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This work presents a comparison between different approaches for the model-free estimation of information-theoretic
measures of the dynamic coupling between short realizations of random processes. The measures considered are the
Mutual Information Rate (MIR) between two random processes X and Y and the terms of its decomposition evidencing
either the individual entropy rates of X and Y and their joint entropy rate, or the transfer entropies from X to Y and from
Y to X and the instantaneous information shared by X and Y . All measures are estimated through discretization of the
random variables forming the processes, performed either via uniform quantization (binning approach) or rank ordering
(permutation approach). The binning and permutation approaches are compared on simulations of two coupled non-
identical Hènon systems and on three datasets including short realizations of cardiorespiratory (CR, heart period and
respiration flow), cardiovascular (CV, heart period and systolic arterial pressure) and cerebrovascular (CB, mean arterial
pressure and cerebral blood flow velocity) measured in different physiological conditions, i.e., spontaneous vs. paced
breathing or supine vs. upright positions. Our results show that, with careful selection of the estimation parameters
(i.e., embedding dimension and number of quantization levels for the binning approach), meaningful patterns of the
MIR and of its components can be achieved in the analyzed systems. On physiological time series, we found that paced
breathing at slow breathing rates induces less complex and more coupled CR dynamics, while postural stress leads
to an unbalancing of CV interactions with prevalent baroreflex coupling and to less complex pressure dynamics with
preserved CB interactions. These results are better highlighted by the permutation approach, thanks to its more parsi-
monious representation of the discretized dynamic patterns, which allows to explore interactions with longer memory
while limiting the curse of dimensionality.

Model-free tools for the analysis of bivariate time se-
ries are fundamental to provide a proper description of
how the coupling among systems arises from the underly-
ing possibly non-linear regulatory mechanisms. Among
the tools devised to perform this analysis, information-
theoretic measures are largely explored to infer short-term
interactions from pairs of physiological time series. In this
context, the so-called mutual information rate (MIR) is a
long-known measure of the dynamic interaction between
two random processes, which can be reliably approxi-
mated from bivariate linear models fitting the observed
time series, but is much harder to quantify directly if the
model assumptions are not satisfied. In this work, the chal-
lenge of performing model-free estimation of this measure
is faced exploiting the possibility to decompose the MIR
into terms evidencing measures of entropy rate and con-
ditional mutual information, executing low-dimensional
time series embedding, and implementing the estimation
of these terms through binning- and permutation-based
discretization strategies. While the application to short-
term simulated and physiological series provides plausible
results, it also evidences troublesome aspects that call for
the development of improved entropy estimators and re-
fined embedding strategies.

I. INTRODUCTION

In recent years, a wide range of approaches have been pro-
posed to assess the temporal statistical structure and the in-
teraction between coupled dynamic processes from the anal-
ysis of bivariate time series taken as realizations of these
processes. The most prominent methods are based on state
space interdependence1–3, correlation analyses4,5, or on the
concept of Granger causality (GC) implemented in the time
or frequency domains6,7. A general and flexible framework,
which encompasses most of these approaches, is the frame-
work of information dynamics8, which has been developed
and widely exploited to characterize the interdependence of
coupled systems in several fields including neuroscience9 and
physiology10,11. In particular, entropy-based measures quanti-
fying the dynamical complexity or information storage within
a single process12,13, or the directed information transfer from
one process to another14,15, have been successfully used to
assess physiological interactions in the cardiorespiratory10,
cardiovascular16 and cerebrovascular17 systems.

A long-known and well-defined measure to assess the dy-
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namic coupling between two time series using information
theory is the Mutual Information Rate (MIR), which quan-
tifies the information exchanged over time by two coupled
systems18,19. However, since the MIR is defined for infinite-
dimensional variables, its reliable estimation in practical con-
texts where short stationary realizations are typically avail-
able is a daunting task. In spite of this, a renewed interest
for this measure has recently emerged thanks to the possibil-
ity to decompose it in different forms evidencing measures of
entropy rate or conditional mutual information20, and thanks
to the development of accurate estimators for the constituent
terms21–24. The interest in this approach stems also from the
fact that the terms appearing in the decomposition of the MIR
constitute popular measures such as the conditional entropy25

or the transfer entropy14; these measures are related respec-
tively to the concepts of complexity and causality, whose
computation is relevant per se in several applications. Nev-
ertheless, the analysis of the MIR and its constituent terms
has been faced up to now for specific classes of coupled ran-
dom processes, such as continuous-time point processes22 or
discrete-time linear Gaussian processes26. The estimation of
these measures in the more general case where assumptions
about the type of processes or about the form of interactions
to be analyzed are relaxed remains a challenging task that has
received less attention up to now.

The present work faces the problem of estimating the MIR
and the terms of its decomposition using model-free entropy
estimates. Model-free approaches are alternative to paramet-
ric estimators, which have the advantage of favoring computa-
tion but the drawback of losing generality. Indeed, regardless
of whether linear27 or nonlinear6 model-based methods are
used, constraining the analysis on a specific model structure
limits the capability to detect and describe complex interac-
tions and multifaceted dynamic behaviors. Here, we employ
a model-free strategy for the computation of the information
shared dynamically between two random processes, which is
described as follows. First we express the MIR equivalently
as the sum of the individual entropy rates of each process
minus their joint entropy rate, or as the sum of the trans-
fer entropy computed along the two directions of interaction
plus the instantaneous information shared by the processes
at zero lag. Second, to allow computation of the measures
from finite-length realizations of the processes, we perform
low-dimensional embedding approximating the past histories
of the processes with a small number of time-lagged com-
ponents. Third, among the variety of methods for the non-
parametric estimation of dynamic information measures28, we
employ discretization methods, which compute the relevant
entropy terms on discrete random variables obtained through
symbolization of the observed continuous-valued vector vari-
ables. Specifically, the approaches to discretization used
herein are: (i) the binning method performing uniform quan-
tization of the time series samples29; and (ii) the permutation
method working on the ranks of the amplitude values within
patterns extracted from the time series30.

The binning- and permutation-based discretization ap-
proaches are first compared in simulations of two coupled
nonlinear Hènon systems. Then, they are applied to three

datasets of physiological time series collected from young
healthy subjects and including different pairs of series mea-
sured in three experimental protocols: (i) heart period and res-
piratory flow measured during spontaneous and paced breath-
ing; (ii) heart period and systolic arterial pressure measured
at rest and during head-up tilt; and (iii) mean arterial pressure
and cerebral blood flow velocity measured at rest and during
head-up tilt. These applications have been chosen because
they feature challenging conditions where complex short-term
physiological mechanisms need to be inferred using model-
free methods applied on short realizations (∼ 250-300 points).
In this context, the comparison between the two discretization
approaches is made observing their ability to reveal expected
physiological responses while facing two contrasting needs,
i.e., working in low-dimensional spaces and providing an ac-
curate description of the process dynamics in terms of time-
lagged interactions and signal amplitude.

II. METHODS

Let us consider two possibly interacting dynamical systems
X and Y , and assume that their joint evolution over time is
described by the stochastic processes X = {Xn} and Y = {Yn},
where n is the time counter. To introduce the notation, let
us indicate as Xn,Yn the scalar random variables describing
the current state of X and Y , as Xn−k:n−1 = [Xn−k · · ·Xn−1]
and Yn−k:n−1 = [Yn−k · · ·Yn−1] the k-dimensional vector vari-
ables sampling X and Y over the past k lags, and as X<n =
limk→∞(Xn−k:n−1) and Y<n = limk→∞(Yn−k:n−1) the infinite-
dimensional variables sampling X and Y over their whole past
history. In this work we consider the problem of estimating
the dynamic coupling between the two systems through the
so-called Mutual Information Rate (MIR)18. In the following
subsections we will first provide the theoretical formulation of
the MIR and of its information-theoretic decomposition, and
then illustrate the binning and permutation approaches for the
estimation of the MIR and its terms starting from two scalar
time series x = {xn}N

n=1 and y = {yn}N
n=1, observed as realiza-

tions of the processes X and Y under analysis.

