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Abstract. We consider a parametric nonlinear elliptic problem driven by the sum of a p-Laplacian
and of a q-Laplacian (a (p, q)-equation) with a singular and (p − 1)-superlinear reaction and a
Robin boundary condition with (q − 1)-sublinear boundary term (q < p). So, the problem has the
combined effects of singular, concave and convex terms. We look for positive solutions and prove
a bifurcation-type theorem describing the changes in the set of positive solutions as the parameter
varies.

1. Introduction

Let Ω ⊆ RN be a bounded domain with a C2-boundary ∂Ω. In this paper we study the following
parametric singular (p, q)-equation:

(Pλ)

−∆pu(z)−∆qu(z) + ξ(z)u(z)p−1 = λu(z)−η + f(z, u(z)) in Ω,
∂u

∂npq
= λuτ−1 on ∂Ω, u > 0, λ > 0, 1 < τ < q ≤ 2 < p, 0 < η < 1.

For every r ∈ (1,+∞) by ∆r we denote the r-Laplace differential operator defined by

∆ru = div(|∇u|r−2∇u) for all u ∈ W 1,r(Ω).

The potential function ξ ∈ L∞(Ω) and ξ(z) ≥ 0 for a.a. z ∈ Ω. The reaction of the problem consists
of a parametric singular term and a perturbation f(z, x) which is a Carathéodory function (that
is, for all x ∈ R, z → f(z, x) is measurable and for a.a. z ∈ Ω, x → f(z, x) is continuous),
which exhibits (p − 1)-superlinear growth near +∞ without satisfying the usual in such cases
Ambrosetti-Rabinowitz condition (the AR-condition for short). The boundary term is parametric
too and since τ < q, it is (q − 1)-sublinear. Therefore in problem (Pλ) we have the competing
effects of three different kinds of nonlinearities, namely a singular, a convex (superlinear) and

a concave (sublinear) nonlinearity, with the latter being in the boundary condition. Also
∂u

∂npq
denotes the conormal derivative corresponding to the (p, q)-Laplace differential operator. It is
defined via the nonlinear Green’s identity (see Papageorgiou-Rădulescu-Repovs̆ [18], p. 34). In
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particular, if u ∈ C1(Ω), then

∂u

∂npq
=

[
|∇u|p−2 + |∇u|q−2

] ∂u
∂n

with n(·) being the outward unit normal on ∂Ω.
The study of equations with competition phenomena (concave-convex problems), started with

the important work of Ambrosetti-Brezis-Cerami [1] on semilinear Dirichlet problems driven by
the Laplacian. Their work was extended to nonlinear Dirichlet equations driven by the p-Laplacian
by Garcia Azorero-Manfredi-Peral Alonso [6] and by Guo-Zhang [8]. In the aforementioned works
there is no singular term and the reaction has the special form

x→ λxq−1 + xr−1 for all x ≥ 0,

with 1 < q < p < r < p∗, where p∗ =


Np

N − p
if p < N

+∞ if N ≤ p
(the critical Sobolev exponent

corresponding to p > 1).
Recently more general versions of the concave-convex problem were considered. We mention the

works of Papageorgiou-Rădulescu-Repovs̆ [15] (semilinear equations) and by Leonardi-Papageorgiou
[10], Marano-Marino-Papageorgiou [12], Papageorgiou-Vetro-Vetro [20] (nonlinear equations). Equations
with the concave nonlinearity appearing in the boundary term, can be found in the works of
Hu-Papageorgiou [9] (semilinear equations) and by Sabina de Lis-Segura de León [23] and by
Papageorgiou-Rădulescu-Repovs̆ [16] (nonlinear equations). However, none of these works includes
in the equation a singular term. Our work here appears to be the first dealing with concave-convex
singular problems, where the concave contribution comes from the boundary condition. Recently
some multiplicity results for singular (p, q)-equations (but not with concave-convex nonlinearities),
were proved by Papageorgiou-Rădulescu-Repovs̆ [17] and Papageorgiou-Vetro-Vetro [19].

We mention that equations driven by a combination of differential operators of different nature
(such as (p, q)-equations), arise in a variety of mathematical models of physical processes. We
mention the works of Cahn-Hilliard [3] (materials science), Benci-D’Avenia-Fortunato-Pisani [2]
(quantum physics) and Cherfils-Il’yasov [4] (reaction diffusion systems).

In Section 4 using variational tools based on the critical point theory, together with truncation
and comparison techniques, we prove a bifurcation-type result describing the set of positive
solutions of problem (Pλ) as the parameter λ > 0 varies.

2. Mathematical Background - Hypotheses

The main spaces in the study of (Pλ) are the Sobolev space W 1,p(Ω), the Banach space C1(Ω)
and the boundary Lebesgue spaces Ls(∂Ω), 1 ≤ s ≤ ∞.

By ∥ · ∥ we denote the norm of the Sobolev space W 1,p(Ω), defined by

∥u∥ =
[
∥u∥pp + ∥∇u∥pp

]1/p
for all u ∈ W 1,p(Ω).
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The space C1(Ω) is an ordered Banach space with positive (order) cone C+ = {u ∈ C1(Ω) :
u(z) ≥ 0 for all z ∈ Ω}. This cone has a nonempty interior given by

intC+ = {u ∈ C+ : u(z) > 0 for all z ∈ Ω}.

We also use another open cone in C1(Ω) given by

D+ =

{
u ∈ C1(Ω) : u(z) > 0 for all z ∈ Ω,

∂u

∂n

∣∣∣
∂Ω∩u−1(0)

< 0

}
.

On ∂Ω we consider the (N−1)-dimensional Hausdorff (surface) measure σ(·). Using this measure
on ∂Ω, we can define in the usual way the boundary Lebesgue spaces Ls(∂Ω), 1 ≤ s ≤ ∞. We
know that there exists a unique continuous linear map γ0 : W

1,p(Ω) → Lp(∂Ω) known as the “trace
map” such that

γ0(u) = u
∣∣∣
∂Ω

for all u ∈ W 1,p(Ω) ∩ C(Ω).

So, the trace map extends the notion of boundary values to all Sobolev functions. We know that

γ0(·) is compact into Ls(∂Ω) for all 1 ≤ s <
(N − 1)p

N − p
if p < N and into Ls(∂Ω) for all 1 ≤ s <∞

if N ≤ p. Moreover, we have

im γ0 = W
1
p′ ,p(∂Ω)

(
1

p
+

1

p′
= 1

)
and ker γ0 = W 1,p

0 (Ω).

In the sequel for the sake of notational economy, we drop the use of the map γ0(·). All restrictions
of Sobolev functions on ∂Ω are understood in the sense of traces.
If u, v ∈ W 1,p(Ω) and u(z) ≤ v(z) for a.a. z ∈ Ω, then we define

[u, v] =
{
h ∈ W 1,p(Ω) : u(z) ≤ h(z) ≤ v(z) for a.a. z ∈ Ω

}
,

[u) =
{
h ∈ W 1,p(Ω) : u(z) ≤ h(z) for a.a. z ∈ Ω

}
.

Given x ∈ R, let x± = max{±x, 0}. Then for u ∈ W 1,p(Ω) we define u±(z) = u(z)± for all
z ∈ Ω. We have

u± ∈ W 1,p(Ω), u = u+ − u−, |u| = u+ + u−.

If h1, h2 ∈ L∞(Ω), then we write h1 ≺ h2 if and only if for every K ⊆ Ω compact we have

0 < cK ≤ h2(z)− h1(z) for a.a. z ∈ K.

Evidently if h1, h2 ∈ C(Ω) and h1(z) < h2(z) for all z ∈ Ω, then h1 ≺ h2.
If X is a Banach space and φ ∈ C1(X,R), then by Kφ we denote the critical set of φ, that is,

Kφ = {u ∈ X : φ′(u) = 0} .

