

Systematic Review (Re-)Emergence of Oropouche Virus (OROV) Infections: Systematic Review and Meta-Analysis of Observational Studies

Matteo Riccò ^{1,*}, Silvia Corrado ², Marco Bottazzoli ³, Federico Marchesi ⁴, Renata Gili ⁵, Francesco Paolo Bianchi ⁶, Emanuela Maria Frisicale ⁷, Stefano Guicciardi ⁸, Daniel Fiacchini ⁹, Silvio Tafuri ¹⁰, Antonio Cascio ¹¹, Pasquale Gianluca Giuri ¹² and Roberta Siliquini ^{13,14}

- 1 AUSL-IRCCS di Reggio Emilia, Servizio di Prevenzione e Sicurezza Negli Ambienti di Lavoro (SPSAL), Local Health Unit of Reggio Emilia, 42122 Reggio Emilia, Italy
- ASST Rhodense, Dipartimento della Donna e Area Materno-Infantile, UOC Pediatria, 20024 Milan, Italy; scorrado@asst-rhodense.it
- 3 Department of Otorhinolaryngology, APSS Trento, 38122 Trento, Italy; marco.bottazzoli@apss.tn.it
- 4 Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy; federico.marchesi@unipr.it
- 5 Department of Prevention, Turin Local Health Authority, 10125 Turin, Italy; renata.gili@aslcittaditorino.it
- Health Prevention Department, Local Health Authority of Brindisi, 72100 Brindisi, Italy; frapabi@gmail.com
- 7 Ex Directorate General of Health Prevention, Ministry of Health, 00144 Rome, Italy; em.frisicale@sanita.it
- 8 Health Directorate, Local Health Authority of Bologna, 40124 Bologna, Italy
- 9 AST Ancona, Prevention Department, UOC Sorveglianza e Prevenzione Malattie Infettive e Cronico Degenerative, 61100 Ancona, Italy; daniel.fiacchini@sanita.marche.it
- 10 Department of Interdisciplinary Medicine, Aldo Moro University of Bari, 70121 Bari, Italy; silvio.tafuri@uniba.it
- 11 Infectious and Tropical Diseases Unit, Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties, G D'Alessandro, University of Palermo, AOUP P. Giaccone, 90127 Palermo, Italy; antonio.cascio03@unipa.it
- 12 Department of Medicine and Diagnostics, AUSL di Parma, 43100 Parma, Italy; pgiuri@ausl.pr.it 13
 - Department of Public Health and Pediatric Sciences, University of Turin, 10126 Turin, Italy
- 14 Azienda Ospedaliera Universitaria City of Health and Science of Turin, 10126 Turin, Italy
 - Correspondence: mricco2000@gmail.com or matteo.ricco@ausl.re.it; Tel.: +39-339-2994-343

Abstract: Oropouche Virus (OROV; genus of Orthobunyavirus) is the causal agent of Oropouche Fever (OF). Due to the lack of specific signs and symptoms and the limited availability of diagnostic tests, the actual epidemiology of OROV infections and OF has been extensively disputed. In this systematic review with meta-analysis, a literature search was carried out in PubMed, Scopus, EMBASE, and MedRxiv in order to retrieve relevant articles on the documented occurrence of OROV infections. Pooled detection rates were then calculated for anti-OROV antibodies and virus detection (i.e., viral RNA detected by viral cultures and/or real-time polymerase chain reaction [RT-qPCR]). Where available, detection rates for other arboviruses (i.e., Dengue [DENV], Chikungunya [CHKV], and Zika Virus [ZIKV]) were calculated and compared to those for OROV. A total of 47 studies from South America and the Caribbean were retrieved. In individuals affected by febrile illness during OROV outbreaks, a documented prevalence of 0.45% (95% confidence interval [95%CI] 0.16 to 1.12) for virus isolation, 12.21% (95%CI 4.96 to 27.09) for seroprevalence (including both IgM and IgG class antibodies), and 12.45% (95%CI 3.28 to 37.39) for the detection of OROV-targeting IgM class antibodies were eventually documented. In the general population, seroprevalence was estimated to be 24.45% (95%CI 7.83 to 55.21) for IgG class antibodies. The OROV detection rate from the cerebrospinal fluids of suspected cases of viral encephalitis was estimated to be 2.40% (95%CI 1.17 to 5.03). The occurrence of OROV infections was consistently lower than that of DENV, CHKV, and ZIKV during outbreaks (Risk Ratio [RR] 24.82, 95%CI 21.12 to 29.16; RR 2.207, 95%CI 1.427 to 3.412; and RR 7.900, 95%CI 5.386 to 11.578, respectively) and in the general population (RR 23.614, 95%CI 20.584 to 27.129; RR 3.103, 95%CI 2.056 to 4.685; and RR 49.500, 95%CI 12.256 to 199.921, respectively). In conclusion, our study stresses the possibly high underestimation of OROV prevalence in the general population of South America, the potential global threat represented by this arbovirus infection, and the potential preventive role of a comprehensive "One Health approach".

