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Abstract
Purpose To investigate the feasibility of an artificial intelligence (AI)-based semi-automated segmentation for the extraction 
of ultrasound (US)-derived radiomics features in the characterization of focal breast lesions (FBLs).
Material and methods Two expert radiologists classified according to US BI-RADS criteria 352 FBLs detected in 352 
patients (237 at Center A and 115 at Center B). An AI-based semi-automated segmentation was used to build a machine 
learning (ML) model on the basis of B-mode US of 237 images (center A) and then validated on an external cohort of B-mode 
US images of 115 patients (Center B).
Results A total of 202 of 352 (57.4%) FBLs were benign, and 150 of 352 (42.6%) were malignant. The AI-based semi-
automated segmentation achieved a success rate of 95.7% for one reviewer and 96% for the other, without significant differ-
ence (p = 0.839). A total of 15 (4.3%) and 14 (4%) of 352 semi-automated segmentations were not accepted due to posterior 
acoustic shadowing at B-Mode US and 13 and 10 of them corresponded to malignant lesions, respectively. In the validation 
cohort, the characterization made by the expert radiologist yielded values of sensitivity, specificity, PPV and NPV of 0.933, 
0.9, 0.857, 0.955, respectively. The ML model obtained values of sensitivity, specificity, PPV and NPV of 0.544, 0.6, 0.416, 
0.628, respectively. The combined assessment of radiologists and ML model yielded values of sensitivity, specificity, PPV 
and NPV of 0.756, 0.928, 0.872, 0.855, respectively.
Conclusion AI-based semi-automated segmentation is feasible, allowing an instantaneous and reproducible extraction of 
US-derived radiomics features of FBLs. The combination of radiomics and US BI-RADS classification led to a potential 
decrease of unnecessary biopsy but at the expense of a not negligible increase of potentially missed cancers.
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Introduction

Breast cancer is the most common cancer in women over-
all and the fifth leading cause of cancer mortality world-
wide, with 685,000 deaths in 2020 [1]. Because of its 
incidence and clinical impact, early and accurate cancer 
detection and characterization is of utmost importance to 
reduce breast cancer mortality and to improve the quality 
of life, by limiting the need of neoadjuvant or adjuvant 
therapies and allowing patients to be treated with breast 
conserving surgery [2].

In recent years, artificial intelligence (AI) has been 
introduced in the clinical field, enabling useful support 
of decision-making process of clinicians [3, 4]. Under the 
assumption that biomedical images contain information 
not visible by the naked human eye but still detectable via 
quantitative analysis, radiomics aims to extract the infor-
mation 'hidden' behind the pixels, by means of mathemati-
cally defined features able to model the texture/patterns of 
the image [5, 6]. This is of relevance, considering that the 
reported 16% of breast cancers that are missed by radiolo-
gists likely reflect limitations in image perception by the 
human eye [7]. In particular, tree ensemble algorithms, 
such as XGBoost, have proven effective for classification 
in small datasets [8, 9] and widely used in radiomic works 
[10, 11].

Radiomics approach has been applied with encouraging 
results to X-ray-based techniques and MRI for breast can-
cer detection, treatment response assessment and disease 
progression monitoring [12, 13]. More recently, radiom-
ics analysis has been applied to breast ultrasound (US), 
focusing either on the detection and characterization of 
breast cancer or on the prediction of biological behavior, 
nodal status and molecular subtypes [14–17]. Ciritis et al. 
evaluated a deep convolutional neural network (dCNN) 
based on 1019 US images from 582 patients for detec-
tion, highlighting and classification breast lesions mimick-
ing human decision making, with a reported AUC on the 
internal dataset of 83.8 (external 96.7) for the dCNN and 
84.6 ± 2.3 (external 90.9 ± 2.9) for two independent expe-
rienced radiologists [18]. A multicenter study reported that 
a dCNN based on 4828 US images from 1275 patients 
with primary breast cancer enabled the assessment of 
breast cancer molecular subtypes with a diagnostic accu-
racy ranging from 80.07 to 98.83% in two different test 
cohorts [17].