Let X∗ be the topological dual of X. We say that φ(·) satisfies the “C-condition”, if every
sequence {un}n≥1 ⊆ X such that {φ(un)}n≥1 ⊆ R is bounded and (1 + ∥un∥)φ′(un) → 0 in X∗ as
n→ ∞, admits a strongly convergent subsequence.
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Let ⟨·, ·⟩ denote the duality brackets for the pair (W 1,r(Ω),W 1,r(Ω)∗), 1 < r <∞. We introduce
the operator Ar : W

1,r(Ω) → W 1,r(Ω)∗ defined by

⟨Ar(u), h⟩ =
∫
Ω

|∇u|r−2(∇u,∇h)RNdz for all u, h ∈ W 1,r(Ω).

The next proposition summarizes some well-known properties of this operator (see, for example,
Gasiński-Papageorgiou [7], Problem 2.192, p. 279).

Proposition 1. The operator Ar : W 1,r(Ω) → W 1,r(Ω)∗ is bounded (that is, maps bounded sets
to bounded sets), continuous, monotone (thus maximal monotone too) and of type (S)+ (that is,

un
w−→ u in W 1,r(Ω) and lim sup

n→+∞
⟨Ar(un), un − u⟩ ≤ 0, imply un → u in W 1,r(Ω)).

The hypotheses on the data of problem (Pλ) are the following:

H0: ξ ∈ L∞(Ω), ξ(z) ≥ 0 for a.a. z ∈ Ω, ξ ̸≡ 0.

H1: f : Ω× R → R is a Carathéodory function such that f(z, 0) = 0 for a.a. z ∈ Ω and

(i) 0 ≤ f(z, x) ≤ a(z)[1 + xr−1] for a.a. z ∈ Ω, all x ≥ 0, with a ∈ L∞(Ω), p < r < p∗;
(ii) if F (z, x) =

∫ x
0
f(z, s)ds, then

lim
x→+∞

F (z, x)

xp
= +∞ uniformly for a.a. z ∈ Ω;

(iii) there exists µ ∈
(
(r − p)max

{
1,
N

p

}
, p∗

)
with µ > τ such that

0 < c0 ≤ lim inf
x→+∞

f(z, x)x− pF (z, x)

xµ
uniformly for a.a. z ∈ Ω;

(iv) lim
x→0+

f(z, x)

xq−1
= 0 uniformly for a.a. z ∈ Ω;

(v) for every ρ > 0, there exists ξ̂ρ > 0 such that for a.a. z ∈ Ω, the function x → f(z, x) +

ξ̂ρx
p−1 is nondecreasing on [0, ρ].

Remark 1. Since we look for positive solutions and all the above hypotheses concern the positive
semiaxis R+ = [0,+∞), without any loss of generality we may assume that

(1) f(z, x) = 0 for a.a. z ∈ Ω, all x ≤ 0.

Hypotheses H1 (ii), (iii) imply that

lim
x→+∞

f(z, x)

xp−1
= +∞ uniformly for a.a. z ∈ Ω.

Therefore for a.a. z ∈ Ω the perturbation f(z, ·) is (p − 1)-superlinear. In the literature most
papers dealing with superlinear nonlinearities, use the AR-condition. We recall that this condition
says that there exist θ0 > p and M0 > 0 such that

0 < θ0F (z, x) ≤ f(z, x)x for a.a. z ∈ Ω,(2a)
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0 < essinf
Ω

F (·,M0).(2b)

In fact this is a unilateral version of the AR-condition due to (1). Integrating (2a) and using
(2b), we obtain the following weaker condition

c1x
θ0 ≤ F (z, x) for a.a. z ∈ Ω, all x ≥M0, some c1 > 0,

⇒ c1x
θ0−1 ≤ f(z, x) for a.a. z ∈ Ω, all x ≥M0.

Therefore the AR-condition dictates that f(z, ·) eventually has at least (θ0 − 1)-polynomial
growth. In the present work, we replace the AR-condition by hypotheses H1 (ii), (iii). This
way we incorporate in our framework also superlinear nonlinearities with ”slower” growth near
+∞, which fail to satisfy the AR-condition. Consider the following two functions (for the sake of
simplicity we drop the z-dependence)

f1(x) = (x+)r−1 with p < r < p∗ and f2(x) =

{
(x+)s−1 if x ≤ 1

xp−1 lnx+ xθ−1 if 1 < x
, q < s, 1 ≤ θ < p.

Both functions satisfy hypothesis H1, but only f1(·) satisfies the AR-condition.

In what follows by γp : W
1,p(Ω) → R we denote the C1-functional defined by

γp(u) = ∥∇u∥pp +
∫
Ω

ξ(z)|u|pdz for all u ∈ W 1,p(Ω).

Hypothesis H0 and Lemma 4.11 of Mugnai-Papageorgiou [13] imply that

(3) c2∥u∥p ≤ γp(u) for some c2 > 0, all u ∈ W 1,p(Ω).

Also let φλ : W
1,p(Ω) → R be the energy functional for problem (Pλ) defined by

φλ(u) =
1

p
γp(u) +

1

q
∥∇u∥qq −

λ

1− η
+

∫
Ω

(u+)1−ηdz −
∫
Ω

F (z, u+)dz − λ

τ

∫
∂Ω

(u+)τdσ

for all u ∈ W 1,p(Ω).

On account of the third term, this functional is not C1 on W 1,p(Ω) and for this reason the
standard variational tools from critical point theory are not readily available. We will use truncation
techniques in order to neutralize the singularity. For this reason in the next section we focus on
the purely singular problem. Finally we mention that as usual by a solution of (Pλ), we mean a
function u ∈ W 1,p(Ω) such that u ≥ 0, u ̸= 0, u−ηh ∈ L1(Ω) for all h ∈ W 1,p(Ω) and

⟨Ap(u), h⟩+ ⟨Aq(u), h⟩+
∫
Ω

ξ(z)up−1hdz

=

∫
Ω

[λu−η + f(z, u)]hdz +

∫
∂Ω

λuτ−1hdσ for all u ∈ W 1,p(Ω).
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3. A Purely Singular Problem

In this section we deal with the following parametric purely singular problem

(Qλ)

−∆pu(z)−∆qu(z) + ξ(z)u(z)p−1 = λu(z)−η in Ω,
∂u

∂npq
= λuτ−1 on ∂Ω, u > 0, λ > 0, 1 < τ < q ≤ 2 < p, 0 < η < 1.

Proposition 2. If hypothesis H0 holds, then for every λ > 0 problem (Qλ) admits a unique
solution uλ ∈ intC+.

Proof. Let ε > 0. We consider the following approximation of problem (Qλ)

(4)

−∆pu(z)−∆qu(z) + ξ(z)u(z)p−1 = λ[u(z) + ε]−η in Ω,
∂u

∂npq
= λuτ−1 on ∂Ω, u > 0, λ > 0, 1 < τ < q ≤ 2 < p, 0 < η < 1.

We solve (4) using a topological approach (fixed point theory). So, let v ∈ Lp(Ω) and consider
the following boundary value problem

(5)

−∆pu(z)−∆qu(z) + ξ(z)u(z)p−1 = λ[|v(z)|+ ε]−η in Ω,
∂u

∂npq
= λuτ−1 on ∂Ω, u > 0, λ > 0, 1 < τ < q ≤ 2 < p, 0 < η < 1.

Consider the continuous maps Kp : Lp(Ω) → Lp
′
(Ω)

(
1

p
+

1

p′
= 1

)
and Kb

τ : W 1,p(Ω) →

Lτ
′
(∂Ω)

(
1

τ
+

1

τ ′
= 1

)
defined by

Kp(u)(·) = |u(·)|p−2u(·) for all u ∈ Lp(Ω),

Kb
τ (u)(·) = |γ0(u)(·)|τ−2γ0(u)(·) for all u ∈ W 1,p(Ω)

(recall that γ0(·) denotes the trace map). Then for every λ > 0, we introduce the operator
Vλ : W

1,p(Ω) → W 1,p(Ω)∗ defined by

Vλ(u) = Ap(u) + Aq(u) + ξKp(u)− λKb
τ (u).

The maximal monotonicity of the operators Ap(·), Aq(·), together with the Sobolev embedding
theorem and the compactness of the trace map, imply that Vλ(·) is pseudomonotone (see Papageorgiou-
Rădulescu-Repovs̆ [18], p. 152). Also we have

⟨Vλ(u), u⟩ ≥ c3∥u∥p − c4∥u∥τ for some c3, c4 > 0, all u ∈ W 1,p(Ω) (see (3)).

