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Abstract
Segmented regression is widely used in many disciplines, especially when dealing 
with environmental data. This paper deals with the problem of selecting the cor-
rect number of changepoints in segmented regression models. A review of the usual 
selection criteria, namely information criteria and hypothesis testing, is provided. 
We enhance the latter method by proposing a novel sequential hypothesis testing 
procedure to address this problem. Our sequential procedure’s performance is com-
pared to methods based on information-based criteria through simulation studies. 
The results show that our proposal performs similarly to its competitors for the 
Gaussian, Binomial, and Poisson cases. Finally, we present two applications to envi-
ronmental datasets of crime data in Valencia and global temperature land data.

Keywords Changepoint · Hypothesis testing · Information criterion · Segmented 
regression · Score test

1 Introduction

Segmented regression is a standard tool in many fields, including epidemiology 
(Ulm 1991), occupational medicine, toxicology, ecology, biology (Betts et al. 2007), 
and more recently, higher education (Li et al. 2019; Priulla et al. 2021).

Segmented or broken-line models are regression models where the relationships 
between the response and one or more explanatory variables are piecewise linear, 
namely represented by two or more straight lines connected at unknown values. 
These values are commonly referred to as changepoints or breakpoints. The main 
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advantage of these models lies in the results’ interpretability while also achieving 
a good trade-off with flexibility, typically achieved by non-parametric approaches.

This paper deals with the task of selecting the number of changepoints in seg-
mented regression models, a topic widely discussed by many authors, as Lerman 
(1980) and Kim et al. (2000). This is a common problem in segmented regression 
models. Indeed, if the number of changepoints is too small, the model may not cap-
ture all the changes in the relationship between the variables, resulting in bias and 
reduced model fit. On the other hand, if the number of changepoints is too large, the 
model may overfit the data and not generalize well to new data.

Other common problems in segmented regression models include the identifica-
tion of the location of the changepoints in a segmented variable, and the estima-
tion of its effects on the response variable, to cite a few. For instance, Horváth et al. 
(2004) proposes two classes of monitoring schemes to (sequentially) detect a struc-
tural change in a linear model. Aue et al. (2006) develop an asymptotic theory for 
two monitoring schemes aimed at detecting a change in the regression parameters, 
showing to have a correct asymptotic size and detecting a change with probabil-
ity approaching unity. Then, Chen et al. (2011) deal with two problems concerning 
locating changepoints in a linear regression model, namely, the one involving jump 
discontinuities (not covered in this paper) in a regression model and the other involv-
ing regression lines connected at unknown points. The latter is the main framework 
covered in our work. Muggeo and Adelfio (2011) present a computationally effi-
cient method to obtain estimates of the number and location of the changepoints 
in genomic sequences, or, more generally, in mean-shift regression models. Adelfio 
(2012) introduces a new approach based on the fit of a generalized linear regression 
model for detecting changepoints in the variance of heteroscedastic Gaussian vari-
ables with piecewise constant variance function, and D’Angelo et al. (2022) extend 
such approach in order to detect changepoints in the variance of multivariate Gauss-
ian variables, allowing to provide simultaneous detection of changepoints in func-
tional time series.

Moving to the main topic of our work, in literature several approaches have been 
proposed to select the optimal number of changepoints in segmented regression 
models. One common approach is to use information criteria, such as the Akaike 
Information Criterion (AIC) (Akaike 1974) or the Bayesian Information Criterion 
(BIC) (Schwarz 1978), which balance the model’s goodness of fit with the model’s 
complexity. These criteria penalize models with more parameters, which can pre-
vent overfitting.

Another approach is to use cross-validation (Zou et al. 2020; Pein 2023), which 
involves splitting the data into training and validation sets, fitting models with dif-
ferent numbers of changepoints to the training set, and then selecting the number of 
changepoints that minimizes the prediction error on the validation set. The model 
that performs best on the validation set is selected. Cross-validation can be computa-
tionally intensive, but it can also provide a more accurate estimate of model perfor-
mance than AIC or BIC.

A further approach is hypothesis testing to determine the significance of adding a 
changepoint to the model. Typically, this consists of performing different hypoth-
esis tests starting from testing H0 ∶ K0 = 0 vs H1 ∶ K0 = Kmax where K0 is the true 
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number of changepoints and Kmax is the maximum number of potential changepoints 
fixed a priori, as done by Kim et al. (2000). However, this well-established procedure, 
which requires sequentially testing for the existence of a changepoint, makes testing for 
any additional changepoints unfeasible.

In light of this, this paper proposes a novel sequential hypothesis testing proce-
dure that overcomes this problem, having the perk of not being limited to testing 
for a maximum number of additional changepoints fixed a priori. Starting from the 
work of Kim et al. (2000), we enhance such a method by proposing a novel sequen-
tial hypothesis testing, to identify the correct number of changepoints.

First, we provide an overview of the segmented regression models and a review of 
the main tools useful for selecting the number of changepoints. Regarding the infor-
mation-based criteria, we consider the AIC, the BIC and the generalized Bayesian 
Information Criterion (gBIC). As regards hypothesis testing, we consider Davies’ 
test (Davies 1977) and the Score test (Muggeo 2016). The performance of the dif-
ferent tools and our proposed procedure is then assessed through simulation stud-
ies. Finally, to explore the applicability of the considered framework, two original 
applications are proposed: the first one deals with the crime events that occurred in 
Valencia in 2019, available from the stopp package (D’Angelo and Adelfio 2023) 
of the software R (R Core Team 2023); the second one deals with global tempera-
ture anomalies data from the NOAA Merged Land Ocean Global Surface Tempera-
ture Analysis Data set (Smith et al. 2008). All the analyses are performed using the 
segmented package (Muggeo 2008) of the R Core Team (2023) statistical soft-
ware, and original codes from the authors.

The structure of the paper is as follows. Section  2 introduces the segmented 
regression model and Section 3 reviews suitable criteria for model selection in this 
context. Section 4 illustrates our proposal. Section 5 presents simulations to study 
the performance of the given criteria, and Section 6 proposes two applications deal-
ing with crime events in Valencia and with global anomalies temperature data. The 
paper ends with conclusions in Section  7. The Appendix contains supplementary 
material in support of the run experiments.

2  Background on the segmented regression models

The segmented linear regression is expressed as

where g is the link function, x is a broken-line covariate and z is a covariate whose 
relationship with the response variable is not broken-line. Multiple covariates can be 
accounted for, but we limit our study to unique covariates. We denote by K0 the true 
number of changepoints and by �k the K0 locations of the changes in the relationship 
that we call, from now on, changepoints. These are selected among all the possible 
values in the range of x. The notation (xi − �k)+ is to be read as (xi − 𝜓k)I(xi > 𝜓k) . 