Nevertheless, radiomics is a complex, multistep pro-
cess including image acquisition and segmentation, feature 
extraction and selection, classifier modeling and valida-
tion [19]. In particular, the task of segmentation is cru-
cial to obtain meaningful features but, at the same time, it 
is prone to error and is very time-consuming, especially 

when it is manually performed. Within this scenario, 
recent advances in artificial intelligence (AI) have made 
possible breast masses detected at ultrasound to be auto-
matically contoured and characterized according to the 
BI-RADS US lexicon [20, 21].

We hypothesized that an artificial intelligence-based 
semi-automated lesion segmentation may speed the process 
of an efficient and reproducible extraction of ultrasound-
derived radiomics features. Secondly, on the basis of the 
extracted features, we developed and tested a specific radi-
omics model for the characterization of focal breast lesions 
(FBLs).

Materials and methods

Study design, patients and imaging data selection

Institutional ethical committee approval was obtained, and 
full written informed consent was obtained for this prospec-
tive study. Our study complied with the terms of the Decla-
ration of Helsinki [22].

Figure 1 shows the detailed flowchart for the patient 
selection. Between September 2021 and July 2022, 1850 
consecutive patients underwent high resolution breast US 
(HRUS) in two different Breast Units. One thousand two 
hundred patients were scanned at the Breast Unit of the Poli-
clinico Universitario ‘P. Giaccone’ in Palermo, Italy (Center 
A) and 650 patients underwent HRUS at the Breast Unit 
of the Hospital Fondazione Istituto ‘G. Giglio’ in Cefalù 
(Palermo, Italy) (Center B).

Two experienced breast radiologists (one for each center, 
more than 30 years of experience in breast imaging, includ-
ing ultrasound) performed HRUS by means of two identical 
ultrasound units, each provided with the same 3–12 MHz 
linear transducer (RS85 Samsung Medison, Co. Ltd.). The 
two radiologists classified HRUS findings according to US 
BI-RADS criteria [23]. All the US BI-RADS 3, 4 and 5 
lesions were included. In patients with multiple lesions, only 
the one best satisfying the inclusion criteria was selected. 
All the pertaining images were stored on the hard disks of 
the US equipment and on the respective institutional PACS 
in DICOM format.

In both centers, indications for breast US included: (1) a 
palpable mass detected on physical examination; (2) dense 
breasts; (3) detected lesions from adjunct mammogra-
phy examination; (4) patients with mastodynia; (5) young 
patients having family history or (6) in a follow-up for 
benign breast nodules (7) patients must not have undergone 
any intervention or surgery on lesions before US examina-
tion. Exclusion criteria included lack of adequate stand-
ard of reference (refusal to undergo biopsy or inconsistent 
follow-up).



La radiologia medica 

Fig. 1  Flowchart for the patient selection
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Standard of reference (SOR)

For the purpose of this study, US-guided core-biopsy was 
considered as SOR for all the FBLs classified as BI-RADS 
4 or 5. For all lesions classified as BI-RADS 3, US findings 
at 6-, 12- and 24-month follow-up were considered as SOR. 
In particular, stability or size decrease during follow-up was 
considered typically benign US findings.

Radiomics analysis

The radiomics process involves several steps: ROI segmen-
tation, feature extraction, features selection, model building 
and validation. In Fig. 2, the overall flow diagram of the 
implemented methodology is reported.

The information and metadata—contained in the DICOM 
header—about patients involved in that study were deleted 
before starting the analysis. In particular, using the MAT-
LAB IDE a custom-made tool was implemented, able to 
load the ultrasound images, extract the segmentation mask 
and to convert them (image and corresponding mask) into 
NIFTI (.nii) format. During this conversion, all metadata 
(e.g., patient name, date of birth, etc.) were discarded. Only 
metadata related to the pixel matrix (e.g., pixel spacing, 
pixel size, etc.) were retained.

Lesion segmentation

Concerning the segmentation, we used S-Detect™, a soft-
ware commercially available and licensed for clinical use, 
installed and running on the Samsung RS85 ultrasound sys-
tem [24]. In particular, S-Detect™ is an artificial intelligence 
software based on a convolutional neural network (Samsung 
Medison Co., Ltd, South Korea) that has been trained to 
classify focal breast lesions according to ACR US BI-RADS 
lexicon using over 10,000 breast scans against ‘gold stand-
ard’ biopsy assessments. By placing an operator-defined 

marker within the FBL, S-Detect™ automatically and 
instantaneously draws the contour of the lesion. The operator 
can either accept the automatically defined ROI or modify 
it manually. The radiologist was asked to take note of the 
acceptance or not of the suggested segmentation.

