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Abstract: This review paper comprehensively analyzes the prognosis of rotating machines (RMs),
focusing on mechanical-flaw and remaining-useful-life (RUL) estimation in industrial and renewable
energy applications. It introduces common mechanical faults in rotating machinery, their causes, and
their potential impacts on RM performance and longevity, particularly in wind, wave, and tidal energy
systems, where reliability is crucial. The study outlines the primary procedures for RUL estimation,
including data acquisition, health indicator (HI) construction, failure threshold (FT) determination,
RUL estimation approaches, and evaluation metrics, through a detailed review of published work
from the past six years. A detailed investigation of HI design using mechanical-signal-based, model-
based, and artificial intelligence (AI)-based techniques is presented, emphasizing their relevance to
condition monitoring and fault detection in offshore and hybrid renewable energy systems. The
paper thoroughly explores the use of physics-based, data-driven, and hybrid models for prognosis.
Additionally, the review delves into the application of advanced methods such as transfer learning
and physics-informed neural networks for RUL estimation. The advantages and disadvantages of
each method are discussed in detail, providing a foundation for optimizing condition-monitoring
strategies. Finally, the paper identifies open challenges in prognostics of RMs and concludes with
critical suggestions for future research to enhance the reliability of these technologies.

Keywords: bearings; condition monitoring; fault diagnosis; gearbox; health indicators; misalignment;
prognosis; rotating machines; remaining useful life

1. Introduction

Fault diagnosis and prognosis of RMs are crucial in industrial equipment mainte-
nance, aiding in preventing unexpected machinery failures and unplanned downtime [1,2].
Turbines, compressors, pumps, fans, motors, and generators are just a few of the many
parts that make up RMs. These parts are essential to a number of industries, including
manufacturing, transportation, oil and gas, and power generation. For instance, compres-
sors and pumps are essential for fluid and gas transfer systems, while turbines—such
as gas, steam, and wind turbines—are frequently employed for energy conversion. For
precise maintenance planning, distinct RUL estimation approaches are required for each of
these components, due to their unique degradation and failure mechanisms. Pumps and
compressors may encounter cavitation or corrosion, whereas turbines, for example, are
subject to high amounts of stress from varying loads, which may result in blade or rotor
fatigue. Early diagnosis of insulation failure, misalignment, or rotor imbalance can greatly
extend the operating life of motors and generators, which are essential for powering a
variety of industrial operations and renewable energy systems [3].
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RMs, including motors, generators, and pumps are crucial to performance in the
renewable energy sector, especially in offshore wind farms and hybrid renewable systems,
where dependable operation is necessary for maximum efficiency. These machines’ depend-
ability can be significantly diminished by misalignment, gearbox issues, and bearing issues,
which can lead to expensive downtime and decreased energy output [4]. This is particularly
crucial in offshore settings, where equipment access is more difficult and maintenance
expenses are higher.

Even though larger parts like turbines, motors, and generators are essential to the
functioning of industrial systems, the most serious and expensive malfunctions are fre-
quently caused by small flaws in parts like bearings, gears, and misalignment. For instance,
poor lubrication or contamination can cause bearing problems to develop gradually, which
might ultimately result in excessive vibrations and unequal load distribution. If these
minor issues are not fixed right away, they may spread and compromise larger parts like
shafts or gears, leading to more significant failures that impact the entire system. Even
small misalignments may place greater stress on gears and bearings, accelerating wear and
perhaps resulting in catastrophic failures if ignored.

Thus, while bearing, gear, and misalignment defects can appear to be minor in com-
parison to major component failures, they frequently serve as early warning signs of
more serious problems. Companies can avoid significant system failures and cut down
on expensive downtime by accurately forecasting the RUL of these smaller components.
Therefore, proactive maintenance that relies on the early estimation of the RUL of these
minor issues is essential for guaranteeing the dependability and effectiveness of massive,
intricate machinery.

Data-driven methods have become the predominant approach for remaining-useful-
life (RUL) estimation, relying on historical data and statistical models to deliver accurate
predictions [5]. These methods are adept at learning complex patterns from large datasets,
which enables them to provide reliable prognoses under varying operating conditions. By
estimating the remaining operational time before a component’s failure, RUL predictions
support the implementation of preventive maintenance plans, thus potentially extending
the component’s lifespan. Deep learning (DL)-based techniques, in particular, can enhance
the reliability and efficiency of industrial machinery through precise RUL estimations [1].
Prognosis using DL can effectively predict future component health in RMs, allowing
for timely maintenance and reducing the risk of sudden failures. DL methods, including
convolutional neural networks (CNNs), recurrent neural networks (RNNs), and temporal
fusion transformers, are particularly effective for these tasks, due to their ability to handle
large, unstructured datasets and adapt to diverse fault types. For instance, CNNs can
process high-dimensional vibration data to identify subtle anomalies, while RNNs and
long short-term memory (LSTM)-based models are well-suited for capturing temporal
dependencies in time-series data, which is critical for accurate RUL predictions. Trans-
formers, with their attention mechanisms, excel in isolating important features within
extended time-series sequences, enabling more precise diagnostics and prognostics, even
under fluctuating conditions. In this context, prognostics and health management (PHM)
has emerged as a vital field that systematically monitors the health of engineering systems
and their key components. PHM integrates essential functions, including establishing
HIs, predicting RUL, and developing health management strategies. HIs, in particular,
are essential for assessing the current status of components and tracking long-term health
trends [6].

RUL estimation plays a pivotal role in predictive maintenance strategies, enabling
organizations to proactively manage and schedule maintenance activities, thereby reducing
downtime and extending the operational lifespan of critical machinery and equipment.
A rapidly increasing trend has been seen in the number of these publications [7]. In addition,
several review papers have been published in the past years outlining the attributes of
RUL estimation. For instance, Heng et al. [8] published a study based on the merits
and weaknesses of RUL prediction techniques up to 2009. An industrial application
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approach was used by Sikorska et al. [9] to perform a similar analysis on RUL estimation
approaches till 2009. Kan et al. [10] reviewed the prognostic techniques for non-stationary
and non-linear rotating systems. Si et al. [11] presented statistical data-driven approaches
and provided a comprehensive review of the primary methodologies for RUL prediction.
Lee et al. [12] conducted a review on the development of PHM systems up to 2010, offering
a guide to assist in choosing an RUL estimation method by comparing their advantages and
disadvantages. Wang et al. [6] conducted an extensive review on vibration-based HIs for
bearings and gears, covering the construction of these indicators through mechanical signal
processing, modeling, and machine learning techniques till 2017. Lei et al. [7] provided
a review of the whole process of RUL estimation till 2017. The authors in [13] reviewed
degradation data analysis and RUL estimation; however, their study was limited to only
Wiener-process-based methods. Moreover, Zio et al. [14] focused on identifying the primary
challenges and future directions for the comprehensive implementation of condition-based
and predictive maintenance in real-world applications.

While the publications mentioned above have provided tremendous insight into the
RUL estimation process, it must be noted that they have the following limitations. Most
of these papers were published more than five years ago; therefore, a new review must
be conducted to cover every step in RUL prediction. The paper in [6] only focused on HI
construction for RUL estimation, and Ref. [11] only concentrated on statistical data-driven
approaches. The papers also did not cover the whole process of RUL prediction, except
for [7].

The authors of this study fill these gaps by providing a review of the five steps of
RUL estimation in detail. These include (1) data acquisition, (2) feature engineering for
HI construction, (3) failure threshold (FT) selection, (4) RUL estimation techniques, and
(5) evaluation metrics. The RUL estimation process is divided into five steps for several
key reasons. Firstly, this division provides a structured framework that systematically
addresses the essential components involved in RUL estimation, helping to organize the
review and guide readers through the process logically. Secondly, it ensures comprehensive
coverage, as each step represents a critical aspect of the RUL estimation process, from the
initial data collection to final evaluation. Thirdly, this focus on five distinct steps allows
for clarity and precision in defining and discussing each stage’s specific methodologies,
challenges, and advancements. In addition, this study provides a review of the transfer-
learning-based approaches and physics-informed neural-network-based approaches used
for RUL estimation, which have gained increased attention in the past few years. Figure 1
shows the generic flow of the RUL estimation process, highlighting each major step of RUL
estimation.

Regarding the database used, journal articles, books, and conference proceedings of
standard engineering repositories were consulted (IEEE Xplore, Elsevier, Springer, MDPI,
Wiley, and others, as per the references). Up to 90% of the publications reviewed concerning
RUL estimation are journal articles, with the majority of them spanning between 2017 and
2024. In addition, the remaining 10% contained books, technical reports, and conference
proceedings spanning the past decade. Some very recent exceptional review papers were
also used in conducting this review. The authors took utmost care in searching the databases
for literature, such that all relevant information is covered about the fundamentals of the
prognosis of RMs.
The major contributions of this study are as follows:

1. This paper provides a review of literature from the past decade related to the prognos-
tics of mechanical components in RMs, with the majority of publications reviewed
being from the past six years.

2. This study divides the complete RUL estimation process into five significant steps
and reviews them in detail.

3. This study discusses the feature engineering step in detail, which is essential for
HI construction.
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4. This study provides a list of the publicly available run-to-failure datasets, which are
essential for RUL estimation purposes.

The rest of this paper is outlined as follows. Section 2 presents an overview of the
common types of mechanical faults that occur in RMs and briefly describes the causes and
consequences of each failure. Section 3 discusses PHM, which includes RUL fundamentals
and a review of the recent methodologies used in RUL estimation. Finally, Section 4
provides some open challenges and future prospects concerning the prognosis of RMs.

Data Acquisition

Sensing from
hardware setup
Wireless transfer
Live visualization
Online/offline
storage

HI Construction - Feature
Engineering

Mechanical Signal
Based HI

Time domain
Frequency domain
Time-frequency
domain

Data driven or AI Based
HI

PCA
LDA
CCA
RNN
CNN
LSTM

Failure Threshold
Selection

Time when the system
passes into a state in
which it needs to be
repaired or replaced.

Model Based Techniques

Kalman filter
Extended Kalman filiter
Wiener process
Particle filtering
Gaussian process
PINNs

Data Driven Techniques

ANN
CNN
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Time fusion transformer
LSTM
GAN
Transfer Learning
PINNs

RUL Estimation

Determine how long
the component will run
for
If failure threshold is
exceeded

Inform maintenance
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Figure 1. A generic framework for RUL estimation.

2. Mechanical Faults in RMs

RMs are essential in many industrial fields, including manufacturing, transportation,
and power generation. Turbines, motors, generators, and other rotating machinery are all
necessary to transform mechanical energy into meaningful work. Due to their intricate
mechanical and electrical components, these machines provide effectiveness, dependability,
and diversity, yet they are liable to various undesirable faults.

The most commonly used are IMs, which are made up of both electrical and mechanical
components, which include the rotor, shaft, stator, windings, and bearings. Rolling element
bearings and gearboxes are the core components of RMs and are used to support the
operation of the machinery [15]. The most common faults in these types of machinery
are mechanical faults, which include bearing faults, misalignment faults, and gearbox
faults [16]. Table 1 presents a summary of various mechanical faults, their causes, and
the resulting consequences. It highlights the different factors that lead to bearing faults,
gearbox faults, and misalignment faults and describes the specific impacts each type of
fault has on the mechanical components of RMs. In addition, the specific details and the
link between the causes and consequences of each fault type are discussed in the following
subsections, starting with a detailed analysis of rolling bearing faults, followed by gear
faults, and finally, misalignment faults.
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Table 1. A summary of mechanical faults, their causes, and the consequences of these faults.

Fault Causes Consequences

Bearing fault

• Increase in shaft voltage above the insulating capability
of the bearing grease

• Shaft misalignment/imbalance
• Overload
• Loss/contamination of lubricants
• Manufacturing flaws
• Increased temperatures

• Excessive vibration and eventual bearing failure
• Accelerated wear on rotating components
• Ripple in output torque
• Ripple in current harmonic spectrum at definite fre-

quency
• Eccentricity faults

Gearbox fault

• Overload
• Improper lubrication
• Misalignment
• Frosting
• Surface contamination
• Manufacturing flaws

• Dynamic Instabilities (vibrations)
• Fluctuations in load transmitted to the driven machinery
• Mechanical losses in the power transmission system
• Structural Fatigue

Misalignment fault

• Incorrect alignment of drive shaft with load
• Center of mass does not lie on the axis of rotation, i.e.,

heavy spot on rotor
• Installation errors
• Failure in bearings

• Premature wear to mechanical drive components
• Vibration being fed into both the load and the motor

drive shaft
• Eccentricity faults
• Gear and bearing damage

2.1. Rolling Bearing Faults

Bearing faults make up to 30–50% of all faults in IMs [17–19]. A bearing is the compo-
nent that supports and allows for the smooth rotation of the rotor shaft [20]. Bearings must
be regularly inspected and lubricated to prevent wear and potential failure [21]. A bearing
has four components: an inner raceway, an outer raceway, balls, and a cage that provides an
equidistant arrangement between the balls. There are four corresponding faults associated
with these components: inner race faults, outer race faults, rolling element faults, and cage
faults. An additional fault could be a combination of any of the four faults mentioned
above. When there is a fault on the surface of an inner or outer race in a bearing, the
impacts caused by the rollers striking the imperfection excite resonant frequency bands and
induce transients over time [6]. The fault frequencies at which these faults can be detected
are provided in Equations (1)–(4) [22]. The structure of a rolling bearing can be seen in
Figure 2a, with the faults that can occur in Figure 2b.

Inner ring de f ect f requency =
NbS

2

(
1 +

(
Bd
Pd

)
cos A

)
(1)

Outer ring de f ect f requency =
NbS

2

(
1 −

(
Bd
Pd

)
cos A

)
(2)

Ball bearing de f ect f requency =
PdS
Bd

(
1 −

(
Bd
Pd

)2
cos2 A

)
(3)

Cage de f ect f requency =
S
Bd

(
1 −

(
Bd
Pd

)
cos A

)
(4)

where Nb is the number of balls, S is speed, Bd is the ball diameter, Pd is the pitch diameter,
and A is the contact angle (degrees).

