
Citation: La Monica, G.; Alamia, F.;

Bono, A.; Mingoia, F.; Martorana, A.;

Lauria, A. In Silico Design of Dual

Estrogen Receptor and Hsp90

Inhibitors for ER-Positive Breast

Cancer Through a Mixed

Ligand/Structure-Based Approach.

Molecules 2024, 29, 6040. https://

doi.org/10.3390/molecules29246040

Academic Editor: Qi-Dong You

Received: 14 October 2024

Revised: 27 November 2024

Accepted: 11 December 2024

Published: 21 December 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Article

In Silico Design of Dual Estrogen Receptor and Hsp90 Inhibitors
for ER-Positive Breast Cancer Through a Mixed
Ligand/Structure-Based Approach
Gabriele La Monica 1 , Federica Alamia 1 , Alessia Bono 1 , Francesco Mingoia 2 , Annamaria Martorana 1

and Antonino Lauria 1,3,*

1 Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche “STEBICEF”,
University of Palermo, Viale delle Scienze, Ed. 17, 90128 Palermo, Italy;
gabriele.lamonica01@unipa.it (G.L.M.); federica.alamia01@unipa.it (F.A.); alessia.bono01@unipa.it (A.B.);
annamaria.martorana@unipa.it (A.M.)

2 Istituto per lo Studio dei Materiali Nanostrutturati, Consiglio Nazionale delle Ricerche (CNR),
90128 Palermo, Italy; francesco.mingoia@ismn.cnr.it

3 NBFC—National Biodiversity Future Center, Piazza Marina 61, 90133 Palermo, Italy
* Correspondence: antonino.lauria@unipa.it; Tel.: +39-091238-96818

Abstract: Breast cancer remains one of the most prevalent and lethal malignancies in women,
particularly the estrogen receptor-positive (ER+) subtype, which accounts for approximately 70% of
cases. Traditional endocrine therapies, including aromatase inhibitors, selective estrogen receptor
degraders/antagonists (SERDs), and selective estrogen receptor modulators (SERMs), have improved
outcomes for metastatic ER+ breast cancer. However, resistance to these agents presents a significant
challenge. This study explores a novel therapeutic strategy involving the simultaneous inhibition of
the estrogen receptor (ER) and the chaperone protein Hsp90, which is crucial for the stabilization
of various oncoproteins, including ER itself. We employed a hybrid, hierarchical in silico virtual
screening approach to identify new dual ER/Hsp90 inhibitors, utilizing the Biotarget Predictor Tool
(BPT) for efficient multitarget screening of a large compound library. Subsequent structure-based
studies, including molecular docking analyses, were conducted to further evaluate the interaction
of the top candidates with both ER and Hsp90. Supporting this, molecular dynamics simulations
demonstrate the high stability of the multitarget inhibitor 755435 in complex with ER and Hsp90.
Our findings suggest that several small molecules, particularly compound 755435, exhibit promising
potential as dual inhibitors, representing a new avenue to overcome resistance in ER+ breast cancer.

Keywords: estrogen receptor (ER); Hsp90 inhibition; endocrine resistance; multitarget drug design;
DRUDIT; NCI database; breast cancer

1. Introduction

Breast cancer is the most common malignancy in women and remains one of the
leading causes of cancer-related mortality [1,2]. Based on the expression profiles of estrogen
(ER) and progesterone (PR) receptors, as well as and human epidermal growth factor
receptor 2 (HER2), this tumor is classified into different subtypes: luminal A, luminal B,
HER2+, and basal. The estrogen receptor-positive (ER+) is the most common, accounting
for around 70% of diagnoses, both in premenopausal (60%) and postmenopausal women
(75%) [3–5].

The estrogen receptor (ER) is a nuclear transcription factor that regulates the growth
and proliferation of breast cancer cells. It occurs mainly in two isoforms, ERα and ERβ,
with the former playing a dominant role in the pathogenesis of breast cancer [6,7].

Over the past 30 years, endocrine therapy for the treatment of ER+ metastatic breast
cancer (MBC) has generally included aromatase inhibitors (AIs, oral anastrozole, letrozole,
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and exemestane), selective estrogen receptor degraders/antagonists (SERDs, intramuscu-
lar fulvestrant), and selective estrogen receptor modulators (SERMs, oral tamoxifen) [8].
Tamoxifen, the first approved SERM, is now widely used in both adjuvant and metastatic
breast cancer therapy [9,10]. However, evidence of the greater efficacy of AIs and the
side-effect profile of tamoxifen have led to the development of new SERM-type inhibitors.
Raloxifene, for example, has shown comparable efficacy to tamoxifen in the prevention of
breast cancer in high-risk women without increasing the risk of endometrial cancer [9].

Despite these advancements, resistance to endocrine agents remains a significant chal-
lenge in the treatment of ER+ breast cancer [7,11]. Nonetheless, by combining ER inhibition
with other molecular targets, it is possible to disrupt several crucial signaling pathways
involved in tumor survival and growth, thereby reducing the likelihood of cancer cells
developing resistance [12–14]. An emerging strategy could be the simultaneous inhibition
of the estrogen receptor (ER) and heat shock protein 90 (Hsp90) [15–17]. In the genomic
signaling pathway, ERs, initially cytosolic and inactive, become active upon binding with
estrogens and chaperones such as Hsp70 and Hsp90. This binding induces conforma-
tional changes in the ER, leading to dissociation from the chaperones and the formation of
dimers. The estrogen–ER complex is then translocated to the nucleus, where it activates
gene transcription and facilitates interaction with co-activators or co-repressors [3]. In this
context, the development of multitarget drugs emerges as a pivotal strategy to overcome
the limitations of monotherapy, particularly in the treatment of endocrine-resistant breast
cancer. Multitarget agents have the ability to simultaneously modulate multiple molec-
ular pathways, thereby enhancing therapeutic efficacy by disrupting tumor cell survival
mechanisms and mitigating the emergence of drug resistance. Notable examples from
the literature include PROTAC degraders targeting ERα and aromatase, which simultane-
ously inhibit estrogen signaling and estrogen synthesis, offering a promising solution to
endocrine resistance. Another innovative approach involves doxorubicin–formaldehyde
conjugates, which combine the DNA binding properties of doxorubicin with the targeted
cytotoxic effects of formaldehyde. Lastly, ERα degraders with tubulin inhibitory activity
demonstrate dual functionality by degrading ERα while inhibiting tubulin polymeriza-
tion, effectively disrupting both estrogen signaling and tumor cell cycle progression. The
development of multitarget compounds aimed at key targets in complex diseases such
as endocrine-resistant breast cancer holds significant potential. This approach not only
addresses the limitations of traditional therapies but also offers a more effective and sus-
tainable strategy for managing these challenging malignancies [18–20]. Hsp90 is a crucial
cellular chaperone that stabilizes and regulates the activity of many oncoproteins, including
ER itself, PR, HER2, and components of the EGFR pathway [21]. Hsp90 exists in various
isoforms, mainly Hsp90α and Hsp90β in the cytosol, and plays a critical role in stabilizing
and functionalizing proteins involved in tumor cell proliferation and survival [16,17,22].
In breast cancer, Hsp90 is involved in various aspects of tumorigenesis, including cellular
transformation and angiogenesis, chemoresistance, protection from oxidative stress and
cell death, as well as tumor cell proliferation, invasion, and immune recognition [21–23].