In this study, two radiologists extracted from each 
B-mode image the breast lesion by means of S-Detect™. 
To assess and validate the segmentation results, two addi-
tional experienced radiologists (one for each center, more 
than 5 years of experience in breast imaging, including ultra-
sound) reviewed all the stored images and selected the most 
representative US B-mode image of each FBL.

Radiomic feature extraction and selection

Radiomic features were extracted from the segmented US 
images of both centers using PyRadiomics, a toolkit com-
pliant with the Image Biomarkers Standardization Initiative 
[25]. PyRadiomics extracted a total a 102 unfiltered radiomic 
features, belonging to the following categories:

• Nine features belonging to shape 2D category, related to 
two-dimensional size and shape of the lesion, consider-
ing the segmentation mask

• Eighteen features belonging to first-order (FO) category: 
describe the voxel intensities distribution

• Twenty-four features belonging to gray-level co-
occurrence matrix (GLCM) category, modeling spatial 
relationship between pixels, highlighting property of 
uniformity, homogeneity, randomness and linear depend-
encies [26]

• Sixteen features belonging to gray-level size zone matrix 
(GLSZM) category, describing intensity variations or the 
homogeneity distribution of regions [27]

• Sixteen features belonging to gray-level run length matrix 
(GLRLM) category, model the texture in a specific spa-
tial direction [28]

Fig. 2  The flow diagram of the implemented methodology for radiomics analysis
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• Fourteen features belonging to gray-level dependence 
matrix (GLDM) category, quantities dependencies 
among gray level of pixels [29]

• Five features belonging to neighboring gray tone dif-
ference matrix (NGTDM) category, referring to spatial 
relationship among pixels, approaching the human image 
perception [30].

Then, a preprocessing phase—aimed at obtaining a subset 
of robust, non-redundant and informative features—was per-
formed [31, 32]. Successively, the sequential feature selector 
algorithm combined with the XGBoost classifier was used 
to select the most discriminating features. XGBoost is one 
of the most common tree ensemble algorithms, capable of 
minimizing the loss function of the model by adding weak 
learners using gradient descent (boosting ensemble method) 
[33].

Training and external validation

The setup of the predictives models, based on a XGBoost 
classifier, trained/tested using a stratified tenfold CV pro-
cedure repeated 20 times on the Center A dataset. Two dif-
ferent input configurations were considered: (a) BI-RADS 
only and (b) BI-RADS + radiomic features. Figure 2 outlines 
the proposed approach for breast cancer characterization 
exploiting the BI-RADS and US-derived radiomic features. 
The main hyper-parameters used in the training phase are: 
num. of estimators: 100; learning rate: 0.3; booster: gbtree; 
objective function: binary logistic.

The external validation of predictive models was car-
ried out on an external cohort consisting of the dataset from 
center B.

XGBoost model was used to classify ‘malignant’ vs. 
‘benign’ FBLs. XGBoost is well established as a standard 
tool to process tabular data and improve performance over 
deep architectures [34]. The reason why we used shallow 
(not deep) machine learning techniques is twofold. The first 
is the need for explainability: shallow learning and explain-
able methods provide insights into the features driving their 
decisions, allowing clinicians to understand the reasoning 
behind the system’s recommendations [35]. The second is 
the training in small data scenarios: deep learning methods 
are well known to require huge amounts of data for train-
ing. The use of radiomic features enables the use of shallow 
learning methods, which remain attractive for training in 
small dataset scenarios.

Clinical explanation of the predictive model

To implement the explainability, mandatory in clinical sce-
narios, the relative importance—by quantifying the Gini 

importance—was used to evaluate the weight of each feature 
in the final prediction [36].

