall, there were 57 patients in Group 0 (sensitive) and 25 in 
Group 1 (non-responsive). Demographic and clinical characteristics of 
the two datasets were compared in Table 1. 

Fig. 2 shows the balanced accuracy for all combinations (FS methods 
+ statistical classifiers) and the difference between accuracy in detecting 
imatinib sensitive and imatinib nonresponsive (i.e., delta) obtained on 
the construction set. The highest balanced accuracies (> 80 %) were 
obtained using the KNN classifier. However, this classifier was the one 
that was also characterized by a strong difference in accuracy between 
the two groups (delta > 20 %), meaning that the KNN is over-specialized 
towards one group, as it classifies most patients as non-responsive. This 
behaviour might be a symptom that overfitting on the less represented 
group has occurred since all cases of group 1 were included in the 
training set. 

Supplementary Table 1 reports the results on both the construction 
and the validation set of all models reaching at least 60 % on all metrics, 
and that did not show a clear overfitting (i.e., accuracy on the less 
represented group equal to 100 %). 

The model that produced the best radiomics signature discriminating 
imatinib sensitive and non-responsive patients was obtained by 
combining the FS method based on the ANOVA, with 5 features selected, 
and the Bayes classifier using a threshold on the radiomics score = 0.36. 
Performances of this model are reported in Table 2, while Fig. 3 shows 
the waterfall plot of the classification on both the construction and the 
validation set. No significant differences were reported between the two 
sets. The model was able to predict patients sensitive to imatinib with an 
accuracy of 82 % and precision of 90 % in the validation set. Slightly 
lower performances were obtained in predicting non-responsive pa-
tients, with an accuracy of 75 % and a precision of 60 %. 

The radiomics score that maximizes accuracy on sensitive patients 
(0.9) increased the accuracy for sensitive patients to 95 % in the vali-
dation set, with a precision of 84 %. Moreover, it produced an increase of 
the precision of 20 %, i.e. from 60 % to 80 %, in non-responsive patients, 
balanced by a reduction of its accuracy from 75 % to 50 %. (Table 2 and 
Fig. 3). 

Fig. 4 shows the weight of each of the selected feature in the signa-
ture. The three most important features were related to entropy, i.e., a 
physical property that is mostly associated with a state of disorder. 
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Predicted non-responsive patients showed a median higher value of 
these variables, meaning that they have a less homogenous appearance 
(Fig. 5). 

4. Discussion 

Today the management of patients affected by localized GISTs is 
mainly driven by risk stratification and mutational status. Risk of GIST 
recurrence depends on tumor location, tumor size and mitotic index [24, 
25]; tumor capsule rupture is an additional major determinant of relapse 
risk [26]. The above reported criteria classify GISTs in different relapse 
risk groups, spanning from “none” to “high”, and substantiate treatment 

decisions and follow-up management. Conversely, mutational status has 
not yet been formally included in any risk classification criteria, and its 
correlation with risk relapse is currently a matter of debate [1]. None-
theless, mutational status should be included in the decision-making 
workflow because of its predictive value for sensitivity to TKIs ther-
apy. Indeed, it is well-known that some genotypes are less sensitive to 
imatinib (e.g, WT GISTs) while others are completely resistant/re-
fractory (e.g. PDGFRα exon 18 D842V). 

This study developed a radiomics signature able to differentiate 
GISTs with genotypes that are usually sensitive to imatinib (KIT muta-
tions and PDGFR-α mutations different from exon 18 - D842V) from 
genotypes with lower sensitivity or that are insensitive to imatinib 
(PDGFR-α exon 18 - D842V mutation and WT GISTs) using 5 features 
extracted from images of the whole tumor at the baseline CT scan. 

Using a threshold of 0.36, the model was able to predict with high 
accuracy and precision patients sensitive to imatinib. Indeed, in the 
validation set, 18 out of 22 (accuracy = 82 %) sensitive patients were 
correctly predicted by the model, while of the 20 patients predicted as 
sensitive, 18 were in fact sensitive to imatinib (precision = 90 %). The 
performance of our radiomics signature was slightly lower in predicting 
non-responsive patients, since 2 out of 8 were incorrectly classified as 
sensitive (accuracy of non-response = 75 %), while among the 10 pa-
tients classified as non-responsive only 6 were actually non-responsive 
(precision of non-responsive = 60 %). 

However, using the threshold that maximizes accuracy on sensitive 
patients (from 0.36 to 0.9, Fig. 3), the model reached a precision of 80 % 
for non-responsive patients. Indeed, in the validation set, 4 patients were 
correctly classified as non-responsive to imatinib among the 5 patients 
predicted as non-responsive. Altogether, these findings are potentially 
relevant, particularly in cases where tumor tissue specimens are insuf-
ficient for molecular analysis and/or when tumor is located in hardly 
accessible regions for biopsy. Indeed, in these cases, applying our 
radiomics signature we could have correctly avoided a useless and toxic 

Fig. 1. Flowchart of the study.  

Table 1 
Demographic and clinical characteristics of the two dataset.   