Since τ < p, it follows that Vλ(·) is strongly coercive. But we know that a pseudomonotone,
strongly coercive map on a reflexive Banach space, is surjective (see Papageorgiou-Rădulescu-
Repovs̆ [18], Theorem 2.10.10, p. 156). So, Vλ(·) is surjective. Note that [|v(·)| + ε]−η ∈ L∞(Ω).
So, we can find ũε ∈ W 1,p(Ω), ũε ̸= 0 such that

Vλ(ũε) = λ[|v(·)|+ ε]−η,
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⇒ ⟨Vλ(ũε), h⟩ = λ

∫
Ω

h

[|v|+ ε]η
for all h ∈ W 1,p(Ω).

We choose h = −ũ−ε ∈ W 1,p(Ω) and obtain

c2∥ũ−ε ∥p ≤ 0 (see (3)),

⇒ ũε ≥ 0, ũε ̸= 0.

Therefore ũε is a solution of problem (5). Then Proposition 2.10 of Papageorgiou-Rădulescu
[14] implies that ũε ∈ L∞(Ω). Applying the nonlinear regularity theory of Lieberman [11], we get
ũε ∈ C+ \ {0}. Moreover, the nonlinear maximum principle of Pucci-Serrin [22] (pp. 111, 120),
implies that ũε ∈ intC+.

Next we show the uniqueness of the positive solution.
Suppose that ṽε is another positive solution of (5). Again we have ṽε ∈ intC+. We introduce

the integral functional jλ : L
1(Ω) → R = R ∪ {+∞} defined by

jλ(u) =


1

p
∥∇u1/p∥pp +

1

q
∥∇u1/q∥qq +

1

p

∫
Ω
ξ(z)up/qdz − λ

τ

∫
∂Ω
uτ/qdσ if u ≥ 0, u1/q ∈ W 1,p(Ω),

+∞ otherwise.

Let dom jλ = {u ∈ L1(Ω) : jλ(u) < +∞} (the effective domain of jλ(·)) and consider u1, u2 ∈
dom jλ. We define y = [tu1 + (1 − t)u2]

1/q with t ∈ [0, 1]. From Dı́az-Saá [5] (see the proof of
Lemma 1), we have

|∇y(z)| ≤
[
t|∇u1(z)1/q|q + (1− t)|∇u2(z)1/q|q

]1/q
for a.a. z ∈ Ω.

Consider G0(t) =
1

p
tp +

1

q
tq for all t ≥ 0. Then G0(·) is increasing and t → G0(t

1/q) is convex.

Therefore we have

G0(|∇y(z)|) ≤ G0

((
t|∇u1(z)1/q|q + (1− t)|∇u2(z)1/q|q

)1/q)
≤ tG0

(
|∇u1(z)1/q|

)
+ (1− t)G0

(
|∇u2(z)1/q|

)
for a.a. z ∈ Ω,

⇒ u→ 1

p
∥∇u1/q∥pp +

1

q
∥∇u1/q∥qq is convex on dom jλ.

Since 1 < τ < q ≤ 2 < p, it follows that

u→ 1

p

∫
Ω

ξ(z)up/qdz − λ

τ

∫
∂Ω

uτ/qdσ is convex on dom jλ.

So, we conclude that jλ(·) is convex.

From Proposition 4.1.22, p. 274, of Papageorgiou-Rădulescu-Repovs̆ [18], we have
ũε
ṽε
,
ṽε
ũε

∈
L∞(Ω). Let h = ũqε − ṽqε . Then for t ∈ [0, 1] we have

ũqε − th ∈ dom jλ and ṽqε + th ∈ dom jλ.
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So, jλ(·) is Gâteaux differentiable at ũqε and at ṽqε in the direction h. Using the nonlinear Green’s
identity (see [18], p. 35), we obtain that

j′λ(ũ
q
ε)(h) =

1

q

∫
Ω

−∆pũε −∆qũε + ξ(z)ũp−1
ε

ũq−1
ε

hdz,

j′λ(ṽ
q
ε)(h) =

1

q

∫
Ω

−∆pṽε −∆qṽε + ξ(z)ṽp−1
ε

ṽq−1
ε

hdz.

The convexity of jλ(·) implies the monotonicity of j′λ(·). Therefore we have

0 ≤
∫
Ω

λ [|v(z)|+ ε]−η
[

1

ũq−1
ε

− 1

ṽq−1
ε

]
(ũqε − ṽqε)dz ≤ 0,

⇒ ũε = ṽε.

This proves the uniqueness of the positive solution ũε ∈ intC+ of (5).
We can define the solution map Sε : L

p(Ω) → Lp(Ω) for problem (5) by

Sε(v) = ũε.

Then we have

⟨Ap(ũε), h⟩+ ⟨Aq(ũε), h⟩+
∫
Ω

ξ(z)ũp−1
ε hdz = λ

∫
Ω

[|v(z)|+ ε]−ηhdz + λ

∫
∂Ω

ũτ−1
ε hdσ

for all h ∈ W 1,p(Ω). We choose h = ũε ∈ W 1,p(Ω) and using (3) we obtain

c2∥ũε∥p ≤ λc5

[
1

ξη
∥ũε∥+ ∥ũε∥τ

]
for some c5 > 0.

Since 1 < τ < p, it follows that

(6) ∥ũε∥ = ∥Sε(v)∥ ≤ c6 for some c6 = c6(ε) > 0, all v ∈ Lp(Ω).

We show that Sε(·) is continuous. To this end, let vn → v in Lp(Ω) and let ũε,n = Sε(vn) for all
n ∈ N. From (6) we see that

{ũε,n}n≥1 ⊆ W 1,p(Ω) is bounded.

So, we may assume that

(7) ũε,n
w−→ ũ∗ε in W

1,p(Ω) and ũε,n → ũ∗ε in L
p(Ω) and in Lp(∂Ω).

We have

⟨Ap(ũε,n), h⟩+ ⟨Aq(ũε,n), h⟩+
∫
Ω

ξ(z)ũp−1
ε,n hdz =

∫
Ω

λ[|vn(z)|+ ε]−ηhdz +

∫
∂Ω

λũτ−1
ε,n hdσ(8)

for all h ∈ W 1,p(Ω), all n ∈ N. In (8) we choose h = ũε,n − ũ∗ε ∈ W 1,p(Ω), pass to the limit as
n→ +∞ and use (7). We obtain

lim
n→+∞

[⟨Ap(ũε,n), ũε,n − ũ∗ε⟩+ ⟨Aq(ũε,n), ũε,n − ũ∗ε⟩] = 0,

⇒ lim sup
n→+∞

[⟨Ap(ũε,n), ũε,n − ũ∗ε⟩+ ⟨Aq(ũε,n), ũε,n − ũ∗ε⟩] ≤ 0,

(since Aq(·) is monotone),
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⇒ lim sup
n→+∞

⟨Ap(ũε,n), ũε,n − ũ∗ε⟩ ≤ 0,

⇒ ũε,n → ũ∗ε in W
1,p(Ω) (see Proposition 1).(9)

Then, if in (8) we pass to the limit as n→ +∞ and use (9), we obtain

⟨Ap(ũ∗ε), h⟩+ ⟨Aq(ũ∗ε), h⟩+
∫
Ω

ξ(z)(ũ∗ε)
p−1hdz

=

∫
Ω

λ[|v(z)|+ ε]−ηhdz +

∫
∂Ω

λ(ũ∗ε)
τ−1hdσ for all h ∈ W 1,p(Ω),

⇒ ũ∗ε = Sε(v),

⇒ Sε(·) is continuous.

On account of (6) and of the compact embedding of W 1,p(Ω) into Lp(Ω), we can apply the
Schauder-Tychonov fixed point theorem (see Papageorgiou-Winkert [21], Theorem 6.8.5, p. 581)
and find uε ∈ W 1,p(Ω) such that

Sε(uε) = uε.

Evidently this is a positive solution of (4) and then the nonlinear regularity theory and the
nonlinear maximum principle imply that

uε ∈ intC+.