Statistical analysis

Statistical and computational analyses were performed using 
the MATLAB® R2020b environment (MathWorks, Natick, 
MA, USA). Continuous normally distributed variables were 
reported as mean and standard deviation (SD), while cat-
egorical variables were reported as number and percentage 
of patients with the specific characteristics.

For ‘Benign’ and ‘Malignant’ distribution comparisons, 
the nonparametric Wilcoxon rank-sum test (Mann–Whitney 
U test) was used, using a significance level of 0.05.

The used evaluation metrics were the accuracy, sensitiv-
ity, specificity, f1-score and AUROC, along with positive 
predictive value (PPV) and negative predictive value (NPV) 
to better investigate true positive and true negative rates, 
respectively [37].

For comparing matched samples (obtained by the two 
models, exploiting only BI-RADS and BI-RADS + radi-
omic), the nonparametric Wilcoxon signed-rank test on 
paired samples was used.

Finally, for comparing the diagnostic accuracy of BI-
RADS and BI-RADS + Radiomics, the z test for proportions 
was used. P < 0.05 was chosen as the cutoff for statistical 
significance.

Results

According to selection criteria, a total of 352 FBLs (size 
range: 3–90 mm; mean size ± SD: 14.9 ± 9.1 mm) were 
detected in 352 patients (350 women, 2 men; age range: 
17–89 years; mean age ± SD: 52.6 ± 14.9 years). According 
to SOR, 202 out of 352 (57.4%) FBLs were benign, and 150 
out of 352 (42.6%) were malignant (Table 1).

Table 2 details the acceptance rate of AI-based semi-
automated lesion segmentation by two radiologists, which 
showed no statistically significant difference (p = 0.839). 
Fifteen (4.3%) and 14 (4%) of 352 AI-based semi-auto-
mated lesion segmentations were not accepted by the two 
reviewers, respectively. Among these unaccepted segmenta-
tions, 13 and 10 were malignant, respectively. All of these 
lesions showed a posterior acoustic shadowing at B-Mode 
US (Fig. 3).

Radiomic features extraction and selection

A total of 103 unfiltered radiomic features were extracted 
from the US images, belonging to the following catego-
ries [38]: (a) first-order intensity histogram statistics; (b) 
gray-level co-occurrence matrix features; (c) gray-level run 
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length matrix; (d) gray-level size zone matrix; (e) gray-
level dependence matrix; (f) neighboring gray tone differ-
ence matrix. The SFS algorithm has been exploited to select 
the most discriminating features, used to feed the XGBoost 
classifier.

Predictive model development

The cohort of 237 patients selected at Center A (235 
women, 2 men (age range: 17–89 years; mean age ± SD: 
53.1 ± 15  years)) provided the 237 FBLs (size range: 
4–90 mm; mean size ± SD: 15.1 ± 9.4 mm) which were used 
as a specific subset for the development of the predictive 
radiomics model. According to SOR, 137 out of 237 (57.8%) 

Table 1  Characteristics of 352 focal breast lesions according to SOR 
and enrollment center

* Ductal carcinoma in situ, metaplastic carcinoma, tubular carcinoma, 
primary angiosarcoma, malignant phyllodes tumor
** Fibrosis, radial scar, hamartoma, lipogranulomatosis, abscess

Diagnosis Center A Center B Total

Malignant lesions
Invasive ductal carcinoma 70 33 103
Invasive lobular carcinoma 17 3 20
Other* 13 9 22
Total 100 45 145
Tumor grade
G1 12 9 21
G2 51 24 75
G3 34 10 44
Total 97 43 140
Molecular subtype
Luminal A/B 80 39 119
HER2 + 11 2 13
Triple negative 6 2 8
Total 97 43 140
Benign lesions
Fibroadenoma 90 29 119
Complicated cyst 23 24 47
Phyllodes tumor 2 1 3
Other** 22 16 28
Total 137 70 207

Table 2  Acceptance rate of AI-based semi-automated segmentation 
of 352 focal breast lesions

Total (352) Benign (202) Malignant (150)

Radiologist 1 337 (95.7%) 200 (99%) 137 (91.3%)
Radiologist 2 338 (96%) 198 (98%) 140 (93.3%)
p-value 0.850 0.411 0.515