Hsp90 function is mediated by cycles of dimerization and ATP hydrolysis, which
influence the conformation and activity of the protein. The inhibition of Hsp90 not only
impairs the stability of ER and other oncoproteins but also affects the overall cellular
signaling network and leads to the degradation of proteins that are critical for tumor
growth [24,25]. Inhibitors targeting the N-terminal domain of Hsp90 disrupt ATPase
activity and prevent the N-terminal domain from binding client proteins. This leads to the
degradation of oncoproteins and disruption of various cellular processes [23]. Inhibitors
that target the Hsp90 binding domain include natural inhibitors, such as geldanamycin
and its analogs, but these have limitations including poor solubility, limited activity, and
significant side effects [26]. To overcome these drawbacks, attention has shifted to semi-
synthetic inhibitors, also known as first-generation inhibitors. Although many of these
drugs have reached Phase I clinical trials, none have progressed beyond Phase II. Therefore,
significant efforts have been made to improve binding affinity, potency, side effect profiles,
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and bioavailability. New synthetic small molecules, known as second-generation Hsp90
inhibitors, have been developed, including the following: (1) purine-based inhibitors [27]
(PU-3, BIIB021, BIIB028, MPC-3100, and PU-H71); (2) benzamide-based inhibitors [28]
(SNX-5422, also known as PF-04929113); (3) resorcinol-based inhibitors [29] (AUY922,
STA9090, AT13387, and KW-2478); and (4) various other inhibitors [30,31].

The simultaneous inhibition of ER and Hsp90 with a single molecule represents
an advantageous therapeutic approach compared to the exclusive inhibition of ER. This
integrated strategy can overcome drug resistance and improve therapeutic efficacy, as the
two targets are interconnected: Hsp90 is essential for the stabilization and activation of
ER, and the combined blockade of these two factors can lead to more complete inhibition
of oncogenic signaling pathways. Therefore, the identification and development of new
inhibitors targeting both ER and Hsp90 can represent a promising therapeutic strategy
for the treatment of ER+ breast cancer, with the potential to significantly improve clinical
outcomes for patients.

In view of these considerations, an innovative approach has been adopted in this work
by integrating hybrid and hierarchical virtual in silico screening to identify new ER/Hsp90
inhibitors. The use of the internal Biotarget Predictor Tool (BPT), in Multitarget Mode,
was crucial for enabling efficient screening of an extensive database of active, previously
optimized molecules. This advanced computational approach was complemented by
in-depth studies based on molecular structure, representing a clear example of how in
silico modeling can effectively integrate with experimental methodologies to accelerate the
discovery of innovative drugs.

2. Results and Discussion
2.1. Combined Approach of QikProp and SwissADME for NCI Database Cleaning

For the development of the new virtual screening protocol, we selected the National
Cancer Institute (NCI) database due to its extensive collection of compounds (more than
40,000 compounds tested against 60 cancer cell lines) with different chemical and biologi-
cal properties.

The database was prepared in advance using the LigPrep tool from the Schrödinger
Maestro Suite at physiological pH (7.3 ≤ pH ≤ 7.5). This process generated all pos-
sible tautomers and stereoisomers for each ligand in their lowest energy states in 3D
space.Subsequently, the NCI database was cleaned in two consecutive steps to select small
molecules with specific parameters and appropriate drug-likeness criteria. Thus, the lig-
ands were processed using the QikProp tool (Schrödinger, Release 2023-3; QikProp, S.,
LLC: New York, NY, USA, 2023) [32], which predicts the ADME properties (Absorption,
Distribution, Metabolism, and Excretion) of drug candidates based on their full 3D molecu-
lar structures. QikProp can predict a wide array of pharmaceutically relevant properties,
including octanol/water and water/gas logPs, aqueous solubility logS, brain/blood parti-
tion coefficient logBB, overall Central Nervous System (CNS) activity, Caco-2 and MDCK
cell permeabilities, and logKhsa for human serum albumin binding, thus enabling rapid
screening of compound libraries for potential hits with optimal drug-like properties.

In our study, the analysis was focused on two specific parameters: the “Rule of Five”,
which indicates the number of violations of Lipinski’s rule, and “#stars”, a consolidated
metric that encapsulates all QikProp parameters into a single value. This value indicates the
number of property or descriptor values that fall outside the 95% range for known drugs.
A higher number of outlying descriptors results in a higher “#stars” value, suggesting
that a molecule is less drug-like compared to one with a lower “#stars” value. To identify
only drug-like small molecules, we excluded all ligands with non-zero values for both the
Rule of Five and #stars, reducing the NCI database to 18,510 compounds (Supplementary
Materials, Databases S1 and S2).

Considering that a significant proportion of drug candidates fail in clinical trials due to
poor ADME properties, incorporating ADME predictions into the development process can
yield lead compounds with satisfactory ADME performance in clinical trials. This approach
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reduces the amount of wasted time and resources, streamlining the overall development
process. To further predict the drug-like nature of compounds under investigation, we
used the SwissADME website (http://www.swissadme.ch, [33]). This platform allowed us
to compute physicochemical descriptors and predict ADME parameters, pharmacokinetic
properties, and the medicinal chemistry friendliness of our screened small molecules.
Specifically, we predicted a set of well-established parameters, such as the number of
heavy atoms, H-bond acceptors, H-bond donors, rotatable bonds, Rule of Five, Blood–
Brain Barrier (BBB) permeability, metabolic reactions, and Human Oral Absorption, which
are also shared with QikProp. Additionally, we examined new parameters, including
Ghose, Veber, Egan, Muegge, and lead-likeness violations, bioavailability score, and PAINS
alert. Through this analysis, we decided to retain only ligands with a PAINS alert score
of 0. After removing duplicates, we obtained a refined database of 15,632 drug-like small
molecules that we studied using the proposed in silico protocol (Supplementary Materials,
Databases S3 and S4).