Moreover, this positive solution uε ∈ intC+ of problem (4) is unique. Indeed if uε, vε ∈ W 1,p(Ω)
are two such solutions of (4), then

0 ≤⟨Ap(uε)− Ap(vε), (uε − vε)
+⟩+ ⟨Aq(uε)− Aq(vε), (uε − vε)

+⟩

+

∫
Ω

ξ(z)[up−1
ε − vp−1

ε ](uε − vε)
+dz = λ

∫
Ω

[
1

uηε
− 1

vηε

]
(uε − vε)

+dz ≤ 0

⇒ uε ≤ vε.

Interchanging the roles of uε and vε, we also have vε ≤ uε, hence uε = vε. Thus the map ε→ uε
is well-defined.

Claim: The map ε→ uε from (0,+∞) into C+ is nonincreasing, that is,

ε′ < ε⇒ uε′ − uε ∈ C+ \ {0}.
We consider 0 < ε′ < ε. We have

−∆puε′ −∆quε′ + ξ(z)up−1
ε′ = λ[uε′ + ε′]−η

≥ λ[uε′ + ε]−η for a.a. z ∈ Ω.(10)

Let ℓε(z, x) and β(z, x) be the Carathéodory functions defined by

ℓε(z, x) =

{
[x+ + ε]−η if x ≤ uε′(z),

[uε′(z) + ε]−η if uε′(z) < x,
for all (z, x) ∈ Ω× R,(11)
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β(z, x) =

{
(x+)τ−1 if x ≤ uε′(z),

uε′(z)
τ−1 if uε′(z) < x,

for all (z, x) ∈ ∂Ω× R.(12)

We set Lε(z, x) =
∫ x
0
ℓε(z, s)ds and B(z, x) =

∫ x
0
β(z, s)ds and consider the C1-functional Jε :

W 1,p(Ω) → R defined by

Jε(u) =
1

p
γp(u) +

1

q
∥∇u∥qq − λ

∫
Ω

Lε(z, u)dz − λ

∫
∂Ω

B(z, u)dσ for all u ∈ W 1,p(Ω).

From (3), (11), (12) it is clear that Jε(·) is coercive. Also the Sobolev embedding theorem and
the compactness of the trace map, imply that Jε(·) is sequentially weakly lower semicontinuous.
So, by the Weierstrass-Tonelli theorem, we can find ũε ∈ W 1,p(Ω) such that

(13) Jε(ũε) = min
[
Jε(u) : u ∈ W 1,p(Ω)

]
.

Since τ < q < p, if u ∈ intC+, for t ∈ (0, 1) small we will have

Jε(tu) < 0,

⇒ Jε(ũε) < 0 = Jε(0) (see (13)),

⇒ ũε ̸= 0.

From (13) we have

J ′
ε(ũε) = 0,

⇒ ⟨Ap(ũε), h⟩+ ⟨Aq(ũε), h⟩+
∫
Ω

ξ(z)|ũε|p−2ũεhdz

= λ

∫
Ω

ℓε(z, ũε)hdz + λ

∫
∂Ω

β(z, ũε)hdσ for all h ∈ W 1,p(Ω).(14)

In (14) first we choose h = −ũ−ε ∈ W 1,p(Ω). Then

c2∥ũ−ε ∥p ≤ 0, (see (3), (11),(12)),

⇒ ũε ≥ 0, ũε ̸= 0.

Next in (14) we choose h = (ũε − uε′)
+ ∈ W 1,p(Ω). We have

⟨Ap(ũε), (ũε − uε′)
+⟩+ ⟨Aq(ũε), (ũε − uε′)

+⟩+
∫
Ω

ξ(z)ũp−1
ε (ũε − uε′)

+dz

=λ

∫
Ω

[uε′ + ε]−η(ũε − uε′)
+dz + λ

∫
∂Ω

uτ−1
ε′ (ũε − uε′)

+dσ (see (11), (12))

≤⟨Ap(uε′), (ũε − uε′)
+⟩+ ⟨Aq(uε′), (ũε − uε′)

+⟩+
∫
Ω

ξ(z)up−1
ε′ (ũε − uε′)

+dz (see (10)),

⇒ ũε ≤ uε′ .

So, we have proved that

(15) ũε ∈ [0, uε′ ], ũε ̸= 0.
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Then from (15), (11), (12) and (14), it follows that

ũε = uε,

⇒ uε ≤ uε′ .

This proves the Claim.
Now let εn ↓ 0 and let un = uεn ∈ intC+ for all n ∈ N. We have

⟨Ap(un), h⟩+ ⟨Aq(un), h⟩+
∫
Ω

ξ(z)up−1
n hdz

= λ

∫
Ω

[un + εn]
−ηhdz + λ

∫
∂Ω

uτ−1
n hdσ for all h ∈ W 1,p(Ω), all n ∈ N.(16)

In (16) we choose h = un ∈ W 1,p(Ω) and obtain

(17) c2∥un∥p ≤ λ

∫
Ω

un
uη1
dz + λ

∫
∂Ω

uτndσ for all n ∈ N

(see (3) and note that on account of the Claim we have u1 ≤ un for all n ∈ N). Since u1 ∈ intC+,
we have 0 < m1 = min

Ω
u1. Then from (17) it follows that

∥un∥p ≤ c7[∥un∥+ ∥un∥τ ] for some c7 > 0, all n ∈ N,
⇒ {un}n≥1 ⊆ W 1,p(Ω) is bounded.

We may assume that

(18) un
w−→ uλ in W 1,p(Ω) and un → uλ in Lp(Ω) and in Lp(∂Ω).

On account of the Claim uλ ̸= 0. In (16) we choose h = un − uλ ∈ W 1,p(Ω), pass to the limit as
n→ +∞ and use (18). As before, we obtain

lim sup
n→+∞

⟨Ap(un), un − uλ⟩ ≤ 0,

⇒ un → uλ in W 1,p(Ω) (see Proposition 1).(19)

Passing to the limit as n → +∞ in (16) and using (19), we obtain that uλ is a solution of
(Qλ). Note that u1 ≤ uλ, hence 0 ≤ u−ηλ ≤ u−η1 ∈ L∞(Ω). Thus the nonlinear regularity theory of
Lieberman [11] implies that uλ ∈ intC+. As before (see the argument before the Claim), we show
the uniqueness of uλ ∈ intC+. □

4. Positive Solutions

We introduce the following two sets

L = {λ > 0 : problem (Pλ) has a positive solution},
Sλ = set of positive solutions of (Pλ).

The next proposition establishes the nonemptiness of L and then we will determine the regularity
of the solution set Sλ.

Proposition 3. If hypotheses H0, H1 hold, then L ≠ ∅.
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Proof. For λ > 0, let uλ ∈ intC+ be the unique positive solution of (Qλ) produced in Proposition
2. We introduce the Carathéodory functions gλ(z, x), bλ(z, x) defined by

gλ(z, x) =

{
λuλ(z)

−η + f(z, x+) if x ≤ uλ(z),

λx−η + f(z, x) if uλ(z) < x,
for all (z, x) ∈ Ω× R,(20)

bλ(z, x) =

{
λuλ(z)

τ−1 if x ≤ uλ(z),

λxτ−1 if uλ(z) < x,
for all (z, x) ∈ ∂Ω× R.(21)

We set Gλ(z, x) =
∫ x
0
gλ(z, s)ds, Bλ(z, x) =

∫ x
0
bλ(z, s)ds and consider the C1-functional φ̂λ :

W 1,p(Ω) → R defined by

φ̂λ(u) =
1

p
γp(u) +

1

q
∥∇u∥qq −

∫
Ω

Gλ(z, u)dz −
∫
∂Ω

Bλ(z, u)dσ for all u ∈ W 1,p(Ω),

(note that u−ηλ ∈ L∞(Ω) since uλ ∈ intC+).
On account of hypotheses H1(i), (iv), given ε > 0, we can find c8 = c8(ε) > 0 such that

(22) F (z, x) ≤ εxq + c8x
r for a.a. z ∈ Ω, all x ≥ 0.