Citation: Riccò, M.; Corrado, S.; Bottazzoli, M.: Marchesi, F.: Gili, R.: Bianchi, F.P.; Frisicale, E.M.; Guicciardi, S.; Fiacchini, D.; Tafuri, S.; et al. (Re-)Emergence of Oropouche Virus (OROV) Infections: Systematic Review and Meta-Analysis of Observational Studies. Viruses 2024, 16, 1498. https://doi.org/ 10.3390/v16091498

Academic Editor: Benjamin M. Liu

Received: 4 September 2024 Revised: 19 September 2024 Accepted: 19 September 2024 Published: 22 September 2024

Copyright: © 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https:// creativecommons.org/licenses/by/ 4.0/).

Keywords: Oropouche Virus; Orthobunyavirus; arbovirus; vector-borne disease

1. Introduction

Oropouche Virus (OROV) is an enveloped RNA virus, sized from 80 to 120 nm in diameter, that belongs to the serogroup Simbu of the viral genus Orthobunyavirus [1–3], the largest of the five genera of the Peribunyaviridae family in the order Bunyavirales [4], and causes Oropouche Fever (OF), a febrile illness whose clinical features overlap with infections by other arboviruses such as Dengue (DENV), West Nile Virus (WNV), Yellow Fever Virus (YFV), Zika Virus (ZIKV), and Chikungunya Virus (CHKV) [1,5,6]. The OROV genome comprises three single-stranded, negative-sense RNA segments, designated as Large (L), Medium (M), and Small (S) [1,2,4,7]. The L segment mainly encodes for RdRp, a polymerase involved in the replication of the viral genome within the cytoplasm of infected cells [1,7]. Unsurprisingly, the L segment is associated with the highest homology among sampled strains, close to 100%. The main antigens (glycoproteins Gn and Gc), alongside the non-structural protein m (NSm), are encoded by the M segment. Finally, the S segment encodes for both the nucleocapsid protein (N) and non-structural protein s (NSs) from overlapping open reading frames [4]. The S segment is usually associated with the highest heterogeneity in terms of gene sequencing, and not coincidentally, the protein N is the cornerstone for the classification of OROV into four genotypes (I, II, III, and IV) [2,4,8].

According to our current understanding [8], OROV was initially identified in 1955 in a febrile worker from the Melajo Forest of Trinidad and Tobago during an outbreak of febrile illness [9–12], and neutralizing antibodies were also detected both in their colleagues and in a local monkey population. Since then, epidemics have occurred in several countries in South and Central America [1,6–8], starting from an outbreak that occurred in Belem, in the Brazilian state of Para, in 1961 [10–15], eventually accounting for around half million cases in the following decades. At the same time, OROV silently spread from the Amazon region to other areas of Brazil, extending to countries across Central and South America, including Argentina, Colombia, Bolivia, Ecuador, French Guyana, Panama, Peru, and Venezuela [3,16–24], and eventually returning to the Caribbean, with a recent outbreak in the island of Cuba [23,25,26].