A. Mutual Information Rate Decomposition

The MIR between two stationary and ergodic stochastic
processes X and Y is defined as

IX ;Y = lim
k→∞

1
k

I(Xn−k:n−1;Yn−k:n−1), (1)

where I(·; ·) is the mutual information between two random
variables. The MIR is a dynamic measure of the information
exchanged per unit of time between two dynamical systems18,
which has been implemented in different forms to quantify
dynamic interactions between physiological processes21,22,24.
The popularity of this measure stems also from the fact that
it can be decomposed evidencing information quantities that
have meaningful interpretation and are practically computable
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from time series data. In fact, starting from the equivalent def-
initions of entropy rate of an ergodic stochastic process X31:

HX = lim
k→∞

1
k

H(Xn−k:n−1) = H(Xn|X<n), (2)

where H(·) denotes entropy and H(·|·) denotes conditional en-
tropy, some elaborations (see, e.g., the supplemental material
of Mijatovic et al.22) lead to the expansions:

IX ;Y = HX +HY −HX ,Y , (3)
IX ;Y = TX→Y +TY→X + IX ·Y . (4)

The first decomposition of the MIR given in (3) evidences
how it can be formulated comparing the sum of the individ-
ual entropy rates of the analyzed processes X and Y , HX and
HY , with their joint entropy rate HX ,Y ; the entropy rate is a
well-known measure of complexity expressed as the condi-
tional entropy of the present state of a process given its own
past history29,32. On the other hand, the decomposition (4)
expresses the MIR as the sum of the two transfer entropies
from X to Y and from Y to X , TX→Y and TY→X , plus a term
quantifying the instantaneous information shared by X and Y
at zero lag, IX ·Y ; the transfer entropy (TE) is a very popular
measure of directed information transfer related to the con-
cept of Granger causality14, while the instantaneous transfer
is a symmetric measure related to the concept of instantaneous
causality20.

The two decomposition of the MIR are illustrated graphi-
cally in Fig. 1 making use of Venn diagrams. This represen-
tation helps understanding how all the measures appearing in
the decompositions (3) and (4) can be expressed in terms of
conditional entropies, i.e.:

HX = H(Xn|X<n); (5a)
HY = H(Yn|Y<n); (5b)

HX ,Y = H(Xn,Yn|X<n,Y<n); (5c)
TX→Y = H(Yn|Y<n)−H(Yn|X<n,Y<n); (5d)
TY→X = H(Xn|X<n)−H(Xn|X<n,Y<n); (5e)

IX ·Y = H(Xn|X<n,Y<n)−H(Xn|X<n,Yn,Y<n). (5f)

The expressions in (5) constitute the basis for the practi-
cal computation of the MIR decompositions adopted in this
work. First, under the Markov assumption stated with mem-
ory m, the past history of each process is approximated with
m-dimensional vector variables, i.e., X<n ≈ Xn−m:n−1 and
Y<n ≈ Yn−m:n−1 (note that [YnY<n] in (5f) becomes Yn−m:n).
Moreover, we exploit the fact that any conditional entropy
can be expressed as the difference between two entropy
terms: for instance, the approximation of the conditional en-
tropy in (5c) can be written as H(Xn,Yn|Xn−m:n−1,Yn−m:n−1) =
H(Xn−m:n,Yn−m:n)−H(Xn−m:n−1,Yn−m:n−1). Therefore, com-
putation amounts to estimate the entropy of the vector vari-
ables sampling the present and past states of the processes
combined as described above, and then to plug this estimates
into (5) and (3,4) to obtain estimates of the MIR and of its
terms. In the next subsections we present two symboliza-
tion methods for the computation of the MIR decomposition,

A B
C

D E

FIG. 1. Venn diagram depicting the MIR decomposition measures
defined for two random processes X and Y . Taking the areas of the
four circles as the entropy of the present state (upper circles) and of
the past history (lower circles) of X (right) and Y (left) one can see
that: the entropy rate of X is the union of the portions B, C and D
(HX , Eq. (5a), area with azure contour); the entropy rate of Y is the
union of A, C and E (HY , Eq. (5b), area with yellow contour); the
entropy rate of {X ,Y} is the union of A, B and C (HX ,Y , Eq. (5c),
area with red contour); the transfer entropy from X to Y is the portion
E (TX→Y , Eq. (5d), orange area); the transfer entropy from Y to X
is the portion D (TY→X , Eq. (5e), blue area); and the instantaneous
information shared between X and Y is the portion C (IX ·Y , Eq. (5f),
green area). As a result, the MIR between X and Y is the union of C,
D and E (IX ;Y , Eqs. (3,4), area with purple contour).

which estimate the entropy of discrete random variables ob-
tained from the observed continuous variables either using
quantization levels or ordinal patterns.

B. Binning approach

The binning method is probably the most intuitive approach
to estimate entropy measures for continuous random vari-
ables via symbolization28,29. This approach is based (i) on
building discrete random variables through quantization of
the continuous-valued variables, and (ii) computing entropies
from the probabilities estimated for the discrete variables via
the frequentistic approach. For a generic random variable
V taking values in the continuous domain DV = [vmin,vmax],
quantization returns a discrete random variable BV taking val-
ues in the alphabet ABV = {1, . . . ,b} formed by b quantization
levels, or bins; in the case of uniform quantization, the dis-
cretization rule is that an observation of V , v ∈ DV , is trans-
formed in the observation of BV , bv = i, if vmin +(i− 1)r ≤
v < vmin + ir, where r = (vmax− vmin)/b is the bin amplitude.
Once binning is performed, the probability of each discrete
value in ABV is estimated naturally as the frequency of occur-
rence of the value over many observations, and an estimate of
the entropy of V is the entropy of BV obtained by the classical
formula

Ĥ(V ) =− ∑
bv∈ABV

p̂(bv) log p̂(bv). (6)
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The formulations above hold intuitively also for vector vari-
ables, for which quantization is applied over each scalar com-
ponent; in the case of an original d-dimensional continu-
ous variable V = [V1 · · ·Vd ], which is quantized using b bins
for each dimension, the corresponding discrete vector ran-
dom variable BV = [bV1 · · ·bVd ] takes values inside an alphabet
formed by bd symbols.

In the case of two random processes X and Y relevant for
this work, the vector random variables whose entropies are
needed to compute the measures listed in (5) are formed com-
bining the present state and the histories sampled up to m past
lags of the two processes. For instance, the binning estima-
tor of the conditional entropy term HX in (5a) works with the
m-dimensional variable Xn−m:n−1 sampling the past of X and
with the (m+1)-dimensional variable Xn−m:n = [Xn−m:n−1Xn]
sampling the present and the past of X . Starting from the
time series x = {xn}N

n=1, N−m observations of Xn−m:n−1 and
Xn−m:n are obtained which take, after quantization, values in-
side alphabets composed by bm and bm+1 symbols, respec-
tively. Then, after estimating the probability of occurrence of
each observation, the entropies Ĥ(Xn−m:n−1) and Ĥ(Xn−m:n)
are estimated using (6), and the entropy rate is computed as
ĤX = Ĥ(Xn−m:n)− Ĥ(Xn−m:n−1). The same formulation can
be applied for estimating the entropy rate HY starting from
the time series y = {yn}N

n=1, while the joint vector variables
[Xn−m:n−1Yn−m:n−1] and [Xn−m:nYn−m:n] are needed to compute
the joint entropy rate (5c); in the latter case, the discrete vari-
ables visit spaces of dimension b2m and b2m+2, and need to be
estimated from N−m observations. The computation of the
TE and instantaneous information sharing in Eqs. (5d,e,f) is
even more intricate since it requires the computation of four
entropy terms, as each of the two conditional entropy terms
is defined as the difference of entropy terms according to the
rule H(V |W ) = H(V,W )−H(W ) holding for any two vari-
ables V and W . In the case of the TE, the four entropy terms
involve: the vector variables sampling the past history of the
target process taken alone (dimension bm), or taken together
with the present state of the same process (dimension bm+1);
and the past of both processes taken alone or together with
the present of the target (dimensions b2m, b2m+1); in the case
of the instantaneous information shared by the two processes,
they involve the history of both processes taken alone (dimen-
sion b2m), with the present of one of the two processes (dimen-
sion b2m+1), or with the present of both processes (dimension
b2m+2).