Using (3), (22), (20) and (21), we see that for some c9, c10 > 0 we have

φ̂λ(u) ≥
c2
p
∥u∥p − c9[ε∥u∥q + ∥u∥r + λ∥u∥τ ]− λ

∫
{u≤uλ}

u−ηλ udz

− λ

1− η

∫
{u>uλ}

[u1−η − u1−ηλ ]dz − λc10

≥ c2
p
∥u∥p − c9[ε∥u∥q + ∥u∥r + λ∥u∥τ ]− λ

1− η

∫
Ω

u1−ηdz − λc10.

Then for ∥u∥ ≤ 1 and since 1− η < 1 < τ < q we have

(23) φ̂λ(u) ≥
c2
p
∥u∥p − c9∥u∥r − c9[ε+ λ]∥u∥1−η

(using the fact that Ls(Ω) ↪→ Lϑ(Ω) for all 0 < ϑ < s <∞).
Choose ρ ∈ (0, 1) small such that

(24)
c2
p
ρp − c9ρ

r ≥ η1 > 0 (recall that r > p).

Having chosen ρ ∈ (0, 1) this way, we then choose ε0 > 0 and λ0 > 0 such that

(25) c9[ε+ λ]ρ1−η + λc10 ≤
η1
2

for all ε ∈ (0, ε0], all λ ∈ (0, λ0].

Then using (24) and (25) in (23), we conclude that

(26) φ̂λ(u) ≥
η1
2

for all ∥u∥ = ρ, all λ ∈ (0, λ0].

Let Bρ = {u ∈ W 1,p(Ω) : ∥u∥ < ρ}. Clearly φ̂λ(·) is sequentially weakly lower semicontinuous.
Also by the Alaoglu and Eberlein-Smulian theorems (see Papageorgiou-Winkert [21], pp. 215,
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221), we have that Bρ is sequentially weakly compact. So, by the Weierstrass-Tonelli theorem, for
every λ ∈ (0, λ0], we can find uλ ∈ W 1,p(Ω) such that

(27) φ̂λ(uλ) = min[φ̂λ(u) : u ∈ Bρ].

Let u ∈ intC+ and choose t ∈ (0, 1) small so that tu ≤ uλ. Then using hypothesis H1(i) and
(21), we have

φ̂λ(tu) ≤
tp

p
γp(u) +

tq

q
∥∇u∥qq − λt

∫
Ω

uτ−1
λ udz

≤ c11t
q − λtτ∥u∥τLτ (∂Ω) (since q < p, 0 < t < 1 and tu ≤ uλ).

Since τ < q choosing, t ∈ (0, 1) even small if necessary, we obtain

φ̂λ(tu) < 0,

⇒ φ̂λ(uλ) < 0 = φ̂λ(0),

⇒ uλ ̸= 0.(28)

From (28) and (26) we see that uλ ∈ Bρ \ {0} and so

φ̂′
λ(uλ) = 0 (see (27))

⇒ ⟨Ap(uλ), h⟩+ ⟨Aq(uλ), h⟩+
∫
Ω

ξ(z)|uλ|p−2uλhdz

=

∫
Ω

gλ(z, uλ)hdz +

∫
∂Ω

bλ(z, uλ)hdσ for all h ∈ W 1,p(Ω).(29)

In (29), we choose h = (uλ − uλ)
+ ∈ W 1,p(Ω). Then

⟨Ap(uλ), (uλ − uλ)
+⟩+ ⟨Aq(uλ), (uλ − uλ)

+⟩+
∫
Ω

ξ(z)|uλ|p−2uλ(uλ − uλ)
+dz

=

∫
Ω

[
λu−ηλ + f(z, uλ)

]
(uλ − uλ)

+dz + λ

∫
∂Ω

uτ−1
λ (uλ − uλ)

+dσ (see (20), (21))

≥
∫
Ω

λu−ηλ (uλ − uλ)
+dz + λ

∫
∂Ω

uτ−1
λ (uλ − uλ)

+dσ (see hypothesis H1 (i))

= ⟨Ap(uλ), (uλ − uλ)
+⟩+ ⟨Aq(uλ), (uλ − uλ)

+⟩+
∫
Ω

ξ(z)up−1
λ (uλ − uλ)

+dσ (see Proposition 2),

⇒uλ ≤ uλ.

From (20), (21) and (29) we conclude that uλ ∈ Sλ, that is, (0, λ0] ⊆ L and so L ≠ ∅. □

Proposition 4. If hypotheses H0, H1 hold and λ ∈ L, then uλ ≤ u for all u ∈ Sλ.

Proof. Let u ∈ Sλ. Then on Ω× (0,+∞) and on ∂Ω× R respectively, we introduce the following
Carathéodory functions:

(30) ê(z, x) =

{
x−η if 0 < x ≤ u(z),

u(z)−η if u(z) < x
and b̂(z, x) =

{
(x+)τ−1 if x ≤ u(z),

u(z)τ−1 if u(z) < x.
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We consider the following purely singular problem

(Q′
λ)

−∆pu(z)−∆qu(z) + ξ(z)u(z)p−1 = λê(z, u(z)) in Ω,
∂u

∂npq
= λb̂(z, u) on ∂Ω, u > 0, λ > 0.

Using a fixed point argument as in the proof of Proposition 2 we infer that for every λ > 0
problem (Q′

λ) admits a solution ũλ ∈ intC+. Then we have

⟨Ap(ũλ), (ũλ − u)+⟩+ ⟨Aq(ũλ), (ũλ − u)+⟩+
∫
Ω

ξ(z)ũp−1
λ (ũλ − u)+dz

= λ

∫
Ω

u−η(ũλ − u)+dz + λ

∫
∂Ω

uτ−1(ũλ − u)+dσ (see (30))

≤
∫
Ω

[λu−η + f(z, u)](ũλ − u)+dz +

∫
∂Ω

λuτ−1(ũλ − u)+dσ (see hypothesis H1 (i)),

= ⟨Ap(u), (ũλ − u)+⟩+ ⟨Aq(u), (ũλ − u)+⟩+
∫
Ω

ξ(z)up−1(ũλ − u)+dz (since u ∈ Sλ),

⇒ ũλ ≤ u.

So, we have

(31) ũλ ∈ [0, u], ũλ ̸= 0.

From (31) and (30) it follows that

ũλ = uλ (see Proposition 2),

⇒ uλ ≤ u for all u ∈ Sλ, λ ∈ L.

□

On account of this proposition, we see that for every λ ∈ L and u ∈ Sλ, we have that u−η ∈
L∞(Ω). From Proposition 2.10 of Papageorgiou-Rǎdulescu [4], it follows that u ∈ L∞(Ω) and then
the regularity theory of Lieberman [11] implies that u ∈ C+ \{0}. Finally the nonlinear maximum
principle of Pucci-Serrin [22] (pp. 111, 120) implies that u ∈ intC+. So, we can state the following
regularity result for the solution set Sλ.

Proposition 5. If hypotheses H0, H1 hold and λ ∈ L, then Sλ ⊆ intC+.

Next we will determine the structure of the set L. We will show that L is an interval. To this
end first we prove a monotonicity property of the map λ→ uλ from (0,+∞) into C1(Ω).

Proposition 6. If hypothesis H0 holds and 0 < ϑ < λ, then uϑ ≤ uλ.

Proof. We introduce the following Carathéodory functions:

k(z, x) =

{
x−η if 0 < x ≤ uλ(z),

uλ(z)
−η if uλ(z) < x,

for all (z, x) ∈ Ω× (0,+∞),(32)
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d(z, x) =

{
(x+)τ−1 if x ≤ uλ(z),

uλ(z)
τ−1 if uλ(z) < x,

for all (z, x) ∈ ∂Ω× R.(33)

We consider the following boundary value problem

(34)

−∆pu(z)−∆qu(z) + ξ(z)u(z)p−1 = ϑk(z, u(z)) in Ω,
∂u

∂npq
= ϑuτ−1 on ∂Ω, u > 0.

Problem (34) has a solution ũϑ ∈ intC+ with ũϑ ∈ [0, uϑ] (see the proof of Proposition 3). Then
from (32), (33) and Proposition 2 it follows that

ũϑ = uϑ,

⇒ uϑ ≤ uλ.

□

Using this monotonicity property, we can show that L is an interval.

Proposition 7. If hypotheses H0, H1 hold, λ ∈ L and 0 < ϑ < λ, then ϑ ∈ L.