Bearing faults (Figure 2b) can occur for various reasons. Loss or contamination of
lubricants is one of the most common causes, as inadequate lubrication leads to increased
friction and wear. Shaft misalignment or imbalance often causes uneven loading on the
bearing, resulting in accelerated wear and eventual failure. Overload conditions, where the
load exceeds the bearing’s capacity, can also contribute to premature wear. A shaft voltage
that exceeds the insulating capability of the bearing grease can lead to electrical discharge
and failure. This voltage often results from the interaction between the rotating magnetic
field and stationary components, especially in machines with high switching frequencies or
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rapid changes in magnetic fields. Lastly, manufacturing flaws can create weak points in the
bearing, making them more susceptible to failure, even under normal operating conditions.

Outer Race

Inner Race

Ball

Cage

(a) (b)

Figure 2. (a) Structure of a rolling element bearing. (b) The types of faults which can occur in a
bearing [23].

2.2. Gear Faults

Gearboxes are of paramount importance in various mechanical systems and industries,
due to their versatile and crucial functions [24]. To enable effective operation within
preferred speed ranges, gearboxes act as power transmitters, transferring torque and power
from a high-speed input to a lower-speed output and vice versa, allowing for operation
at both high and low speeds. They also provide precise torque multiplication, direction
control, and speed control, to enable machinery to run at the desired speeds and generate
the required forces.

Gears are vital across sectors due to their adaptability and customization possibilities,
which guarantee top performance, durability, and effective power transfer in a variety
of applications [25]. Gearboxes usually operate under a dynamic load or in overload
conditions and are prone to suffer from various kinds of defects, such as fatigue pitting,
wear, tooth spalling, and tooth fracture [26–29]. In addition, gearboxes are also subjected to
impact loads, which are sudden forces or shocks that can occur during operation. These
impact loads can exacerbate defects, leading to accelerated wear, structural damage, or
even catastrophic failure. A gearbox model is shown in Figure 3a.

Gear faults are interconnected and often evolve from one type to another as damage
progresses. Initially, surface and tooth wear can develop due to inadequate lubrication or
prolonged friction, leading to gradual material loss [30]. As wear increases, it weakens
the surface, making it more susceptible to pitting, where small cavities form due to cyclic
loading and fatigue. Over time, these pits can expand and deepen, contributing to surface
and tooth spalling, where larger sections of the surface flake off or chip away. If the stress
continues to build, it can cause a root crack to form at the base of the gear tooth, which
weakens the tooth’s structural integrity. This crack can eventually propagate, resulting
in a broken tooth. In some cases, exposure to harsh environments can accelerate this
deterioration through corrosion, further weakening the gear’s surface and exacerbating the
effects of wear and spalling.

Gear faults (Figure 3b) can have serious consequences. Dynamic instabilities, such
as vibrations, can affect the performance and reliability of a gearbox and the machinery it
drives. Fluctuations in load transmitted to the driven machinery can cause uneven wear
and reduce the lifespan of components. Impact loads can further intensify these effects,
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contributing to increased mechanical stress. Mechanical losses in a power transmission
system can lead to reduced efficiency and increased energy consumption. Structural fatigue,
caused by repeated stress and impact loads on gearbox components, can eventually lead to
mechanical failure if not addressed.

(a)

(b)

Figure 3. (a) A spur gearbox model [31] (b) Fault types in a gear [32].

2.3. Misalignment Faults

A reported 30% of machine downtime in industry is due to poorly aligned ma-
chines [33]. There are two types of shaft misalignment faults, which are parallel and
angular misalignment. However, a combination of the two can also occur [34]. Shaft
misalignment also has some effect on bearings. The alignment condition and the type of
coupling used influence the magnitude of the bearing load. In both the horizontal and
vertical directions, vibrations tend to be more pronounced in bearings that are farther away
from the motor, while those closer to the motor experience less vibrations.

Misalignment faults can occur for several reasons, such as installation errors, thermal
expansion, wear and tear, and improper maintenance [21]. Thermal expansion can also
cause machine components to shift position, leading to shaft misalignment [29]. Misalign-
ment faults, while less common, can still have significant effects. Incorrect alignment of a
drive shaft with the load can cause uneven loading and premature wear on components.
When the center of mass does not lie on the axis of rotation, such as with a heavy spot on
the rotor [35], this can create an imbalance and lead to vibration and wear. Installation
errors, such as improper mounting of bearings or gears, can also cause misalignment and
contribute to premature failure. Failure in bearings can be a consequence of misalignment
faults, further exacerbating the issue and leading to additional damage. The three types of
faults associated with misalignment are shown in Figure 4.
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Parallel Misalignment

Angular Misalignment

Combination Misalignment

. . . . . . .. . . . . . .

. . . . . . .
. . . . . . .

. . . . . . . . . . . . . .

Figure 4. Types of misalignment faults.

3. Fundamentals of RUL Estimation

The core concepts of RUL estimation encompass a comprehensive set of ideas and
procedures used to predict the remaining useful life of RMs. This crucial PHM component
covers several steps and methods, as discussed in [14]. The first phase, data acquisition,
involves gathering data from many sources, including sensor readings and historical infor-
mation. A system’s deterioration patterns are then captured, and degradation modeling
approaches are used to comprehend how the system is degrading. Methodologies for
feature extraction make it possible to find and choose significant HIs from the received
data [6]. Then, diagnostic and prognostic algorithms are used to identify anomalies, cat-
egorize fault states, and keep track of the system’s health. It should be noted that this
review primarily focuses on HI-based methods, due to their ability to condense complex
data into simplified, interpretable metrics that directly reflect a system’s health status.
HI-based models facilitate easier and faster integration into prognostic frameworks and
often provide clearer insights into the degradation process. Methods using pre-processed
inputs (raw time domain signals or minimally processed data) play a critical role in RUL
estimation. In practical scenarios, where capturing detailed signal characteristics is crucial
to evade downtime, looking at fully processed information (HIs in particular) is of utmost
importance. Nonetheless, several discussions have been presented regarding strategies
involving the fusion of these minimally processed signals/data, mainly used in conjunction
with data-driven approaches.

In addition, prognostic techniques are used to forecast how degradation will change
in the future and to determine how long machinery will continue to be viable. The inherent
uncertainty associated with RUL predictions can be expressed and communicated using
uncertainty and confidence estimation methods. A variety of RUL prediction methods
are used for this process, including data-driven methods like statistical analysis and ma-
chine learning, as well as physics-based models that make use of domain expertise and
mathematical modeling [36]. Accurate RUL assessment is made possible by a thorough un-
derstanding and use of these essential elements, which also improves operational efficiency
and allows for well-informed decision-making for asset management or maintenance.

3.1. Data Acquisition

Data acquisition is the first step in prognostics, providing basic condition monitoring
information for RUL prediction [7]. It is the process of capturing and storing different
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kinds of monitoring data through sensors installed on the respective equipment. The most
commonly used sensors for data acquisition are vibration sensors (accelerometers), current
sensors, infrared thermometers, temperature sensors, pressure sensors, etc. In practice, the
most extensively used data for RUL estimation of mechanical components are vibration
data [37]. Run-to-failure data are the most significant when it comes to RUL prediction,
as they contain degradation trends for the component. The recorded data are stored at a
memory location for further analysis. Figure 5 shows the data acquisition process using
wireless devices. The vibration data collected by a sensor are sent through a gateway to
a storage location. The data can also be visualized in real time, depending on the type of
data acquisition setup used. Advancements in sensor and communication technologies
have resulted in the development and use of more complex data acquisition systems in
industry. Despite these advances, acquiring high-quality run-to-failure data for machinery
remains a difficult task for academic research [7,38]. A systematic review conducted by Lei
et al. [7] outlined the following challenges associated with high-quality run-to-failure data
acquisition.

• Machine degradation usually spans a considerable duration, progressing gradually
from healthy towards failure, which often lasts for several months or even years. Thus,
acquiring run-to-failure data for such an extended amount of time poses significant
challenges with regard to time and cost.

• Machines are usually not allowed to run to failure in practice, as an unexpected failure
may lead to a breakdown or a catastrophic accident, making it difficult to capture
run-to-failure data in industrial environments.

• Components such as bearings and gearboxes usually operate under adverse operat-
ing conditions. These conditions can include extreme temperatures, high humidity,
corrosive substances, abrasive particles, heavy vibrations, high levels of dust or dirt,
or exposure to hazardous materials. These interferences are mixed with the data and
decrease the quality of data being recorded.

• Most run-to-failure data are captured during non-operational hours or downtime.
This results in a huge difference from the operational hour behavior of the machine,
reducing the quality of the data.

• Some organizations that can collect run-to-failure data may not publish their data due
to privacy reasons or business rivalry.

Data
Storage

Live Visualization

1 2 3

Bearing

Vibration Sensor

Wireless Gateway

Internet

Figure 5. Vibration data acquisition process flow in a nutshell.

Due to the above challenges, most published datasets are acquired from accelerated
degradation test beds instead of real industrial equipment. The most frequently used
datasets for RUL prediction, which contain run-to-failure data for certain components and
that are publicly available, are presented in Table 2. A brief discussion of these datasets is
presented below:

1. The Center for Intelligent Maintenance Systems (IMS) dataset includes three sets of
bearing data collected for only 1 s each, using vibration sensors at 10 min intervals,
except for the first set. For the first set, the first 43 files were collected at 5 min
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intervals. All data were collected at a sampling rate of 20.48 kHz. The test involved
four bearings, each of which failed at the end of its respective experiment. In test
1, inner race and ball faults occurred in bearings 3 and 4. In test 2, an outer race
fault occurred in bearing 1, and similarly, an outer race fault occurred in bearing
3 for test set 3. The data were collected at a constant radial load of 600 lbs and at
a constant speed of 2000 revolutions per minute (rpm). In addition, note that the
data were collected in a laboratory with natural degradation and not in an industrial
environment.

2. The hybrid ceramic bearing dataset experiment was conducted using a 3HP (2.2 kW)
AC motor operating at a speed of 1800 rpm. The bearing was subjected to a loading
condition of 600 psi (4136.85 kPa), and the setup included both bearing and loading
housing. Data were collected at a sampling frequency of 102.4 kHz for 2 s at each
sampling point, with intervals of 5 min between sampling points, and the full length
of the experiment was approximately 71 h. Two accelerometers were mounted on the
bearing housing perpendicular to the shaft, to capture vibration data. The bearings
under test consisted of a stainless steel inner race, outer race, and ceramic balls. At
the end of the experiment, the bearing was disassembled and photographed.

3. The turbofan engine degradation simulation dataset was generated using the Com-
mercial Modular Aero-Propulsion System Simulation (C-MAPSS). The simulation
model contains 14 inputs, which include fuel flow and 13 health parameters, which
enable the user to simulate the effects of degradation in the main components of
an engine. In total, 21 parameters out of the 58 outputs were used to measure the
response of the system under different health and operating conditions. The data
have five subsets of data generated under varying operating and health conditions.
Under these subsets, 26 columns recorded 21 output parameters, unit number, time
(in cycles), and three operational settings. One subset of these data was also used in
the PHM challenge in 2008, while the other four were packed into another version.

4. The NASA Glenn Spiral Bevel Gear Dataset focuses on the fatigue strength of gears.
The experiment used a closed-loop torque regenerative system to test two sets of
spiral bevel gears simultaneously, featuring a 12-tooth pinion and a 36-tooth gear
under controlled conditions. A torque of 7500 in-lbs (847.5 Nm) was applied to the
gear shaft during the experiment. The pinion and gears were operated at 10,200 rpm
and 3400 rpm, with a meshing frequency of 2040 cycles/s. Data were collected to
detect pitting damage, a type of fatigue failure. Pitting was categorized into two
levels: initial pitting, consisting of pits less than 0.04 cm in diameter covering less than
25% of the tooth contact area, and destructive pitting, consisting of pits greater than
0.04 cm in diameter covering more than 25% of the tooth contact area. Tests were run
until initial or destructive pitting occurred, with measurements taken once per minute.
Shaft speed, torque, oil debris, and vibration data were captured. Vibration data,
sampled at 100 kHz for 2 s intervals, also underwent time synchronous averaging for
113 gear revolutions.

5. The NASA PCoE Batteries dataset includes data from 18,650 lithium-ion batteries
tested for charge, discharge, and electrochemical impedance spectroscopy (EIS) pro-
files at different temperatures. The test setup included a programmable 4-channel
DC electronic load and power supply, along with voltmeters, ammeters, thermocou-
ples, custom EIS equipment, and an environmental chamber. Data acquisition was
performed at approximately 10 Hz using a PXI chassis-based system and MATLAB
control, capturing detailed measurements. Discharge cycles were conducted at vari-
ous current levels until the battery voltage fell to preset thresholds, including levels
below the original equipment manufacturer’s recommendation of 2.7 V, to induce
deep discharge aging. Tests continued until the batteries reached an end-of-life crite-
rion of 30% capacity fade (2 Ah–1.4 Ah). The dataset includes cycle-level information,
with parameters such as operation type, ambient temperature, start time, and detailed
measurement data. Parameters recorded during charge and discharge cycles included
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the battery voltage, current, temperature, and capacity, while EIS operations included
sense current, battery current, current ratio, battery impedance, electrolyte resistance,
and charge transfer resistance. This dataset is valuable for developing prognostic
algorithms for early battery health and performance assessment.