C. Permutation-based approach

The approaches based on permutations perform symbol-
ization working directly on vector variables, taking into ac-
count the amplitude order of neighboring samples within the
realizations of these variables without effective considera-
tion of their absolute amplitude values30. For a generic d-
dimensional continuous random variable V = [V1 · · ·Vd ], re-
alizations of the associated discrete variable RV are obtained
through a rank ordering procedure as follows: if v = [v1 · · ·vd ]
is a realization of V, the corresponding realization of RV is

rv = [rv1 · · ·rvd ] ∈ ARV , where rvi ∈ {1, . . . ,d} is the rank or-
der of vi inside the sequence v rearranged in ascending order
(e.g., rvi = 1 if vi = min(v) and rvi = d if vi = max(v); for two
equal components of v the smallest rank is assigned to the
component appearing last). Once discretization is performed,
the probability of each discrete vector value belonging to the
alphbet ARV is estimated naturally as the frequency of occur-
rence of the value over many observations, and an estimate of
the entropy of V is the entropy of RV obtained as

Ĥ(V) =− ∑
rv∈ARV

p̂(rv) log p̂(rv). (7)

We note that the discrete random variable RV obtained apply-
ing the permutation strategy to the continuous d-dimensional
variable V takes values inside an alphabet with cardinality
|ARV | = d!, which is usually smaller than the cardinality of
the alphabet obtained quantizing the variable with b bins,
|ABV | = bd . This favors the permutation strategy for the es-
timation of entropy from a limited number of observations of
the variable under analysis.

As for the binning approach, the entropy measures needed
to compute the terms of the MIR decomposition in (5) are
estimated from observations of the present and past states of
the analyzed processes X and Y . Again, the variables Xn−m:n,
Xn−m:n−1 and Yn−m:n, Yn−m:n−1 are considered for the esti-
mation of the individual entropy rates ĤX and ĤY in (5a,b),
and the joint variables [Xn−m:nYn−m:n] and [Xn−m:n−1Yn−m:n−1]
are considered to estimate the joint entropy rate ĤX ,Y in (5c);
the alphabet sizes are (m+ 1)! and m!, and ((m+ 1)!)2 and
(m!)2, respectively for the individual and joint entropy rates.
As regards the computation of the TE terms in (5d,e), the in-
volved variables are the past history of the target process taken
alone or together with its present state (alphabet sizes m! or
(m + 1)!), and the history of both processes taken alone or
together with the past of the target (alphabet sizes (m!)2 or
m! · (m+ 1)!). Finally, the variables involved in the compu-
tation of the instantaneous information sharing are those cov-
ering the history of both processes taken alone, taken with
the present of one of the two processes, or taken with the
present of both processes, which have alphabet size (m!)2,
m! · (m+1)!, and ((m+1)!)2, respectively.

It is worth noting that the approach which we follow to
compute any measure of entropy rate is different than that
used in several studies working with permutations where the
observable corresponding to the present state of a system
(e.g., Xn) is converted to a rank vector33,34. Our approach is
rather similar to that followed in the works of Kugiumtzis35,36,
where such an observable is taken as a scalar and is consid-
ered together with the observable of the past m states of the
same system (e.g., Xn−m:n−1) in the formation of the joint state
(e.g., Xn−m:n) from which rank ordering is performed. This
approach conforms with the definition of conditional entropy,
and has been shown to lead to less biased entropy estimates35.
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D. Practical implementation

1. Parameter setting

A crucial aspect in the implementation of the discretiza-
tion approaches is the selection of the free parameters for
the analysis, i.e., the length of the memory used to cover
the past history of the processes (parameter m) and, for the
binning estimator, the number of quantization levels used for
coarse graining (parameter b). The choice of these parameters
is connected to the issue of estimating the entropy of high-
dimensional variables from finite-size datasets, which in turn
relates to the so-called curse of dimensionality29,37. In the
practical application of symbolization methods, empirical cri-
teria suggest to optimize the parameters in a way such that the
alphabet size remains as low as the length N of the series29. In
the case of the analysis of the MIR and of its decomposition
terms, the most challenging condition occurs in estimating the
entropy of the vector variable that covers the past and present
states of both processes, i.e., [Xn−m:nYn−m:n]; this indeed re-
sults in an alphabet size equal to b2m+2 in the case of binning
and to ((m+1)!)2 in the case of the permutation approach.

2. Surrogate data analysis

When applied to finite-length time series, the procedures
described above unavoidably return entropy estimates that de-
viate from the values expected in the cases of full randomness
(maximum entropy rate) or full uncoupling (zero information
shared or information transfer). Therefore, there is the need
to assess the statistical significance of each measure estimated
from a given pair of time series. In this work, such an as-
sessment was performed using surrogate data. In particular,
since to assess the statistical significance of conditional en-
tropy measures (i.e., HX , HY and HX ,Y ) the whole temporal
statistical structure of the series needs to be destroyed, ran-
dom shuffle surrogates38 were generated according to the null
hypothesis of independent and identically distributed random
variables; this was performed by permuting randomly and in-
dependently the order of the samples in the two series. On the
contrary, to assess the significance of conditional mutual in-
formation measures (i.e., TX→Y , TY→X , and IX ·Y ), as well as of
the MIR, it is sufficient to destroy the coupling of the two se-
ries, while it is preferable to maintain the statistical properties
of the individual series39. Therefore, random time shift bivari-
ate surrogates were generated according to the null hypothe-
sis of independent random processes; this was performed by
shifting the samples of one of the two time series over time
(while wrapping the extra values around the beginning of the
series) and leaving the other series unchanged3.

After generating a set of surrogate time series for each pair
of original time series, the considered information measure
were computed both on the original series and on the surro-
gate pairs. Then, a non-parametric test based on percentiles
was adopted, distinguishing the two types of measures: each
conditional entropy measure was deemed as statistically sig-
nificant if its value computed on the original series was lower
than the 5th percentile of its distribution derived from the ran-

dom shuffling surrogates; each conditional mutual informa-
tion measure was deemed as statistically significant if its value
computed on the original series was higher than the 95th per-
centile of its distribution derived from the random time shift
surrogates.

III. SIMULATION STUDY

In this section we test the estimation approaches proposed
in Sect. II for the computation of the dynamic information
measures composing the MIR on a chaotic bivariate system.
The system considered is a nonlinear deterministic system
composed by two coupled non-identical Hènon maps3,40; it
is defined by the following equations:

xn = 1.4− x2
n−1 +0.3xn−2 + c2(x2

n−1− y2
n−1); (8a)

yn = 1.4− y2
n−1 +0.1yn−2 + c1(y2

n−1− x2
n−1), (8b)

where the constants c1 and c2 determine the strength of cou-
pling in the directions from x to y and from y to x, respec-
tively. In the simulation, the parameter c2 was fixed to 0.05
to reproduce a weak strength of coupling from y to x, while
the parameter c1 = c was varied from 0 to 0.3 in steps of 0.05.
One-hundred realizations of the process were generated for
each value of c by varying the initial conditions (equally for
the two systems). The length of the analyzed series was set to
300 points to match the short data size of the real application
to physiological time series. For each realization, the series
to be analyzed were taken after discarding the early transient
responses.

A. Data analysis

In the simulation study, binning and permutation ap-
proaches were implemented using different combinations of
the estimation parameters to emphasize the need to reach a
fair compromise between representing accurately the dynam-
ics and limiting the curse of dimensionality. As regards the
binning approach, the discretization parameters were fixed to
b = 2 and m = 3, b = 3 and m = 2, and b = 4 and m = 1, so as
to deal with a maximum number of quantization levels equal
to 22·3+2 = 256, 32·2+2 = 729, and 42·1+2 = 256, respectively.
We note that, although the first and the last settings adhere to
the empirical rule reported in Sect. II D.1, the former binarizes
the variables describing the system missing most of the infor-
mation carried in amplitude, while the latter restricts the ob-
servation of the past to the sample immediately preceding the
current one, losing a significant part of the dynamic informa-
tion. On the other hand, the choice b = 3,m = 2 appropriately
takes into account both the amplitudes and the dynamics of the
processes (i.e., b = 3 and m = 2), but leads to working with
considerably more quantization levels than the series length.
Regarding the permutation approach, the embedding vector
dimension was fixed to m = 2, m = 3, and m = 4, so as to
work with ordinal patterns of maximum alphabet size equal to
((2+1)!)2 = 36, ((3+1)!)2 = 576, and ((4+1)!)2 = 14400,
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6

respectively. Although interactions with longer memory are
taken into account as m increases, we expect that estimates in-
volving higher dimensional variables may have non-negligible
bias.