Fig. 3  Luminal A invasive ductal carcinoma in a 53-year-old woman. 
a B-mode US shows a 1 cm hypoechoic focal breast lesion, irregular-
shaped with indistinct and angulated margins, not parallel orientation 
and posterior shadowing. b AI-based semi-automated lesion segmen-
tation. The lesion contour was eventually re-drawn by the radiologist 
manually

Table 3  Results obtained by the predictive model in the training 
phase

Values are expressed as mean ± standard deviation
* P < 0.001

Predictive model

Radiomic features Radiomic 
features + US BI-
RADS

Accuracy* 0.581 ± 0.099 0.933 ± 0.050
Specificity* 0.679 ± 0.126 0.947 ± 0.060
Sensitivity* 0.448 ± 0.170 0.914 ± 0.093
PPV* 0.505 ± 0.156 0.932 ± 0.072
NPV* 0.631 ± 0.086 0.942 ± 0.059
F1-score 0.474 ± 0.162 0.923 ± 0.081
AUROC* 0.581 ± 0.121 0.981 ± 0.025
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FBLs were benign and 100 out of 237 (42.2%) were malig-
nant (Table 1).

Table 3 details the results obtained in the training phase, 
according to the two different input configurations. The asso-
ciation of US BI-RADS and radiomic features provided a 
statistically significant improvement for all the evaluated 
parameters when compared with radiomic analysis alone.

External validation

The cohort of 115 patients (115 women, age range: 
23–89 years; mean age ± SD: 51.6 ± 14.6 years) selected 
at Center B provided the 115 FBLs (size range: 3–50 mm; 
mean size ± SD: 14.7 ± 8.6 mm) which were used as a spe-
cific subset for the external validation of the predictive radi-
omics model. According to SOR, 70 out of 115 (60.9%) 
FBLs were benign and 45/115 (39.1%) were malignant 
(Table 1).

Table 4 details the results obtained from the external 
validation dataset. The assessment made by the expert 
radiologist only, ML model only and the combination radi-
ologists and ML model yielded sensitivity values of 0.933, 
0.544, 0.756 specificity of 0.9, 0.6, 0.928, positive predic-
tive values of 0.857, 0.416, 0.872 and negative predictive 
values of 0.955, 0.628, 0.855, respectively. Overall, the 
association of US BI-RADS and radiomic features yielded 
a not statistically significant improvement for the Specific-
ity (p = 0.54) (Fig. 4) with a statistically statistically sig-
nificant decrease in Sensibility (p = 0.021) (Fig. 5) when 
compared with US BI-RADS assessment only. Figure 6 
details the ROC curve obtained in the validation phase 

considering the BI-RADS + radiomic features, with a cor-
responding AUROC of 0.925.

Explanation of the model prediction

The BI-RADS was the most important feature for the 
model. However, the contribution of the radiomic features 
for the classification significantly increases the perfor-
mance. Figure 7 details the relative importance that each 
feature has in the prediction of the XGBoost-based model.

The following four features were also found to be 
the most predictive: Busyness, (benign vs. malignant: 
0.451 ± 0.056 vs. 0.460 ± 0.047; p-value: 0.008)), 
LargeAreaHighGrayLevelEmphasis (benign vs. malig-
nant: 8927.511 ± 695.433 vs. 7892.846 ± 640.505; p-value: 
0.011), Kurtosis (benign vs. malignant: 4.108 ± 0.156884 
vs. 4.656 ± 0.306; p-value: 0.037) and MaximumProbabil-
ity (benign vs. malignant: 0.054 ± 0.007 vs. 0.056 ± 0.008; 
p-value: 0.032).

Table 4  Results obtained by the predictive model in the validation 
phase

Statistical significance: + not significant; *P < 0.05

Predictive model US BI-RADS 
[CI]

p-value

Radi-
omic 
features

Radiomic 
features + US BI-
RADS [CI]

Accuracy 0.539 0.861 [0.786–
0.913]

0.913 [0.847–
0.952]

0.213 +

Specificity 0.600 0.929 [0.866–
0.963]

0.9 [0.832–
0.943]

0.540 +

Sensitivity 0.544 0.756 [0.670–
0.825]

0.933 [0.872–
0.966]

0.021*

PPV 0.416 0.872 [0.798–
0.921]