(1)g(�[Y|xi, zi]) = �0 + �zi + �1xi +

K0∑

k=1

�k(xi − �k)+
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The coefficient � represents the non-broken-line effect of z, �1 represents the effect 
when xi < 𝜓1 , while � = {�k}

K0

k=1
 is the vector of the differences in the effects.

The basic statistical problem dealt in this paper is the identification of the number 
of changepoints K0 . The estimation of their locations, that is the vector of �k , and 
the broken-line effects, represented by �1 and the vector � , may also be of interest.

For estimation purposes, a reparametrization of the segmented model in Equation 
(1) is considered, dropping the non-segmented covariate z without any loss of gen-
erality. This reparametrization has the advantage of an efficient estimating approach 
via the algorithm discussed in Muggeo (2003, 2008), fitting iteratively the general-
ized linear model:

where Ũik = (xi − �̃�k)+ , Ṽ−
ik
= −I(xi > �̃�k) . The parameters � and �k are the same as 

in Equation (1), while the � are the working coefficients useful only for the estima-
tion procedure. At each iteration, the working model in Equation (2) is fitted and 
new estimates of the changepoints are obtained via: �̂�k = �̃�k +

�̂�k

𝛿k
 iterating the pro-

cess up to convergence. Inferences on �̂� is usually the main interest, and can be 
drawn by means of bootstrap, likelihood-based or Wald-type methods. In particular, 
Muggeo (2003) discusses and implements the usage of the Wald statistics. The 
standard error of �̂� is obtained through a linear approximation for the ratio of two 
random variables using the Delta Method: 
SE(�̂�) = {[var(�̂�) + var(𝛽)(�̂�∕𝛽)2 + 2(�̂�∕𝛽)cov(�̂� , 𝛽)]∕𝛽2}

1

2 , with var(⋅) and cov(⋅;⋅) 
the variance and covariance, respectively.

For further details on the estimation procedure, we refer to Muggeo (2003).

3  Selecting the number of changepoints

In a more general context, with multiple changepoints as in Equation (1), we need 
to select only the significant changepoints by removing the spurious ones. Indeed, 
whether the generic �̂�k is not significant, the corresponding covariate Vk in Equation 
(2) should be a noise variable, as it would be 𝛿k ≈ 0 . Therefore, selecting the num-
ber of significant changepoints in model (1) means selecting the significant variables 
among V1,… ,VK∗ , from model (2), where K∗ is the number of estimated change-
points. The fitted optimal model will have K̂ ≤ K∗ changepoints selected by any cri-
terion. It is important to notice that these models are not nested, so likelihood ratio 
tests for model selection cannot be used.

Furthermore, the usual statistics cannot be used to verify the existence of a 
changepoint, since it is present only under the alternative hypothesis. This leads to 
a non-linear problem because the regularity conditions of the log-likelihood are not 
satisfied.

Basically, we need to select the �̂�1,… , �̂�K̂ among the �̂�1,… , �̂�K∗ via a selection 
criterion. The changepoints �̂�1,… , �̂�K̂ will be a subset of the estimates �̂�1,… , �̂�K∗ , 

(2)g(�[Y|xi]) = 𝛽1xi +
∑

k

𝛿kŨik +
∑

k

𝛾kṼ
−
ik
,
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since one or more changepoints are not included due to the deletion of one or more 
variables Vk by means of the given selection criterion. Therefore, it should be 
noticed that, while �̂�1,… , �̂�K∗ are the estimates maximising the likelihood with K∗ 
changepoints, there is no guarantee that the subset �̂�1,… , �̂�K̂ constitutes also the 
best estimate for the number of changepoints.

Much of the literature deals  with the problem of determining the ‘best’ subset 
of independent variables: Hocking (1976) summarizes various selection criteria, 
reviewed below. These can be classified under two major approaches: information 
criteria and hypothesis testing.

The first information criterion is the well-known Akaike Information Criterion 
(Akaike 1974), expressed as AIC = −2 log L + 2p , where L represents the likelihood 
function and p stands for the actual model dimension quantified by the number of 
estimated parameters, including 𝛽  , the 𝛿 and �̂� vectors in the segmented regression 
models, that is p = 1 + 2K̂ . Given a set of candidate models for the data, the pre-
ferred model is the one with the minimum AIC value. Thus, AIC rewards goodness 
of fit (as assessed by the likelihood function), but also includes a penalty that is 
an increasing function of the number of estimated parameters. The penalty discour-
ages overfitting, which is desired because increasing the number of parameters in 
the model almost always improves the goodness of the fit.

The second criterion is the Bayesian Information Criterion (Schwarz 1978) 
BIC = −2 log L + p log(n) that includes both a penalty for the number of estimated 
parameters p and for the logarithm of the number of observations n. In the most com-
mon Gaussian case, let’s denote by yi the response variable and by �̂�i the estimated 
expectation through a generalized linear model. We can therefore express the BIC as 
BIC = n log �̂�2 + p log(n), where �̂�2 is the error variance, defined as 1

n−p

∑n

i=1
(yi − �̂�i)

2 , 
which is an unbiased estimator for the true variance. The one with the lowest BIC is 
preferred when picking from several models. The BIC is an increasing function of the 
error variance �̂�2 and an increasing function of p. That is, unexplained variation in the 
dependent variable and the number of explanatory variables increases the value of BIC. 
Hence, lower BIC implies either fewer explanatory variables, better fit, or both. The 
BIC generally penalizes parameters more strongly than the AIC, though it depends on n 
and p. For a typical linear regression model, it is well understood that the traditional 
best subset selection method with the BIC can identify the true model consistently 
(Shao 1997; Shi and Tsai 2002). With a fixed predictor dimension, Wang et al. (2009) 
showed  that the tuning parameters for high dimensional model selection procedures 
selected by a BIC type criterion can identify the true model consistently, and similar 
results are further extended to the situation with a diverging number of parameters for 
both unpenalized and penalized estimators. Therefore, the definition of the generalized 
BIC based on Gaussian distributed iid errors is gBIC = log(�̂�2) + p

log(n)

n
Cn , where Cn 

is a known constant (e.g. 1, 
√
n , log n , log log n ). The definition reduces to 

gBIC = −2 log L + p log(n)Cn in the case of non-Gaussian errors (which we will also 
refer to when dealing with Binomial and Poisson responses). In general, the larger Cn , 
the more parsimonious the selected model. Note that the gBIC reduces to the usual BIC 
when Cn = 1 . The same considerations for the BIC hold, that is, when choosing from 
several models, the one with the lowest gBIC is the one to be preferred.
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An alternative approach to selecting the number of changepoints relies on sequential 
hypothesis testing. Typically, this consists of performing different hypothesis tests start-
ing from

where Kmax is fixed a priori. Depending on the rejection or not of the null hypoth-
esis, the procedure can test for the next hypothesis system by either increasing the 
number of changepoints specified under H0 or decreasing the one under H1 , respec-
tively (Kim et al. 2000).