The statistical significance of each estimated entropy rate
and conditional mutual information term, as well as of the
global MIR measure, was assessed using surrogate data anal-
ysis reported in Sect. II D.2. Specifically, for each pair of
simulated time series, 100 surrogates were generated; as re-
gard the implementation of the time shift surrogates, the shift
of the time series Y was chosen randomly imposing a mini-
mum shift of 20 lags.

B. Simulation results

Fig. 2 shows the mean and standard deviation of the esti-
mated values of the MIR measure and of its information terms
decomposition computed for 100 realizations of the coupled
Hènon systems at varying the coupling strength from X to Y ,
obtained using the binning (a-g) and permutation-based (h-n)
approaches . The statistical significance of all estimated mea-
sures is reported in Fig. 3.

In general, as the coupling strength from X to Y increases,
we observe a rise of the MIR IX ;Y , which captures the larger
exchange of information between the two processes (Figs.
2a,h). This trend is reflected by the TE from X to Y (Figs.
2e,l), while it is not observed for the term TY→X (Figs. 2f,m);
this behavior is expected, since the dependence of X on Y is
unrelated to c (Eq. (8a)). Although these Hènon maps are
generated without zero-lag interactions between the two sys-
tems, Figs. 2g,n show an increasing trend of the information
shared instantaneously; the values of IX ·Y become large and
significant for large values of c, possibly reflecting the high
synchronization of the dynamics when the systems become
strongly coupled. Looking at the measures of entropy rate
quantifying the complexity of the internal dynamics of the in-
dividual processes, we observe that the complexity of Y tends
to increase for c > 0 (Figs. 2c,j), while the complexity of X
is substantially unchanged (Figs. 2b,i). This behavior reflects
the fact that the dynamics of Y become more complex as c
increases, while those of X are unaffected by variations of c.
Looking at the complexity of the joint system, i.e., HX ,Y , an
opposite trend is observed than HY (Figs. 2d,k). This behavior
may be expected because, as c increases, the dependence of Y
both on X and on its own past history increases (Eq. (8b)) (the
latter is related to the dependence of X from the past of Y as
expressed in Eq. (8a)).

The trends reporting the percentage of significant values of
the measures, depicted in Fig. 3, are in agreement with the
average values in Fig. 2. In fact, as the coupling parame-
ter c increases, the MIR (Figs. 3a,h), the TE from X to Y
(Figs. 3e,l) and the term related to instantaneous interactions
(Figs. 3g,n) become progressively more significant, while the
entropy rates are always statistically significant (Figs. 3b-
d,i-k). In spite of these general trends, differences emerge
looking at the different parameter settings. As regards the

binning approach, in the case of binarization of the variables
(i.e., b = 2 and m = 3), all measures present lower values than
in the other conditions; indeed, the use of only two bins for
the discretization of the series amplitude leads to a consider-
able loss of information, evidenced by the lower number of
significant values obtained for TY→X and IX ·Y compared to
the setting b = 4 and m = 1 (Figs. 3f,g). The same figures
also show low significance levels for these measures com-
puted with b = 3 and m = 2, which may be induced by the
use an alphabet size higher than the number of samples of the
series. Similarly, permutation-based estimates of measures in-
volving higher-dimensional variables show low significance
levels if computed using embedding variables of dimension
m = 4 (see Figs. 3h,k,l,m,n). On the other hand, we note that
the estimates obtained setting m = 2, even showing compara-
ble or slightly lower significance than those obtained setting
m = 3 (except for IX ·Y (Fig. 3n)), are not able to fully capture
the system dynamics and the change in the coupling strength,
leading to an overestimation of the term HX ,Y (Fig. 2k) and an
underestimation of the MIR (Fig. 2h) and of the terms TX→Y
and TY→X (Fig. 2l,m).

IV. APPLICATIONS TO PHYSIOLOGICAL TIME SERIES

This section reports the application of the two strategies
presented in Sect. II for the computation of the dynamic
information measures composing the MIR to three different
types of pairwise interactions typically analyzed in the con-
text of short-term physiological variability. Specifically, the
proposed methodology is applied to assess cardiorespiratory
interactions during spontaneous and paced breathing (Section
IV A.1), as well as cardiovascular or cerebrovascular inter-
actions during rest and postural stress (Sections IV A.2 and
IV A.3).

A. Experimental protocols

1. Cardiorespiratory variability analysis

Cardiorespiratory interactions were investigated exploit-
ing an historical database collected for the analysis of
short-term physiological variability during paced breathing41

(database 1). The database includes physiological time se-
ries measured from 19 young healthy subjects monitored in
the resting supine position during four experimental condi-
tions: spontaneous breathing (SB), controlled breathing at 10
breaths/minute (C10), at 15 breaths/minute (C15) and at 20
breaths/minute (C20). The first analyzed time series is the
sequence of the heart periods (RR intervals) extracted from
the electrocardiographic (ECG) signal, given as the time in-
tervals between two consecutive ECG R peaks. The second
time series contains the respiratory amplitude values (RESP)
extracted from the nasal respiration flow signal sampled at the
onset of each heart period (see Fig. 4a). For each subject and
condition, synchronous time series of 256 values were con-
sidered for the analysis. Further details on the experimental
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FIG. 2. Estimation of the MIR and its decomposition measures computed on simulations of bidirectionally coupled non-identical Hènon
systems with fixed coupling strength from Y to X and coupling strength from X to Y modulated by the parameter c. Panels depict errorbar
plots of the MIR (IX ;Y ), of the conditional entropy terms (Eq. (3), HX , HY , HX ,Y ) and of the conditional mutual information terms (Eq. (4),
TX→Y , TY→X , IX ·Y ) computed over 100 simulations using the binning approach (a-g) and the permutation approach (h-n) for discretization.
Results are shown at varying the parameter c for different combinations of the discretization parameters: b = 2 and m = 3 (circles), b = 3 and
m = 2 (squares), and b = 4 and m = 1 (diamonds) for the binning approach; m = 2 (circles), m = 3 (diamonds), and m = 4 (squares) for the
permutation approach.
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FIG. 3. Results of surrogate data analysis applied on estimates of the MIR and its decomposition measures computed on simulations of
bidirectionally coupled non-identical Hènon systems. Plots report the number of realizations, out of 100 simulation runs, for which the measure
was detected as statistically significant for each value of the coupling parameter c and for each setting of the discretization parameters. Plots
and symbols are the same as in Fig. 2.

protocol, signal acquisition, and time series extraction proce-
dure can be found in the reference paper41.

2. Cardiovascular variability analysis

Cardiovascular interactions were investigated exploiting a
historical dataset collected for the study of the short-term
physiological response of the cardiovascular system to postu-
ral stress42 (database 2). The database includes physiological
time series measured from 15 young healthy subjects moni-
tored in the resting supine position (R) and in the 60◦ upright
position (T) reached after a passive head-up tilt manoeuvre.
The first analyzed time series contains 300 beats of RR inter-
vals defined as above. The second time series contains the
systolic arterial pressure (SAP), given as the local maxima
of the the continuous photoplethysmographic arterial pressure
signal (volume-clamp method) measured within each detected
RR interval (see Fig. 4b). Further details on the experimental
protocol, signal acquisition, and time series extraction proce-
dure can be found in the reference paper42.