6. The PRONOSTIA platform collects data from accelerated degradation tests of ball
bearings under controlled operating conditions. The data acquisition system utilizes
various sensors, including a speed sensor, force sensor, torque sensor, two accelerom-
eters (sampling at 25.6 kHz), and a temperature sensor (RTD probe). All data are
aggregated and transmitted to a central unit via a USB 2.0 link for real-time visu-
alization and storage in formatted, time-stamped files. The platform is specifically
designed to test bearings under constant speed and load conditions, offering three
specific speed and load combinations: 1800 rpm and 4000 Nm, 1650 rpm and 4200 Nm,
and 1500 rpm and 5000 Nm. The degradation process is natural, without artificial
induction, and the platform is capable of completing tests in a few hours, allowing
for multiple experiments within a short time frame. The PRONOSTIA dataset pro-
vides valuable data for researchers to test and validate PHM methods, capturing
the complete degradation process, offering data under various operating conditions,
and providing high sampling rates. However, the dataset is limited to ball bearings,
contains varying levels of noise, and may not always align with theoretical models for
bearing life prediction. Despite these limitations, PRONOSTIA remains a useful tool
for research and development in the field of PHM.

7. The Xi’an Jiaotong University dataset resulted from accelerated degradation tests of
rolling element bearings. Fifteen bearings, specifically LDK UER204, were subjected
to three different operating conditions of speed and loads (12 kN at 2100 rpm, 11 kN at
2250 rpm, and 10 kN at 2400 rpm). Two accelerometers were mounted on the bearing
housing, positioned 90 degrees apart to capture the vibration data. The sampling
frequency was 25.6 kHz, with 32,768 samples (1.28 s) recorded every minute. The
horizontal accelerometer data were more sensitive to the applied load. The tests
ran until the amplitude of the vibration signal exceeded 20 g, which was considered
the failure point for the component tested in the dataset. The complete degradation
process was characterized by two distinct stages: a normal operating stage with
low-level fluctuations, and a degradation stage with increasing vibration amplitudes,
making it possible to monitor and predict the remaining useful life of a bearing.

Table 2. Publicly available run-to-failure datasets.

Dataset Ref. Sensor

IMS Dataset [39] Accelerometer

Hybrid Ceramic Bearing Dataset [40] Accelerometer

NASA C-MAPSS/Tuborfan Engine
Degradation Dataset [41] Simulation data

NASA Glenn Spiral Bevel Gear Dataset [42] Accelerometer, Tachometer, Torque sensor

NASA PcoE Batteries Dataset [43] Voltmeter, Ammeter, Thermocouple

PRONOSTIA Platform—FEMTO
Bearing Dataset [44] Accelerometer, Temperature sensor

Xi’an Jiaotong University Dataset [45] Accelerometer

3.2. Feature Engineering for Health Indicator (HI) Construction

A HI refers to a measurable parameter or feature that provides information about the
health condition or degradation level of a system or component based on certain analyses
of long-time recorded data [6,46]. HIs can include various types of signals, measurements,
or derived features, such as vibration levels, temperature variations, wear rates, acoustic
emissions, power consumption, or other relevant parameters. The study and interpreta-
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tion of HIs is critical in determining a system’s remaining lifespan, allowing prognosis
and maintenance decisions to be made based on the expected amount of degradation or
impending failure. This can be utilized to determine the actual health of a component, as
well as to detect distinct health phases that a component goes through over its lifetime [47].
It is also considered rare to find a simple and direct HI to track a degradation trend [6].

Figure 6 shows the HI trajectories for three different bearings, consisting of defect
frequencies and harmonics. It can be seen that the HI has two distinct phases throughout
the degradation trend. These are Phase I, where the component is in its normal operating
condition (healthy), and Phase II, where, after a large change in the HI, the component
enters a fault mode and starts to degrade exponentially until failure. The limit for failure
can be set by the user, depending on their needs. Upon observing the plots above, it can
be said that HIs can be instrumental in visualizing degradation trends and also can aid in
better RUL estimation compared to directly using raw data.

Figure 6. Bearing degradation trajectories [48].

HIs are often developed traditionally through knowledge-based or physics-based
techniques, requiring skills or prior understanding of a system, which can be difficult or
even impossible to gain at times. In addition, these HIs are usually created for a specific
degradation process, making it difficult to generalize them to other processes [49]. As
a result, creating a decent HI is a difficult task that, in data-driven methods, relies on
sophisticated machine learning techniques capable of extracting HIs automatically from
process data [50]. AI-based HIs have gained significant interest recently [51].

In RUL estimation, selecting an HI that demonstrates a strong correlation with the
degradation process is essential for accurate predictions. This correlation ensures that the
HI reflects a progressive, consistent trend that aligns with a component’s wear or fault
development, making it a reliable indicator of the remaining life. For instance, HIs such as
root mean square (RMS) of vibration or current, root mean square frequency (RMSF), and
specific spectral features like kurtosis or crest factor often show strong correlations with
fault types, capturing gradual changes in signal energy or frequency content that typically
correspond with degradation stages in rotating machinery. However, a major challenge in
selecting an HI is establishing a reliable relationship between HIs and actual component
degradation, as understanding this connection is inherently complex and often requires
specialized experiments and advanced observation techniques. Even when damage levels
are measurable, the intricate relationship between HIs and these levels frequently resists
straightforward explanation [7].

Selecting or designing an appropriate HI is therefore crucial for accurately identifying
both the onset and progression of degradation, particularly in bearings, where an effective
HI should strongly correlate with irreversible physical wear. A suitable HI should also
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exhibit a steady, consistently increasing or decreasing trend over time, as indicated by
metrics such as monotonicity [47]. Evaluating the correlation between an HI and RUL
through historical run-to-failure data allows for visualizing degradation trends over time
and quantifying their reliability statistically. In cases where single HIs may not fully capture
the complexity of degradation, combining multiple indicators can enhance correlation and
provide a more comprehensive view of wear and fault patterns.

3.2.1. HI Using Mechanical-Signal-Based Features

Mechanical signal processing plays a crucial role in the identification and analysis
of initial anomalies, the extraction of fault-related characteristics, and the development
of HIs for bearings and gears [6,52]. Its profound utility stems from its capability to
effectively isolate the pertinent components of interest from sources of considerable noise
and undesired vibrational elements. After careful pre-processing of a mechanical signal
(vibration signal), three conventional feature extraction methods, including time domain,
frequency domain, and time–frequency domain, can be used to construct an HI [52].

Time domain techniques: These are directly based on a time waveform to obtain statis-
tical time domain features such as root mean square (RMS), kurtosis, peak, etc. Du et al. [53]
used two HIs, RMS and kurtosis of mechanical (vibration) signals, to predict the RUL of
bearings. When the kurtosis and RMS of a bearing at a certain time exceed a defined normal
interval, it is judged that the bearing enters the degradation stage. Kurtosis, RMS, and
skewness are the most commonly used statistical parameters [7]. Cyclic band kurtosis
was used in [54] for the diagnosis of incipient faults in rolling element bearings, which is
essential for RUL prediction. A similar approach was used in [55], where the authors used
highly correlated HIs such as maximum value, RMS, peak-to-peak value, and fast Fourier
transformation (FFT) for RUL prediction. These provided better results when compared
to state-of-the-art methods such as RMS, Mahalanobis distance of 14 selected temporal
features, and principal component analysis (PCA)-based features.

Many studies have used RMS as an HI to study bearing degradation [19,56]. According
to [57], RMS can characterize raw degradation data in view of vibration energy. The RMS
was filtered using a high-pass filter and then used to construct a bearing HI for the study.
Accelerated bearing degradation data were quantified using RMS in [58]. A combined
low-pass filter and adaptive line enhancer signal pre-conditioning method was outlined
in [59], where RMS, skewness, and kurtosis were calculated from the output of the filter and
signal enhancer. Using the above three HIs, accurate information was extracted with regard
to the incipient fault stages of bearings. RMS, variance, energy, margin factor, shape factor,
Shannon entropy [60], Renyi entropy [61], and Tsallis entropy [62] were fused together to
construct a sensitive HI in [63].

Moreover, entropy has been used to successfully detect incipient fault patterns, while
variance is only useful towards the final stages of failure [64]. A common issue when
using time-domain features was identified in [65]. The efficacy of a data-driven model
is significantly influenced by the quality of feature selection when employing statistical
signal characteristics as input. Statistical signal features, whether in the temporal or
frequency domain, are susceptible to the influence of noise. Moreover, the mere extraction
of statistical indicators from the temporal or frequency domain fails to adequately capture
the entirety of non-stationary and time-varying features present in bearing signals, thereby
unavoidably disregarding pertinent degradation-related information. Table 3 presents time
domain features [66,67] as documented in the literature, which are widely utilized for both
diagnostic and prognostic purposes.

Table 3. Commonly used time domain features.

Feature Definition *

Mean Mean = ∑ xi
N

Max value Max = max(x)
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Table 3. Cont.

Feature Definition *

Root mean square (RMS) RMS =

√
∑

x2
i

N

Square mean root (SMR) SMR =

(
∑

√
|xi |
N

)2

Standard deviation (STD) STD =
√

1
N−1 ∑(xi − x̄)2

Variance Variance = 1
N−1 ∑(xi − x̄)2

Crest factor Crest f actor = max(x)√
∑

x2
i

N

Latitude factor Latitude f actor = max(x)(
∑

√
|xi |
N

)2

Impulse factor Impulse f actor = max(x)

∑
|xi |
N

Skewness Skewness =
1
N ∑(xi−x̄)3

[ 1
N−1 ∑(xi−x̄)2]

3
2

Kurtosis Kurtosis =
1
N ∑(xi−x̄)6

[ 1
N−1 ∑(xi−x̄)2]

3

Normalized 5th central moment 5th CM =
1
N ∑(xi−x̄)5

[ 1
N−1 ∑(xi−x̄)2]

5
2

Normalized 6th central moment 6th CM =
1
N ∑(xi−x̄)6

[ 1
N−1 ∑(xi−x̄)2]

3

* N is the total number of the elements of vector x, x̄ is the mean, whilst xi is the ith element.

Frequency domain techniques: This analysis utilizes FFT to convert a time domain
signal into the frequency domain. Many fault diagnostics schemes [68–70] utilize FFT as a
base technique for analyzing motor currents or vibration signals. Due to the vibration data
being non-stationary, there are no obvious features available in the raw data. A unique
frequency is seen for different faults in different parts of the component, e.g., a bearing has
an inner race fault, outer race fault, etc. Upon using FFT, the raw data can be converted into
the frequency domain, where useful information like fault frequencies may be hidden. FFT
exhibits certain limitations in its performance, primarily concerning the concealment of
distinctive frequencies due to the influence of the supply frequency, as well as its imprecise
representation of transient signals [71]. Another major limitation of FFT is that it is unable
to correctly distinguish the individual harmonics caused by faults, which can result from
either load fluctuations or voltage fluctuations [72]. Apart from Fourier analysis, other
approaches are also utilized to extract frequency spectrum features from raw vibration data.
Shannon entropy [60], envelope spectrum analysis, spectral skewness, and spectral entropy
are other frequency domain feature extraction techniques [73]. Some of the commonly used
frequency domain features are tabulated in Table 4.

Table 4. Frequency domain features.

Feature Definition *

Discrete Fourier Transform x(ω) =
∫ ∞
−∞ x(t)e−jωtdt

Frequency Center Frequency centre =

√
∑N

i=2(x′
i )

2

4π2 ∑N
i=1 x2

i
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Table 4. Cont.

Feature Definition *

RMS Frequency RMSF =

√
∑N

i=2(x′
i )

2

4π2 ∑N
i=1 x2

i

Root Variance Frequency RVF =

√
∑N

i=2(x′
i )

2

4π2 ∑N
i=1 x2

i
−
(

∑N
i=2(x′

i )
2

4π2 ∑N
i=1 x2

i

)2

* N is the total number of the elements of vector X, j is the imaginary unit, ω is the angular frequency, whilst xi is
the ith element.

Time–frequency domain techniques: This method explores the characteristics of
signals in both the temporal and frequency domains, effectively capturing the evolution
of frequency components over time. Prominent examples of time–frequency domain ap-
proaches include the short-time Fourier transform (STFT), continuous wavelet transform
(CWT), discrete wavelet transform (DWT), Wigner–Ville distribution, and Hilbert–Huang
transform [74]. These methods facilitate a comprehensive examination of signal prop-
erties by elucidating the dynamics of frequency content regarding temporal variations.
These techniques convert one-dimensional time-domain signals into two-dimensional
time–frequency functions. Some of the commonly used features are tabulated in Table 5.

Table 5. Commonly used time–frequency domain features.

Feature Definition *

Short-time Fourier Transform STFTx(t)(t, ω) =
∫ ∞
−∞ x(t)ω(t − τ)e(−jωt)dτ

Continuous Wavelet Transform Wx(t)(s, τ) = 1√
s

∫
x(t)φ∗( t−τ

s
)
dt

Discrete Wavelet Transform Wx(t)(s, τ) = 1√
2j

∫
x(t)φ∗

(
t−k2j

2j

)
dt

Wavelet Packet Transform dj+1,2n = ∑m h(m − 2k)dj,n

Empirical Mode Decomposition x(t) = ∑n
j=1 cj + rn

* τ = time variable, ω(τ) = window function, φ∗ = complex conjugate of φ(t), J and k are integers, m is no. of
coefficients, dj,n, dj+1,2n and dj+1,2n+1 are wavelet coefficients at sub-bands n, 2n, 2n + 1, cj is jth intrinsic mode
function and rn is residual of data x(t) after extraction of n intrinsic mode functions.