0.857 [0.782–
0.910]

0.839 +

NPV 0.628 0.855 [0.779–
0.908]

0.955 [0.900–
0.980]

0.046*

F1-score 0.471 0.810 [0.731–
0.867]

0.893 [0.826–
0.938]

0.037*

AUROC 0.553 0.925 [0.862–
0.988]

0.917 [0.866–
0.968]

0.339 +

Fig. 4  Luminal A ductal carcinoma in situ a 39-year-old woman with 
a palpable right breast lump on her lower inner quadrant. a B-mode 
US depicts a 2 cm hypoechoic focal breast lesion, oval-shaped, with 
parallel orientation and lobulated margins. b AI-based semi-auto-
mated lesion segmentation. US BI-RADS categorization was 3. US 
BI-RADS + radiomic features classification was: malignant
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Discussion

The radiomic workflow proposed here extracts interpret-
able biomarkers and enables the development of predic-
tive models that—exploiting shallow learning methods—
manages better an analysis on tabular data. Radiomic 

biomarkers and shallow learning methods allow high-
performance and interpretable models.

Although promising, ultrasound radiomics technologies 
for breast cancer assessment are currently under scrutiny, 
with reported AUC values in the differentiation between 
benign versus malignant breast masses ranging from 0.817 
to 0.961 [14].

Lesion segmentation is the first and in many aspects the 
most crucial step of the radiomics process of feature extrac-
tion. On the one hand, a careful recognition of the breast 
lesion and its precise contouring is deemed mandatory. On 
the other hand, the segmentation task is performed by a ded-
icated operator, often a physician, it is time-consuming and 
operator-dependent, not to mention the introduction of a pos-
sible source of error [12]. In our study, we tried to overcome 
all these issues by using an AI software, which has been 
previously proved to improve the diagnostic performance 
of radiologists as well as intra- and inter-reader agreement 
in the characterization of FBLs [39]. This AI algorithm 
performs the lesion segmentation instantly, thus completely 
eliminating the relevant amount of time usually required to 
complete this task, at the same time leaving to the operator 
the final decision to accept the proposed segmentation.

In our experience, the semi-automated lesion segmenta-
tion process was highly reproducible, with a high rate of 
acceptance for both operators (91.3% and 93.3%) with no 
statistically significant difference in terms of discordance 
(p-value: 0.515). Interestingly enough, the analysis of not 
accepted segmentations showed a prevalence of malignant 
lesions, which were characterized by a posterior shadow-
ing at B-Mode US. Notably, a study encompassing 367 
patients showed that the peripheral tissue around a breast 
lesion influences the subsequent classification based on 
B-mode images: paradoxically, when assessing US images 
of breast cancer by means of radiomics, the perfect separa-
tion between the lesion and the surrounding breast paren-
chyma might not be the best option [40].

In our series, the stand-alone radiomics model showed an 
AUC of 0.644. This finding is in line with a study evaluating 
four qualitative ultrasound features (regular tumor shape, no 
angular or spiculated margin, posterior acoustic enhance-
ment and no calcification) in 252 breast lesions to predict 
the histological grade, Ki67, HER2, axillary lymph node 
metastasis and lymphovascular invasion, with corresponding 
AUC values of 0.673, 0.680, 0.651, 0.587 and 0.566, respec-
tively [41]. Similarly, we did not include in our radiomics 
model any color Doppler or US elastography information, 
which might have improved the diagnostic performance, as 
reported in [42]. Furthermore, we implemented a machine 
learning model, whereas deep learning algorithms have been 
shown to be more proficient with a reported AUC of 0.955 
in a study encompassing 10,815 and 912 multimodal and 
multiplane breast US images for training and prospective 

Fig. 5  Fibroadenoma in a 35-year-old woman with a palpable left 
breast lump on her central upper quadrant. a B-mode US depicts a 
3.4 cm hypoechoic focal breast lesion, oval-shaped, with parallel ori-
entation and lobulated margins. b AI-based semi-automated lesion 
segmentation. BI-RADS categorization was 4. BI-RADS + radiomic 
features classification was: benign

Fig. 6  The ROC curve obtained in the validation phase considering 
the BI-RADS + radiomic features, with the AUROC = 0.925
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testing, respectively [43]. Noteworthy, in a prospective 
study including 124 women, quantitative multiparametric 
multimodal US provided the best diagnostic performance 
for breast cancer diagnosis [44].