Group 0 (n = 57) Group 1 (n = 25) 

Gender 
Males 
Females   

34 (59.6) 15 (60.0) 
23 (40.4) 10 (40.0) 

Age 63.5 ± 11.8 61.0 ± 10.8 
Location / Size (mm)   
Stomach 35 (61.5) / 77.4 ± 52.7 22 (88) / 66.6 ± 38.9 
Small bowel   
Duodenum 4 (7.0) / 45.5 ± 20.1 2 (8) / 58.5 ± 7.7 
Jejunum 3 (5.2) / 65.6 ± 44.8 – 
Ileum 11 (19.3) / 107.5 ± 66.5 1 (4) / 22.0 ± 0.0 
Rectum 4 (7.0) / 65.7 ± 33.7 – 

Group 0: imatinib sensitive patients, with KIT mutation or PDGFRA mutation 
different from exon 18 - D842V. 
Group 1: imatinib non-responsive patients, with PDGFRA exon 18 - D842V 
mutation and non-KIT/non-PDGFR mutant GISTs (WT). 
Continuous variables (age and size) are expressed as mean ± SD; categorical 
variables (gender and location) are expressed as numbers and percentages in 
parenthesis. 
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therapy in 80 % of non-responsive patients. Finally, we found that the 
three most important features of our model were related to entropy, a 
physical property that is mostly associated with a state of disorder, with 
predicted non-responsive patients having a median higher value of the 
variables and consequently a less homogeneous appearance (Fig. 5). 

Only one recent single center study performed radiomics analysis to 
differentiate responder versus non-responder genotypes to imatinib 
treatment. In their study, Palatresi et al. [27] divided patients affected 
by GISTs in a heterogeneous cohort (intended as images acquired from 3 
different CT scans) and homogeneous cohort (from one CT scan). In the 
heterogeneous cohort (27 responder patients and 21 non-responder 
patients) they found a statistically significant relationship between the 
two groups and two radiomics features for non-contrast enhanced CT 
(NCECT) images, but none for the contrast enhanced CT (CECT). In the 
homogeneous cohort (9 responder patients and 6 non-responder pa-
tients) they found a statistically significant relationship between the two 
groups and one radiomics feature for NCECT images and four radiomics 

features for CECT. Other four studies have also proposed the use of a 
radiomics algorithm, or nomogram including clinical features, to eval-
uate the mutational status of patients affected by GISTs. However, in the 
study of Starmans et al. [28] no significant result were achieved (best 
AUC: 0.56 to identify KIT exon 11 mutation), while in the other studies 
the main purpose was to identify patients with KIT exon 11 mutation (i. 
e., higher sensibility to imatinib) from the all other genotypes [29–31]. 

Our study has some limitations. First, it is a retrospective study and 
the sample size is relatively small and unbalanced due to the rarity of the 
tumor and, in particular, of the non-responsive group. The small size 
may explain why we did not find any significant difference between 
accuracy and precision of the two groups of sensitive and non-responsive 
patients. Hopefully, validation studies on larger, multi-institutional da-
tabases might improve our promising preliminary findings. Second, 
GISTs are often large tumors, and the manual segmentation of the entire 
volume is a time-consuming process and a possible source of errors. 
Automatic segmentation with deep learning algorithms will hopefully 

Fig. 2. Balanced accuracy and delta obtained on the construction set for all combinations of features selection and classifier. Delta represents the difference between 
the accuracy in detecting imatinib sensitive and imatinib non-responsive patients. 

Table 2 
Performances of the best model (ANOVA + Bayes) on the construction and the external validation set.   

Accuracy on non- 
responsive patients 
(%) 
[95 %CI] 
(rate) 

Accuracy on 
sensitive 
patients 
(%) 
[95%CI] 
(rate) 

p-value Precision for non- 
responsive patients 
(%) 
[95 %CI] 
(rate) 

Precision for sensitive 
patients 
(%) 
[95 %CI] 
(rate) 

p- 
value 

Youden Index (0.36)        
CONSTRUCTION SET 65 

[38–86] 
(11/17) 

89 
[70–95] 
(31/35) 

0.08 73 
[48–84] 
(11/15) 

84 
[72–91] 
(31/37)  

0.26 

VALIDATION SET 75 
[34–97] 
(6/8) 

82 
[60–95] 
(18/22) 

0.50 60 
[36–80] 
(6/10) 

90 
[73–97] 
(18/20)  

0.06 

p-value 0.62 0.69  0.64 0.48   
Threshold that maximizes accuracy on 

sensitive patients (0.9)        
CONSTRUCTION SET 29 

[10–56] 
(5/17) 

94 
[81–99] 
(33/35) 

<0.001 71 
[35–92] 
(5/7) 

73 
[67–79] 
(33/45)  

0.91 

VALIDATION SET 50 
[16–84] 
(4/8) 

95 
[77–100] 
(21/22) 

0.004 80 
[34–97] 
(4/5) 

84 
[72–91] 
(21/25)  

0.83 

p-value 0.31 0.87  0.73 0.30    
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help to overcome this limitation in the future. Notwithstanding, to the 
best of our knowledge, this is the first study that has developed a 
radiomics model to differentiate imatinib sensitive from non-responsive 
genotypes in GIST patients with an external validation cohort, poten-
tially providing an effective biomarker in support of clinical decision. 
The possibility to correlate radiomics features with other known risk 
factors deserves further investigation aiming to improve our ability to 

predict GIST behaviour. 

5. Conclusion 

In this study we have developed a radiomics signature correlating 
pre-treatment CT features to GIST mutational status with the aim of 
predicting response to imatinib treatment. This novel biomarker will be 
of help especially when tumor tissue is unavailable/inadequate for 
molecular analysis. In perspective, radiomics along with demographic, 
pathological, laboratory, and clinical variables might improve the 
management of patients with GIST, paving the way to a more person-
alized, “patient-tailored”, and accurate treatment algorithm. 
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