A novel approach for gaining degradation information under cross-operating condi-
tions was proposed in [65]. This method involves constructing a shared latent feature space
that spans different operating conditions. The degradation features specific to bearings
were extracted in this space. The CWT was used to convert the vibration signals into the
time–frequency domain for analysis. Time domain features fused with DWT were used
in [75], where the DWT was used as a filter for denoising the time domain features. The
proposed method was able to accurately capture the dynamics of the failures. Raw vibra-
tion signals were processed using the Hilbert–Huang transform to construct a nonlinear
degradation indicator in [74]. A similar approach was taken in [76] to extract new HIs
from stationary and non-stationary vibration signals, to track the degradation of the critical
components of bearings. One notable drawback of the Hilbert–Huang transform is that its
performance is affected when there is non-stationarity in the data flow or variations in the
signal dynamics [77].

In summary, this subsection emphasizes the importance of mechanical signal process-
ing in detecting anomalies, extracting fault characteristics, and developing HIs for bearings
and gears. Time domain techniques like RMS, kurtosis, and skewness are effective for
constructing HIs and characterizing bearing degradation. Frequency domain techniques,
including FFT and spectral analysis, convert time domain signals into frequency domain
features to reveal hidden fault frequencies, though they face challenges with non-stationary
signals. Time–frequency domain techniques, such as STFT, CWT, and DWT, overcome
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these challenges by examining the temporal evolution of frequency components, offering
a comprehensive analysis of signal properties. The integration of these techniques into
a structured framework can improve the accuracy and reliability of RUL estimation for
mechanical systems.

3.2.2. HI Using Data-Driven/AI-Based Features

Bearing and gear HIs based on AI techniques require historical data on normal bearing
or gear conditions for the training of statistical and probabilistic models. Any deviation
(anomaly) observed by the trained model can be considered as a potential degradation
starting point. These models can then be used to predict future degradation patterns and
estimate the RUL of the components. Continuous monitoring and updating of the models
with new data ensures higher accuracy and reliability in the predictions.

It is usually seen that a single HI misses the complete degradation information. Thus,
HIs may be integrated with machine learning (ML)-based techniques such as dimensionality
reduction to obtain comprehensive information about a degradation trend. PCA can be
used as an HI construction technique in this regard. PCA obtains the most significant
features in a dataset by reducing its dimensionality whilst preserving the most crucial data,
which can be useful to build predictive models. A bearing HI was constructed in [78] by
fusing multiple features such as RMS, kurtosis, wavelet energy entropy, and an intrinsic
mode function using PCA. In [79], PCA was used to capture the time-varying relationship
of process variables and accurately extract weak fault characteristics in the vibration signal,
which were used as an HI.

The novelty of this method lies in its innovative approach to bearing RUL estimation,
as described in [80], which utilized the textural features of a time–frequency representation
(TFR) of data to generate a high-dimensional feature. This feature was subsequently
processed through PCA and linear discriminant analysis (LDA) to identify degradation
trends in bearings, showcasing the study’s unique contribution to the field.

Mahalanobis distance assesses how comparable two data points are based on the
covariance structure of the data. It is an anomaly detection technique that can construct
HIs from healthy and faulty data. The study conducted in [81] reflected the degradation
of bearings by fusing time domain features into one to devise a new HI. Similarly, in [82],
fault features were selected by minimum redundancy and maximum relevance and then
combined with the Mahalanobis distance to track cooling fan degradation. This was
a two-stage method that helped avoid confusion between healthy and degraded data.
Many other studies have utilized Mahalanobis distance for prognosis and fault detection
purposes [83–85]. In addition, the authors in [86] pre-processed bearing fault signals
using empirical mode decomposition and singular value decomposition and then applied
Mahalanobis distance to devise an HI.

A recurrent neural network (RNN)-based HI for RUL prediction of bearings was
proposed in [87]. An original feature set was formed, comprising eight time–frequency
domain features. Using monotonicity and correlation metrics, the most significant features
were selected and fed into an RNN to construct the HI. The authors in [74] utilized a
convolutional neural network (CNN) to uncover the underlying relationship between
vibration data and an HI of the training bearing. This utilization of a CNN harnessed
its inherent capabilities in automatic feature extraction. A deep autoencoder (AE) is an
effective method for handling high-dimensional data in unsupervised environments [88].
The authors in [89] built an HI for wind turbine defect detection using a denoising AE,
which only required healthy data for training. The trained network’s reconstruction error
from the test data was used to identify the HI. A similar study in [90] learned healthy-state
data using a stacked denoising AE, and based on the reconstruction error, an HI for a wind
turbine was built.

The advantage of data-driven/AI-based HIs is that, with enough training data, these
methods may be used for the majority of RM condition monitoring scenarios, and intelligent
monitoring can be accomplished without the use of failure mechanisms or specialized
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knowledge, compared to physics- or model-based HIs [88]. Figure 7 provides a full list of
the feature engineering techniques that can be used to construct an HI.

Feature Engineering for
Health Indicator

Construciton

Mechanical Signal
Based

Data Driven/AI Based

Time-frequency domain

Frequency domain

Time domain

Mean

Max

RMS

SMR

STD

Variance

Crest factor

Latitude factor

Impulse factor

Skewness

Kurtosis

Normalized 5th central moment

Normalized 6th central moment

Discrete FFT

Frequency center

RMS Frequency

Root variance frequency

Mean frequency

Median frequency

Short-time FFT

Continuous wavelet transform

Discrete wavelet transform

Wavelet packet transform

Empirical mode decomposition

Principal component analysis

Linear discriminant anaysis

Curvilinear component analysis

Recurrent neural networks

Convolutional neural networks

Long short term memory

Auto encoders

Mahalanobis distance

Pearson correlation coefficient

Neighbourhood Component Analysis

Figure 7. A summary of feature engineering techniques for HI construction.

3.3. Failure Threshold Selection

The determination of an FT is of paramount importance, as it indicates to the user the
time when a system passes into a state in which it needs to be repaired or replaced. It also
signifies that it will be dangerous to operate the machinery beyond that point. Nowadays,
the prevailing approaches employed to determine failure thresholds (FTs) primarily rely on
established ISO standards, notably the ISO 20816-3:2022 [91] and ISO/10816 [92] series, or
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industry-specific standards like VDI/3834 for wind turbines [7]. These standards, however,
solely establish FTs for a limited set of mechanical-signal-based HIs, i.e., RMS and peak
values of vibration signals. Unfortunately, there exists a noticeable absence of standardized
guidelines for determining FTs for newly devised HIs, particularly those lacking clear-cut
physical interpretations.

Typically, an FT is set at a fixed value, often determined as the average HI value across
all bearings in a run-to-failure test. Ahmad et al. [19] proposed an adaptive method to
determine the FT of a bearing. The method involves utilizing a linear regression model
with a gradient threshold based on a window of n RMS values. By continuously updating
the window and considering only the most recent RMS samples, this approach adapts to
changes in the bearing’s degradation behavior. The authors in [74] set the FT to the last
value of the HI used to train an e-insensitive support vector regression (e-SVR) model. A
similar approach was used to set the FT in [93]. For the HI, RMS values were observed
until the bearing under study failed, and the RMS at the point of failure was set as the
FT for any new predictions. In addition, the FT was extracted as the value at the final
sample of each training dataset in [64], similarly to the previously mentioned studies. Chen
et al. [90] used a deep convolutional generative adversarial network (GAN) to create
the HI of a wind turbine generator bearing based on reconstruction error to adaptively
set a fault failure threshold. The adaptive threshold was set using a deep convolutional
generative adversarial network model trained on healthy data. The trained model acted as
a self-defined evaluator, automatically generating a threshold based on the output of its
discriminator network. This threshold is dynamic and is adjusted based on the model’s
learned understanding of healthy data, allowing for robust monitoring of wind turbine
bearing health. The authors in [94] proposed a method to determine the FT of bearings
using vibration signal fluctuations. They applied PCA to identify a degradation indicator
and used copula models to analyze its relationship with the peak vibration amplitude. By
examining the probability distribution of the vibration features at various degradation
levels, they defined the FT as the point where high fluctuations, indicating a potential
failure, are likely to occur. Wang et al. [95] set their FT at the time when the HI reached an
amplitude of 1. There was no mention of how or why this threshold was selected by the
authors. Yang et al. [96] identified a sudden increase in the RMS value of the acceleration
signal as the failure point, assuming rapid bearing deterioration. The failure threshold was
determined by marking the jump’s location and extracting the corresponding HI value at
that time.

It must be noted that the determination of an FT is crucial, as it indicates the point at
which a system needs repair or replacement and warns against the dangers of continued
operation. Despite the importance of FTs, there is a noticeable gap in standardized guide-
lines for newly developed HIs, especially those lacking clear physical interpretations. The
prevailing methods, such as those based on ISO standards or specific industry guidelines
like VDI/3834, are primarily focused on mechanical-signal-based HIs like RMS and peak
vibration values. Some researchers have set the FT as the average health indicator value
across all bearings in a run-to-failure test, or as the last value of the HI used to train models,
as in e-insensitive support vector regression. Despite these advancements, there has been
relatively little emphasis on FT setup in the literature, highlighting the need for more
research in this area. Researchers should focus on developing more robust methods for
determining FTs, to enhance the reliability and safety of machinery operations.

3.4. RUL Estimation Techniques

RUL estimation techniques play a crucial role in PHM. These methods are intended
to forecast how long a system or component will continue to function, providing proactive
maintenance and replacement choices. There are three main RUL estimation strategies, which
include model-based techniques, data-driven techniques, and a hybrid of the two [19,97,98].
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3.4.1. Model-Based Techniques

Physics-based models replicate the degradation process and estimate RUL using math-
ematical modeling, physical principles, and domain knowledge. These models focus on
deterministic representations of mechanical component degradation based on the underly-
ing physical mechanisms [99]. Modern mechanical systems, on the other hand, have grown
substantially in complexity, have highly connected internal components, and frequently
operate in harsh conditions with tremendous loads, fluctuating working conditions, and
different noise levels [45]. On this account, it is often necessary to integrate statistical
methods to account for uncertainties and the stochastic nature of the degradation process.
Some exemplary physics-based models have been proposed for RUL estimation, such as the
Gamma model [100], the semi-Markov model [101], and the Wiener model [13]. Although
these models incorporate stochastic elements, they are grounded in physical principles to
describe the degradation process. These techniques have been used in many applications
other than prognostics for RMs [102–105].

The extended Kalman filter (EKF), a statistical method, is frequently used in con-
junction with physical models for joint parameters and state estimation, particularly for
linear systems with unknown parameters. An EKF was proposed in [64] to estimate the
degradation of a bearing using time and time–frequency domain features such as entropy
and variance. A similar study was conducted in [106] to forecast the RUL of bearings in
wind turbines, where a model-based technique based on an enhanced unscented particle
filter was used.

Similarly, Wiener processes have gained significant popularity for the characterization
of systems undergoing continuous degradation with non-monotonic progressions. This
can be attributed to their advantageous mathematical properties and ability to provide
meaningful physical interpretations [107]. The degradation processes of systems typically
exhibit dissimilarities owing to their distinct operational conditions. Li et al. [108] proposed
a method for predicting remaining useful life (RUL) using a Wiener-process-model (WPM)
approach that accounts for varying operating conditions. Within this method, a specialized
age- and state-dependent WPM was devised to accurately depict the diverse degradation
processes observed across different components. A few other studies, refs. [109–111], have
also used the WPM for RUL estimation.

In certain instances, degradation processes exhibit a monotonic nature, progressing
solely in a singular direction. Examples include wear and fatigue crack propagation in gears.
In such scenarios, the Gamma process serves as an appropriate model for degradation
processes, wherein the deterioration is presumed to occur gradually over time through
a sequence of very small positive increments [11]. A key benefit of utilizing the Gamma
process for estimating RUL lies in the simplicity of the mathematical computations and a
clear and easily comprehensible physical interpretation.

Shaft and bearing misalignment is a critical issue in the dynamics and condition
monitoring of RMs. Real-world systems are complex and unpredictable, and these mis-
alignments are rarely deterministic. Due to fluctuating conditions, wear and tear, and
load changes, misalignments often exhibit stochastic variations. Modern modeling tech-
niques have begun to incorporate stochastic or interval uncertainties into misalignment
models to accurately capture this variability, as presented in [112]. Stochastic techniques,
such as Monte Carlo simulations and probabilistic modeling, simulate the influence of
random misalignments, while interval analysis provides a range of possible misalignment
scenarios. These uncertainties allow for a more precise evaluation of a system’s dynamic
behavior under different misalignment conditions, improving the accuracy and reliabil-
ity of predictive maintenance solutions. More generally, by offering reliable predictions,
even in the face of uncertain operating conditions, the inclusion of stochastic and interval
uncertainty in the modeling process improves fault diagnostics and prognostics. The signif-
icance of incorporating these uncertainties into RUL models has been brought to light by
recent advancements in this field, particularly in essential industries, where operational
unpredictability or misalignment could lead to major failures or downtime.
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Initially, physical modeling was not primarily designed for fault detection, as it lacked
an understanding of system behavior in the presence of faults. While physical modeling
provides an essential foundation for understanding degradation mechanisms, using it alone
is often insufficient, due to the complexity and variability in real-world systems. Physical
models are increasingly integrated with statistical approaches to address these limitations,
being crucial for capturing the inherent uncertainties and stochastic nature of degradation
processes. Dynamic modeling, which involves the continuous representation of system
behavior over time, was originally developed for control purposes but has since evolved
to incorporate both physical and statistical elements. This integration allows for more
accurate predictions of RUL by leveraging the deterministic insights from physical models
and the probabilistic strength of statistical models. Regardless, it is widely recognized that
fault detection in systems is feasible, as the response of a healthy system differs from that
of a faulty system [71]. Although developing accurate degradation models is a difficult
process, a combination of physical modeling, statistical approaches, and dynamic modeling
can enhance the accuracy of modeling degradation, despite this sometimes being quite
complex and rigid due to non-stationarity in the data. In this regard, the complexity of
accurately modeling degradation remains a significant challenge, leading to the rise of
data-driven techniques for RUL estimation.