2.2. Ligand-Based Studies

In the initial phase of our virtual screening protocol, we used in-house-developed
ligand-based techniques to efficiently analyze a large number of compounds and signifi-
cantly reduce the number of candidates considered in the subsequent phases of structure-
based approaches. This strategy not only enhances the reliability of the selection process
but also minimizes the risk of false positives, by focusing attention on molecules with a high
probability of effective interaction with the target. The use of ligand-based approaches thus
represents a critical and well-reasoned step in the virtual screening workflow. It serves as
an initial filter that optimizes the use of resources and research time, laying the groundwork
for more in-depth structure-based studies.

To predict the binding affinity toward the selected targets, Hsp90 and ER, the Biotarget
Predictor Tool (BPT), a well-established ligand-based protocol available on the DRUDIT
platform (1 October 2024), was employed. Specifically, the selected targets included the
Hsp90α isoform (PDB code: 2FWY), chosen for its critical role in oncogenic activity. Hsp90α
is associated with adaptive responses to stress conditions that support tumor cell survival,
making it a key priority for anticancer drug research [34]. The other target was the ERα
isoform (PDB code: 7KBS). The decision to focus on ERα rather than ERβ stems from
the predominant role of ERα in cellular proliferation processes linked to various cancers,
positioning it as a crucial target for therapeutic modulation. ERα is particularly implicated
in the regulation of genes associated with tumor growth and exhibits significantly higher
expression in several cancers, including breast cancer. Consequently, prioritizing ERα
directs the analysis toward a target of high clinical and pharmacological relevance [35,36].
Initially, ligand-based templates for Hsp90 and ER were constructed [37,38]. Extensive
databases of known modulators of Hsp90 and ER were downloaded from BindingDB,
which is a reliable and accessible source, containing Ki, Kd, IC50, and EC50 values, and
target information for thousands of active molecules. In our study, we set an activity cut-off
of IC50 < 100 nM to select the most potent inhibitors, followed by a thorough cleaning
process to eliminate duplicates. These sets of inhibitors were subsequently processed using
MOLDESTO (MOlecular DEScriptors Tools-1.0 version) [39], our proprietary software
capable of providing over 1000 molecular descriptors (3D, 2D, and 1D) for each input
structure. As a result, we obtained a “Compounds vs. Molecular Descriptors” matrix for
each database, which was then converted into two sequences of descriptor pairs (mean
and standard deviation) that constituted the molecular descriptor-based templates. These
templates were integrated into the DRUDIT platform to evaluate the affinity of the input
structures [39].

Upon completing the preliminary phase, the NCI small molecule database was sub-
jected to BPT in Multitarget Mode (Supplementary Materials, Matrix S1). In addition to the
15,632 structures, raloxifene and PF-04929113, inhibitors of ER and Hsp90, respectively, were
uploaded to DRUDIT. The molecules were analyzed using the Drudit Affinity Score (DAS),

http://www.swissadme.ch
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which ranges from 0 to 1. Scores close to zero indicate a low binding affinity between
ligands and targets, while values close to 1 suggest a high ability of the compounds to
interact with the selected targets. The DAS values of the structures for the two targets,
available in Supplementary Materials, Matrix S1, were analyzed in Multitarget Mode to
identify new inhibitors capable of interacting with both Hsp90/ER. The Multitarget Score
(MScore) was computed through Equation (1):

MScore = DASER × DASHsp90 (1)

where DASER and DASHsp90 represent the DAS scores for the molecular descriptor-based
templates of ER and Hsp90, respectively. The multitarget score allowed the selection of
structures with optimal activity against both targets: the higher the two DAS scores, the
higher the MScore, indicating a greater probability that the small molecule would inhibit
both targets.

The compounds were ranked based on this parameter, and the MScore calculated by ap-
plying Equation (1) to the DAS scores of the two reference compounds DASER (raloxifene) ×
DASHsp90 (PF-04929113) was selected as the threshold value (0.66056). The top 595 small
molecules (Supplementary Materials, Matrix S2), which were predicted to have optimal
interactions with both targets of interest, were then selected for further in silico structure-
based studies.

2.3. Structure-Based Studies: Molecular Docking Analysis

In the second phase of the protocol, molecular docking studies were developed to
assess the ability of the small molecules to insert into the binding sites of the target proteins.
In this study, a two-step virtual docking workflow was used to further filter the compounds
selected in the ligand-based analysis.

The estrogen receptor (ER) functions as a dimer and has a complex organizational
structure, which is articulated into six functional domains, from the N-terminal A/B to the
C-terminal F segments. The A/B sequence contains the ligand-independent transactivation
domain 1 (AF-1), which, when phosphorylated, can activate the receptor independently.
The C domain is highly conserved and hosts the DNA binding domain (DBD), which
consists mainly of α-helices and is characterized by two zinc finger motifs. These mo-
tifs facilitate DNA binding and comprise two distinct subregions responsible for DNA
recognition and receptor dimerization.

The D domain, known as the hinge region, is less conserved and serves as a link
between the C and E domains. The E domain contains the ligand binding domain (LBD),
which includes a ligand binding site, a co-activator/co-repressor interaction region, a
dimerization interface, and the ligand-dependent transactivation domain 2 (AF-2). Finally,
the F domain is a small C-terminal region that, although not essential for transactivation,
appears to play a key role in protecting the receptor from proteolysis.