4  Proposed sequential hypothesis testing

In this paper, we propose a novel sequential procedure to identify the correct number 
of changepoints resorting to the pseudo-score (Muggeo 2016) or Davies’ test (Davies 
1977).

Testing for the existence of a changepoint means that we are dealing with the follow-
ing system of hypotheses:

Evaluating the existence of a changepoint is actually a non-regular problem, because 
�k is present only under the alternative H1 . This problem makes usual statistical 
tests, such as the Wald or the likelihood ratio test, useless, because of the lack of 
a reference null distribution, even asymptotically. Therefore, we review below two 
tests used to evaluate the presence of a changepoint.

The first test proposed is the Davies’ Test (Davies 1977), an asymptotic test use-
ful for dealing with hypothesis testing with a nuisance parameter present only under 
the alternative. Assuming fixed and known changepoints, the procedure computes K 
‘naive’ test statistics S(�k) for the difference-in-slope �k , seeks the lowest value and 
corresponding naive p-value (according to the alternative hypothesis), and then corrects 
the selected (minimum) p-value by means of the K values of the test statistic.

Considering the case of multiple changepoints �1 < 𝜓2 < ⋯ < 𝜓k and relevant K 
test statistics, Davies defined an upper bound for the p-value given by

where Φ(⋅) is the cumulative Normal distribution function. M is the supremum of 
the test statistics S(�) , that is, M = sup{S(�) ∶ L ≤ � ≤ U} where {L,U} is the 
range of possible values of � (typically, the support of the segmented covariate).

Then, V is the total variation of S(�) , computed as 
V = ∫ U

L

�S(�)

��
d� = |S(�1) − S(L)| + |S(�2) − S(�1)| +…+ |S(U) − S(�n)| , with 

�1,… ,�n the successive changepoints of S(�).

{
H0 ∶ K0 = 0

H1 ∶ K0 = Kmax

{
H0 ∶ �k = 0

H1 ∶ �k ≠ 0
.

p-value ≈ Φ(−M) + V exp (−M2∕2)(8�)−1∕2
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Although Davies’ test is useful to test for the existence of a changepoint, it 
is not considered ideal to identify the number of changepoints or their location. 
Indeed, the alternative hypothesis H1 actually states the existence of at least one 
additional changepoint, that is K0 > k when �k ≠ 0.

The second one is a pseudo-score test proposed by Muggeo (2016), which is 
based on an adjustment of the score statistic. This approach requires quantities 
only from the null fit and thus it has the advantage that it is not necessary to esti-
mate the nuisance parameter under the alternative. The proposed statistic has the 
form:

where (In − A)y is the residual vector under H0 , with In the identity matrix, A 
the hat matrix, y the observed response vector, and �̄� = {�̄�1,… , �̄�n}

T the vec-
tor of the means of the nuisance parameter �k averaged over the range {L,U} , i.e. 
�̄� = K−1

∑K

k=1
𝜑(xi,𝜓k), i = 1,… , n . This does not depend on �k , so the score can 

be computed even under H0 : �k = 0 when �k is not defined. The function �(xi,�k) 
includes the case of discontinuous changepoint 𝜑(xi,𝜓k) = I(xi > 𝜓k) and the linear 
segmented �(xi,�k) = (xi − �k)+ , which is the one covered in this paper.

Contrary to the procedure of Kim et al. (2000), our proposal has the advantage 
of not being limited to testing for a maximum number of additional changepoints 
fixed a priori. Indeed, the previously explained procedure makes testing for more 
than two additional changepoints with the pseudo-score unfeasible. Our proposal 
overcomes this problem by making it possible to test for any number of additional 
changepoints thanks to the sequential procedure.

Starting from

and depending on the tests’ results, the procedure ends testing at most

and selecting up to Kmax changepoints. The p-value for each hypothesis can be 
obtained via the Davies’ or the pseudo-score test. Furthermore, we control for over-
rejection of the null hypotheses at the overall level � employing the Bonferroni cor-
rection, comparing each p-value with �∕Kmax . Of course, setting the Bonferroni cor-
rection to �∕Kmax means putting ourselves in the most conservative setting.

For simplicity, we outline the algorithm when the maximum number of change-
points is Kmax = 3 , restricting the analyses to a contained limited  number of 
changepoints.

The procedure works iteratively fitting models following Muggeo (2003), as 
sketched in Section 2, as follows: 

s0 =
�̄�T (In − A)y

𝜎{�̄�T (In − A)y}
1

2

{
H0 ∶ K0 = 0

H1 ∶ K0 = 1

{
H0 ∶ K0 = Kmax − 1

H1 ∶ K0 = Kmax
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1. Fit a segmented model to the data with K = 1 and test 

 via the Score or Davies’ test. If it is not rejected then K̂ = 0 and the procedure 
stops at this step. Otherwise, we proceed with the algorithm;

2. Fit a segmented model with K = 2 and test 

 If H0 is not rejected then K̂ = 1 and the procedure stops. Otherwise, we proceed 
to fit the following model;

3. Fit a segmented model with K = 3 and test 

 If H0 is not rejected then K̂ = 2 . Otherwise, K̂ ≥ 3.
It is important to remind that when using the Davies’ test, even if, based on the 
rejection of the last test, the number of changepoints selected is equal to 3 (or in 
general Kmax ), the actual number could be larger, as we are actually testing for (at 
least) one additional changepoint at each step.

5  Simulation studies

This section is devoted to simulation studies for comparing the performance of our 
proposed method to the previously introduced criteria for selecting the true number 
of changepoints, considering Gaussian, Binomial, and Poisson responses.

We simulated from four different scenarios, generating and then fitting models 
with different true values of the number of changepoints, namely K0 ∈ {0, 1, 2, 3} . 
We consider three different sample sizes n ∈ {100, 250, 500} , including one covari-
ate xi , whose effect on the response is assumed broken-line, taking equispaced val-
ues ranging from 0 to 1. An example for each scenario, with n = 100 , is represented 
in Figure 3. The segmented models used for the simulations are reported in Table 1, 
firstly considering iid Gaussian errors with standard deviation equal to � = 0.3.

We set � = 0.05 for the hypothesis testing, while the penalization of the gBIC is 
chosen as Cn = log log n . For each K0 , we fit four models with K ∈ {0, 1, 2, 3} : the 
estimated number of changepoints is obtained by fitting segmented models using 
the segmented library (Muggeo 2003, 2008) over 500 simulations.

Table 2 reports the simulation results in terms of the percentage of the correctly 
selected number of changepoints for each criterion.