Table 6 provides a comprehensive overview of the various physics/model-based
techniques integrated with stochastic modeling processes for RUL prediction discussed in
this study. It includes information on different methods such as the EKF, WPM, Kalman
particle filtering, unscented particle filtering, quadratic regression model, and Kalman filter.
Each method is listed alongside its application, year of publication, and the corresponding
reference, highlighting their diverse applications, ranging from bearings and turbofan
engines to lithium-ion batteries and proton exchange membrane fuel cells.

Table 6. A list of model-based techniques mentioned in this study, with year, application, and publication.

RUL Prediction Method Application Year of Publication Reference

Extended Kalman filter Bearings
2017 Ref. [64]
2018 Ref. [113]
2017 Ref. [17]

Wiener process
Bearings

2017 Ref. [5]
2023 Ref. [55]

Turboan engine 2018 Ref. [108]
Lithium-ion batteries 2020 Ref. [111]

Kalman particle filtering Bearings 2017 Ref. [58]

Unscented particle filtering
Rotor & bearing systems 2017 Ref. [57]
Wind turbine bearings 2020 Ref. [106]

Bearings 2024 Ref. [114]

Quadratic regression model Bearings 2018 Ref. [19]

Kalman filter
Proton exchange membrane fuel cell 2021 Ref. [104]

Bearings 2023 Ref. [115]

Gaussian process regression & Wiener process Bearings 2024 Ref. [116]

Coupled diffusion process & Temporal attention Bearing 2024 Ref. [117]

3.4.2. Data-Driven Techniques

Regression analysis, ML, DL (DL), and statistical methods are examples of data-driven
strategies that use historical data and sensor readings to identify patterns and links between
the deterioration process and RUL and that work well for complex mechanical systems.
However, they require both healthy and faulty data or run-to-failure data of a system. The
deep architectures can extract features automatically instead of having an expert manually
create features, as in ML techniques [118–120].
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Artificial Neural Networks (ANNs): These networks emulate the intricate workings
of the human brain by establishing connections between numerous nodes within a complex
layered structure. These networks are widely employed as prominent AI techniques,
particularly in the domain of machinery RUL prediction. An ANN model entails a very high
computational cost for optimizing the weights of the model [74]. Among the various ANNs,
feed-forward neural networks (FNNs) stand out as the prevailing choice in this field [7].
Many studies have utilized FNNs [121,122]. ANNs possess the capability to acquire
intricate non-linear relationships through the process of training multi-layer networks.
Consequently, they are anticipated to exhibit commendable efficacy in predicting the RUL
of complex systems. However, ANNs encounter certain limitations. Primarily, ANNs suffer
from reduced transparency, rendering the inner workings of the model less comprehensible.
The basic structure of an ANN is shown in Figure 8. Moreover, ANNs typically necessitate
substantial quantities of high-quality training data, which can prove challenging to procure
within industrial contexts due to noise. Recurrent neural networks (RNNs) are also widely
used in RUL prediction, because of their ability to deal with time-series data. ANNs excel
in capturing the subtle patterns within data that may be missed by traditional methods.
They come with significant computational costs due to the complexity of optimizing
their weights.
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Figure 8. Basic structure of an ANN.

To utilize an ANN for RUL prediction, a few changes need to be made. These include
the following: (1) Adjusting the input layer such that it matches the dimensions of the
features or the HI derived. (2) Careful configuration of the hidden layers must be performed
to capture the complex relationships between the HIs and the RUL. This may lead to the
need to experiment with different combinations of hidden layers and numbers of neurons
per layer. It is important to consider selecting activation functions, such as ReLU or Tanh,
that can introduce non-linearity. Additionally, including dropout layers can help avoid
overfitting, especially for smaller datasets. (3) The output layer must be modified to consist
of a single neuron that has a linear activation function, to provide a direct mapping from
the input features to the predicted continuous value (RUL). In addition, the output may
need to be scaled if the target RUL values have not been normalized.

Long Short-term Memory (LSTM) [123,124]: This approach is a variant of RNNs.
Data-driven methods often rely on analyzing sensor-based monitoring data, which pos-
sess a strong temporal nature, requiring specialized techniques for sequential information
handling. RNNs excel in this regard by accepting sequences as input and sequentially
performing operations. Consequently, RNNs can effectively comprehend time-series data
and prove valuable in addressing RUL prediction challenges. However, traditional RNNs
encounter difficulties in capturing long-term dependencies. When confronted with exten-
sive sequential data during training, they may suffer from either vanishing or exploding
gradients, leading to sub-optimal training outcomes [125]. To overcome this issue, the
LSTM model was proposed. LSTM incorporates two distinct pathways for information
processing: one devoted to retaining long-term memory and the other focused on pro-
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cessing short-term information, while selectively integrating relevant insights into the
former pathway. LSTM employs three gating units, namely an input gate, forget gate,
and output gate, to regulate the flow of information within the LSTM unit and control
the handling of input data [123]. The basic structure of an LSTM is shown in Figure 9.
Sequential data play a crucial role in the prediction of RUL, and to effectively handle such
data, numerous frameworks based on RNNs, including RNN, LSTM, and gated recurrent
units, have been developed [126,127]. However, RNN-based frameworks, characterized
by their recurrent nature, incur a considerable time cost during training and experience
performance degradation attributed to long-term dependency.
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Figure 9. Basic structure of LSTM.

LSTM models offer various advantages, such as their ability to learn long-term depen-
dencies. Long-term dependencies occur when the prediction of an element in the sequence
depends on elements that are far away from it in the sequence. FNNs struggle with captur-
ing long-term dependencies because they process each input independently, whereas this
is not the case for LSTMs. The vanishing gradient issue is mitigated by employing gating
mechanisms, which ensure stable training of such deep networks. The memory cells in
LSTM models enable them to preserve information over long sequences, enabling them to
selectively retain relevant information while discarding irrelevant details. This makes these
models highly effective for tasks where capturing information over long ranges is crucial,
such as in time-series prediction for RUL estimation. However, despite their advantages,
LSTM networks also come with limitations. These models are more complex than other
RNNS, which makes it difficult to understand and implement them at times. Dealing with
large datasets may result in increased computational costs, due to this complexity. Another
common issue with LSTMs is that they can tend to overfit, especially when they have a
complex architecture or are trained on a small dataset. Additionally, it may be difficult to
interpret the model, making it difficult to comprehend how it is making its predictions.

To use an LSTM model for RUL estimation purposes, an input layer, one or more
LSTM layers, and a dense layer can be used. The input layer should match the shape of
the time-series data, followed by an LSTM layer with a favorable number of units. Next,
a dropout layer may be used to avoid overfitting. To capture more complex patterns, the
LSTM layers may be stacked and then followed by a dropout layer. After these layers,
one or more dense layers can be used to learn additional representations from the LSTM
layer outputs. Finally, a dense layer can be used containing a single unit and a linear
activation function to estimate the RUL. This architecture offers a robust foundation for
RUL prediction, striking a balance between model complexity and the ability to generalize
effectively from the training data.

Convolutional Neural Network [128,129]. CNNs, as a prominent DL model, have
emerged as the dominant approach for solving recognition and detection tasks within
the field of computer vision. This model is characterized by three distinct features: local
connections, shared weights, and local pooling. These characteristics contribute to CNNs’
effectiveness in capturing local patterns and features within images, facilitating their success
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in various computer vision applications. CNNs are used to speed up the training process (a
drawback for RNNs), but when it comes to time-series forecasting, CNNs run into the same
problem: they achieve limited performance for degradation trends. Cheng et al. [74] used a
CNN to identify the hidden pattern between a HI and the raw signals, making it possible to
automatically estimate the degradation of bearings. A similar study in [130] used a CNN to
automatically extract HIs, learn the relationship between degradation and HIs, and predict
the RUL. The method was validated using the C-MAPSS dataset for engine degradation.
Figure 10 outlines the basic structure of a CNN.

Input
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Figure 10. Basic structure of a CNN.

CNNs are effectively able to capture spatial hierarchies and local patterns in data,
which may be useful for identifying degradation trends and anomalies related to RUL
estimation. CNNs have fewer parameters compared to fully connected networks, due
to weight sharing in convolutional layers. This leads to more efficient training and a
reduced risk of overfitting. Moreover, these versatile networks are capable of handling
multi-dimensional data, such as multi-sensor data, which are often used for RUL estimation.
However, CNNs have a few disadvantages when dealing with RUL estimation. These
models typically require a huge amount of labeled data to be able to train well, which
could be a limitation if the training data are small in size. CNN training is computationally
intensive and demands significant computing resources, such as graphic processing units.
The design of CNN models often requires extensive experimentation, such as tuning the
architecture using various configurations and hyperparameters to achieve the best perfor-
mance. Standard CNNs may not naturally capture temporal dependencies in time-series
data as effectively as models like LSTMs, because they were primarily developed for spatial
data. Additionally, non-spatial data may cause CNNs to perform poorly, which limits
their usefulness in some RUL estimation settings where capturing sequential dependencies
is essential.

To use CNNs for RUL estimation, a basic architecture that includes an input layer,
several convolutional layers for feature extraction, pooling layers for dimensionality reduc-
tion, and fully connected layers for the final prediction can be used as the starting point. To
modify this basic architecture for RUL estimation, the following changes can be made: the
addition of more convolutional layers to capture deeper patterns in the data, and utilizing
dropout layers to avoid overfitting. Additionally, batch normalization layers can be used
to stabilize and accelerate training. Since CNNs may not inherently capture temporal
dependencies, a time-distributed approach can be integrated, or the CNN can be combined
with LSTM layers to handle temporal aspects. The time-distributed approach in CNNs
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applies the same convolutional operations to each time step of a sequence independently,
allowing the model to handle sequential data, while preserving the temporal order. Finally,
an output layer with a single unit and a linear activation function can be used to estimate
the RUL. By making these adjustments, a CNN can be used for more accurate and reliable
RUL estimation.

Deep Belief Networks (DBNs): These models are a class of ANNs renowned for their
ability to extract features. DBNs commonly combine a stack of serially connected restricted
Boltzmann machines (RBMs) [131]. The RBMs are stacked on top of each other, with the
output of one serving as the input to the next RBM in the stack, as seen in Figure 11. DBNs
are used in a wide range of applications. The earliest application was reported in 2017 [132],
where data from multiple sensors were fused for diagnosing bearing faults.
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Figure 11. Basic structure of a DBN.

Multiple studies, refs. [133–136], have utilized DBNs for prognosis. Hu et al. [134]
used a combination of a DBN and a diffusion process for RUL prediction. The DBN
was used as a feature extractor in this case, with locally linear embedding. The study
regarding the RUL of aircraft engines in [135] leveraged the feature extraction capabilities
of autoencoders and DBNs to model the degradation trend. The developed model was
tested using state-of-the-art methods and was observed to be superior, as indicated by the
root mean squared error (RMSE) and score indices.

DBNs offer several advantages for RUL estimation. One key benefit is their ability to
perform unsupervised pre-training, which helps initialize network weights more effectively
and leads to better generalization, particularly with limited labeled data. DBNs are adept at
learning hierarchical representations of data, capturing the complex patterns and features
essential for accurate RUL estimation. Their generative nature makes them robust to noise,
allowing them to handle the noisy sensor data often encountered in industrial settings.
Additionally, DBNs can reduce the dimensionality of input data, extracting the most
relevant features and improving the efficiency and accuracy of RUL prediction models.
The flexibility in the DBN architecture allows for the tailoring of a model to the specific
characteristics of a RUL estimation problem, enhancing its adaptability to various types
and amounts of sensor data. Despite their advantages, DBNs have several disadvantages
in RUL estimation. One significant drawback is their computational complexity and
the time-consuming nature of training, especially with large datasets, which can be a
constraint in real-time applications. DBNs also require a substantial amount of fine-tuning
of hyperparameters, which can be challenging and resource-intensive. Their architecture
can become quite complex, making them harder to implement and understand compared
to simpler models. Additionally, DBNs can struggle with overfitting, particularly when the
amount of labeled data are limited. While they are robust to noise, their performance can
degrade if noise levels are extremely high.
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Several critical considerations must be taken into account when using DBNs to predict
RUL. Firstly, the input layer dimensions should match the feature space of the input data,
typically comprising sensor readings or machinery-related features (HIs). Enhancing the
DBN’s hidden layers may require increasing the number of units or layers to capture
intricate data patterns, while avoiding overfitting through techniques such as dropout reg-
ularization. Hyperparameter optimization, including tuning the learning rate, momentum,
and weight decay, is crucial for improving model performance. Lastly, the output layer
should consist of a single unit with a linear activation function to enable the prediction of
RUL. These modifications, when systematically applied and fine-tuned, can significantly
enhance the DBN’s efficacy in accurately predicting RUL in industrial systems.

Time Fusion Transformer (TFT): Transformers are a type of neural network (NN)
similar to RNNs or CNNs and that were very recently proposed in [137]. The architecture
is an NN structure initially developed for machine translation purposes. It incorporates
a self-attention mechanism to capture and model the dependencies between input and
output sequences. This self-attention mechanism enables the model to dynamically assign
weights to each input element, determining its relative significance in generating the
corresponding output [138]. The basic structure of a TFT is shown in Figure 12. In a
recent study [139], a transformer neural network was used to predict the RUL of lithium-
ion batteries. The transformer encoder was used to learn long-term dependencies of the
capacity degradation from battery working records. The transformer layers were a stack
of transformer encoders that extracted degradation features from the reconstructed data,
with two sub-layers: multi-head self-attention, and feed-forward. This study was a first in
this type of application. The fusion model proposed in [140] combines CNN, LSTM, and
transformers to improve RUL estimation accuracy for aero-engines. The vanilla transformer
model was adapted specifically for RUL estimation by modifying its input and output
layers and making additional adjustments to suit aero-engine sensor data. A CNN, LSTM,
and their combination layers were integrated into the encoder and decoder layers of the
adapted transformer model, resulting in three fusion models.