3. Cerebrovascular variability analysis

Cerebrovascular interactions were investigated exploiting a
historical database collected to study the response of cerebral
autoregulation to postural stress17 (database 3). The database
includes physiological time series measured from 13 young
healthy subjects monitored in the resting supine position (R)
and in the 60◦ upright position (T) reached after a passive
head-up tilt manoeuvre. Here, we analyzed time series of
250 beats of the mean arterial pressure (MAP) and mean cere-
bral blood flow velocity (MCBFV), obtained from the contin-
uous photoplethysmographic arterial pressure signal (volume-
clamp method) and cerebral blood flow velocity signal (tran-
scranial doppler method); the time series samples were de-
rived as the mean signal values measured between each pair of
consecutive diastolic points (i.e., local minima, see Fig. 4c).
Further details on the experimental protocol, signals acquisi-
tion, and time series extraction procedure can be found in the
reference papers17.
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ECG

a) database 1

BREATH

b) database 2

ECG

AP

c) database 3
AP

CBFV

FIG. 4. Schematic representation of the procedure for extracting the
time series from the physiological signals synchronously acquired
in the three applications. (a) Cardiorespiratory variability analysis
(database 1): the nth RR value is the time interval between the nth

and the (n+1)th R peaks of the electrocardiogram (ECG), while the
nth RESP value is obtained sampling the respiration airflow signal
(BREATH) in correspondence of the nth R peak. (b) Cardiovascu-
lar variability analysis (database 2): the nth SAP value is taken as
the maximum value of the arterial pressure (AP) signal measured
within the nth RR interval. (c) Cerebrovascular variability analysis
(database 3): from the arterial pressure (AP) and cerebral blood flow
velocity (CBFV) signals, the nth values of the mean AP (MAP) and
mean CBFV (MCBFV) are obtained by averaging each signal within
the nth detected diastolic pulse interval defined as the time interval
between two consecutive local minima.

B. Data analysis

The dynamic information measures composing the MIR
were computed on the pairs of time series measured as de-
scribed in the previous subsection, which were interpreted as
realizations of the random processes {X ,Y} descriptive of car-
diorespiratory interactions (X = RR, Y = RESP, database 1),
cardiovascular interactions (X = RR, Y = SAP, database 2),
and cerebrovascular interactions (X = MAP, Y = MCBFV,
database 3). The two discretization approaches presented in
Sect. II were employed to decompose the MIR either as the
sum of the individual entropy rates of the two processes (i.e.,
HX and HY ) minus their joint entropy rate (i.e., HX ,Y ), or as the
sum of the two transfer entropies from one process to another
(i.e., TX→Y and TY→X ) plus the instantaneous information term
(i.e., IX ·Y ).

In light of what reported in Sect. II D based on the results of
the simulation study (see Sect. III B), we set the discretization

parameters to b = 4 and m = 1 when implementing the bin-
ning approach, to limit the number of possible discrete states,
and to m = 3 when using the permutation approach, which is
the minimum recommended to guarantee the variability of the
discrete patterns30. The significance of each estimate of the
MIR measure of its decomposition terms was assessed, for
each pair of physiological time series, using surrogate data
analysis similarly to what done in the simulation study.

Moreover, to assess the statistical significance of the varia-
tions of a given measures among different conditions, the fol-
lowing parametric tests were applied. As regards cardiores-
piratory interactions, one-way analysis of variance (ANOVA)
was applied, followed by a post-hoc paired Student’s t-test
with Bonferroni correction for multiple comparisons (n=3: SB
vs. C10, SB vs. C15, SB vs. C20). As regards cardiovas-
cular and cerebrovascular analyses, the paired Student’s t-test
was directly carried out between the two conditions under test.
The use of parametric tests is justified by the fact that nor-
mality of the distributions was verified for all measures and
all three databases through one-sample Kolmogorov-Smirnov
test. All statistical tests were performed at a 5% significance
level.

Finally, to assess the magnitude of the effect that a change
in the experimental condition has on each analyzed index, the
effect size was assessed using the Cohen’s d index43. This
index quantifies the difference between the means of the two
distributions under analysis divided by the pooled standard de-
viation:

d =
x̄1− x̄2√

(n1−1)s2
1+(n2−1)s2

2
n1+n2−2

(9)

being x̄,s, and n the mean, the standard deviation, and the
number of samples (i.e., the number of subjects) of the two
distributions under comparison, respectively. Usually, the ef-
fect size is considered small, medium, and large, if the ab-
solute value of d is lower than 0.2, between 0.2 and 0.5, or
higher than 0.8, respectively.

C. Results and Physiological Interpretation

1. MIR analysis

Fig. 5 reports the distribution of the MIR values estimated
for the three datasets described above using the binning ap-
proach (a-c) and the permutation approach (d-f) to discretize
the observed continuous-valued time series.

As regards cardiorespiratory interactions, for both ap-
proaches the ANOVA test highlighted significant variations
across the phases of the breathing protocol. As reported in
Table I, the p-value of the ANOVA test is far lower in the
case of binning, for which the post-hoc paired tests evidence
significantly higher values of IRR;RESP during paced breathing
at 10 and 15 breaths/minute than during spontaneous breath-
ing (Fig. 5a), also in association with a large effect size (Co-
hen’s |d| > 0.8). A different trend is documented using the
permutation method, for which a non-significant tendency to
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9

lower MIR values during C15 and to higher MIR values dur-
ing C20 is observed (Fig. 5d). Generally, the estimates ob-
tained through the binning approach are significant for a larger
number of subjects, although permutation-based method re-
turns higher values.

With regard to cardiovascular interactions (Figs. 5b,e), no
statistically significant differences in the MIR between RR in-
terval and systolic pressure series are observed comparing the
orthostatic stress and supine rest conditions. The estimates
of IRR;SAP tend to exhibit opposite responses to the postural
change, with tendency toward higher values using binning and
toward lower values using permutations, both with a medium
effect size (Table II).

Similar observations can be made for the cerebrovascu-
lar application, with absence of statistically significant differ-
ences in the MIR between mean cerebral flow velocity and
arterial pressure series (Figs. 5c,d) and limited effect sizes
(Table III) observed using both estimators.

Overall, these results suggest that the MIR measure is not
very informative when applied to these datasets, as it does not
discriminate the different physiological conditions and/or pro-
vides indications depending on the estimator adopted. In the
following sections we will elaborate more on these aspects,
decomposing the MIR in terms of complexity or causality
measures and analyzing these measures in the three proposed
physiological applications.

2. MIR decomposition: cardiorespiratory variability analysis

Fig. 6 reports the distribution of the information measures
composing the MIR computed for the RR and RESP time se-
ries using the binning (a-f) and permutation-based (g-l) ap-
proaches in the four phases of the paced breathing protocol.

Considering the decomposition evidencing the entropy rate
measures computed via conditional entropy, the binning es-
timator reveals a tendency towards an increase of HRR dur-
ing paced breathing (Fig. 6a), with p-value of the ANOVA
test slightly above the significance threshold (Table I); this
was obsrved in the presence of stable values of HRESP across
conditions (Fig. 6b), and of lower values during C10 and
higher values during C20 compared to SB for the joint en-
tropy rate HRR,RESP (Fig. 6c). On the contrary, the permuta-
tion approach evidenced more consistently, when comparing
the paced breathing conditions with SB, a significant decrease
of all entropy rates during C10 and C15, and comparable or
even higher values during C20 (Fig. 6g-i); the effect sizes are
also larger when the entropy rate variations are assessed by
permutations (Table I).

Physiologically, the lower entropy rates detected by the per-
mutation method during C10 and C15, which can be taken
as a marker of less complex RR and RESP dynamics, can
be related to the mechanism of respiratory sinus arrhythmia
(RSA), i.e., the variation of heart rate due to respiration.
This mechanism is enhanced during forced ventilation at low
breathing rates44, while its effects compared with spontaneous
breathing tend to be less pronounced when the respiratory rate
increases45. Moreover, RSA and other cardiorespiratory con-
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FIG. 5. Analysis of the MIR measure computed on pairs of physio-
logical variability series. Panels report the boxplot distributions and
individual values of the MIR computed: (a,d) on cardiorespiratory
series (RR, RESP) analyzed during spontaneous breathing (SB) and
controlled breathing at 10, 15, 20 breaths/minute (C10, C15, C20);
(b,e) on cardiovascular series (RR, SAP) analyzed at rest (R) and af-
ter head-up tilt (T); (c,f) on cerebrovascular series (MAP, MCBFV)
analyzed at rest (R) and after head-up tilt (T). The analysis was per-
formed using the binning approach (a,b,c) or the permutation ap-
proach (d,e,f) for discretization. In each panel, colored and gray
circles correspond to values deemed respectively as statistically sig-
nificant and non-significant using surrogate data analysis; black open
circles refer to the sample mean of each distribution. Statistically sig-
nificant differences, cardiorespiratory series: #, p<0.05, ANOVA; *,
p<0.05/3 SB vs. C10/C15/C20, paired t-test with Bonferroni correc-
tion; *, p<0.05, R vs. T, paired t-test.

trol mechanisms, e.g., the cardio-ventilatory coupling and the
respiratory stroke volume synchronization46, are expected to
elicit changes in the complexity of cardiac dynamics, associ-
ated with similar variations in the complexity of respiratory
dynamics; we document that such changes are present as well
when RR and RESP time series dynamics are evaluated to-
gether. On the other hand, we ascribe the lack of consistent
changes in the entropy rate when the binning method is used
to the limited exploitation of past values of the RR and RESP
series in the evaluation of complexity (m = 1, compared with
m = 3 used for the permutation method).