With regard to information-based criteria, we select the ‘best’ model by choosing 
the one with the lowest value of the given information criterion. As for the hypothe-
sis testing, we choose the best model by applying the procedure proposed in Sect. 4. 

{
H0 ∶ �1 = 0 (K0 = 0)

H1 ∶ �1 ≠ 0 (K0 ≥ 1)

{
H0 ∶ �2 = 0 (K0 = 1)

H1 ∶ �2 ≠ 0 (K0 ≥ 2)

{
H0 ∶ �3 = 0 (K0 = 2)

H1 ∶ �3 ≠ 0 (K0 ≥ 3)
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Table 1  Linear segmented 
regression models fitted for the 
simulations

K
0

model

0 yi = 2 + 15xi + �i

1 yi = 2 + 15xi − 8(xi − 0.2)+ + �i

2 yi = 2 + 15xi − 8(xi − 0.2)+ − 5(xi − 0.5)+ + �i

3 yi = 2 + 15xi − 8(xi − 0.2)+ − 5(xi − 0.5)+ + 10(xi − 0.75)+ + �i

Table 2  Percentages of the correctly selected number of changepoints by each criterion (based on 500 
runs and three different sample sizes n ∈ {100, 250, 500} ) - Gaussian response variable

n = 100 n = 250 n = 500

AIC K K K
K
0

0 1 2 3 0 1 2 3 0 1 2 3
0 0.600 0.192 0.130 0.078 0.612 0.164 0.142 0.082 0.556 0.198 0.120 0.126
1 0.000 0.656 0.214 0.130 0.00 0.590 0.256 0.154 0.000 0.572 0.254 0.174
2 0.000 0.002 0.712 0.286 0.000 0.000 0.656 0.344 0.000 0.000  0.656 0.344
3 0.000 0.000 0.010 0.990 0.000 0.000 0.000 1.000 0.000 0.000 0.000 1.000
BIC K K K
K
0

0 1 2 3 0 1 2 3 0 1 2 3
0  0.966 0.030 0.004 0.000 0.994 0.006 0.000 0.000 0.992 0.008 0.000 0.000
1 0.000 0.970 0.022 0.008 0.000 0.982 0.016 0.002 0.000 0.996 0.004 0.000
2 0.000 0.020 0.950 0.030 0.000 0.000 0.986 0.014 0.000 0.000 0.996 0.004
3 0.000 0.000 0.096 0.904 0.000 0.000 0.000 1.000 0.000 0.000 0.000 1.000
gBIC K K K
K
0

0 1 2 3 0 1 2 3 0 1 2 3
0 0.996 0.004 0.000 0.000 1.000 0.000 0.000 0.000 1.000 0.000 0.000 0.000
1 0.000 0.998 0.002 0.000 0.000 1.000 0.000 0.000 0.000 1.000 0.000 0.000
2 0.000 0.072  0.926 0.002 0.000 0.000 1.000 0.000 0.000 0.000 1.000 0.000
3 0.000 0.000 0.270 0.730 0.000 0.000 0.008 0.992 0.000 0.000 0.000 1.000
Davies K K K
K
0

0 1 2 3 0 1 2 3 0 1 2 3
0 0.982 0.014 0.004 0.000 0.994 0.006 0.000 0.000 0.992 0.008 0.000 0.000
1 0.000 0.994 0.004 0.002 0.000 0.986 0.006 0.008 0.000 0.994 0.002 0.004
2 0.000 0.000 0.990 0.010 0.000 0.000 0.998 0.002 0.000 0.000 1.000 0.000
3 0.000 0.000 0.682 0.318 0.000 0.000 0.112 0.888 0.000 0.000 0.000 1.000
Score K K K
K
0

0 1 2 3 0 1 2 3 0 1 2 3
0 0.986 0.014 0.000 0.000 0.976 0.024 0.000 0.000 0.992 0.008 0.000 0.000
1 0.000 0.996 0.004 0.000 0.000  0.986 0.014 0.000 0.000 0.998 0.002 0.000
2 0.000 0.000 0.996 0.004 0.000 0.000 0.990 0.010 0.000 0.000 0.999 0.001
3 0.012 0.048 0.286 0.654 0.000 0.000 0.016 0.984 0.000 0.000 0.000 1.000
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Conditional frequencies are reported in the rows of the Table, and the interpreta-
tion of the results is as follows. For instance, simulating a model with K0 = 0 and 
n = 100 , the AIC picks the right number of changepoints 60% of the times. There-
fore, a criterion that perfectly selects the right number of changepoints should report 
values equal to 1 in the main diagonal of the table, and zeros in all the other entries.

It appears evident that the AIC overestimates the number of changepoints more 
frequently than the other considered criteria. This is a reasonable result since it is 
well known that the AIC tends to overestimate the number of parameters. Also, this 
is the reason why it might seem to correctly pick the number of changepoints when 
K0 = 3 , as the percentage of correct identification approaches 1. This is because 
we have not considered alternative hypotheses with K0 > 3 , that would likely 
be selected. The BIC and gBIC seem to behave better, as well as the Davies’ and 
pseudo-score tests. An exception is represented by the case in which K0 = 3 and 
n = 100 , since Davies’ test underestimates the number of changepoints on average. 
Overall, we notice that the gBIC outperforms its competitors in almost all the con-
sidered scenarios, especially as n increases. Other simulation studies, omitted for 
brevity, show that a sample size larger than n = 500 leads to the same results.

We also explore 5-fold cross-validation (CV). Table 12 of the Appendix contains 
the percentages of the correctly selected number of changepoints by the CV criterion, 
based on the same 500 runs and three different sample sizes n ∈ {100, 250, 500} of 
the Gaussian response variable. We notice that CV leads to similar results if com-
pared to the AIC ones, performing only slightly better as n increases but with the 
additional disadvantage of requiring much more computational time. Based on 
these results, we believe the CV criterion is not worth exploring further with other 
response variables distributions.

Then, we perform other simulations, again  considering the same models 
of Table 1, with an additional non-broken-line variable zi , whose effect is set equal 
to � = 4 . The models considered are reported in Table 13 of the Appendix. We con-
sider both a continuous variable Z ∼ Beta(�1 = 1, �2 = 2) and a dichotomous vari-
able Z ∼ Bernoulli(� = 0.5) . These additional results are reported in Tables 14 and 
15 of the Appendix, respectively. Overall, we do not identify any relevant differ-
ences in the results when a non-broken-line variable is added to the linear predictor, 
especially as n increases.

In Table 3, we report the results of fitting logit models, whose linear predictors 
are reported in Table 4. We sum an additional error term to the linear predictors to 
make data more jittered. This is done to obtain the same degree of variability for the 
simulations from each considered distribution and to achieve a realistic compromise 
between simulated and real data.