The most important residues within the binding pocket are Ala350, Asp351, Glu353,
Trp383, Leu384, Arg394, Phe404, Met421, His524, and Leu525. The hydrogen bonds es-
tablished by Glu353 and Arg394 are crucial for the overall binding affinity of the ERα
ligands, while the interactions provided by Asp351 are important for antagonist stabi-
lization. Phosphorylation of other residues is of fundamental importance for various
functional activities of ERα, such as hormone sensitivity, nuclear localization, DNA bind-
ing, protein/chromatin interactions, protein stability, and gene transcription. Most of these
phosphorylated residues are serine residues located in the AF-1 domain (including serine
residues 104, 106, 118, and 167), in the DBD (Ser236), and in the LBD (Ser305). Addition-
ally, phosphorylation of Tyr537, located in the LBD, is also known to be important [6,7,9]
(Figure 1).
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Figure 1. X-ray structure of the ER ligand binding pocket (PDB code 7KBS [40]).

On the other hand, Hsp90 is structurally composed of three main domains: a C-
terminal domain (CTD), which contains subdomains forming Hsp90 dimers and sites for
interaction with other co-chaperones; an N-terminal domain (NTD), which includes an ATP
binding pocket and a subdomain that binds co-chaperones such as p50 and cdc37; a middle
domain (MD) and a charged region (CR) that provide greater flexibility and dynamics to
the protein [16,21,41] (Figure 2).
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Figure 2. X-ray structure of the Hsp90 ligand binding pocket (PDB code 2FWY [42]).

The docking grids were centered on the binding sites of ER and Hsp90 and included
all major amino acid residues. The 595 selected small molecules were subjected to XP
docking investigations (Supplementary Materials, Tables S1 and S2). For each XP docking
analysis performed, the top 100 ranked small molecules were selected. Subsequently, only
the structures that were common to each simulation were selected to proceed to the second
step of the docking studies. In this way, 20 small molecules were identified and the docking
scores for each target can be found in Table S2 of the Supplementary Materials. Surpassing
the traditional rigid receptor approach in structure-based virtual screening, the Induced
Fit Docking (IFD) protocol accounts for the effect of the ligand on the protein structure,
providing a detailed analysis of the structural characteristics of the ligand/target complexes
and their conformational changes.
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In the second step of the IFD workflow, the same X-ray structures were used. The
final results are reported in Tables S3 and S4 of the Supplementary Materials, while the IFD
scores for the top 20 small molecules are available in Table 1.

Table 1. IFD scores of the top 20 selected small molecules and the reference co-crystallized ligand
raloxifene against ER (PDB code 7KBS) and the reference ligands PF-04929113, UP-H64 against HSP90
(PDB code 2FWY).

ER HSP90

Title IFD Score Title IFD Score

743414 −535.88 676315 −479.944

755435 −534.23 755435 −478.905

676315 −533.61 PF-04929113 −478.025

raloxifene −528.99 743414 −476.988

623292 −526.93 732491 −475.472

732491 −526.74 678359 −475.108

700643 −526.08 623292 −475.065

667933 −525.91 UP-H64 −474.866

695838 −525.91 695838 −474.864

694110 −525.65 667933 −473.692

679211 −525.45 700643 −472.682

670869 −525.38 694110 −472.341

678359 −524.81 679211 −471.944

679210 −524.74 670869 −471.328

679208 −524.61 679210 −471.286

736041 −524.29 665690 −470.545

665690 −523.8 679208 −470.348

729154 −522.93 729154 −470.303

635321 −521.56 736041 −469.883

635313 −519.18 635313 −469.768

635321 −469.067

The results of the IFD simulations indicate that several compounds can interact effec-
tively with the target proteins, exhibiting IFD scores that are either better or comparable
with the reference ligands. Among the 20 structures (Table 1), compounds 743414, 755435,
and 676315 emerged as the best in each simulation, achieving the following IFD scores
for ER: 743414 (−535.88), 755435 (−534.23), and 676315 (−533.61), all of which exceed the
reference ligand raloxifene (−528.99).

Two reference ligands were selected for Hsp90: PF-04929113 (IC50: 0.038 µM [43]) and
the co-crystallized ligand UP-H64 (IC50: 200 nM [42]). The choice to use two reference
ligands for Hsp90 was strategic to ensure a comprehensive and robust evaluation of the
interactions of the compounds with this target. PF-04929113 was selected for its high
biological activity, indicating strong affinity and potency, making it an ideal benchmark for
comparing the efficacy of new compounds. Conversely, the co-crystallized ligand UP-H64
was chosen due to the availability of its crystallographic structure complexed with Hsp90
in the Protein Data Bank (PDB), allowing for more accurate modeling of protein–ligand
interactions during the docking simulations and providing a well-defined structural context
for interpretation the IFD scores.
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Compounds 676315 (−479.944) and 755435 (−478.905) demonstrated better IFD scores
than the two reference ligands, PF-04929113 (−478.025) and the co-crystallized ligand UP-
H64 (−474.866). However, compound 743414 (−476.988) exhibited a lower IFD score than
PF-04929113 but a higher score than the co-crystallized ligand UP-H64. Considering the
data obtained from the IFD simulations, compounds 743414, 755435, and 676315 emerged
as potential multitarget candidates, which is why they were subjected to further molecular
dynamics analyses.

2.4. Molecular Dynamics Simulations

Molecular dynamics simulations were performed for the three best compounds to
gain insights into the structural characteristics of compounds 743414, 676315, and 755435 in
complex with the two targets, ER (PDB code 7KBS) and Hsp90 (PDB code 2FWY), using
raloxifene and UP-H64 as reference compounds. The Root Mean Square Deviation (RMSD)
was calculated for both the ligands and the proteins during a 100 ns simulation trajectory
for each ligand/protein complex. This parameter was used to assess the stability and
convergence of the simulations by measuring the average change in the displacement of
the protein backbone from the initial frame (t = 0) compared to a reference frame.

In Figure 3a–d, the RMSD plots for compounds 743414, 676315, and 755435 and
raloxifene in complex with the ER target are shown. The left Y-axis indicates the RMSD
evolution of the ER. The analysis shows that the RMSD of the protein varies within the
acceptable range of 1–3 Å, suggesting acceptable structural stability. The right Y-axis, on
the other hand, indicates the RMSD of the various analyzed ligands. The RMSD values of
the ligands are not significantly higher than the RMSD values of the ER, suggesting that the
ligands did not diffuse from their initial binding site during the simulation. An exception
is graph b, where the ligand 676315 exhibits RMSD values between 0 and 4 Å, as well as
excessive fluctuations during the simulation time.