TFTs offer several advantages for RUL estimation in comparison to traditional meth-
ods. TFTs can effectively model temporal dependencies in sequential data, such as sensor
readings, by capturing long-range dependencies through self-attention mechanisms. This
enables a model to learn complex patterns and relationships in data, potentially leading to
more accurate RUL predictions. Additionally, TFTs are highly parallelizable, allowing for
efficient training on large datasets. However, TFTs may suffer from high computational
costs, especially when dealing with very long sequences or when the model is overly
complex. They also require a large amount of data for training, which can be a limitation
in applications where data are scarce or expensive to collect. While TFTs offer promising
capabilities for RUL estimation, careful consideration of their computational requirements,
data availability, and efforts to enhance interpretability is necessary for successful imple-
mentation.

Generative Adversarial Network (GAN): The GAN was proposed in 2014 by Good-
fellow et al. [141] and has gained popularity very quickly in the field of DL. It involves two
distinct parts: a generator and a discriminator. The generator attempts to generate false
samples to deceive the discriminator, while the discriminator attempts to discriminate be-
tween real and artificially generated data. The structure of the GAN is shown in Figure 13.
The GAN falls under the category of generative models, as it contains the ability to create
new data based on old data or to simply generate new examples that are similar to the
training data [142]. This ability of the GAN can facilitate solving the issue of a lack of data.

Zhang et al. [143] proposed a convolutional recurrent GAN which employed a two-
channel fusion convolutional RNN. This was used to self-generate data, to overcome the
scarcity of run-to-failure data in a low-cost, quick, and safe manner. The authors tested the
proposed model by applying it to three different datasets and obtained a significant drop
in estimation errors. A deep adversarial LSTM framework was proposed in [56] for rolling
bearing RUL prediction utilizing a two-stage technique. Firstly, the generator predicts
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the degradation using the available historical data. In the second stage, the discriminator
checks if the degradation is produced from real historical data or is forecast. By carrying out
this check, the study minimized the superposition problem of prediction errors. The use of
GANs aims to address data scarcity in RUL estimation by increasing the size of the training
dataset. Although the RUL of the generated samples might be like the existing data, GANs
can introduce subtle variations, enhancing the model’s ability to learn a broader range
of degradation patterns and improving generalization to new data. Additionally, GAN-
generated samples can balance a training dataset by generating data for underrepresented
failure modes, leading to better performance across different failure types. This increased
data volume also helps mitigate overfitting, a common issue with small datasets, resulting
in more accurate RUL predictions.
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The main advantage of a GAN is its ability to generate realistic images, signals, and
other types of data that may not be easily distinguishable from real data. This property
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enables GANs to be used for RUL estimation, as they can generate data that mimics real-
world operating conditions and failure modes. This is particularly beneficial in scenarios
where labeled data are scarce or challenging to acquire. Through its adversarial training
process, a GAN can generate diverse and realistic data, which can enhance the robustness
of RUL models. These diverse data expose RUL models to various operating conditions
and failure patterns. Additionally, GANs can aid in identifying anomalies in data that
may indicate incipient fault stages, thereby enhancing the early detection of faults and the
prediction capabilities of RUL models. On the other hand, the training process of GANs is
computationally intensive and complex, necessitating high-end computational resources.
The quality of generated data must also be validated to ensure that they correctly mimic
real-world scenarios, as a poor data quality can lead to potential errors in the prediction
process. The integration of synthetic data with existing RUL prediction models and real
data must be performed with careful consideration, to avoid problems such as mode
collapse and overfitting. Despite these challenges, GANs are a promising tool, due to their
potential benefits in enhancing the accuracy and robustness of RUL estimation models.

Traditional data-driven prognostic techniques rely heavily on data from controlled
experiments, stress tests, and simulations. These methods assume that such controlled data
accurately reflect real-world conditions and failure patterns. However, complex machinery
often operates under unpredictable conditions, leading to unexpected deterioration. This
conventional approach overlooks the discrepancies between training and real-world data.
To address this challenge, transfer learning (TL) has been a widely applied strategy for
machine prognostics. TL involves acquiring knowledge by solving a problem where
labeled data are abundant and then adapting this knowledge to solve a different but related
problem where labeled data are scarce or expensive to obtain, which is the case for most
RUL estimation problems. TL is a machine learning technique where a model developed
for a particular task is reused as the starting point for a model for a second, related task.
This approach leverages the knowledge gained while solving one problem and applies it
to a different but related problem, often leading to improvements in performance and a
reduction in the time and resources required for training.

The works of [144] state that applying TL for domain adaptation or feature representa-
tion transfer enhances the robustness of prognostics in scenarios involving new conditions
and unforeseen faults. This approach generalizes insights from a limited set of experimental
cases to real-world applications, where equipment operates under varying conditions and
encounters new faults. However, using all extracted features indiscriminately in transfer
training can yield poor results, highlighting the importance of selecting suitable transferable
features. Gu et al. [145] employed TL to address shortcomings in predicting the RUL of
lithium-ion batteries. Their article presented a comparison study with traditional methods,
identifying a failure to account for variations in battery degradation due to manufacturing
differences, environmental factors, and inherent uncertainties, resulting in biased predictive
models. To rectify the aforementioned issues, an extreme learning machine (ELM)-based TL
was introduced to enhance the predictive accuracy and stability, by addressing variability
from arbitrary initial parameters and reducing the training time by eliminating the gradient
descent process [146]. According to the results presented, the TL model outperformed other
methods in forecasting the RUL of batteries, achieving error reductions of 65.66% when
compared to classic ELM models, and 68.89% and 73.95% when compared to alternative
approaches.

The consensus self-organizing models (COSMOs) approach, which identifies deviances
in equipment using competing representations and identifying outliers, served as the
building block for a new TL methodology presented in [147]. The authors further elaborated
that using a feature-representation-based TL approach with transferable features addresses
the need to adopt prognostic methods for future data samples from unseen distributions
and new faults, ensuring robust RUL prediction. This was achieved using transferable
features that measure the distance to peers for each sample. The COSMO feature generalizes
samples from different domains into a common latent feature space. The experimental
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results showed that the proposed approach significantly outperformed traditional methods
like transfer component analysis (TCA), correlation alignment (CORAL), and structural
correspondence learning (SCL), achieving substantially lower errors in case studies with
new operation conditions. Zhang et al. [136] proposed a similar TL method based on
COSMO for RUL. Their method only transfers selected features between the source and
target domains, without considering their transferability. The study did not obtain a RUL
training label according to the bearing degradation trajectory under different working
conditions, which may have impacted the accuracy and efficiency of their models. A
novel fusion TL strategy that combines LSTM and ELM networks for online bearing RUL
estimation is seen in [148]. They used offline bearing vibration signal data as the source
domain and online bearing data as the target domain. First, the time-frequency domain
features from the source domain were extracted and input into LSTM and ELM networks.
These network prediction results had been nonlinearly fused using an ELM network,
which were subsequently transferred to online bearing data for RUL prediction. The study
reported that the basic LSTM and ELM models limited the prediction accuracy, suggesting
that future works refine these network structures for a higher prediction accuracy.

In the field of PHM, TL has demonstrated effectiveness in addressing common rolling
bearing issues, including fault detection and diagnosis. Given the inherent consistency in
the degradation process of different bearings, TL plays a crucial role in RUL prediction by
extracting domain-invariant temporal features and transferring degradation knowledge
across various working conditions through domain adaptation [149]. TL significantly re-
duces the amount of labeled data needed for training by leveraging knowledge from models
pre-trained on related tasks. This leads to faster convergence and enhanced performance
when dealing with limited or expensive-to-label datasets. TL also allows for a more efficient
utilization of computational resources, as it often requires a shorter training time compared
to training a model from scratch, which may take a lot of time, depending on the size of the
training data and the application. Additionally, TL can enhance generalization capabilities,
enabling models to perform better on new, unseen data by transferring learned features
and representations that are robust across different domains and tasks. However, a major
limitation of transfer learning is the potential for negative transfers, where knowledge
from the source domain adversely affects the performance in the target domain, due to
significant differences between the two. Selecting an appropriate pre-trained model that
closely aligns with the target task is crucial, and this selection process can be non-trivial.
Furthermore, TL may lead to suboptimal performance if the source and target domains
are too dissimilar. Therefore, utmost care must be taken when selecting a TL model to
use for a specific application. Finally, modifying and fine-tuning pre-trained models often
requires significant expertise and experimentation, which can be resource-intensive and
time-consuming.

A detailed overview of the various data-driven techniques used for RUL prediction,
highlighting their application domains, years of publication, and corresponding references,
is provided in Table 7. The table categorizes the methods into several groups, including
multiobjective DBN, FNNs, DBNs, LSTMs, CNNs, and other advanced techniques, such as
deep adversarial LSTMs, transformers, and AEs. Each category lists the specific applications
these methods have been applied to, such as turbofan engines, bearings, gears, lithium-
ion batteries, and three-phase industrial motors. This tabulated presentation not only
demonstrates the diversity and evolution of RUL prediction techniques over time, but also
provides a clear reference to the key studies contributing to this field.
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Table 7. A list of the data-driven techniques mentioned in this study, with their year, applications, and
reference.

RUL Prediction Method Application Year of Publication Reference
Multiobjective DBN Turbofan engines 2017 Ref. [136]

FNN
Bearings 2018 Ref. [121]

Three-phase industrial motors 2016 Ref. [122]

DBN
Bearings 2017 Ref. [132]

Turbofan engines 2022 Ref. [135]

DBN and PF Bearings 2017 Ref. [40]

Deep CNN Turbofan engines 2020 Ref. [130]

LSTM Gears 2020 Ref. [124]

ϵ-SVR Bearings 2020 Ref. [74]

DBN and RBMs Bearings 2020 Ref. [134]

Deep adversarial LSTM Bearings 2021 Ref. [56]

Dual LSTM Turbofan engines 2021 Ref. [127]

Generalized regression (NN) Bearings 2021 Ref. [63]

CNN
Bearings 2021 Ref. [65]

2022 Ref. [98]
Turbofan engines 2022 Ref. [129]

Gated recurrent unit NN Bearings 2021 Ref. [93]

Denoising transformer Lithium-ion batteries 2022 Ref. [139]

Transformer encoder Bearings 2022 Ref. [18]

Convolutional AE Bearings 2022 Ref. [118]

Deep Bayesian network Turbofan engines 2023 Ref. [133]

CNN-LSTM-Transformer Turbofan engines 2023 Ref. [140]

Deep AE Bearings 2023 Ref. [120]

Conditional graph convolutional network Lithium-ion batteries 2024 Ref. [150]

Vision transformer and semi-supervised transfer learning Lithium-ion batteries 2024 Ref. [151]

Transformer and reweighting technique Turbofan engines 2024 Ref. [152]

Spatio-temporal convolutional transformer Bearings 2024 Ref. [153]

Deep reinforcement learning Bearings 2024 Ref. [154]

Gated Recurrent Units Bearings 2024 Ref. [155]

Physics-informed multi-state temporal frequency network Bearings 2024 Ref. [96]

While data-driven methods offer impressive capabilities and find wide application,
they often operate as black boxes, hindering our understanding of their decision-making
processes. This lack of transparency and interpretability can lead to unreliable predictions
when extrapolating beyond the available data. Furthermore, purely data-driven models,
despite their ability to fit observed data well, may generate physically inconsistent or
implausible predictions when faced with unseen situations, ultimately limiting their gen-
eralization performance. There is a growing need to “teach” algorithms by incorporating
physical or domain knowledge to address the limitations of black-box ML models. This
involves integrating information about governing equations and physical constraints, a
concept known as physics-informed learning [156]. This approach promises to enhance
the performance and reliability of learning algorithms and is also known as a hybrid of
model-based techniques and data-driven techniques.
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3.4.3. Hybrid Techniques—A Combination of Physics/Model-Based Techniques and
Data-Driven Techniques

Hybrid techniques, which combine model-based approaches with data-driven meth-
ods, offer a powerful framework for leveraging the strengths of both paradigms in solving
complex problems. Hybrid techniques combine the predictive accuracy and adaptability of
data-driven models with the foundational understanding and reliability of physics-based
approaches, resulting in more robust and precise RUL estimation.

The study conducted in [157] proposed a hybrid network that utilized a particle filter
(PF) and a FNN for RUL prediction. The PF used the Paris–Law model to estimate RUL
based on crack growth in railway D-cables dielectric layer, while the FNN was used to
learn patterns from data to predict RUL. It must be noted that the study used a weighting
scheme to balance the uncertainty and accuracy of each method. The authors in [158]
proposed a hybrid model for predicting the RUL of lithium-ion batteries. It combines
unscented Kalman filtering (UKF) with relevance vector machine (RVM) regression. The
UKF estimates the battery’s state and parameters based on a pre-defined model, producing
a raw error series. The empirical mode decomposition decomposes this series, isolating
the dominant mode representing the error evolution trend. This dominant mode is then
used to train the RVM regression model, which predicts the prognostic error. The predicted
error is then used to correct the UKF-based RUL prediction.

A similar RVM-based approach was presented in [45]. RVMs with varying kernel
parameters are used to identify key degradation points; then, these points are fitted using
exponential degradation models. The Fréchet distance, a measure of curve similarity,
helps select the optimal degradation model from multiple candidates of curves. This
selected model is then extrapolated to predict future degradation and determine the RUL
based on a predefined failure threshold. A hybrid method was proposed in [159], where a
support vector machine (SVM) is used to classify a bearing’s degradation stage into five
classes. Then, the method leverages the SVM output to determine whether the bearing is
in a low-degradation-rate (LDR) zone or a high-degradation-rate (HDR) zone. For LDR
zones, it employs averaging within the corresponding degradation class to smooth the
data. However, when the degradation accelerates (HDR zone), it switches to a smoothing
algorithm that more precisely tracks the inner relative RMS measurement path, capturing
the steeper changes in the HI. An exponentially weighted moving average (EWMA) was
combined with support vector regression (SVR) and random forest regression (RFR) for
the prediction of RUL in [160]. The EWMA tracks the bearing’s degradation over time by
monitoring the HI to identify anomalies, and as soon as an anomaly is detected, the SVR
and RFR estimate the RUL from that point in time.