Both information criteria and tests struggle to individuate the third change-
point even when n increases. The only exception is the AIC, whose performance 
is worse for K0 ∈ {0, 1, 2} , but better with K0 = 3 . As evident from Figure 3, this 
third changepoint corresponds to a moderate change in the slope of the relation-
ship between the response variable y and the segmented covariate x. The better 
performance of the AIC in this last scenario could indicate its ability to spot even 
slight changes in the segmented relation, in the Binomial case.
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Table 3  Percentages of correctly selected number of changepoints by each criterion (based on 500 runs 
and three different sample sizes n ∈ {100, 250, 500} ) - Binomial response variable

n = 100 n = 250 n = 500

AIC K K K
K
0

0 1 2 3 0 1 2 3 0 1 2 3
0 0.804 0.140 0.040 0.016 0.798 0.124 0.058 0.020 0.762 0.128 0.084 0.026
1 0.042 0.726 0.086 0.146 0.002 0.750 0.138 0.110 0.000 0.690 0.178 0.132
2 0.000 0.810 0.150 0.030 0.000 0.030 0.740 0.230 0.000 0.000 0.704 0.296
3 0.000 1.000 0.000 0.000 0.000 0.012 0.598 0.390 0.000 0.002 0.486 0.512
BIC K K K
K
0

0 1 2 3 0 1 2 3 0 1 2 3
0 0.986 0.012 0.002 0.000 0.996 0.004 0.000 0.000 1.000 0.000 0.000 0.000
1 0.370 0.620 0.008 0.002 0.064 0.926 0.010 0.000 0.000 1.000 0.000 0.000
2 0.014 0.898 0.086 0.002 0.000 0.314 0.674 0.012 0.000 0.052 0.930 0.018
3 0.000 1.000 0.000 0.000 0.000 0.306 0.652 0.042 0.000 0.034 0.888 0.078
gBIC K K K
K
0

0 1 2 3 0 1 2 3 0 1 2 3
0 0.998 0.002 0.000 0.000 1.000 0.000 0.000 0.000 1.000 0.000 0.000 0.000
1 0.720 0.280 0.000 0.000 0.314 0.686 0.000 0.000 0.022 0.978 0.000 0.000
2 0.058 0.918 0.024 0.000 0.000 0.698 0.302 0.000 0.000 0.300 0.698 0.002
3 0.000 1.000 0.000 0.000 0.028 0.688 0.276 0.008 0.000 0.296 0.698 0.006
Davies K K K
K
0

0 1 2 3 0 1 2 3 0 1 2 3
0 0.996 0.002 0.002 0.000 0.998 0.002 0.000 0.000 0.996 0.004 0.000 0.000
1 0.472 0.526 0.000 0.002 0.058 0.938 0.004 0.000 0.000 0.998 0.000 0.002
2 0.026 0.948 0.024 0.002 0.000 0.460 0.528 0.012 0.000 0.076 0.912 0.012
3 0.000 1.000 0.000 0.000 0.000 0.400 0.562 0.038 0.000 0.036 0.908 0.056
Score K K K
K
0

0 1 2 3 0 1 2 3 0 1 2 3
0 0.998 0.002 0.000 0.000 0.996 0.004 0.000 0.000 0.978 0.022 0.000 0.000
1 0.558 0.442 0.000 0.000 0.088 0.904 0.008 0.000 0.002 0.992 0.006 0.000
2 0.042 0.916 0.038 0.004 0.002 0.384 0.592 0.022 0.000 0.082 0.898 0.020
3 0.000 1.000 0.000 0.000 0.008 0.244 0.668 0.080 0.000 0.026 0.842 0.132

Table 4  Generalized linear 
segmented regression models 
fitted for the simulations - 
Binomial case

K
0

linear predictor

0 �i = −1 + 11xi

1 �i = −1 + 11xi − 20(xi − 0.2)+

2 �i = −1 + 11xi − 20(xi − 0.2)+ + 25(xi − 0.5)+

3 �i = −1 + 11xi − 20(xi − 0.2)+ + 25(xi − 0.5)+ − 14(xi − 0.8)+
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Finally, we carry out simulations under the Poisson case. Table 5 contains the 
results of fitting Poisson models, whose linear predictors are reported in Table 6. 
For ease of comparison, we set the same sample sizes used for the Binomial and 
Gaussian cases, even though the results show that a larger sample size could be 
needed to achieve equally good results. In detail, the information criteria, espe-
cially the AIC, almost completely fails in selecting the correct number of change-
points. Among the information criteria, the gBIC achieves a good performance 
when K0 ≠ 0 . The same holds for the Davies’ test for all the sample sizes.

Table 5  Percentages of the correctly selected number of changepoints by each criterion (based on 500 
runs and three different sample sizes n ∈ {100, 250, 500} ) - Poisson response variable

n = 100 n = 250 n = 500

AIC K K K
K
0

0 1 2 3 0 1 2 3 0 1 2 3
0 0,000 0,028 0,216 0,756 0,000 0,016 0,212 0,772 0,000 0,012 0,192 0,796
1 0,000 0,082 0,264 0,654 0,000 0,020 0,238 0,742 0,000 0,020 0,278 0,702
2 0,000 0,000 0,316 0,684 0,000 0,000 0,196 0,804 0,000 0,000 0,154 0,846
3 0,000 0,000 0,022 0,978 0,000 0,000 0,000 1,000 0,000 0,000 0,000 1,000
BIC K K K
K
0

0 1 2 3 0 1 2 3 0 1 2 3
0 0,004 0,050 0,268 0,678 0,002 0,034 0,240 0,724 0,000 0,030 0,226 0,744
1 0,000 0,352 0,272 0,376 0,000 0,296 0,310 0,394 0,000 0,300 0,354 0,346
2 0,000 0,008 0,564 0,428 0,000 0,000 0,536 0,464 0,000 0,000 0,478 0,522
3 0,000 0,000 0,040 0,960 0,000 0,000 0,000 1,000 0,000 0,000 0,000 1,000
gBIC K K K
K
0

0 1 2 3 0 1 2 3 0 1 2 3
0 0,016 0,084 0,292 0,608 0,020 0,078 0,254 0,648 0,024 0,092 0,256 0,628
1 0,000 0,554 0,238 0,208 0,000 0,620 0,208 0,172 0,000 0,672 0,222 0,106
2 0,000 0,024 0,664 0,312 0,000 0,000 0,734 0,266 0,000 0,000 0,758 0,242
3 0,000 0,004 0,084 0,912 0,000 0,000 0,002 0,998 0,000 0,000 0,000 1,000
Davies K K K
K
0