Furthermore, convergence between the RMSD of the protein and the ligand, a cru-
cial parameter indicating the equilibrium of the system, was achieved in the complexes
743414/ER and 755435/ER at the end of the simulations. This indicates that these systems
reached a stable configuration. On the other hand, in the raloxifene/ER complex, there was
no clear convergence between the RMSD values of the protein and the reference ligand,
suggesting that equilibrium might not have been fully achieved and indicating a potentially
lower stability in the timescale considered.

The RMSD was also calculated for the 100 ns simulation trajectory of the same lig-
ands and the Hsp90 protein, with the aim of measuring the average change in backbone
displacement. Analyzing the graphs shown in Figure 4a–e, we observe on the left Y-axis
the evolution of the RMSD of the Hsp90 protein, which varies between 1 and 3.5 Å. The
right Y-axis shows the RMSD values of the ligand; specifically, the ligands 743414, 676315,
and UP-H64 exhibit high RMSD values (0–5 Å) compared to the RMSD values of the
protein. The ligand PF-04929113 (graph d) shows RMSD values within the acceptable
range of 0–2.4 Å. Nonetheless, convergence between the RMSD values of the protein and
PF-04929113 is not achieved. In graph c, both the protein and the ligand 755435 have
reached acceptable RMSD values, indicating good convergence between the two, which
translates into perfect stability of the 755435/Hsp90 complex. These analyses suggest that
the compound 755435 achieves good stability in both binding sites of the protein, thereby
confirming the potential to inhibit both molecular targets. For this reason, we conducted
further analyses on the compound 755435 in complex with ER and Hsp90, respectively.
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The Protein Root Mean Square Fluctuation (P-RMSF), a valuable tool for characterizing
local changes along the protein chain, was calculated for each specific residue. Figure 5a,b
present the P-RMSF plots for each protein (Hsp90 and ER in complex with 755435, respec-
tively), where the peaks represent regions of the protein that fluctuate the most during the
simulation. Notably, fluctuations at the N and C termini compared to secondary structural
elements, such as alpha helices and beta sheets, which usually exhibit greater rigidity, are
of particular interest. In plot a, related to Hsp90, significant peaks are observed around
residues 50 and 190, with fluctuations exceeding 4.8 Å. These peaks suggest high-mobility
regions, likely corresponding to loops or N and C termini, which tend to be more flexible.
In plot b, related to ER, significant peaks are also found around residues 50 and 200, with
fluctuations up to 4.8 Å.
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Figure 5. (a) Calculated P-RMSF during the simulation for Hsp90 in complex with 755435; (b) calcu-
lated P-RMSF during the simulation for ER in complex with 755435.

Protein residues interacting with the ligand are marked by green vertical bars, facili-
tating the interpretation of molecular dynamics data. It is noteworthy that many of these
bars are in regions with low fluctuations (RMSF < 1.2 Å). This is consistent with the fact
that residues forming the binding site tend to be more rigid, contributing to the stability of
the ligand–protein interaction. In the Supplementary Materials (Figures S6–S8), the Protein
Root Mean Square Fluctuation (P-RMSF) profiles of the reference ligands—raloxifene in
complex with ER, and PF-04929113 and UP-H64 in complex with Hsp90—are provided. The
secondary structural elements of Hsp90 and ER, such as alpha helices and beta sheets, are
observed throughout the simulation. The results related to the composition of secondary
structural elements for each frame of the trajectory are reported in Figures S1 and S2 of
the Supplementary Materials. This analysis provides a detailed understanding of the
protein regions that are most mobile during the simulation, highlighting the importance of
ligand-interacting residues in maintaining the stability of the protein complex.

The Ligand Root Mean Square Fluctuation (L-RMSF) is a critical metric for assessing
the mobility of ligand atoms, allowing the identification of regions exhibiting significant
variations over time. This analysis is crucial for understanding the conformational entropy
of the ligand and its contribution to the binding process. For compound 755435, the L-RMSF
was calculated within each complex formed with ER and Hsp90, setting the reference time
(tref) to the first frame as the zero-time point. The L-RMSF results, presented in Figure 6b,c
for ER and Hsp90, respectively, provide a detailed view of the ligand’s atomic fluctuations,
with a 2D visual representation shown in Figure 6a.

This approach isolates the ligand’s intrinsic variations, eliminating the effects of the
global fluctuations of the complex. Compound 755435, within the protein environment,
demonstrates significant stability, with RMSF values within an acceptable range.
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Figure 6. (a) Two-dimensional structure of compound 755435; (b) calculated L-RMSF during the
simulation for 755435 in complex with ER; (c) calculated L-RMSF during the simulation for 755435 in
complex with Hsp90.

Specifically, in graph b, related to the ER complex, significant variations in atomic fluc-
tuations are observed along the entire structure of the ligand. Some atoms exhibit high
fluctuations, indicating greater mobility in those specific regions. The highest L-RMSF peaks
suggest that certain functional groups of the ligand have high conformational entropy,
implying possible dynamic interactions with the binding pocket residues of ER. In graph C,
related to the Hsp90 complex, the atomic fluctuations of the ligand are relatively lower than
those observed in the ER complex. This suggests that ligand 755435 maintains greater sta-
bility within the binding pocket of Hsp90. The lower overall L-RMSF indicates strong and
specific interactions between the ligand and the residues of the binding pocket, contributing
to the stability of the complex.

In general, low L-RMSF values indicate high ligand stability in the binding pocket,
suggesting strong and specific interactions with the protein. In summary, the L-RMSF
analysis provides valuable insights into the conformational stability of the ligand and its
interaction with the target protein, highlighting the potential of compound 755435 as a sta-
ble candidate for further structural and functional studies. In the Supplementary Materials
(Figures S9–S11), the Ligand Root Mean Square Fluctuation (L-RMSF) profiles were calcu-
lated for raloxifene in complex with ER, as well as for PF-04929113 and UP-H64 in complex
with Hsp90.

Additionally, during the simulation, the ligand torsional profiles, summarizing the
conformational evolution of each rotatable bond in ligand 755435, was carefully analyzed,
and the results are reported in Figure S3 of the Supplementary Materials.