Building on these innovative hybrid approaches, there is a growing interest in physics-
informed neural networks (PINNs), which integrate physical laws directly into the learning
process (see Figure 14) to further enhance the accuracy and reliability of RUL predictions.
PINNs were first introduced by Karniadakis et al. in 2019 [161] for solving both forward
and inverse problems associated with partial differential equations (PDEs). The PINNs first
define the physical laws governing the system using PDEs. Then, a neural network was
designed to approximate the solution of these equations. The network’s loss function was
modified to include physical laws as constraints, meaning it is penalized for both errors in
fitting the observed data and for violating the physical constraints. During training, the
network learns to adjust its parameters to minimize the loss function, while adhering to the
physical laws. This results in a model that accurately captures a system’s behavior while
adhering to its underlying physics.

Deng et al. [162] proposed a hybrid transfer learning approach for the RUL estima-
tion of bearings. The authors combined a 5-degree-of-freedom model for bearings with
a physics-informed Bayesian deep dual network (PI-BDDN), combining a model-based
method with a data-driven method. Various failure trajectories are simulated using the
physical model, which a PF then calibrates to mimic real-world measurements. Adversarial
learning is used by the PI-BDDN to selectively transfer the most relevant knowledge, lever-
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aging both simulation data and actual measurements as augmented inputs. The reality
gap between simulation and real-world data was addressed by incorporating physical
knowledge into the learning process in this study. PINNs were utilized in [163] for wind
turbine bearing fatigue prognosis under varying grease qualities. Reduced-order physics
models were used for fatigue analysis, while a multi-layer perceptron was used for learning
the grease degradation mechanism. These physics-based and data-driven components are
integrated into an RNN cell, which updates its state based on the input and previous state,
simulating the time-dependent damage accumulation process of a bearing. Liao et al. [164]
proposed a method for RUL estimation that combines a graph convolutional network
(GCN) with physics-informed training. The GCN learns the spatial relationships between
multiple sensors within a system, representing them as a graph structure. The integration
of an autoregressive-moving average (ARMA) filter mechanism allows the GCN to learn
temporal dynamics and handle dynamic graph topologies, enhancing the model’s ability to
capture long-term dependencies. Further, the model was trained with a physics-informed
loss function that penalizes delayed RUL estimations more than underestimations, reflect-
ing the practical importance of safety over absolute accuracy.

Figure 14. PINN architecture for solving PDEs.

Nascimento et al. [165] presented a PINN that combined a physics-based reduced-
order model and a data-driven multi-layer perceptron (MLP) to accurately capture battery
discharge behavior and aging. The physics-based model was based on Nernst and Butler–
Volmer equations for describing the overall battery discharge, while the MLP modeled the
non-ideal voltage. Battery aging was represented by time-dependent internal resistance
and available lithium-ion capacity, modeled through an ensemble of variational Bayesian
MLPs. Inspired by [165], Fernandez et al. [166] proposed a very similar Bayesian RNN to
predict the end-of-discharge (EOD) of lithium-ion batteries. The network was trained using
approximate Bayesian computation through subset simulation, which inferred the posterior
distribution of the weights, biases, and physical parameters (maximum charge available
and internal resistance). A novel physics-informed deep NN, degradation consistency
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recurrent neural network (DcRNN) for bearing RUL estimation was presented in [167].
Physical knowledge of monotonic degradation, where the health of a bearing deteriorates
over time without recovery, was incorporated into the network. To ensure that the learned
features were consistent with the degradation process, a positive increment recurrence
relationship was introduced into the network, which integrated monotonic degradation
knowledge. The network’s final loss function minimized the data loss in the target space
and the violations of the physical knowledge in the model outputs.

PINNs offer several key benefits for the field of RUL prediction. PINNs produce
more transparent and explainable models than traditional black-box DL approaches by
integrating physical constraints. Their inherent physical understanding makes them less
prone to overfitting and allows them to generalize better to unseen scenarios. Additionally,
PINNs can learn effectively with less labeled data, making them suitable for scenarios
where data collection is expensive or time-consuming. Ultimately, PINNs produce predic-
tions that align with a system’s underlying physics, leading to more accurate and reliable
prognostics. Despite the promising potential of PINNs, there are several challenges to
overcome. The design of physics-informed models can be more complex than purely
data-driven methods, requiring careful selection of physical constraints and integration
strategies. The non-convex nature of the loss function in PINNs can pose challenges during
the training process, potentially leading to local optima or instability. Finally, the effec-
tiveness of PINNs is still influenced by the quality of the available data, necessitating data
preprocessing techniques to address issues like missing values and noise. Li et al. [156] thor-
oughly reviewed the emerging field of physics-informed data-driven remaining-useful-life
prediction, highlighting its challenges and opportunities for future development.

Building on the detailed information provided in Tables 6 and 7 about individual RUL
prediction techniques, Table 8 presents a comprehensive comparison of three approaches
used in RUL estimation: model-based techniques, data-driven techniques, and hybrid
techniques. The three approaches are summarized in Figure 15. Model-based techniques
offer robust predictions, efficient estimation, and high accuracy, but they are costly, time-
consuming, and have limited reusability. Data-driven techniques are cost-effective and
eliminate the need for physical parameter assumptions. Nevertheless, they are prone to
overfitting, require substantial data, and can be inaccurate with high-dimensional data.
Hybrid techniques combine the strengths of both approaches, offering improved robust-
ness and adaptability, but they are complex to develop, computationally intensive, and
challenging to interpret. Each approach has advantages and disadvantages, highlighting
the importance of selecting the most suitable technique based on the specific requirements
of the RUL estimation task.

In summary, this subsection delved into the diverse techniques employed for RUL
estimation, encompassing model-based, data-driven, and hybrid methods. Model-based
techniques rely on physical principles and mathematical models to capture degradation pro-
cesses, often incorporating stochastic elements to account for uncertainties. While effective
for simpler systems, their accuracy can be limited by the complexity of real-world systems
and the challenges of modeling non-stationary behavior. Data-driven methods, such as
ANNs, LSTMs, CNNs, DBNs, TFTs, and GANs, leverage historical data and sensor readings
to identify patterns and predict RUL. These approaches excel in handling complex systems
and extracting features automatically, but require significant data availability and may
lack transparency and interoperability. Combining model-based and data-driven elements,
hybrid techniques present a promising avenue for balancing accuracy and interpretability.
These methods utilize physics-based models for a foundational understanding and data-
driven models for adaptability and prediction. PINNs are a fascinating area within hybrid
techniques, offering greater explainability and consistency with physical laws. Transfer
learning has also been explored to leverage pre-trained models and improve the prediction
accuracy in new domains. The section outlined the advantages and disadvantages of each
approach, highlighting the current state-of-the-art methods and their applications. The
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increasing integration of physics-informed approaches within data-driven models promises
to lead to more robust and reliable RUL prediction in the future.

Table 8. Advantages and disadvantages of RUL estimation techniques.

Approach Advantages Disadvantages

Physics/model-based techniques

• Enables more robust predictions through extrap-
olation outside of the training data.

• Provides efficient and descriptive estimation.
• Offers high accuracy and precision.
• Estimation of the dynamics of the states at each

time interval.
• Robustness to limited data

• Costly, consumes a substantial amount of time
and computational resources.

• Limited reusability.
• Modeling complex systems is challenging.
• Modeling defects in a stochastic and complex

manner presents difficulties.
• Sensitive to model errors.

Data-driven techniques

• Low-cost algorithm development and minimal
knowledge requirements.

• Eliminates the need for assumptions about
physical parameters.

• Capable of transforming high-dimensional
noisy data into lower-dimensional information
for prognostic decision-making.

• Over-generalization and over-fitting.
• The absence of physical knowledge of the sys-

tem can lead to counter-intuitive results.
• Demands a substantial amount of data.
• Low accuracy when dealing with high-

dimensional data.
• Sensitive to noisy or incomplete data.

Hybrid techniques

• Improved robustness and accuracy by combin-
ing different modeling approaches.

• Flexibility to adapt to different types of data and
system complexities.

• Reduced data requirements compared to purely
data-driven approaches.

• Complexity of development and implementa-
tion.

• Higher computational complexity.
• Difficulty in interpretation due to model com-

plexity.
• No general combination structure.

Figure 15. A summarized list of the three types of RUL estimation techniques.

3.5. Hyperparameter Optimization

Hyperparameter optimization is crucial, since it directly impacts the performance,
accuracy, and generalization ability of ML and DL models. Properly tuned hyperparameters
can make the difference between a model that performs well and one that struggles with
overfitting, underfitting, or fails to generalize to new data. Hyperparameter optimization
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is essential for maximizing the performance of data-driven approaches, such as ML and DL
models like CNNs and LSTMs. In order to avoid overfitting or underfitting and guarantee
that a model performs well when applied to unseen data, the procedure entails choosing
the optimal set of parameters, such as learning rates or layer depths. Conversely, model-
based (physics-based) methods such as EKFs, the Wiener process, and gamma models
concentrate on adjusting parameters associated with a system’s physical behavior. The
optimization procedure must properly calibrate a model to reflect real-world behaviors,
and these parameters frequently relate to the physical principles regulating deterioration
or failure processes. Lastly, hybrid models leverage the accuracy of physics-based models
and the flexibility of machine learning to integrate the best features of data-driven and
physics-based approaches. However, because they necessitate balancing the performance
of both components, they pose special optimization challenges. The tuning procedure
becomes more complicated in hybrid models, since it is crucial to make sure that the
predictions made by the data-driven model continue to align with the physical rules that
the physics-based model captures. Table 9 presents a summary of the most commonly used
hyperparameter optimization techniques.

Table 9. Hyperparameter optimization techniques for different RUL models.

Model Type Common Hyperparameters Optimization Techniques

Data-Driven

• Learning rate
• Number of hidden layers
• Batch size
• Dropout rate
• Number of epochs
• Number of trees, tree depth

• Grid Search: Exhaustive search through all possible com-
binations of predefined hyperparameter values [168,169].

• Random Search: Randomly selects combinations of hy-
perparameters [170].

• Bayesian Optimization: Models the objective function to
predict promising hyperparameters based on previous
evaluations [30,171].

• Hyperband: Efficient resource allocation for hyperpa-
rameter tuning, allocating more computation to promis-
ing configurations [172].

Model-Based

• Process noise covariance
• Measurement noise covariance
• Parameters in differential equations
• Step size in numerical solutions

• Gradient Descent Methods: Minimizes error between
model predictions and observed data [173].

• Expectation-Maximization (EM): Iteratively estimates
model parameters.

• Simulated Annealing: Probabilistic technique for global
optimization in complex models.

Hybrid Models

• Data-driven hyperparameters (learning rate, layers, etc.)
• Physics-based parameters (noise covariance,

decay rates, etc.)
• Weighting factors for combining physics-based and data-

driven models

• Evolutionary Algorithms (Genetic Algorithms): Useful
for complex, multi-modal search spaces [174].

• Bayesian Optimization: Optimizes both data-driven and
physics-based components.

• Sequential Model-Based Optimization (SMBO): Builds
surrogate models for iterative optimization.

• Multi-Objective Optimization: Balances multiple objec-
tives, like minimizing loss while maximizing physical
model adherence [175].

3.6. Performance Evaluation

Performance evaluation, also known as validation, is a critical aspect of RUL estima-
tion, where the accuracy and reliability of predictive models are assessed in predicting the
lifespan of machinery and components, accounting for both early and late predictions. It
involves comparing the predicted values against actual operational data to determine the
effectiveness of the estimation methods. By leveraging statistical and machine learning
techniques, performance evaluation aims to enhance the precision of RUL predictions. This
evaluation is complicated in large-scale, real-world applications, due to the variability of
operating conditions, failure modes, and machine types. To handle this complexity, rigor-
ous validation approaches are required to ensure that RUL models remain accurate and
generalizable across a wide range of scenarios. A comprehensive discussion of prognostic
evaluation metrics can be found in [176].
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1. Correlation coefficient: The correlation coefficient aids in establishing a relationship
between expected (response) and actual values gained through statistical experiments.
The value of the correlation coefficient is always between −1 and +1. A similar and
identical relationship exists between the two variables if the correlation coefficient
value is positive. Otherwise, it shows how different the two variables are from one
another. This metric is used to assess the relationship between the HIs and RUL, and
not the performance of the prediction model. Assuming x is the HI and y is the RUL,
the correlation can be assessed using Equation (5).

R =
N(∑ xy)− (∑ x)(∑ y)[

N ∑ x2 − (∑ x)2
][

N ∑ y2 − (∑ y)2
] (5)

2. Root Mean Squared Error (RMSE): The average prediction error of the model is
presented as a single value using the RMSE. A better predictive performance is shown
by a lower RMSE, since this signifies the model’s predictions are more in line with the
actual RUL values. On the other hand, a higher RMSE denotes an undesirable model
performance and a higher average prediction error.

RMSE =

√√√√ 1
N

N

∑
i=1

(
RULpredicted − RULtrue

)2
(6)

3. Mean Absolute Error (MAE): This is useful when measuring absolute error. MAE
represents the average absolute prediction error of the model. Even though it is simple
to grasp, it is ineffective when data contain extreme values.