0 1 2 3 0 1 2 3 0 1 2 3
0 0,032 0,054 0,032 0,880 0,050 0,028 0,028 0,888 0,034 0,038 0,026 0,900
1 0,000 0,624 0,174 0,200 0,000 0,614 0,174 0,212 0,000 0,646 0,186 0,168
2 0,000 0,032 0,698 0,270 0,000 0,000 0,710 0,290 0,000 0,000 0,678 0,322
3 0,000 0,024 0,156 0,820 0,000 0,000 0,008 0,992 0,000 0,000 0,000 1,000
Score K K K
K
0

0 1 2 3 0 1 2 3 0 1 2 3
0 0,350 0,288 0,152 0,210 0,364 0,242 0,186 0,208 0,358 0,294 0,174 0,174
1 0,000 0,790 0,166 0,044 0,000 0,752 0,198 0,050 0,000 0,806 0,174 0,020
2 0,000 0,030 0,750 0,220 0,000 0,000 0,816 0,184 0,000 0,000 0,778 0,222
3 0,000 0,612 0,132 0,256 0,000 0,542 0,000 0,458 0,000 0,454 0,000 0,546
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6  Applications to real data

6.1  Application to crime data

In this subsection, we apply the sequential procedure to select the number of change-
points to the valenciacrimes dataset available in the stopp package in R 
(D’Angelo and Adelfio 2023). This database includes information about the crime 
events that occurred in Valencia, Spain, in 2019. Time and space location of the events 
represent the most important variables of the dataset, but variables based on distances 
from events to “places of concentration” are also available, including the Euclidean dis-
tance from the nearest: atm, bank, bar, cafe, industrial site, marked, nightclub, police, 
pub, restaurant, or taxi.

In detail, we are interested in exploring the relationship between the number of 
crimes that occurred and the hour of the event occurrence. To this aim, we compute the 
hourly number of crimes within a day (number_of_crimes), as the yearly accu-
mulated number of crimes according to the variable week_day. This makes the num-
ber of statistical units equal to 168, which is the number of weekdays times the hours 
within a day. Therefore, we first fit a Poisson regression model

that does not assume any segmented relationship between the covariate crime_
hour and the response variable number_of_crimes, i.e. K = 0.

The summary of the estimated coefficients of model (3) is reported in Table 7.
The second step is to test if this relationship can actually be assumed to be broken-

line. This would indicate that the expected number of crimes significantly changes as 
hours go by. To this aim, we estimate three segmented regression models of the form:

(3)log(�[������_��_������i]) = �0 + �1�����_����i

(4)

log(�[������_��_������i]) = �0 + �1������_����i +

K∑

k=1

�k(������_����i − �k)+

Table 6  Generalized linear 
segmented regression models 
fitted for the simulations - 
Poisson case

K
0

linear predictor

0 �i = 4 + 3xi

1 �i = 4 + 3xi − 6(xi − 0.25)+

2 �i = 4 + 3xi − 6(xi − 0.25)+ − 4(x − 0.5)+

3 �i = 4 + 3xi − 6(xi − 0.25)+ − 4(x − 0.5)+ + 7.5(xi − 0.75)+

Table 7  Coefficients of non-
segmented model (3)

estimate s.e. p-value

� 3.863 0.021 <2e-16 ***
�
1

0.024 0.001 <2e-16 ***
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with K = 1, 2, 3.
In Table 8, we report the information criteria values for each estimated model and 

the p-values for each step of the sequential hypothesis testing procedure outlined in 
Section 4.

A segmented relationship is clearly more appropriate compared to a classical lin-
ear relationship, given that both the information-based criteria and the sequential 
procedure never select the model with K = 0 . In detail, all the considered informa-
tion-based criteria select the model with K = 3 . Differently, the procedure based on 
sequential hypothesis testing selects the number of changepoints for which the cor-
responding test is no longer significant, that is unequivocally K = 2.

Following the results of the simulation studies, which have shown that the pro-
posed sequential procedure outperforms its information-based criteria competitors 
in Poisson segmented models, we choose the model with K̂ = 2.

The summary of the coefficients of the selected model is reported in Table 9, and 
the broken-line relationship between the two variables is in Figure 1.

In particular, 𝛽1 is the effect of crime_hour when xi < �̂�1 , that is, when the 
crime occurred before 10 am, while 𝛿1 and 𝛿2 are the changes in the slope when 
�̂�1 < xi < �̂�2 and xi > �̂�2 , respectively. The positive value of 𝛿1 indicates an increase 
in the number of crimes after 10 am, while the negative value of 𝛿2 indicates a 
decrease after 1 pm. Nevertheless, the sum of 𝛽1 + 𝛿1 + 𝛿2 is still positive, indicating 
a positive relationship.

In summary, the relationship between the number of crimes and the time of crime 
occurrence is confirmed. Furthermore, we have proven the presence of two change-
points in the hour of crime occurrence, after which the number of crimes changes. 

Table 8  Values of the 
information-based criteria of the 
fitted models (4) and p-values 
of each step of the sequential 
procedure to be compared to 
�∕3 = 0.016 for the crime data

K

Criterion 0 1 2 3

AIC 1972 1418 1394 1380
BIC 1978 1430 1412 1405
gBIC 1984 1443 1432 1431
Davies’ test 0.000 0.000 0.025 0.020
Score test 0.000 0.000 0.171 0.656

Table 9  Coefficients of the 
chosen segmented model with 
K̂ = 2 for the crime data

estimate s.e. p-value

�
0

4.483 0.032 <2e-16 ***
�
1

−0.093 0.006 <2e-16 ***
�
1

0.274 0.081 -
�
2

−0.128 0.081 -
�
1

10.108 0.465 -
�
2

12.819 0.885 -
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In detail, the number of crimes decreases from midnight to 10 am and then increases 
after 10 am, but more rapidly between 10 am and 1 pm.

This result is achieved thanks to the flexibility of the approach. Note that other 
non-parametric approaches, such as splines, could well fit the data. Our proposed 
procedure allows to understand the estimated times of the changing trend, which is 
potentially crucial to policymakers. In addition, the main advantage of applying seg-
mented models lies in the possibility of estimating and, therefore, interpreting the 
slopes, that is the risk of observing a crime.

6.2  Application to global land temperature data

In this subsection, we apply the sequential procedure to select the number of change-
points to the global land temperature data available from the https:// www. ncei. noaa. 
gov/ access/ monit oring/ global- tempe rature- anoma lies/ anoma lies site. This database 
includes information about the global annual time series on temperature anoma-
lies, with respect to the 20th century average (1901-2000). Monthly and annual 
global anomalies are available through the most recent complete month and year, 
respectively.