Subsequently, several structural parameters were calculated for each complex to
provide a comprehensive analysis of their molecular characteristics. Specifically, the Radius
of Gyration (rGyr) was calculated to measure the ligand’s extent, equivalent to its principal
moment of inertia. Additionally, the Intramolecular Hydrogen Bonds (intraHBs), Molecular
Surface Area (MolSA), Solvent Accessible Surface Area (SASA), and Polar Surface Area
(PSA) were determined. The results of these calculations are presented in Figures S4 and S5
of the Supplementary Materials.
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2.5. Integrated Analysis of Amino Acid Interactions Between Compound 755435 and Protein
Binding Sites

In light of the results obtained from molecular dynamics simulations, we conducted
a detailed analysis of the key interactions between the best docked pose of compound
755435 and the amino acid residues for each protein binding site (see Table 2 and related 3D
binding site figures). This in-depth analysis of amino acid interactions, performed through
the study of the best docked pose derived from IFD analysis and molecular dynamics
studies, was crucial for understanding the potential mechanism of action of the compound
with respect to ER and Hsp90. Integrating the results of IFD and molecular dynamics
simulations offers a dual advantage: on the one hand, IFD provides a detailed snapshot
of the static interactions in the optimal binding configuration, while molecular dynamics
simulations allow for the observation of the stability and flexibility of these interactions over
time. This combined approach is particularly useful for identifying the key contributions
of amino acid residues to the stability of the molecule–target complex, thereby enhancing
our understanding of the molecular dynamics and potential therapeutic applications of
the compound.

Figure 7a shows ER binding site (PDB code 7KBS) in complex with raloxifene. Raloxifene
is a selective estrogen receptor modulator (SERM) capable of acting both as an agonist and
an antagonist of the ER in various tissues. The drug interacts with specific amino acid
residues located in the ligand binding domain (LBD) of the estrogen receptor. Notable
residues include Ala350, Asp351, Glu353, Trp383, Leu384, Arg394, Phe404, Met421, His524,
and Leu525 [6]. Two key residues, Glu353 and His524, located at opposite ends of the
binding pocket of the receptor, are crucial for ligand recognition and hydrogen bond
formation. The amide group of Glu353 forms a hydrogen bond with the hydroxyl group
on the benzothiophene ring of raloxifene (O-H---N), a critical interaction for the stability of
the complex and for inducing the receptor conformation necessary for the drug to exert its
effects as a selective modulator. His524, through its imidazole group, forms a hydrogen bond
with the hydroxyl group of the phenolic ring (O-H---N). Additionally, the carboxyl group of
the Asp351 side chain forms an H-bond with the nitrogen of the piperidine ring (N-H---O),
which is essential for ligand stabilization. Beyond the hydrophilic residues at the ends of
the binding pocket, the rest of the pocket is highly hydrophobic. Notably, Phe404 engages
in π-π interactions with the benzothiophene ring, significantly contributing to the ligand–
receptor complex stability. Figure 7b depicts Hsp90 in complex with the co-crystallized
ligand UP-H64 (PDB code 2FWY). Hsp90 is a homodimeric protein characterized by three
main domains, with the N-terminal domain (NTD) playing a crucial role. This domain
includes the ATP binding site, which is essential for protein function. Within this site,
several amino acid residues are critical for ligand interactions, such as Trp162 and Phe138.
These residues participate in hydrophobic π-cationic interactions with the amine group of
the co-crystallized ligand side chain, contributing to the complex’s stability. The carbonyl
oxygens of Gly135 and Asn51 are involved in hydrogen bond formation with the amine
group of adenine, facilitating ATP binding (N-H---O; N-H---O, respectively). Val136, Tyr139,
Phe22, Leu103, Val150, Ile96, Val186, and Met98 constitute the protein’s hydrophobic pocket,
contributing to its structural stability and ligand recognition. The second reference ligand,
PF-04929113, in complex with Hsp90 (Figure 7c), forms a number of interactions comparable
to those of the co-crystallized ligand UP-H64. Indeed, the PF-04929113/Hsp90 complex also
exhibits significant π-π stacking interactions between Phe138 and the indazole of the ligand,
which contributes to the stabilization of the ligand–protein complex. Various carbonyl
groups in the molecule form hydrogen bonds with the amine group of the Lys58 side chain
(N-H---O) and with the hydroxyl group of the Thr184 side chain (O-H---O). Additionally,
the phenolic group of the Tyr139 side chain forms an H-bond with the carbonyl group of
the ligand (O-H---O). Additionally, other hydrogen bonds can be observed between the
oxygen of Asp93 and the amide portion of the compound (O---H-N), and between Asp102

and the amine group.
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Table 2. Overview of the amino acids involved in the binding of the selected compound 755435 in the
binding sites of ER and Hsp90, compared to ligands raloxifene, PF-04929113 and UP-H64, at 4 Å proximity.

ER Hsp90

Title raloxifene 755435 Title PF-04929113 UP-H64 755435

Met343 X Phe22 X X X

Leu346 X *X Asn51 X *X *X

Thr347 X X Ser52 X X X

Leu349 X X Asp54 X

Ala350 X X Ala55 X X X

Asp351 *X *X Lys58 *X X

Glu353 *X X Asp93 *X X

Leu354 X X Ile96 X X X

Trp383 X X Gly97 X X X

Leu384 X X Met98 X X X

Leu387 X X Thr99 X

Met388 X X Asp102 *X X

Leu391 X X Leu103 X X

Arg394 X Asn106 X

Phe404 #X #X Leu107 X X X

Met421 X X Gly108 x

Ile424 X X Ile110 X

Phe425 X Ala111 X X X

Leu428 X X Gly135 *X X

Gly521 X X Val136 X X X

Hie524 *X X Gly137 X

Leu525 X X Phe138 #X #X #X

Lys531 X *X Tyr139 *X X #X

Asn532 X X Val150 X X X

Val533 X *X Hie154 X

Val534 X X Trp162 X #X #X

Pro535 X X Thr184 *X X *X

Ser536 X Val186 X X X

Leu539 X X

Tot. 28 27 23 23 19
*X: H-bonds; #X: hydrophobic interaction.