The different history length used for binning and permu-
tation mentioned above plays probably a role also in the dif-
ferent trends observed considering the decomposition of the
MIR between RR and RESP which evidences the causality
measures computed via conditional mutual information. For
this decomposition, the binning approach evidences higher
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transfer entropies evaluated in both directions of interaction
during C10 and C15 (Fig. 6d,e) along with stable values of
the instantaneous information shared between RR and RESP
(Fig. 6f). On the contrary, the permutation approach evi-
dences rather stable values of the information transfer (see
Fig. 6j,k, where only an increase of TRESP→RR during C20
is detected) along with a decrease during C10 and C15 of the
information shared instantaneously (see Fig. 6l, showing also
that IRR·RESP is barely significant). The patterns of informa-
tion transfer evidenced by the permutation method are more
consistent with those observed on the same dataset using both
parametric and model-free estimators47, and support the hy-
pothesis that significant physiological changes in cardiac auto-
nomic activity do not occur during supine paced breathing44.
As regards the instantaneous information shared between RR
and RESP, it should be noticed that its variations should be
ascribed to directed effects from RESP to RR due to the way
the RR and RESP time series were extracted from the physio-
logical signals47 (see Fig. 4).

3. MIR decomposition: cardiovascular variability analysis

Fig. 7 reports the distribution of the information measures
composing the MIR computed for the RR and SAP time series
measured at rest and during head-up tilt using the binning (a-f)
and permutation-based (g-l) approaches.

In this application, the binning and permutation approaches
for the discretization of the observed time series lead to simi-
lar results, as documented in Fig. 7. The MIR decomposition
computed via conditional entropy shows how the orthostatic
stress dampens the complexity of cardiovascular dynamics,
as documented by the statistically significant decrease of the
joint entropy rate of RR and SAP (Fig. 7c,i). The decrease
is mainly driven by the simplification of the cardiac dynamics
evidenced by the drop of the entropy rate of RR (Fig. 7a,g), in
the presence of an unchanged entropy rate of SAP (Fig. 7b,h).
These trends are detected more evidently using the binning
estimator, which yields lower p-values and higher effect sizes
in the comparison between the rest and tilt conditions (Table
II). Physiologically, these results find large confirmation in
the literature and are related to the tilt-induced activation of
the sympathetic nervous system which tends to simplify the
cardiac dynamics, yielding a reduction of the complexity of
short-term heart rate variability6,16,48.

As regards the causality measures computed via conditional
mutual information, the most straightforward result is the in-
crease of the transfer entropy from SAP to RR moving from
rest to tilt, which is documented by both binning and permu-
tation approaches (Fig. 7e,k). The information transfer along
the opposite direction from RR to SAP shows a significant
decrease during tilt, which is detected using the permutation
method (Fig. 7j) but not using the binning method (Fig. 7d).
According to both discretization approaches, the information
shared instantaneously by the two series is rather low and sig-
nificant in a few subjects, and tends to decrease significantly
while moving from rest to tilt (Fig. 7f,l). These results show
how the information transferred within the RR-SAP closed-
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FIG. 6. MIR decomposition of cardiorespiratory interactions
(database 1). Panels report the boxplot distributions and individ-
ual values of the MIR decomposition evidencing conditional en-
tropy terms (Eq. (3), HRR, HRESP, HRR,RESP) or the MIR de-
composition evidencing conditional mutual information terms (Eq.
(4), TRR→RESP, TRESP→RR, IRR·RESP), computed during spontaneous
breathing (SB) and controlled breathing at 10, 15, 20 breaths/minute
(C10, C15, C20) using the binning approach (a-f) or the permuta-
tion approach (g-l) for discretization. In each panel, colored and
gray circles correspond to values deemed respectively as statistically
significant and non-significant using surrogate data analysis; black
open circles refer to the sample mean of each distribution. Statisti-
cally significant differences: #, p<0.05, ANOVA; *, p<0.05/3 SB vs.
C10/C15/C20, paired t-test with Bonferroni correction.
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TABLE I. Results of statistical analyses (ANOVA and uncorrected t-test p-values) and effect size (Cohen’s d) performed on cardiorespiratory
variability series (database 1). Values in bold indicate statistically significant ANOVA (p < 0.05), post-hoc t-test p-values after Bonferroni
correction (n = 3) and large (|d|> 0.8) effect sizes. t-test p-values are not in bold if the ANOVA test is not significant.

Measure Type p ANOVA p SB-C10 d SB-C10 p SB-C15 d SB-C15 p SB-C20 d SB-C20

HRR
binning 0.0568 0.0008 -1.005 0.0114 -0.645 0.0141 -0.688
permutation <10−9 <10−7 1.908 0.0115 0.683 0.0046 -0.878

HRESP
binning 0.1136 0.9331 0.028 0.0901 -0.496 0.1724 -0.458
permutation 0.0005 0.0012 1.136 0.0110 0.731 0.3412 -0.218

HRR,RESP
binning <10−5 0.0051 0.830 0.1890 -0.383 0.0058 -0.970
permutation <10−10 <10−6 2.186 0.0019 0.853 0.0874 -0.498

TRR→RESP
binning <10−6 0.0003 -1.617 0.0126 -0.901 0.5162 -0.235
permutation 0.0838 0.1689 -0.424 0.4190 0.235 0.1667 0.421

TRESP→RR
binning 0.0028 0.0041 -1.245 0.0080 -0.780 0.1055 -0.443
permutation 0.0260 0.8766 0.051 0.0788 -0.529 0.0015 -1.128

IRR·RESP
binning 0.7551 0.2294 -0.279 0.6785 -0.102 0.7901 -0.071
permutation 0.0001 0.0137 1.049 0.0138 0.895 0.2093 -0.387

IRR;RESP
binning <10−5 0.0002 -1.573 0.0056 -0.843 0.2540 -0.305
permutation 0.0141 0.0952 0.500 0.1111 0.502 0.1692 -0.412

TABLE II. Results of statistical analyses and effect size (Cohen’s d)
performed on cardiovascular variability series (database 2). Values
in bold indicate statistically significant p-values and large (|d|> 0.8)
effect sizes.

Measure Type p R-T d R-T

HRR
binning <10−4 2.103
permutation 0.0053 1.166

HSAP
binning 0.9214 -0.030
permutation 0.0554 0.704

HRR,SAP
binning 0.0006 1.563
permutation 0.0012 1.370

TRR→SAP
binning 0.9916 -0.003
permutation 0.0267 0.766

TSAP→RR
binning 0.0002 -1.515
permutation 0.0260 -1.124

IRR·SAP
binning 0.0289 0.782
permutation 0.0027 1.332

IRR;SAP
binning 0.1895 -0.366
permutation 0.1030 0.705

loop is balanced along the two directions of interaction in the
resting supine position, and becomes unbalanced in the up-
right position as a consequence of the well-known tilt-induced
activation of the baroreflex feedback from SAP to RR accom-
panied by a weakening of the mechanical feedforward from
RR to SAP6,42,49.

4. MIR decomposition: cerebrovascular variability analysis

Fig. 8 depicts the distribution of the information measures
composing the MIR computed for the MAP and MCBFV time
series measured during the rest and tilt conditions using the
binning (a-f) and permutation-based (g-l) approaches.