In our validation cohort, when adding radiomic features 
to US BI-RADS classification made by the radiologist, we 
obtained an AUC of 0.925, which is within the range of pre-
viously reported data. Of note, we observed a not statistically 
significant increase in specificity (0.929 vs. 0.9, p = 0,540) at 
the expense of a statistically significant decrease in sensitiv-
ity (0.756 vs. 0.933, p = 0,021). In particular, the combined 
model allowed the detection of two more benign lesions (65 
vs. 63, respectively) but missed eight breast cancers (34 vs. 
42, respectively), with a corresponding decrease in detection 
rate from 93.3 to 75.6%. The observed reduction of false 
positive rate and the consequent decrease of the number of 
unnecessary biopsies, although not statistically significant, 
is in line with the study by Shen et al., who presented an 
AI system that achieved an AUROC of 0.976 on a test set 
consisting of 44,755 exams as well as a decrease in the false 
positive rates by 37.3% and reduction of requested biopsies 
of 27.8% while maintaining the same level of sensitivity 
[45]. Differently from this latter study, in our prospective 
study the impact of missed cancer due to the increase of 
false negative rate outweighed the decrease of the number 
of unnecessary biopsies allowed by the reduction of false 
positive rate. However, the retrospective nature of that study 
prompted the authors to ask for a prospective validation 
before it can be widely deployed in clinical practice.

Comparing our results to a recent retrospective study 
encompassing 201 FBLs, a ML classifier showed higher 
accuracy in comparison with an expert radiologist (82% vs. 
79.4%) in the differential diagnosis of benign and malignant 
breast masses, but the difference was not statistically signifi-
cant. (p = 0.815) [46]. Of note, in that study the radiologist 
was able to read only one defined US image per lesion, being 

unaware of the patient's clinical history and, most notably, 
being unable to perform a complete US scan. On the con-
trary, in our study the reading radiologist performed a proper 
US scan, whereas the radiomics model was based on still 
images, which may not fully depict the US features of a 
breast mass. Furthermore, the reading radiologist made the 
diagnosis on the basis of all the available data, thus more 
closely resembling real clinical practice. These circum-
stances may at least partially explain the higher sensitivity 
of the expert radiologist observed in our series in compari-
son with the radiomics model. The same limitations affect a 
study focusing on an automatic classification of ultrasound 
breast lesions using a deep convolutional neural network 
(dCNN) involving 582 patients [18]. In that study, the per-
formance of dCNN was found to be comparable to that of 
two radiologists with more than 5-year experience (AUC of 
83.8 for the dCNN vs. 86.9 and 82.3 for the humans on the 
internal dataset, respectively), but the authors stated that the 
final decision should be always left to the radiologists. This 
statement is supported by our results, taking in account that 
it is based on the real clinical practice of highly trained and 
expert breast radiologists.

Noteworthy, a multicenter study by Gu et al., encompass-
ing US images of 5012 patients, found out a statistically 
significant decrease in sensitivity values in the external test 
cohort of a binary deep learning model in comparison with 
the original radiologists (89.81% vs. 99.30%, p = 0.0020) 
[47]. However, in the same study a six categories BI-RADS-
based deep learning model achieved sensitivity values not 
statistically different from those of the reading radiologists 
(95.37% vs. 99.30%, p = 0.1250). This binary assessment 
was also present in our study, and might have negatively 
affected our radiomic model results.

From a value-based healthcare perspective, AI may 
provide useful data-driven tools to empower multimo-
dality breast imaging in the setting of screening, lesion 

Fig. 7  Bar diagram illustrating the importance of features in the prediction of the proposed model. In blue the radiomic features and in orange 
the BI-RADS
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characterization, therapy guidance and monitoring assess-
ment [48]. Nevertheless, a translational gap still exists. In the 
near future, the AI-based system in mammography and ultra-
sound is not expected to replace radiologists, but instead to 
offer support in the decision-making process or to reduce the 
radiologist’s workload [49, 50]. To this purpose, multipara-
metric MRI may provide information on pathophysiological 
tumor characteristics, useful for imaging biomarker research 
aimed at improving prediction of treatment response, dis-
ease-free survival, molecular subtype and lymph node status 
[51–53]. However, multiparametric MRI and other imaging 
modalities still need further efforts to fully exploit the AI 
and radiomics in order to better individualize breast cancer 
treatment in the era of precision medicine [48].