Proof. From Proposition 6, we have that uϑ ≤ uλ. Since λ ∈ L we can find u ∈ Sλ ⊆ intC+.
From Proposition 4 we know that uλ ≤ u, hence uϑ ≤ u. Therefore we can define the following
truncations of the data of problem (34):

f̂(z, x) =


f(z, uϑ(z)) if x < uϑ(z),

f(z, x) if uϑ(z) ≤ x ≤ u(z),

f(z, u(z)) if u(z) < x,

for all (z, x) ∈ Ω× R,(35)

k̂ϑ(z, x) =


ϑuϑ(z)

−η if x < uϑ(z),

ϑx−η if uϑ(z) ≤ x ≤ u(z),

ϑu(z)−η if u(z) < x,

for all (z, x) ∈ Ω× R,(36)

d̂ϑ(z, x) =


ϑuϑ(z)

τ−1 if x < uϑ(z),

ϑxτ−1 if uϑ(z) ≤ x ≤ u(z),

ϑu(z)τ−1 if u(z) < x,

for all (z, x) ∈ ∂Ω× R,(37)

All three are Carathéodory functions. We set

F̂ (z, x) =

∫ x

0

f̂(z, s)ds, K̂ϑ(z, x) =

∫ x

0

k̂ϑ(z, s)ds, D̂ϑ(z, x) =

∫ x

0

d̂ϑ(z, s)ds.

We consider the C1-functional Ĵϑ : W 1,p(Ω) → R defined by

Ĵϑ(u) =
1

p
γp(u) +

1

q
∥∇u∥qq −

∫
Ω

F̂ (z, u)dz −
∫
Ω

K̂ϑ(z, u)dz −
∫
∂Ω

D̂ϑ(z, u)dσ for all u ∈ W 1,p(Ω).
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From (3), (35), (36), (37) it follows that Ĵ (·) is coercive. Also, it is sequentially weakly lower
semicontinuous. So, we can find û ∈ W 1,p(Ω) such that

Ĵϑ(û) = min
[
Ĵϑ(u) : u ∈ W 1,p(Ω)

]
,

⇒ Ĵ ′
ϑ(û) = 0,

⇒ ⟨Ap(û), h⟩+ ⟨Aq(û), h⟩+
∫
Ω

ξ(z)|û|p−2ûhdz

=

∫
Ω

[
k̂ϑ(z, û) + f̂(z, û)

]
hdz +

∫
∂Ω

d̂ϑ(z, û)hdσ for all h ∈ W 1,p(Ω).(38)

In (38), first we choose h = (uϑ − û)+ ∈ W 1,p(Ω). We have

⟨Ap(û), (uϑ − û)+⟩+ ⟨Aq(û), (uϑ − û)+⟩+
∫
Ω

ξ(z)|û|p−2û(uϑ − û)+dz

=

∫
Ω

[
ϑu−ηϑ + f(z, uϑ)

]
(uϑ − û)+dz +

∫
∂Ω

ϑuτ−1
ϑ (uϑ − û)+dσ (see (35), (36), (37))

≥
∫
Ω

ϑu−ηϑ (uϑ − û)+dz +

∫
∂Ω

ϑuτ−1
ϑ (uϑ − û)+dσ (see hypothesis H1 (i))

= ⟨Ap(uϑ), (uϑ − û)+⟩+ ⟨Aq(uϑ), (uϑ − û)+⟩+
∫
Ω

ξ(z)up−1
ϑ (uϑ − û)+dz,

⇒ uϑ ≤ û.

Next in (38) we choose h = (û− u)+ ∈ W 1,p(Ω). Then

⟨Ap(û), (û− u)+⟩+ ⟨Aq(û), (û− u)+⟩+
∫
Ω

ξ(z)up−1(û− u)+dz

=

∫
Ω

[
ϑu−η + f(z, u)

]
(û− u)+dz +

∫
∂Ω

ϑuτ−1(û− u)+dσ (see (35), (36), (37))

≤
∫
Ω

[λu−η + f(z, u)](û− u)+dz +

∫
∂Ω

λuτ−1(û− u)+dσ (since ϑ < λ)

= ⟨Ap(u), (û− u)+⟩+ ⟨Aq(u), (û− u)+⟩+
∫
Ω

ξ(z)up−1(û− u)+dz (since u ∈ Sλ),

⇒ û ≤ u.

So, we have proved that

(39) û ∈ [uϑ, u].

From (39), (35), (36), (37) and (38), we infer that

û ∈ Sϑ ⊆ intC+,

⇒ ϑ ∈ L.

□
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The solution multifunction λ→ Sλ has the following strict monotonicity type property.

Proposition 8. If hypotheses H0, H1 hold, λ ∈ L, uλ ∈ Sλ ⊆ intC+ and 0 < ϑ < λ, then ϑ ∈ L
and there exists uϑ ∈ Sϑ ⊆ intC+ such that uλ − uϑ ∈ D+.

Proof. From Proposition 7 and its proof, we already know that ϑ ∈ L and that there exists
uϑ ∈ Sϑ ⊆ intC+ such that

(40) uϑ ≤ uλ.

Let a : RN → RN be the map defined by

a(y) = |y|p−2y + |y|q−2y for all y ∈ RN .

Note that a ∈ C1(RN \ {0},RN) and for every y ∈ RN \ {0} we have

∇a(y) = |y|p−2

[
I + (p− 2)

y ⊗ y

|y|2

]
+ |y|q−2

[
I + (q − 2)

y ⊗ y

|y|2

]
.

Then for all ξ′ ∈ RN , we have

(41) (∇a(y)ξ′, ξ′)RN ≥ q − 1

|y|2−q
|ξ′|2.

We see that
div a(∇u) = ∆pu+∆qu for all u ∈ W 1,p(Ω).

From (41) and since uλ ∈ intC+, we see that ∇a(uλ) is positive definite. Then the tangency
principle of Pucci-Serrin [22] (Theorem 2.5.2, p. 35) implies that

(42) uϑ(z) < uλ(z) for all z ∈ Ω (see (40)).

Let ρ = ∥uλ∥∞ and let ξ̂ρ > 0 be as postulated by hypothesis H1 (v). For ξ̃ρ > ξ̂ρ, we have

−∆puϑ −∆quϑ + [ξ(z) + ξ̃ρ]u
p−1
ϑ − λu−ηϑ

≤ f(z, uϑ) + ξ̃ρu
p−1
ϑ (since ϑ < λ)

= f(z, uϑ) + ξ̂ρu
p−1
ϑ + [ξ̃ρ − ξ̂ρ]u

p−1
ϑ

≤ f(z, uλ) + ξ̂ρu
p−1
λ + [ξ̃ρ − ξ̂ρ]u

p−1
λ (see hypothesis H1 (v) and (40))

= −∆puλ −∆quλ + ξ(z)up−1
λ − λu−ηλ (since uλ ∈ Sλ).(43)

On account of (42), we have

[ξ̃ρ − ξ̂ρ]u
p−1
ϑ ≺ [ξ̃ρ − ξ̂ρ]u

p−1
λ .

Then from (41) and Proposition 7 of Papageorgiou-Rădulescu-Repovs̆ [17], we have

uλ − uϑ ∈ D+.

□

Let λ∗ = supL.

Proposition 9. If hypotheses H0, H1 hold, then λ∗ < +∞.
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Proof. We can find λ0 > 0 such that

(44) λ0x
−η + f(z, x) ≥ ∥ξ∥∞xp−1 for a.a. z ∈ Ω, all x ≥ 0.