The MIR decomposition based on conditional entropy mea-
sures performed with the permutation approach evidences a

statistically significant decrease of the entropy rate of MAP
variability (Fig. 8g) and of the joint entropy rate of MAP and
MCBFV (Fig. 8i) moving from rest to tilt, while the indi-
vidual entropy rate of MCBFV does not change between the
two conditions (Fig. 8h). This response to postural stress,
which could not be detected using the binning estimator (Figs.
8a-c), is indicative of an increase of the predictability of the
cerebrovascular dynamics, which is driven by a larger pre-
dictability of MAP but not MCBFV. As regards the MIR de-
composition based on conditional mutual information, all its
terms estimated either via the binning or via the permutation
approach are not statistically signifcant in several subjects and
do not change significantly moving from rest to tilt (Figs. 8d-
f, 8j-l). This result may indicate the presence of low coupling
between MAP and MCBFV, or the limited ability of the con-
sidered discretization strategies to detect such coupling in the
analyzed dataset.

The results presented above are in agreement with the hy-
pothesis that the physiological mechanisms related to cere-
brovascular autoregulation, which are responsible for regulat-
ing the cerebral blood flow and maintaining it almost con-
stant independently from changes in the systemic arterial
pressure50,51, are preserved after postural stress. Similar find-
ings were obtained by recent studies suggesting that the in-
creased sympathetic nerve activity occurring with the postural
challenge leads to a reduction of MCBFV, but not to changes
in its variability or predictability, and does not alter signifi-
cantly the coupling between MCBFV and MAP17,26 .

V. DISCUSSION

The purpose of this work was to assess the effectiveness
of model-free symbolization methods for investigating cou-
pled physiological dynamics through the MIR measure and
its decomposition terms. A comparative investigation of
symbolic methods based on binning and permutation for the
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FIG. 7. MIR decomposition of cardiovascular interactions (database
2). Panels report the boxplot distributions and individual values of
the MIR decomposition evidencing conditional entropy terms (Eq.
(3), HRR, HSAP, HRR,SAP) or the MIR decomposition evidencing con-
ditional mutual information terms (Eq. (4), TRR→SAP, TSAP→RR,
IRR·SAP), computed in the resting supine position (R) and in the up-
right position during tilt (T) using the binning approach (a-f) or the
permutation approach (g-l) for discretization. In each panel, colored
and gray circles correspond to values deemed respectively as statis-
tically significant and non-significant using surrogate data analysis;
black open circles refer to the sample mean of each distribution. Sta-
tistically significant differences: *, p<0.05 R vs. T, paired t-test.
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FIG. 8. MIR decomposition of cerebrovascular interactions
(database 3). Panels report the boxplot distributions and individ-
ual values of the MIR decomposition evidencing conditional entropy
terms (Eq. (3), HMAP, HMCBFV , HMAP,MCBFV ) or the MIR decom-
position evidencing conditional mutual information terms (Eq. (4),
TMAP→MCBFV , TMCBFV→MAP, IMAP·MCBFV ), computed in the rest-
ing supine position (R) and in the upright position during tilt (T)
using the binning approach (a-f) or the permutation approach (g-l)
for discretization. In each panel, colored and gray circles corre-
spond to values deemed respectively as statistically significant and
non-significant using surrogate data analysis; black open circles re-
fer to the sample mean of each distribution. Statistically significant
differences: *, p<0.05 R vs. T, paired t-test.
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TABLE III. Results of statistical analyses and effect size (Cohen’s d)
performed on cerebrovascular variability series (database 3). Values
in bold indicate statistically significant p-values and large (|d|> 0.8)
effect sizes.

Measure Type p R-T d R-T

HMAP
binning 0.4028 -0.260
permutation 0.0015 1.404

HMCBFV
binning 0.3992 0.346
permutation 0.3738 0.261

HMAP,MV BFV
binning 0.5355 0.235
permutation 0.0020 1.060

TMAP→MCBFV
binning 0.3854 0.334
permutation 0.1701 0.597

TMCBFV→MAP
binning 0.3186 -0.381
permutation 0.2836 0.434

IMAP·MCBFV
binning 0.2608 -0.366
permutation 0.9519 0.020

IMAP;MCBFV
binning 0.4185 -0.300
permutation 0.2956 0.462

information-theoretic investigation of dynamic coupling mea-
sures was performed both on simulated nonlinear coupled sys-
tems and on cardiorespiratory, cardiovascular, and cerebrovas-
cular time series. Our results support the feasibility of these
estimates to evaluate complex dynamics and dynamical in-
teractions, and delineate advantages and drawbacks of each
method.

A. Estimating the decomposition of the Mutual Information
Rate via model-free discretization methods

While the theoretical formulation of the MIR (Eq. (1)) and
of its decompositions evidencing conditional entropy mea-
sures (Eq. (3)) and conditional mutual information measures
(Eq. (4)) are well-defined and long-known18,20–22, the practi-
cal estimation of all these measures from finite-length realiza-
tions of coupled random processes is far from trivial. A main
issue is related to the fact that both the MIR and the terms of its
decomposition are defined for infinite-dimensional variables
sampling the whole temporal evolution of the analyzed pro-
cesses (see Eqs. (1,2,5)). This issue is often addressed using
linear parametric models to describe the interactions between
the present and past states of the processes. In such a case,
under the assumption of Gaussian multivariate process the in-
formation dynamical measures are directly derived from the
covariance matrices of the processes. Thus, the conditional
entropy of the present of a process given its past and/or the
past of the other process is defined in terms of the variance of
the prediction error of a linear regression of the present vari-
able on the past variables. The relations connecting e.g. the
entropy rate to the prediction error variance27 and the transfer
entropy to Granger causality52, can be practically computed
even on short time series accounting also for long memory ef-
fects by employing parametric approaches which involve the
solution of the Yule-Walker equations47,53 or the formulation
of state space models24,54, or even exploiting the relations be-

tween time-domain and spectral measures20,26,55.
However, when a model-free analysis is required to account

for possible nonlinear interactions which invalidate the Gaus-
sian assumption, the only viable approach is to work under
the Markov property. This allows to reduce drastically the
length of the analyzed dynamical patterns by setting finite
values (at an order depending on the time series length) for
the parameter related to memory effects (k in Eqs. (1,2) and
m in the approximation of the measures in Eq. (5)) and as-
suming that longer-memory effects are negligible. In model-
free approaches like those based on discretization used in this
work, the use of short memories is necessary to limit the
curse of dimensionality37, i.e., the inability to make sense of
a small set of points in a high dimensional space. In particu-
lar, estimation of probability distributions computed for high-
dimensional variables observed from short time series is prob-
lematic leading to highly biased entropy estimates and entropy
rate estimates that decrease toward zero as the memory of the
process increases25,29. Moreover, an additional bias results
from the combination of entropy terms computed on variables
spanning spaces of different dimensions56; this issue is exac-
erbated in the estimation of the MIR, as implemented here,
which results combining several entropy terms estimated in-
dependently from one another. In contrast to the binning and
permutation entropy estimates, the nearest neighbor estimate
corrects for this bias by taking the spaces regarding the differ-
ent variables in the entropy terms as projections of the largest
space56,57.

In this work, the above issues are reflected by the necessity
to choose values of the estimator parameters which limit the
dimension of the spaces populated by the points formed by
present and past values of the analyzed processes. Indeed, as
shown in Sect. III B on the simulated coupled Hènon maps,
working with long memory effects and/or several quantization
levels (e.g., b = 3, m = 2 for binning, and m = 4 for permuta-
tion) is problematic under the challenging conditions of short
data lengths. The main issue is the too large number of pos-
sible patterns, which reduces the significance of the obtained
estimates. On the other hand, the reverse choice (e.g., b = 2,
m = 3 for binning, and m = 2 for permutation) results in the
inability of the estimator to fully resolve the dynamics of the
process. Therefore, in view of the simulation results and to
reach compromise between accuracy in the representation of
the dynamics and reliability of the estimates, in the applica-
tions to physiological time series the memory length was set
to m = 3 for the permutation approach and to m = 1 for the
binning approach, for which a number of quantization levels
b = 4 was also chosen.