In OROV, interhuman spread has not been reported; the virus is transmitted to humans through the bite of infected insects, including Culicoides paraensis midges (predominant in urban settings) and Culex quinquefasciatus mosquitoes, but other arthropod species have also been documented as harboring the pathogen (e.g., Aedes serratus, Coquillettidia venezuelensis, and other Culicoides species) [1,5–7,27,28]. While the importance of Culicoides paraensis has been documented since the early study by Pinheiro et al. in 1982 [29], the primary vertebrate host of OROV, if any, has not been reported. In fact, known vectors feed on and take their blood meals from an extensive range of vertebrates, ranging from the threetoed sloth (Bradypus tridactylus) to non-human primates, such as the capuchin and howler monkeys [1–3,7,17]. While *C paraensis* is commonly found in water bodies (i.e., ponds, lakes, and rivers) from humid tropical regions, being the predominant vector in the sylvatic environment [7,27], both C paraensis and Culex quinquefasciatus thrive in areas characterized by very poor living standards, equally contributing to urban outbreaks [5]. Moreover, Culicoides are frequently associated with banana or cacao farming, where the Culicoides breed in discarded husks and banana stalks. Considering environmental (i.e., deforestation and disorganized urbanization) and climate changes that collectively contribute to vector proliferation and the landscape modeled by human migrations and global travels (which in turn contribute to virus dissemination) [2,30], the likelihood of new OROV outbreaks and its eventual spread outside South America would be far from surprising [1–3,7,25,30–35]. In fact, 2024 has been associated with a sustained increase in reported cases compared with 2023 in the whole of South America, as by 9 May 2024, a total of 4583 cases had been reported in Brazil compared with the 835 positive cases in the whole of 2023 [36,37], and

these figures did further increase in the following months, with a total of 8078 confirmed cases of OROV infection by 30 July 2024 (7284 cases from Brazil, 356 cases from Bolivia, 290 from Peru, and 74 from Colombia and Cuba) [38].

The features of OF have been usually described as a clinical syndrome characterized by fever, headache, muscle pain, and joint pain that usually manifests three to eight days after being bitten by an OROV-infected vector and lasts three (usual range, two to seven) days, then recurring one to two weeks after the initial recovery in around 60% of affected individuals [2,5,31,35,39]. Complications such as hemorrhagic phenomena (i.e., epistaxis, gingival bleeding, and petechiae) and the involvement of the central nervous system (i.e., meningitis, encephalitis, dizziness, and anorexia) have been reported, but their actual occurrence is hardly defined due to the uncertainties about the epidemiology of OROV [8,13,40–44]. In fact, until 2024, OF was consistently considered a self-limited and mostly benign condition, as no deaths and long-term sequelae were associated with OROV infection. Conversely, during the outbreak of 2024, the Brazilian Ministry of Health released a report on four cases of microcephaly in newborns from infected mothers, and by late July, two deaths were reported [38,45,46]. However, the overlap of clinical features with those associated with other arboviruses poses a significant challenge for an accurate diagnosis, as laboratory confirmation is mandatory but not consistently performed [6,47], particularly during the ongoing Dengue epidemic in South America [6].

In summary, the emergence (or, more appropriately, the re-emergence) of OROV in South America, with the potential of the further spread of this pathogen even in other continents [26,48], highlights the importance of gathering and critically appraise available evidence on the current epidemiology of OROV infection, which will be reported in the present systematic review with meta-analysis.

2. Materials and Methods

A systematic review and meta-analysis were designed in accordance with the PRISMA statement (Prepared Items for Systematic Reviews and Meta-Analysis) [49,50]. The study outline was preventively recorded in the PROSPERO (Prospective Register of Systematic Reviews) database with ID number CRD42024576181 (Supplementary Table S1).

2.1. Research Concept

The research concept was defined according to the "PICO" strategy (Patient/Population /Problem, Investigated results, Control/Comparator, and Outcome) as outlined below.

Population of interest: general population.

Investigated result: prevalence of biomarkers for current and previous exposure to or infection by Oropouche Virus (i.e., detection of viral antigens, IgG/IgM antibodies, viral copies, and/or viral RNA).