In our series, the most important radiomic features were 
Busyness (belonging to the NGTDM category) is a measure 
of the change from a pixel to its neighbor. A high value 
for busyness indicates a ‘busy’ image, with rapid changes 
of intensity between pixels and its neighborhood. Analysis 
of the two distributions (i.e., malignant, benign) shows that 
malignant cases are associated with higher busyness val-
ues than benign cases. This is symptomatic of the fact that 
malignant lesions generally exhibit a more heterogeneous 
pattern, where areas with different densities (e.g., habitat) 
are present within the lesion. Then, LargeAreaHighGray-
LevelEmphasis (belonging to the GLSZM category) meas-
ures the proportion in the image of the joint distribution of 
larger size zones with higher gray-level values. In malignant 
cases, it is more likely to have regions of higher density (i.e., 
areas with high gray values). Kurtosis (belonging to the FO 
category) is a measure of the ‘peakedness’ of the distribu-
tion of values in the image ROI. A higher kurtosis implies 
that the mass of the distribution is concentrated toward the 
tail(s) rather than toward the mean. A lower kurtosis implies 
the reverse: that the mass of the distribution is concentrated 
toward a spike near the mean value. This trend is perfectly 
aligned with the clinical literature: benign lesions generally 
have a more oval (roundish) shape than malignant lesions, 
which have a wide and greater variability in shape. This 
aspect reflects the fact that malignant masses have greater 
kurtosis than benign ones [54, 55]. Finally, maximum prob-
ability (belonging to the GLCM category) calculates the 
occurrences of the most predominant pair of neighboring 
intensity values, thus revealing the existence of a regular 
pattern within the lesion.

Our study has limitations. Firstly, the prevalence of breast 
cancer in our study population is higher than that of the 
general population, leading to a selection bias. Actually, 
considering that the presence of unbalanced datasets leads 
a ML classifier to classify the most represented class better, 
to obtain a predictive model capable of accurately classify-
ing two different classes, there is the need to have a balanced 
dataset (i.e., benign and malignant) [35]. Furthermore, as 

secondary referral centers for breast cancer, our population 
might present a higher number of malignancies in compari-
son with the general population.

Secondly, our dataset consisted of 352 patients but a 
larger sample might have granted a more robust ML assess-
ment. In third place, we have not included color Doppler 
or elastosonography information into our radiomics model, 
nor clinical information: this information might have led to 
different values of diagnostic accuracy of the ML model. 
Further studies are needed to address this issue. Further-
more, though we assured the explainability of our machine 
learning system, a deep learning approach might be a future 
option for building more proficient radiomics models.

Classifiers based on shallow learning algorithms are an 
optimal starting point for the clinical domain since they can 
be easily interpreted and explained, but unfortunately, they 
cannot achieve the performance achievable by deep models, 
which, however, do not guarantee explainability. As future 
developments, there is the intention to implement more 
advanced and robust techniques to implement explainability 
in deep learning models.

In conclusion, our study showed that an artificial intelli-
gence-based semi-automated lesion segmentation makes the 
extraction of ultrasound-derived radiomics features instan-
taneous, still maintaining high reproducibility. Posterior 
acoustic shadowing was the most important feature deter-
mining the unacceptance of semi-automated segmentation. 
In our experience, the combination of radiomics and US 
BI-RADS classification has led to a potential decrease in 
unnecessary biopsies. Nevertheless, in our series, a not neg-
ligible increase in potentially missed cancers was observed. 
To avoid such a negative effect, AI-based systems must reach 
adequate diagnostic performance so that they can be appli-
cable to wide populations [56]. As a consequence, further 
larger international multicenter studies are needed before 
implementing radiomics features in the routine US assess-
ment of breast cancer.
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