While the results obtained for the various MIR terms are
physiologically plausible in all the three application contexts
considered, some of our findings suggest caution in the use of
these parameters or to seek for alternative ways to set them
(e.g., non-uniform embedding57–59). In fact, the lack of sta-
tistical significance of TX→Y , TY→X , IX ·Y and IX ;Y observed in
many subjects in all applications can be ascribed to the com-
bination of biases obtained working with high dimensional
spaces and small data size. As also expected from the re-
sults reported in the simulation study, the chosen parameters
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make this behavior most visible for the permutation-based es-
timates of instantaneous causality and MIR measures, since
this is the highest-dimensional case for which the empirical
rule suggested to limit the bias is not respected. In the case
of binning, the necessity of setting low values of m and b in
order to keep the alphabet sizes low and comparable for the
different entropy measures appearing in (5) is likely the rea-
son for some unexpected behaviors of the MIR terms, as we
will discuss in the next section.

B. Comparison of binning and permutation-based approaches

The binning method is perhaps the most intuitive method
to compute entropy measures via discretization, and has been
used in numerous previous works analyzing short-term phys-
iological interactions25,29,58. As mentioned before, in order
to mitigate the issue related to the number of symbolic pat-
terns used to describe the observed dynamics, a low number
of quantization levels (b = 4) and a limited embedding dimen-
sion (m= 1) have been set to deal with the small size of the an-
alyzed series (250-300 points). These choices have the conse-
quence to limit the degree of detail in analyzing the amplitude
variations and the time-lagged interactions occurring within
and between the analyzed processes, possibly impairing the
ability to detect subtle changes and long-memory effects. On
the other hand, the permutation method allows to work with a
number of symbolized patterns which is typically much lower
than that used for binning35,36. This occurs because, given
the same embedding dimension, the rank-ordering procedure
implicitly leads to a much lower number of patterns than the
quantization procedure. Considering this aspect, which is ex-
pected to improve the estimation of probability distributions
and thus of entropy measures, a higher embedding dimension
(m = 3) has been set when applying the permutation-based
method, which allows to achieve a more detailed description
of the memory effects.

The results achieved on the simulated system demonstrate
how the selection of the discretization parameters reflects the
effectiveness of the information measures in revealing vari-
ations of the coupling between the systems. When compar-
ing the two discretization approaches, it can be observed that
the sensitivity to the coupling parameter of the MIR decom-
positions terms (i.e., IX ;Y , HY , TX→Y and IX ·Y ) is larger when
evaluated with the permutation-based method. This result evi-
dences how the rank ordering approach generally can achieve
a more accurate description of complex intertwined dynam-
ics. Importantly, the same remarks can be made regarding
the detection of changes across physiological conditions, to
an extent depending on the application considered.

In cardiorespiratory variability analysis, the fact that RSA
is more evident during paced breathing at low breathing
frequency44 is reflected by an increase of the predictability
and a decrease of the complexity of heart rate variability com-
pared to spontaneous breathing, and this effect becomes less
pronounced as the breathing rate increases47. Conversely, no
evident changes in the information transferred between heart
rate and respiration variability have been detected using either

linear and nonlinear measures of Granger causality47. These
patterns were detected in our analysis using permutations but
not using the binning approach. This difference may be as-
cribed to the utilization of a too short embedding dimension,
which prevents the binning approach to detect the decreased
complexity of RR and RESP during slow paced breathing,
possibly because the memory effects occur at lags m > 1. A
confirmation of this comes from the fact that, when measures
working in higher dimensions such as the joint entropy rate
or the transfer entropies were computed, significant variations
during slow paced breathing were detected also by the bin-
ning estimator (Fig. 6); in the case of the transfer entropies
the significant variation is likely misleading and reflects more
the use of a larger dimension than a physiological behavior.
These considerations were supported repeating the analysis of
cardiorespiratory interactions based on binning while using
higher values for m: in this way we observed patterns of in-
formation dynamics more adherent to those already found in
the literature47 and in this study using the permutation method
(results not shown).

As regards the analysis of cardiovascular interactions, we
found that the binning approach leads to results similar to
those achieved by the permutation method and by other
linear and nonlinear measures of complexity, coupling and
causality11,42,58,60. Here, our results evidenced that both per-
mutation and binning methods are able to reflect marked vari-
ations in the cardiovascular dynamics occurring during postu-
ral stress, such as the drop in the complexity of RR and the
rise of the causal coupling from SAP to RR (Fig. 7). The
only physiological effect that was not detected by the binning
method is the decrease of TRR→SAP during tilt. Again, this
could be ascribed to the limited memory used to evaluate the
past dynamics of the process. In fact, lag-specific approaches
employed on the same dataset to assess causal RR-SAP inter-
actions suggested that the transfer of information occurs pri-
marily at lags 0 and 1 in the direction from SAP to RR and at
lag 2 in the opposite direction from RR to SAP15,58.

The observations above point out that the permutation ap-
proach yields results that are more in line with the litera-
ture than those provided by the binning approach, mainly as
result of the fact that the more parsimonious representation
of the discretized dynamic patterns allows to explore higher-
dimensional spaces. Nevertheless, the use of m = 3 yields a
number of patterns which is lower than the time series length
when the individual entropy rates or transfer entropies are
estimated, but approximately double the series length when
the measures involving the highest dimensional spaces are in-
volved. This size for the alphabets turned out to be problem-
atic particularly for the instantaneous information shared by
the processes, which resulted barely significant in all appli-
cations when computed using permutations. Moreover, the
permutation-based method suffers from some limitations that
may influence its ability to capture accurately the analyzed
dynamic interactions. First, this method is affected by a bias
due to the presence of equal values inside the patterns which
can confound the estimation61. While in our work we decided
that equal values are ranked according to their temporal order,
other choices can be made but none of them actually limits the
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bias in the estimation of different quantities. With regard to
this, a modified permutation-entropy has been proposed which
maps equal values to the same symbols62, so as to take into
account the presence of equal values within the patterns that
may have physiological significance, but this leads to an in-
crease of the dimension of the space visited by the discrete
variables and thus to the above-discussed matters. The second
constraint of the permutation method is the lack of informa-
tion related to differences in the amplitude among the time
series samples, which may represent a limitation in following
some physiological nonlinear behaviors63, but also in the pres-
ence of noise60. In fact, it was found that permutation-based
measures are more susceptible to broad-band noise especially
when working with low signal-to-noise ratio and short time
series length. On the other hand, not accounting for signal
amplitudes makes the permutation method more robust in the
presence of nonstationarities30,36. In particular, the presence
of amplitude artifacts and slow trends, which is highly detri-
mental for most entropy estimators32, should have a lower im-
pact on procedures which discard the amplitude values apart
from considering their rank. This aspect may be relevant in
our application to cerebrovascular dynamics, where the oc-
currence of physiological oscillations at low and very low fre-
quency trends26 can be one of the reasons for the inability
of the binning method to capture the complexity changes of
mean arterial pressure evoked by tilt.

C. Conclusion and future investigations

This study points out the feasibility of investigating short-
term interactions in bivariate physiological time series by
means of model-free estimators of the mutual information rate
and of its constituent terms implemented via discretization
strategies. The most critical aspect identified by our results
is the need to set the analysis parameters to values that limit
the curse of dimensionality. From this point of view, the per-
mutation approach to discretization based on rank ordering
is preferable, as it yields a more parsimonious representation
of the discretized patterns representing the observed dynam-
ics. Still, the use of permutations becomes problematic when
implemented in high-dimensional spaces. As regards the bin-
ning approach, we suggest that it can be used with the standard
setting of the embedding and quantization parameters for esti-
mating the entropy rate of individual time series, while shorter
memories and heavier coarse graining should be used to reli-
ably assess the higher-dimensional terms of the MIR decom-
position.

Further work is envisaged to explore more in depth the per-
formance of model-free approaches for the estimation of dy-
namic information measures from short realizations of multi-
variate time series, and to develop improved estimators. In
particular, future studies should assess more systematically
the behaviour of binning and permutation methods in com-
parison with approaches not based on discretization, devel-
oped using either model-free56 or model-based6 estimators. In
parallel, strategies for dimension reduction57,59 or automatic
parameter selection64 should be explored to optimize the em-

bedding of multivariate time series limiting the curse of di-
mensionality. In perspective, the combination of improved
entropy estimators and optimized methods for parameter se-
lection can open new avenues for the model-free assessment
of the information processed by network systems, even be-
yond the framework of pairwise interactions24,65.
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