MAE =
1
N

N

∑
i=1

∣∣∣RULpredicted − RULtrue

∣∣∣ (7)

4. Mean Squared Error (MSE): The average squared prediction error of the model is
presented by the MSE. Similar to RMSE, better predictive performance is shown by a
lower RMSE, while a higher RMSE presents an undesirable performance. Although
MSE is frequently used, it has the drawback of not being measured in the same units
as the expected or measured RUL values, making it challenging to understand an
inaccuracy on its own.

MSE =
1
N

N

∑
i=1

(
RULpredicted − RULtrue

)2
(8)

5. Coefficient of determination, R2: This is a statistical measure that indicates how much
of the variation in a dependent variable (response) is explained by an independent
variable (predictor) in a regression model. The most common interpretation of R2 is
how well the regression model explains the observed data.

R2 = 1 −
∑
(

RULpredicted − RULtrue

)2

∑
(

RULpredicted − RUL
)2 (9)

6. Prognostic horizon: This identifies whether an algorithm predicts within a specified
error margin (specified by the parameter α) around the actual end-of-life and if it does,
how much time it allows for any corrective action to be taken [177].

PH = EoL − i (10)
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where

i = min{j|(jϵℓ) ∧ (r∗(1 − α) ≤ rl(j) ≤ r∗(1 + α))}
ℓ is the set of all time indexes when a prediction is made
l is the index for the lth unit under test
r∗ is the ground truth RUL.

In addition, k-fold cross-validation is commonly used to check the reliability of data-
driven methods. Here, a model’s performance is assessed by dividing run-to-failure data
into k subsets, with k − 1 subsets used for training and the remaining subset for validation,
ensuring the model generalizes well to unseen data. However, since RUL estimation relies
on time-series data, a rolling or time-based cross-validation approach is often more suitable
to preserve temporal dependencies. Time-based cross-validation respects the order of
data points, representing the chronological progression of events, unlike traditional k-fold
cross-validation, which disrupts this temporal sequence by randomizing subsets.

For time-based cross-validation, a dataset is divided chronologically. In sequen-
tial splits, the model is trained on an initial fold and validated on the next in sequence.
A growing training window (forward-chaining) takes a similar approach but incrementally
expands the training set; for instance, training on Fold 1 and validating on Fold 2, then
training on Folds 1 and 2 and validating on Fold 3. Another variation, the rolling window
(fixed training window), uses a fixed-size training window that shifts sequentially, training
on one period and validating on the next, before moving forward.

Time-based cross-validation provides distinct advantages when evaluating models on
time-series data, as it closely simulates real-world settings, where models are trained on
historical data to predict future outcomes. This approach prevents data leakage by only
using past data for training and future data for validation, ensuring that future information
does not inadvertently influence the training process. This method also enhances model
generalization by offering a realistic assessment of model performance on future, unseen
data, making it a viable approach for time-sensitive tasks like RUL estimation.

Furthermore, both simulation-based and field data approaches can improve the vali-
dation of RUL models. When field data are limited, simulation-based validation such as
digital twins or physics-based simulations can produce controlled, fictitious settings that
closely resemble complex industrial conditions. This allows the accuracy of a model to
be evaluated in a range of scenarios. However, field data validation entails evaluating
models using experimental data from extensive deployments, where unexpected variability
enhances the model’s generalizability by revealing any flaws in its predictions.

In summary, assessing the performance of RUL estimation models is a complex pro-
cedure that calls for a mix of suitable metrics, validation methods, and practical testing
situations. These models can be thoroughly evaluated to guarantee their accuracy, gen-
eralizability, and dependability under a variety of real-world circumstances by utilizing
time-based cross-validation, field data, and simulation-based validation. These validation
techniques are crucial in order to create reliable models that can accurately forecast RUL in
intricate industrial applications.

4. Open Problems and Future Prospects

The works mentioned above provide an emphasis on research in the field of the
prognostics of RMs. From the review, it can be seen that the prognostics of RMs have made
significant progress in the past decade. The traditional approaches for prognosis have
their drawbacks in developing an accurate degradation model, due to the substantially
increasing complexity of RMs and their components. To mitigate this concern, data-driven
methodologies have gained substantial prominence in contemporary practices. However,
some open issues remain concerning RUL estimation.

Data-driven techniques have gained great popularity; however, they require degrada-
tion data for prediction. The acquisition of run-to-failure data poses significant challenges
given the inherent difficulties in capturing and monitoring the complete life cycle of a
component until failure occurs, as discussed in Section 3.1. A huge amount of data are
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usually required to train data-driven models. Most literature has outlined that the unavail-
ability of real-time run-to-failure data is an issue. These data contain the actual degradation
trends of a component’s lifetime. Using accelerated degradation data can also give rise
to the problem of generalization; therefore, there is a need to acquire data that include
all real degradation information. Another important suggestion is to collect data from
actual industrial environments. Similarly, another challenge is the imbalance in datasets,
where most of the collected data represent the healthy state of the machinery, and very few
samples are from the degraded state. This affects the accuracy and reliability of predictive
models. Additionally, discrepancies in the probability distribution of data between the
training and target domains further complicate model performance. GANs can be used to
produce artificial data, which may be able to provide a solution to the scarcity of data in
ML applications [142]. By adding fresh samples of data that resemble the existing ones to
datasets, GANs can supplement them and avoid overfitting. However, with this possibility
comes the risk of failing to capture the full diversity of the training data, leading to the
omission of certain modes. As such, to date, this issue remains open, and no general
solution has been found.

The generalization issue is a major concern for researchers, relating to a model’s ability
to make accurate predictions using unseen data or on machines with different ratings and
characteristics. Extensive research has been conducted using benchmark datasets, but
real-time industrial conditions are continuously changing, causing many AI models to fail
in real-time environments [73]. This directly affects the reliability of a developed prognosis
model or scheme. To overcome this, feature engineering (HI construction) must be properly
conducted [71]. Transfer learning and domain adaptation enable models trained on one
domain to adapt to related ones by fine-tuning with target domain data, improving their
generalization capabilities. This approach facilitates overcoming generalization issues by
transferring knowledge between datasets, such as from laboratory to real-time industrial
data. On this basis, a multi-model data fusion combined with deep transfer learning creates
a composite health index from multi-channel signals. This improves the characterization
of health status and RUL prediction, even when the underlying degradation patterns are
complex and nonlinear. While DL models like convolutional neural networks (CNNs)
and long short-term memory (LSTM) networks have shown promise for RUL estimation,
their complexity often makes them difficult to interpret. The lack of transparency in these
models can hinder their adoption for industrial applications, where understanding the
decision-making process is crucial. Enhancing model interpretability through techniques
such as explainable AI and self-attention maps may make it easier to understand model
decisions. Self-attention maps highlight important features within the data, making a
model’s decision process more transparent and interpretable. In most scenarios, a large
transformer-based model can be trained using raw data, after which exploring self-attention
maps within the developed network can reveal important decision-making features/HIs.
This probing strategy could assist in understanding underlying patterns of degradation,
particularly in RMs.

Deploying ML models on hardware in industrial settings presents challenges like
ensuring hardware compatibility, minimizing latency, and managing resource limitations.
Compatibility concerns involve a model’s ability to integrate with the target platform’s
processing units and architecture, while latency is the delay from input to output, and
resource limitations are related to the available memory, computation power, and storage.
Addressing these challenges can involve model simplification techniques such as pruning
and quantization, utilizing efficient architectures like MobileNets and leveraging edge com-
puting for local data processing. Additionally, model compression and hardware-specific
optimizations, including the use of accelerators like GPUs, can significantly enhance perfor-
mance. Employing a hybrid cloud–edge system could allow for a balance between real-time
processing on edge devices and more complex computations in the cloud, ensuring effi-
cient deployment across various applications. Implementing RUL estimation models in
real-time industrial settings presents scalability challenges. These models need to efficiently
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handle vast amounts of data and provide real-time predictions without significant latency.
Developing models that can scale effectively, while maintaining accuracy and speed, is an
ongoing area of research.

The accuracy of RUL prediction models is also of concern. One potential solution to
this problem is to combine data-driven and physics-based models, utilizing their respective
advantages to address the accuracy issue. Data-driven models are excellent at identifying
intricate patterns in huge datasets, which enables customization to particular circumstances
and degradation patterns. On the other hand, physics-based models provide dependability
and the ability to extrapolate beyond the observable data, by offering a fundamental grasp
of the underlying failure processes and system behaviors based on physical rules. By
combining these two kinds of models, a hybrid strategy may be developed that makes
use of the data-driven model’s constraints with guidance from the physics-based model,
guaranteeing that predictions follow physical laws and are, therefore, more accurate and
dependable. By integrating the domain-specific insights of physics-based models with the
great flexibility of data-driven approaches, this fusion leads to more robust and precise
RUL estimates and improves predictive performance. The abovementioned solution has
been applied by many researchers and has been seen to outperform single data-driven or
physics-based methods. However, major caveats for this kind of topology include the extra
computational complexity, model interpretability, model deployability, data requirements,
and incapability of handling uncertainties (this was outlined in Table 8). While the usage of
hybrid-based strategies has been remarkable, no general solution that addresses all these
challenges simultaneously has been found. Specifically, the increased computational burden
can hinder real-time applications, and the complexity of hybrid models often makes them
difficult to interpret and deploy in practical settings. Furthermore, these models typically
require large and high-quality datasets, which may not always be available. Additionally,
many hybrid approaches struggle to effectively quantify and manage uncertainties, which
can limit their reliability in unpredictable environments.

Thus, based on the above open problems, future research should further explore the
following aspects of the area of prognostics, particularly related to rotating machinery:

• Data Availability, Quality, and Imbalance: Improving real-time run-to-failure data
collection using IoT and sensor technology, and sharing anonymized datasets can
address data scarcity. Advanced preprocessing, synthetic data generation (GANs),
and domain adaptation strategies can enhance model training and accuracy. Address-
ing data imbalance with techniques like oversampling and adversarial training will
improve predictive performance and robustness.

• Deployment on Hardware and Scalability: Advancements in AI-specific hardware, effi-
cient neural network architectures, and edge computing will improve real-time deploy-
ment. Hybrid cloud-edge systems will balance processing loads, enhancing scalability
and real-time applications. Model simplification and hardware-specific optimizations
will ensure compatibility and performance in resource-limited environments.

• Generalization and Interpretability of Models: Future research should focus on develop-
ing robust models that generalize well across various industrial settings. Enhanced fea-
ture engineering, transfer learning, domain adaptation, and explainable AI techniques
can improve model adaptability and transparency. Creating benchmark datasets repre-
senting diverse conditions and developing sophisticated feature extraction methods will
aid in developing reliable models for real-time applications. Leveraging self-attention
maps for interpretability, and the prominence of transfer learning techniques, will ensure
accurate RUL predictions and improved predictive performance.

• HI Construction or Feature engineering: For the prognosis of RMs, the mechanical-
signal-(vibration signal)-based HIs, specifically time domain features, are the most
commonly used, as discussed in Section 3.2, due to their simplicity and reliability. Most
HIs have been constructed under normal or constant operating conditions. These HIs
can tend to be unreliable when it comes to RUL prediction under varying operating
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conditions. Thus, more research should be focused on creating datasets with varying
operating conditions and HI construction using them.

• Failure Threshold Selection: FT selection is of major concern. While RUL prediction
was performed well in all the literature reviewed, only a few of the authors mentioned
the FT at which the prediction should stop or before which the machine or its compo-
nent should be replaced to prevent unexpected downtime or failures. For data-driven
techniques, it was observed that the most common FT is to select the maximum of the
HI used for training the model. More emphasis should also be placed on the automatic
and adaptive selection of an FT.

RUL estimation methods can be used in industrial settings for power production plants,
including thermal, nuclear, and wind facilities, where they will be crucial for the upkeep of
vital components like pumps, generators, and turbines. By tracking mechanical degradation
processes in these plants, hybrid models that combine data-driven and physics-based
methodologies can offer thorough insights into component health. Analyzing vibration
data is crucial for spotting wear or structural issues early on. Additionally, comparable
predictive maintenance models may be used in the oil and gas sector to keep an eye
on the compressors, pumps, and drilling equipment used in both upstream (drilling
and exploration) and downstream (refining and distribution) operations. Data-driven
methods, including LSTM networks, can evaluate high-frequency vibration data, to provide
insights into the health status of RMs and enable prompt actions. In a similar manner,
RUL estimation models can be used in water and wastewater treatment facilities, where
continuous operation is of utmost importance. These models can be efficient in monitoring
the health of the critical equipment in these settings, especially under variable loads and
environmental factors. This capability supports reliable water supply and wastewater
treatment, while keeping maintenance costs in check, which is particularly important for
infrastructure-dependent operations.

Moreover, RUL models are essential for the predictive maintenance of rotating equip-
ment, such as motors, conveyors, gearboxes, and spindles in manufacturing and production
lines. These allow optimized maintenance schedules that boost productivity and extend
machinery life. RUL models can be used to monitor the condition of heavy machinery
such as crushers, conveyor belts, and earth movers in the mining and heavy machinery
industries. These models can further be utilized in the transportation sector—spanning rail-
ways, aviation, and automotive industries—providing early indicators of wear to prevent
in-transit failures and optimize maintenance for fleet operators. These diverse applications
across energy and industrial sectors underscore the practical value of RUL estimation and
fault detection models, enhancing the reliability, safety, and operational efficiency across
various industries.

In conclusion, this review has highlighted significant advancements and persistent
challenges in remaining-useful-life (RUL) estimation for RMs. While integrating data-
driven and physics-based models shows promise, issues such as data availability, quality,
and imbalance remain critical. Future research should focus on enhancing model generaliza-
tion and interpretability through techniques like GANs, transfer learning, and explainable
AI. Additionally, real-time deployment and scalability require advancements in AI-specific
hardware and hybrid cloud–edge systems. Addressing these challenges will improve the
reliability and applicability of RUL models, enabling timely, cost-effective maintenance and
enhanced operational efficiency.
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