The selected derivative, 755435, although forming a total number of interactions lower
than the reference ligands such as raloxifene, PF-04929113, and UP-H64 (Table 2), still meets
the essential binding requirements with ER and Hsp90 receptors, at approximately 4 Å.
In the ligand binding domain (LBD) of the ER (Figure 8), compound 755435 establishes
significant interactions with all the crucial residues of the active site. A key element shared
between the binding mechanisms of raloxifene and compound 755435 is the formation
of hydrogen bonds at opposite ends of the ER binding pocket, which contributes to the
stabilization of the ligand–receptor complex. The oxygen of the carbonyl group of Val533

and the amine group of Lys531 form a hydrogen bond with the phenolic group of 755435
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(O---H-O; N-H---O, respectively). On the opposite side of the receptor’s binding site, the
oxygen of the carbonyl group from the Leu346 backbone forms a hydrogen bond with the
phenolic group of 755435, where the oxygen of the carbonyl group acts as an acceptor and
the phenolic group of the compound acts as a donor (O-H---O). Additionally, the phenolic
ring is further stabilized through a π-π stacking interaction with residue Phe404. Another
hydrogen bond is observed between the amide portion of 755435 and the carboxyl group
of Asp351 (N-H---O). Finally, compound 755435 is surrounded by a network of amino acids
in the binding site, including Leu539, Leu354, Trp383, Leu384, Ala350, Leu349, Leu387, Met388,
Leu391, Met343, Leu428, Ile424, Met421, Leu525, Pro535, and Val354. This network contributes to
creating a hydrophobic environment that further supports the interaction and stabilization
of the compound within the binding site of the receptor.
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For Hsp90 as well (Figure 9), compound 755435 meets the essential requirements for
effective binding to the protein compared to the reference ligands, PF-04929113 and UP-H64.
Specifically, compound 755435 is involved in the formation of two hydrogen bonds: one
between the amine group of Asn51 and the carbonyl group of compound 755435 (N-H---O),
and the second between the oxygen of the Thr184 backbone and the phenolic group of
the compound (O-H---O). Additionally, Trp162 and Phe138 are involved in π-π stacking
interactions, with the pyrimidine ring of the compound aligning with residue Tyr139, and
the imidazole portion of the imidazothiazole system being stabilized by interactions with
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Phe138 and Trp162. Furthermore, the amino acids Phe22, Val150, Val186, Val136, Ala111, Ile110,
Leu107, Ile96, Met98, and Ala55 form the hydrophobic network surrounding the binding site.
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Molecular dynamics simulations also present graphs of protein–ligand contacts and
explain the interaction fraction of protein residues with the ligand, indicating the percent-
age of simulation time that the specific interaction between the ligand and the receptor
complexes is maintained. Figure 10a,b show the protein–ligand contacts for the 755435/ER
and 755435/Hsp90 complexes, respectively.

The 755435/ER complex (Figure 10a) maintained strong interactions with Leu346,
Thr347, Ala350, Glu353, Phe404, Leu525, and Val533. Conversely, for the 755435/Hsp90 com-
plex (Figure 10b), Ala55, Lys58, Asp93, and Phe138 exhibited the highest interaction fractions,
with Asn51 varying between 1.75 and 2.
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It is noteworthy that compound 755435, identified through our hybrid ligand structure-
based protocol as a potential dual-target inhibitor against Hsp90 and ER, has demonstrated
biological activity against several breast cancer cell lines including ER+ breast cancer, such
as MCF7 and T-47D [44]. This underscores the effectiveness of integrating our ligand-based
tools with conventional structure-based techniques, establishing it as a reliable and robust
approach for screening large compound libraries in the field of targeted drug discovery.

3. Materials and Methods
3.1. Database Cleaning Phase

In silico prediction of pharmacokinetic properties is a pivotal component of drug
discovery. This study employed two prominent computational tools, QikProp and Swis-
sADME, to evaluate the pharmacokinetic profiles of the designed compounds and to elimi-
nate those lacking drug-likeness properties. QikProp, a module within the Schrödinger
Suite, leverages molecular descriptors to predict various drug-like properties, such as
solubility, permeability, and bioavailability. The calculations were executed using default
settings, and the resulting output provided valuable insights into the ADME (Absorption,
Distribution, Metabolism, and Excretion) characteristics of the compounds. Furthermore,
SwissADME, an online platform developed by the Swiss Institute of Bioinformatics, was
utilized to assess additional pharmacokinetic parameters. SwissADME employs a robust
set of algorithms to estimate physicochemical properties, drug-likeness, and medicinal
chemistry-related parameters. The combined analyses from QikProp and SwissADME
offered a thorough understanding of the potential drug-like properties of the investigated
compounds, facilitating the identification of lead candidates for subsequent experimen-
tal validation.

3.2. Ligand-Based Protocols

The web service DRUDIT (www.drudit.com, accessed on 1 October 2024) operates
on four servers, each capable of handling over ten tasks simultaneously, utilizing various
software modules written in C and JAVA on MacOS Mojave. The Biotarget Finder Module
was employed in Multitarget Mode to screen the extensive, curated NCI database of active
small molecules as potential ER and HSP90 inhibitors for breast cancer treatment [39].

The Biotarget Predictor Tool (BPT) predicts the binding affinity between candidate
molecules and specific biological targets. Templates for ER and HSP90 were constructed
using sets of well-known protein inhibitors with affinities below 100 nM, sourced from
BindingDB [45]. Molecular descriptors were calculated using MOLDESTO. The five devel-
oped molecular descriptor target templates were integrated into DRUDIT, and the default
DRUDIT parameters (N = 500, Z = 50, G = a) were applied [39,45,46]. During the initial
phase of the in silico workflow, the cleaned NCI database was uploaded to DRUDIT and

www.drudit.com
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submitted to the Biotarget Predictor in Multitarget Mode. The output results were pre-
sented as DAS (Drudit Affinity Score) values for each structure, indicating the binding
affinity of compounds against both ER (DASER) and HSP90 (DASHSP90).

3.3. Structure-Based Studies

The preparation of ligands and proteins for in silico studies followed the detailed
procedures outlined below.

3.3.1. Ligand Preparation

The ligands intended for docking studies were carefully processed utilizing the
LigPrep tool from Schrödinger’s Maestro Suite (Schrödinger Release 2017-2, LigPrep;
Schrödinger, LLC: New York, NY, USA, 2017). For each ligand, all possible stereoisomers
and tautomers were generated under physiological conditions (pH 7.0 ± 0.4), following the
default parameters and using the Epik method for ionization [41]. Afterward, the ligands
underwent energy minimization, with the OPLS 2005 force field applied to ensure optimal
stability [42].