Let λ > λ0 and suppose that λ ∈ L. Then we can find uλ ∈ Sλ ⊆ intC+ (see Proposition 5).
Let mλ = min

Ω
uλ > 0. For δ ∈ (0, 1] small we define mδ

λ = mλ + δ. Let ρ = max{m1
λ, ∥uλ∥∞} and

let ξ̂ρ > 0 be as postulated by hypothesis H1 (v). Then we have

−∆pm
δ
λ −∆qm

δ
λ +

[
ξ(z) + ξ̂ρ

]
(mδ

λ)
p−1 − λm−η

λ

≤
[
ξ(z) + ξ̂ρ

]
mp−1
λ + χ(δ)− λm−η

λ with χ(δ) → 0+ as δ → 0+

=
[
ξ(z) + ξ̂ρ

]
mp−1
λ − λ0m

−η
λ − (λ− λ0)m

−η
λ + χ(δ)

≤ f(z,mλ) + ξ̂ρm
p−1
λ for δ ∈ (0, 1) small (see (44))

≤ f(z, uλ) + ξ̂ρu
p−1
λ (see hypothesis H1(v))

= −∆puλ −∆quλ +
[
ξ(z) + ξ̂ρ

]
up−1
λ − λu−ηλ ,

⇒ uλ −mδ
λ ∈ D+ for all δ ∈ (0, 1) small

(see Papageorgiou-Rădulescu-Repovs̆ [17], Proposition 6).

This is a contradiction to the definition of mλ.
Therefore we have λ∗ ≤ λ0 and so λ∗ < +∞. □

Proposition 10. If hypotheses H0, H1 hold and λ ∈ (0, λ∗), then problem (Pλ) admits at least
two positive solutions u0, û ∈ intC+, u0 ̸= û.

Proof. Let β ∈ (λ, λ∗). On account of Proposition 8, we can find uβ ∈ Sβ ⊆ intC+ and u0 ∈ Sλ ⊆
intC+ such that

(45) uβ − u0 ∈ D+.

We introduce the following truncations of the data of (Pλ):

k∗λ(z, x) =

{
λuλ(z)

−η + f(z, uλ(z)) if x ≤ uλ(z),

λx−η + f(z, x) if uλ(z) < x,
for all (z, x) ∈ Ω× R,(46)

b∗λ(z, x) =

{
λuλ(z)

τ−1 if x ≤ uλ(z),

λxτ−1 if uλ(z) < x,
for all (z, x) ∈ ∂Ω× R.(47)

These are Carathéodory functions. We set K∗
λ(z, x) =

∫ x
0
k∗λ(z, s)ds, B

∗
λ(z, x) =

∫ x
0
b∗λ(z, s)ds

and consider the C1-functional ψ∗
λ : W

1,p(Ω) → R defined by

ψ∗
λ(u) =

1

p
γp(u) +

1

q
∥∇u∥qq −

∫
Ω

K∗
λ(z, u)dz −

∫
∂Ω

B∗
λ(z, u)dσ for all u ∈ W 1,p(Ω).

Using (46), (47), we can easily show that

(48) Kψ∗
λ
⊆ [uλ) ∩ intC+.
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On account of (45) and Propositions 4 and 6, we have uλ ≤ uθ.
Then from (48) we see that without any loss of generality, we may assume that

(49) Kψ∗
λ
⊆ [uλ, uβ] = {u0}.

Otherwise we already have a second positive solution of (Pλ) distinct from u0. Using uβ ∈ intC+,
we introduce the following truncations of k∗λ(z, x) and of b∗λ(z, x):

k̂∗λ(z, x) =

{
k∗λ(z, x) if x ≤ uβ(z),

k∗λ(z, uβ(z)) if uβ(z) < x,
for all (z, x) ∈ Ω× R,(50)

b̂∗λ(z, x) =

{
b∗λ(z, x) if x ≤ uβ(z),

b∗λ(z, uβ(z)) if uβ(z) < x,
for all (z, x) ∈ ∂Ω× R.(51)

These are Carathéodory functions. We set K̂∗
λ(z, x) =

∫ x
0
k̂∗λ(z, s)ds, B̂

∗
λ(z, x) =

∫ x
0
b̂∗λ(z, s)ds

and consider the C1-functional ψ̂∗
λ : W

1,p(Ω) → R defined by

ψ̂∗
λ(u) =

1

p
γp(u) +

1

q
∥∇u∥qq −

∫
Ω

K̂∗
λ(z, u)dz −

∫
∂Ω

B̂∗
λ(z, u)dσ for all u ∈ W 1,p(Ω).

Using (50), (51), we can show that

(52) Kψ̂∗
λ
⊆ [uλ, uβ] ∩ intC+.

It is clear from (3), (50), (51) that ψ̂∗
λ(·) is coercive. Also, it is sequentially weakly lower

semicontinuous. So, we can find ũ0 ∈ W 1,p(Ω) such that

ψ̂∗
λ(ũ0) = inf

[
ψ̂∗
λ(u) : u ∈ W 1,p(Ω)

]
,

⇒ ũ0 ∈ Kψ̂∗
λ
⊆ [uλ, uβ] ∩ intC+ (see (52)).(53)

From (46), (47), (50), (51), we see that

(54) ψ∗
λ

∣∣∣
[0,uβ ]

= ψ̂∗
λ

∣∣∣
[0,uβ ]

and (ψ∗
λ)

′
∣∣∣
[0,uβ ]

= (ψ̂∗
λ)

′
∣∣∣
[0,uβ ]

.

Then on account of (53) and (49), we have

ũ0 = u0,

⇒ u0 is a local C1(Ω)-minimizer of ψ∗
λ(·) (see (45) and (54)),

⇒ u0 is a local W 1,p(Ω)-minimizer of ψ∗
λ(·)

(see Papageorgiou-Rădulescu [14], Proposition 2.12).

From (48) we see that we may assume that Kψ∗
λ
is finite (otherwise we already have an infinity

of positive smooth solutions of problem (Pλ)). Then Theorem 5.7.6, p. 449, of Papageorgiou-
Rădulescu-Repovs̆ [18] says that we can find ρ ∈ (0, 1) small such that

(55) ψ∗
λ(u0) < inf [ψ∗

λ(u) : ∥u− u0∥ = ρ] = m∗
λ.
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Note that (46), (47) and hypothesis H1(ii) imply that if u ∈ intC+, then

(56) ψ∗
λ(tu) → −∞ as t→ +∞.

Claim: ψ∗
λ(·) satisfies the C-condition.

We consider a sequence {un}n≥1 ⊆ W 1,p(Ω) such that

|ψ∗
λ(un)| ≤ c12 for some c12 > 0, all n ∈ N,(57)

(1 + ∥un∥)(ψ∗
λ)

′(un) → 0 in W 1,p(Ω)∗ as n→ +∞.(58)

From (58) we have∣∣∣⟨Ap(un), h⟩+ ⟨Aq(un), h⟩+
∫
Ω

ξ(z)|un|p−2unhdz −
∫
Ω

k∗λ(z, un)hdz

−
∫
∂Ω

b∗λ(z, un)hdσ
∣∣∣ ≤ εn∥h∥

1 + ∥un∥
for all h ∈ W 1,p(Ω), with εn → 0+.(59)

First we choose h = −u−n ∈ W 1,p(Ω). Then

c2∥u−n ∥p ≤ c13 for some c13 > 0, all n ∈ N (see (3), (46), (47)),

⇒ {u−n }n≥1 ⊆ W 1,p(Ω) is bounded.(60)

From (57) and (60), we have

γp(u
+
n ) +

p

q
∥∇u+n ∥qq −

∫
Ω

pK∗
λ(z, u

+
n )dz −

∫
∂Ω

B∗
λ(z, u

+
n )dσ ≤ c14 for some c14 > 0, all n ∈ N,

⇒ γp(u
+
n ) +

p

q
∥∇u+n ∥qq − λp

∫
Ω

(u+n )
1−ηdz −

∫
Ω

pF (z, u+n )dz −
λp

τ

∫
∂Ω

(u+n )
τdσ ≤ c15

(61)

for some c15 > 0, all n ∈ N (see (46), (47)).

Also, if in (59) we choose h = u+n ∈ W 1,p(Ω), then

− γp(u
+
n )− ∥∇u+n ∥qq +

∫
Ω

k∗λ(z, u
+
n )u

+
n dz +

∫
∂Ω

b∗λ(z, u
+
n )u

+
n dσ ≤ εn for all n ∈ N,

⇒ − γp(u
+
n )− ∥∇u+n ∥qq + λ

∫
Ω

(u+n )
1−ηdz +

∫
Ω

f(z, u+n )u
+
n dz + λ

∫
∂Ω

(u+n )
τdσ ≤ c16(62)

for some c16 > 0, all n ∈ N.