Here we only analyze land data, excluding ocean temperatures, and we consider 
all the available years, that is, from 1850 to 2022. As the main interest lies in iden-
tifying the years where a shift in the temperature anomalies trend occurred, we fit 
segmented regression models with Gaussian distribution for the response variable. 
The only covariate for which a piecewise relationship with the temperature anoma-
lies can be assumed is the year of observation.

Therefore, we fit four models, starting from the one with no changepoints, up 
to the one with three changepoints.

Fig. 1  Segmented relationship between the number of crimes and the hour of event occurrence for the 
crime data. The points are located in correspondence with the estimated changepoints

https://www.ncei.noaa.gov/access/monitoring/global-temperature-anomalies/anomalies
https://www.ncei.noaa.gov/access/monitoring/global-temperature-anomalies/anomalies
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Table 10 reports the information criteria values for each estimated model and 
the p-values for each step of the sequential hypothesis testing procedure.

Note that the information criteria always select three changepoints, while our 
proposed procedure always selects one, regardless of using the Davies’ or Score 
test. This result is in line with the known fact of a uniquely crucial changing trend 
in recent years (Yu and Ruggieri 2019).

The estimated broken-line relationship is depicted in Figure  2. It is easy to 
observe the existence of three changepoints, correctly identified by the infor-
mation criterion methods, while our hypothesis testing method detects the most 
important unique crucial changing trend.

The coefficients estimated by the selected model are reported in Table 11, indi-
cating 1979 as the changepoint year. Yu and Ruggieri (2019) detected 1963 as 
the unique changepoint in the temperature anomalies of land-based records. Note, 
however, that a changepoint for their method could either represent a change in 
the mean, trend, or variance, while our method is particularly suited for assessing 
the presence of a change in the effect of the segmented covariate. For this reason, 
we attribute differences in the location of estimated changepoints to the different 
nature of the methodologies.

Table 10  Values of the 
information-based criteria of the 
fitted models (4) and p-values 
of each step of the sequential 
procedure to be compared to 
�∕3 = 0.016 for the global land 
temperature data

K

Criterion 0 1 2 3

AIC 54 −136 −143 −171
BIC 64 −120 −121 −143
gBIC 73 −104 −97 −113
Davies’ test 0.000 0.057 0.160 0.619
Score test 0.000 0.426 0.110 0.086

Fig. 2  Segmented relationship between the temperature anomalies and the years for the global land tem-
perature data. The red point is located in correspondence with the estimated changepoint
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Moving to the estimated effects, we obtain that temperatures were increasing at a 
rate of 0.05 C◦/decade prior to the changepoint year, while they increased at a rate of 
0.28 C◦/decade afterwards. According to Yu and Ruggieri (2019), these temperature 
increases are 0.06 and 0.27, respectively before and after their estimated changepoint.

7  Conclusions

In this paper, we tackle the problem of selecting the optimal number of changepoints 
in segmented regression models. Firstly, we provide an overview of segmented regres-
sion models and a review of various methods used to estimate the number of change-
points. The effectiveness of these methods is assessed through simulation studies.

One well-established procedure, proposed by Kim et al. (2000), uses sequential 
testing to identify the existence of a single changepoint, but is unable to test for 
additional changepoints. To address this limitation, we propose a sequential proce-
dure and evaluate its performance through simulations. We also compare the perfor-
mance of our proposed method with that of information-based criteria in simulated 
studies. Our results show that the gBIC outperforms the other criteria for Gaussian 
response variables. Moreover, our sequential procedure performs well in the Gauss-
ian case and is overall superior to information-based criteria for Binomial and Pois-
son response variables, particularly when multiple changepoints are present. Note, 
however, that the satisfactory performance of our proposed testing procedure per-
tains to some specific scenarios, and therefore, one should take this into account 
when applying the procedure.

These results have some limitations. We run the simulation studies fixing a lim-
ited number of changepoints, namely Kmax = 3 . Of course, our method can be imple-
mented to any fixed Kmax . However, a small Kmax is often reasonable in real-life appli-
cations, as shown in Priulla et al. (2021), which deals with higher education data.

Moreover, a further topic to explore in the future is the quantification of uncertainty of 
the number of changepoints selected. In addition, a proper criterion to establish a proper 
Bonferroni correction could be studied, given that the current implementation depends 
on the a priori chosen Kmax . Note that the applications presented in this paper came out 
robust to the current choice of the Bonferroni correction.

Furthermore, we have shown the applicability of our methods to the urban con-
text through the analysis of crime data, and to environmental phenomena. In particu-
lar, concerning the latter application, our method provides results in line with previ-
ous works on temperature anomaly data. In general, segmented regression models 

Table 11  Coefficients of chosen 
segmented model with K̂ = 1 
for the global land temperature 
anomalies data

estimate s.e. p-value

�
0

−10.257 0.726 <2e-16 ***
�
1

0.005 0.001 <2e-16 ***
�
1

0.028 0.002 -
�
1

1978.809 1.990 -
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are valuable tools for addressing diverse environmental challenges and driving sus-
tainable practices across various fields.

Following such considerations, we believe our automatic procedure for selecting 
the number of changepoints in regression models will help address many real-life 
applications in environmental research.

Appendix. Supplementary material

Fig. 3  Simulated data for the Gaussian, Binomial, and Poisson scenarios (by row) and for each of the 
number of changepoints considered in the experiments (by columns), with n = 100 . On the x-axis, the 
segmented variables, and on the y-axis, the linear predictors

Table 12  Percentages of the correctly selected number of changepoints by the CV criterion (based on 
500 runs and three different sample sizes n ∈ {100, 250, 500} ) - Gaussian response variable

n = 100 n = 250 n = 500

CV K K K

K
0

0 1 2 3 0 1 2 3 0 1 2 3

0 0.584 0.284 0.096 0.036 0.738 0.174 0.062 0.026 0.782 0.184 0.052 0.008
1 0.000 0.614 0.288 0.098 0.000 0.738 0.198 0.064 0.000 0.710 0.212 0.078
2 0.000 0.014 0.590 0.270 0.000 0.002 0.688 0.310 0.000 0.000 0.712 0.288
3 0.000 0.000 0.288 0.712 0.000 0.000 0.046 0.954 0.000 0.000 0.002 0.998
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Table 13  Linear segmented regression models fitted for the simulations, with an additional variable 
whose effect is non broken-line

K
0

model

0 yi = 2 + 4zi + 15xi + �i

1 yi = 2 + 4zi + 15xi − 8(xi − 0.2)+ + �i

2 yi = 2 + 4zi + 15xi − 8(xi − 0.2)+ − 5(xi − 0.5)+ + �i

3 yi = 2 + 4zi + 15xi − 8(xi − 0.2)+ − 5(xi − 0.5)+ + 10(xi − 0.75)+ + �i

Table 14  Percentages of correctly selected number of changepoints by each criterion (based on 500 
runs and three different sample sizes n ∈ {100, 250, 500} ) - Gaussian response variable and covariate 
Z ∼ Beta(�

1
= 1, �

2
= 2)

n = 100 n = 250 n = 500

AIC K K K
K
0

0 1 2 3 0 1 2 3 0 1 2 3
0 0.578 0.182 0.130 0.110 0.584 0.190 0.140 0.086 0.558 0.178 0.146 0.118
1 0.000 0.644 0.202 0.154 0.000 0.598 0.252 0.150 0.000 0.584 0.240 0.176
2 0.000 0.000 0.608 0.392 0.000 0.000 0.646 0.354 0.000 0.000 0.632 0.368
3 0.000 0.000 0.008 0.992 0.000 0.000 0.000 1.000 0.000 0.000 0.000 1.000
BIC K K K
K
0

0 1 2 3 0 1 2 3 0 1 2 3
0 0.980 0.018 0.002 0.000 0.988 0.012 0.000 0.000 0.994 0.006 0.000 0.000
1 0.000 0.974 0.026 0.000 0.000 0.992 0.008 0.000 0.000 0.990 0.008 0.002
2 0.000 0.012 0.924 0.064 0.000 0.000 0.984 0.016 0.000 0.000 0.996 0.004
3 0.000 0.000 0.082 0.918 0.000 0.000 0.000 1.000 0.000 0.000 0.000 1.000
gBIC K K K
K
0

0 1 2 3 0 1 2 3 0 1 2 3
0 1.000 0.000 0.000 0.000 0.998 0.002 0.000 0.000 1.000 0.000 0.000 0.000
1 0.000 0.998 0.002 0.000 0.000 1.000 0.000 0.000 0.000 1.000 0.000 0.000
2 0.000 0.086 0.914 0.000 0.000 0.000 1.000 0.000 0.000 0.000 1.000 0.000
3 0.000 0.000 0.260 0.740 0.000 0.000 0.014 0.986 0.000 0.000 0.000 1.000
Davies K K K
K
0

0 1 2 3 0 1 2 3 0 1 2 3
0 0.994 0.006 0.000 0.000 0.990 0.010 0.000 0.000 0.996 0.004 0.000 0.000
1 0.000 0.996 0.004 0.000 0.000  0.998 0.002 0.000 0.000 0.988 0.008 0.004
2 0.000 0.372 0.624 0.004 0.000 0.022 0.976 0.002 0.000 0.000 0.998 0.002
3 0.000 0.000 0.690 0.310 0.000 0.000 0.144 0.856 0.000 0.000 0.000 1.000
Score K K K
K
0

0 1 2 3 0 1 2 3 0 1 2 3
0 0.978 0.022 0.000 0.000 0.980 0.020 0.000 0.000 0.984 0.016 0.000 0.000
1 0.000 0.994 0.006 0.000 0.000 0.994 0.006 0.000 0.000 0.994 0.006 0.000
2 0.000 0.322 0.674 0.004 0.000 0.008 0.988 0.004 0.000 0.000 0.996 0.004
3 0.050 0.052 0.280  0.618 0.000 0.000 0.008 0.992 0.000 0.000 0.000 1.000
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Table 15  Percentages of correctly selected number of changepoints by each criterion (based on 500 
runs and three different sample sizes n ∈ {100, 250, 500} ) - Gaussian response variable and covariate 
Z ∼ Bernoulli(� = 0.5)

n = 100 n = 250 n = 500

AIC K K K
K
0

0 1 2 3 0 1 2 3 0 1 2 3
0 0.602 0.186 0.128 0.084 0.616 0.162 0.116 0.106 0.590 0.200 0.118 0.092
1 0.000 0.602 0.232 0.166 0.000 0.624 0.236 0.140 0.000 0.556 0.296 0.148
2 0.000 0.000 0.666 0.334 0.000 0.000 0.924 0.076 0.000 0.000 0.682 0.318
3 0.000 0.000 0.004 0.996 0.000 0.000 0.000 1.000 0.000 0.000 0.000 1.000
BIC K K K
K
0

0 1 2 3 0 1 2 3 0 1 2 3
0 0.970 0.024 0.006 0.000 0.996 0.002 0.002 0.000 0.998 0.002 0.000 0.000
1 0.000 0.972 0.026 0.002 0.000 0.988 0.012 0.000 0.000 0.990 0.010 0.000
2 0.000 0.018 0.926 0.056 0.000 0.000 0.998 0.002 0.000 0.000 0.998 0.002
3 0.000 0.000 0.048 0.952 0.000 0.000 0.000 1.000 0.000 0.000 0.000 1.000
gBIC K K K
K
0

0 1 2 3 0 1 2 3 0 1 2 3
0 0.992 0.008 0.000 0.000 1.000 0.000 0.000 0.000 1.000 0.000 0.000 0.000
1 0.000 0.992 0.008 0.000 0.000 1.000 0.000 0.000 0.000 0.998 0.002 0.000
2 0.000 0.088 0.908 0.004 0.000 0.000 0.998 0.002 0.000 0.000 1.000 0.000
3 0.000 0.000 0.228 0.772 0.000 0.000 0.000 1.000 0.000 0.000 0.000 1.000
Davies K K K
K
0

0 1 2 3 0 1 2 3 0 1 2 3
0 0.988 0.012 0.000 0.000 0.996 0.004 0.000 0.000 0.990 0.010 0.000 0.000
1 0.000 0.992 0.004 0.004 0.000 0.992 0.006 0.002 0.000 0.998 0.002 0.000
2 0.000 0.394 0.600 0.006 0.000 0.002 0.998 0.000 0.000 0.000 0.998 0.002
3 0.000 0.000 0.764 0.236 0.000 0.000 0.000 1.000 0.000 0.000 0.000 1.000
Score K K K
K
0

0 1 2 3 0 1 2 3 0 1 2 3
0  0.968 0.032 0.000 0.000 0.986 0.014 0.000 0.000 0.984 0.016 0.000 0.000
1 0.000 0.996 0.004 0.000 0.000 0.990 0.010 0.000 0.000 0.992 0.008 0.000
2 0.000 0.510 0.488 0.002 0.000 0.000 0.998 0.002 0.000 0.000 0.992 0.008
3 0.052 0.082 0.338 0.528 0.000 0.000 0.000 1.000 0.000 0.000 0.000 1.000
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Code availability All the analyses are carried out through the statistical software R (R Core Team 2023) 
and are available at the GitHub link https:// github. com/ nicol ettad angelo/ SelSe gment ed together with the 
data.
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Commons licence, and indicate if changes were made. The images or other third party material in 
this article are included in the article’s Creative Commons licence, unless indicated otherwise in 
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