To prepare the ligands for docking simulations, they were subjected to the LigPrep
protocol within the Schrödinger Maestro platform. This involved generating every likely
tautomer and stereoisomer at a pH of 7.0 ± 0.4, following standard settings and the Epik
ionization technique. Subsequently, the ligands were energy-minimized using the OPLS
2005 force field to obtain their lowest energy conformation.

3.3.2. Protein Preparation

Crystal structures of ER and HSP90 (PDB code7KBS and PDB code 2FWY, respectively)
were sourced from the Protein Data Bank [47,48] and underwent preparation using the
Protein Preparation Wizard in the Schrödinger software (Schrödinger Suite 2017-2 Protein
Preparation Wizard; Epik, Schrödinger, LLC: New York, NY, USA, 2017), adhering to default
settings [49]. This involved assigning bond orders, including the Het group, deleting all
water molecules, and protonating heteroatom states using the Epik tool, with the pH set
at biologically relevant values (7.0 ± 0.4). Optimization of the H-bond network ensued,
and the structures underwent a restrained energy minimization step (RMSD of the atom
displacement for terminating minimization was set at 0.3 Å), employing the OPLS 2005
force field [50].

3.3.3. Docking Validation

Molecular docking studies were performed and scored using the Glide module within
the Schrödinger Suite (Schrödinger Release 2024-4: Glide, Schrödinger, LLC, New York, NY,
USA, 2024). Receptor grids were generated by designating the original ligands—raloxifene
(for ER, PDB code 7KBS) and UP-H64-LIGCOCRYST (for HSP90, PDB code 2FWY)—as
the centroids of the grid boxes. Utilizing the Extra Precision (XP) mode for scoring, 3D
conformers were docked into the receptor models. A post-docking minimization step was
applied to each ligand conformer, producing a maximum of two docking poses and up to
five poses per ligand conformer. Remarkably, the docking protocol successfully redocked
the original ligands within the receptor binding pockets with an RMSD < 0.51 Å.

The Extra Precision (XP) Docking was employed to preliminarily screen compounds
selected by DRUDIT. Subsequently, the Induced Fit Docking (IFD) simulation was con-
ducted using the Schrödinger IFD application, a precise and robust method accommodating
the flexibility of both ligand and receptor [51,52]. Applying Schrödinger’s validated IFD
protocol, the ER and HSP90 proteins (PDB codes7KBS, and 2FWY, respectively), previously
refined by the Protein Preparation module, were used. The IFD score, calculated as IFD
score = 1.0 Glide Gscore + 0.05 Prime Energy, incorporating protein–ligand interaction
energy and total system energy, was used to rank the IFD poses.
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3.3.4. Molecular Dynamics Simulations: Details of the Experimental Procedure

Molecular dynamics simulations were conducted to investigate the effects of the
solvent system on the stability of the protein–ligand complex structure. These simulations
were carried out using the explicit solvent molecular dynamics package Desmond, provided
by Schrödinger in Maestro version 13.8.155, MMshare version 6.4.195, Release 2023–4,
available for the Linux-x8564 platform. The simulations were executed on a Dell Inc.
(Round Rock, TX, USA) Precision 7960 Tower equipped with an Intel® Xeon® w9-3475X
processor (72 cores) and an NVIDIA Corporation graphics processing unit running on
Ubuntu 22.04.4 LTS 64-bit.

The molecular dynamics simulations were performed using the top docking poses of
each ligand (755435, 743474, and 676315) in complex with the target receptors of interest
(Hsp90 and ER), retrieved from Induced Fit Docking studies, to confirm the stability
and binding strength of the ligand/target complexes. Simulations were conducted for a
simulation time of 100 ns, generating approximately 1000 frames in the trajectory.

These simulations were performed under the constant temperature and pressure (NPT)
ensemble, allowing precise control of temperature and pressure. In the NPT ensemble,
pressure adjustments were made by altering the volume, and the unit cell vectors were
allowed to change freely. The simulation parameters were set with a system temperature of
300 K and a pressure of 1.01325 bar. Subsequently, 100 ns production runs were performed
for the various complexes. At the conclusion of each simulation, the output file was
analyzed using the Simulation Interaction Diagram tool. This tool provides graphical
representations of all calculated parameters during the simulations, including Root Mean
Square Deviation (RMSD) for the protein (Cα, backbone, side chains, or heavy atoms) and
ligands; Root Mean Square Fluctuation (RMSF) for protein residues and ligands; protein–
ligand contacts; and ligand torsion. The graphical depictions of the simulations reported in
both the manuscript and the supporting information were generated using this tool.

4. Conclusions

Dual inhibition of estrogen receptors (ERs) and the chaperone protein Hsp90 emerges
as a promising therapeutic strategy for the treatment of ER+ breast cancer, particularly in
cases of resistance to conventional endocrine therapies. In our study, we integrated both
ligand-based and structure-based virtual screening approaches to facilitate the identification
of small molecules with high dual inhibition potential.

Initially, we refined the NCI database using tools such as QikProp and SwissADME to
ensure data quality. The refined database was then subjected to ligand-based studies using
the Biotarget Predictor Tool (BPT) in Multitarget Mode. This phase enabled us to select
compounds with potential for interaction with both targets.

Molecular dynamics simulations further confirmed that the selected compounds,
particularly compound 755435, exhibit favorable interactions with the binding sites of ER
and Hsp90. Compound 755435 stands out for its ability to simultaneously interact with
both targets, suggesting a potential mechanism of action based on multitarget inhibition.

The significance of developing multitarget drugs lies in their capacity to address mul-
tiple concurrent pathological pathways, which is especially crucial in cases of therapeutic
resistance. By simultaneously inhibiting ER and Hsp90, a multitarget drug can not only
tackle the primary tumor growth mechanism mediated by ER but also interfere with cellular
stress mechanisms and the stabilization of oncoproteins mediated by Hsp90. This approach
may reduce the risk of developing resistance, enhance therapeutic efficacy, and potentially
decrease the need for complex and costly drug combinations.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/molecules29246040/s1, Databases S1 and S2: NCI database; Databases S3
and S4: Refined NCI database; Matrix S1 and S2: DAS; Tables S1 and S2: Docking score; Tables S3 and S4:
IFD score; Figures S1–S11: Molecular dynamics simulations.

https://www.mdpi.com/article/10.3390/molecules29246040/s1
https://www.mdpi.com/article/10.3390/molecules29246040/s1
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