We add (61) and (62). Since q < p, we obtain∫
Ω

[
f(z, u+n )u

+
n − pF (z, u+n )

]
dz ≤ λ[p− 1]

∫
Ω

(u+n )
1−ηdz + λ

[p
τ
− 1

] ∫
∂Ω

(u+n )
τdσ + c17(63)

for some c17 > 0, all n ∈ N.

Hypotheses H1(i), (iii) imply that we can find c18 > 0 such that

c0
2
xµ − c18 ≤ f(z, x)x− pF (z, x) for a.a. z ∈ Ω, all x ≥ 0,
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⇒ c0
2
∥u+n ∥µµ − c19 ≤

∫
Ω

[
f(z, u+n )u

+
n − pF (z, u+n )

]
dz for some c19 > 0, all n ∈ N.(64)

We use (64) in (63). Since τ < µ, we obtain

∥u+n ∥µµ ≤ c20
[
∥u+n ∥µ + ∥u+n ∥τµ + 1

]
for some c20 > 0, all n ∈ N,

⇒ {u+n }n≥1 ⊆ Lµ(Ω) is bounded.(65)

First assume that N ̸= p. From hypothesis H1(iii) it is clear that we may assume that µ < r <
p∗. Then let t ∈ (0, 1) be such that

(66)
1

r
=

1− t

µ
+

t

p∗
.

using the interpolation inequality (see Papageorgiou-Winkert [21], Proposition 2.3.17, p. 116),
we have

∥u+n ∥r ≤ ∥u+n ∥1−tµ ∥u+n ∥tp∗ ,
⇒ ∥u+n ∥rr ≤ c21∥u+n ∥tr for some c21 > 0, all n ∈ N (see (65)).(67)

In (59) we choose h = u+n ∈ W 1,p(Ω) and using (46) and (47), we have

γp(u
+
n ) + ∥∇u+n ∥qq − λ

∫
Ω

(u+n )
1−ηdz −

∫
Ω

f(z, u+n )u
+
n dz − λ

∫
∂Ω

(u+n )
τdσ ≤ c22

for some c22 > 0, all n ∈ N,
⇒ ∥u+n ∥p ≤ c23

[
∥u+n ∥tr + 1

]
for some c23 = c23(λ) > 0, all n ∈ N(68)

(see hypothesis H1(i), (66) and recall that 1− η < 1 < τ < p < r).

The condition on µ (see hypothesis H1(iii)) and (66) imply that tr < p.
So, from (68) it follows that

{u+n }n≥1 ⊆ W 1,p(Ω) is bounded,

⇒ {un}n≥1 ⊆ W 1,p(Ω) is bounded (see (60)).(69)

If N = p, then p∗ = +∞, while the Sobolev embedding theorem says that W 1,p(Ω) ↪→ Ls(Ω) for
all 1 ≤ s < +∞. Then for the above argument to work we replace p∗ by s > r > µ. Let t ∈ (0, 1)
be such that

1

r
=

1− t

µ
+
t

s
,

⇒ tr =
s(r − µ)

s− µ
.

If s → +∞, then
s(r − µ)

s− µ
→ r − µ < p (see hypothesis H1(iii)). So, we choose s > r big so

that tr =
s(r − µ)

s− µ
< p. Then again we have (69).
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On account of (65) we may assume that

(70) un
w−→ u in W 1,p(Ω) and un → u in Lr(Ω) and in Lp(∂Ω).

In (59) we choose h = un − u ∈ W 1,p(Ω), pass to the limit as n→ +∞ and use (70). Then

lim
n→+∞

[⟨Ap(un), un − u⟩+ ⟨Aq(un), un − u⟩] = 0,

⇒ lim sup
n→+∞

[⟨Ap(un), un − u⟩+ ⟨Aq(un), un − u⟩] ≤ 0 (since Aq(·) is monotone),

⇒ lim sup
n→+∞

⟨Ap(un), un − u⟩ ≤ 0 (see (70)),

⇒ un → u in W 1,p(Ω) (see Proposition 1).

Therefore ψ∗
λ(·) satisfies the C-condition. This proves the Claim. Then (55), (56) and the Claim

permit the use of the mountain pass theorem. So, we can find û ∈ W 1,p(Ω) such that

û ∈ Kψ∗
λ
⊆ [uλ) ∩ intC+ (see (48)) and m∗

λ ≤ ψ∗
λ(û) (see (55)).(71)

From (71), (55), (46), (47) we infer that û ∈ intC+ is a second positive solution of (Pλ),
û ̸= u0. □

Next we show that the critical parameter λ∗ is admissible.

Proposition 11. If hypotheses H0, H1 hold, then λ∗ ∈ L.

Proof. Let λn → (λ∗)−. We slightly modify the proof of Proposition 7 (replacing uθ with uλ1) and
introduce the following Carathéodory functions:

f̃(z, x) =

{
f(z, uλ1(z)) if x ≤ uλ1(z),

f(z, x) if uλ1(z) < x,
for all (z, x) ∈ Ω× R,

k̃λn(z, x) =

{
λnuλ1(z)

−η if x ≤ uλ1(z),

λnx
−η if uλ1(z) < x,

for all (z, x) ∈ Ω× R,

d̃λn(z, x) =

{
λnuλ1(z)

τ−1 if x ≤ uλ1(z),

λnx
τ−1 if uλ1(z) < x,

for all (z, x) ∈ ∂Ω× R.

We set F̃ (z, x) =
∫ x
0
f̃(z, s)ds, K̃λn(z, x) =

∫ x
0
k̃λn(z, s)ds and D̃λn(z, x) =

∫ x
0
d̃λn(z, s)ds and

consider the C1-functional J̃λn : W 1,p(Ω) → R defined by

J̃λn(u) =
1

p
γp(u)+

1

q
∥∇u∥qq−

∫
Ω

F̃ (z, u)dz−
∫
Ω

K̃λn(z, u)dz−
∫
∂Ω

D̃λn(z, u)dσ for all u ∈ W 1,p(Ω).

From the proof of Proposition 7, we know that we can find un ∈ Sλn ⊆ intC+ such that

J̃λn(un) ≤ J̃λn(uλ1)

≤ 1

p
γp(uλ1) +

1

q
∥∇uλ1∥qq − λ1

∫
Ω

u1−ηλ1
dz −

∫
Ω

f(z, uλ1)uλ1dz − λ1

∫
∂Ω

uτλ1dσ

(since λ1 ≤ λn for all n ∈ N),
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≤ 1

p
γp(uλ1) +

1

q
∥∇uλ1∥qq − λ1

∫
Ω

u1−ηλ1
dz

=

[
1

p
− 1

]
γp(uλ1) +

[
1

q
− 1

]
∥∇uλ1∥qq (since uλ1 ∈ intC+ solves (Qλ1))

< 0.(72)

We have KJ̃λn
⊆ [uλ1) ∩ intC+ and from (72) we see that

(73) J̃λn(un) < 0, J̃ ′
λn(un) = 0 for all n ∈ N.

From (73) and reasoning as in the Claim in the proof of Proposition 10, we obtain that

un → u∗ in W 1,p(Ω),

⇒ u∗ ∈ Sλ∗ ⊆ intC+ (see (73)),

⇒ λ∗ ∈ L.
□

Concluding, we can state the following bifurcation-type theorem describing the set of positive
solutions of problem (Pλ) as the parameter λ > 0 varies.

Theorem 1. If hypotheses H0, H1 hold, then there exists λ∗ > 0 such that

(a) for all λ ∈ (0, λ∗) problem (Pλ) has at least two positive solutions u0, û ∈ intC+, u0 ̸= û;
(b) for λ = λ∗ problem (Pλ) has at least one positive solution u∗ ∈ intC+;
(c) for all λ > λ∗ problem (Pλ) has no positive solutions.
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quasilinéaires, C.R. Acad. Sci. Paris, serie I, Math., 305 (1987), 521–524.
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[17] N.S. Papageorgiou, V.D. Rădulescu and D.D. Repovs̆, Nonlinear nonhomogeneous singular problems, Calc.
Var. Partial Differential Equations, 59:9 (2020), 1–31.
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