Control: occurrence of arboviral infections (i.e., Dengue, Chikungunya, and Zika in the same population groups).

Outcome: prevalence of Oropouche infection in the general population.

2.2. Study Selection and Inclusion and Exclusion Criteria

Starting on 3 August 2024, three scientific databases (i.e., PubMed, EMBASE, and Scopus) and the preprint repository MedRxiv were searched for entries on OROV and OF without any backward chronological restriction. The research strategy was adapted to the specificities of the inquired databases, and it is summarized in Appendix A Table A1. Moreover, a "snowball" approach was applied, with references to the retrieved studies being accurately searched for further suitable entries. For the aims of this review, observational studies were only considered suitable if written in English, Italian, German, French, Spanish, and Portuguese. The retrieved articles were initially assessed through title screening for their relevance to the subject [49,50]. When an article was positively title-screened, the content of the abstract was then screened, and if considered consistent with the aims of the present review, the full text was retrieved and independently assessed by two investigators (M.B. and S.C.).

To be considered consistent with this review and therefore included in the present systematic review, the following inclusion criteria had to be fulfilled:

- (1) Availability of the full text.
- (2) The selection criteria for tested participants were preventively reported; for the aims of the present review, both studies on the whole of the resident population from a certain area and studies focusing on patients with potential signs and symptoms were considered.
- (3) OROV infection was assessed by means of (a) detection of OROV and/or its RNA in blood, saliva, and/or cerebrospinal fluid (CSF) or central nervous system (CNS) tissue; (b) detection of OROV antigens by immunohistochemical analysis with virus-specific monoclonal antibodies; (c) detection of OROV-reactive IgG and/or IgM in a serum or CSF sample with and without confirmation assay detecting antibodies against individual OROV antigens.

Moreover, the following exclusion criteria were applied:

- (1) Derivative studies (i.e., systematic reviews and meta-analyses), letters, editorial comments, and case reports;
- (2) Studies on animals (including non-human primates);
- (3) The full text was not available either through online repositories or through interlibrary loans, or its main text was written in a language different from English, Italian, German, French, Spanish, or Portuguese;
- (4) Lack of details about geographical setting and corresponding timeframe.

2.3. Data Extraction

The data extracted included the following (where available):

- (a) Settings of the cases (year, month, or season and geographic region);
- (b) Recruitment strategy, summarized as a dichotomous variable: asymptomatic vs. symptomatic subjects;
- (c) Laboratory testing strategy, summarized as virological studies (i.e., all laboratory testing leading to the isolation of OROV or its RNA through viral cultures and/or real-time quantitative polymerase chain reaction studies), antigenic studies (i.e., all studies leading to the identification of OROV antigens), and serological studies (i.e., all studies leading to the identification OROV-reactive antibodies).
- (d) Where available, data on the testing of other arboviruses (i.e., DENV, CHKV, and ZIKV) were similarly collected.

If case series were cross-posted by different studies, reports were accurately analyzed to fill the knowledge gaps, provide a more extensive description of clinical cases, and eliminate duplicates.

2.4. Qualitative Assessment

The risk of bias (ROB) has been defined as the likelihood that any feature from the design or conduct of the study may lead to misleading results [51–53]. As a consequence, ROB assessment helps to establish transparency of evidence from the findings. For the aims of the present systematic review, ROB was assessed by means of the ROB tool from the National Toxicology Program (NTP)'s Office of Health Assessment and Translation (OHAT) (now Health Assessment and Translation (HAT) group) [53,54]. The OHAT ROB approach for observational studies starts with 7 questions summarized in 6 domains, with each domain being rated on a 4-point scale ("definitely low", "probably low", "probably high", and "definitely high"): participant selection (D1), confounding factors (D2), attrition/exclusion (D3), detection (D4), selective reporting (D5), and other sources of bias (D6). In this study, we did prioritize OHAT ROB over other similar instruments as it does not require that studies affected by a certain degree of ROB be removed from the pooled analyses [54], as

even studies affected by a higher ROB may provide important information and can be used in sensitivity analysis.

Two investigators independently rated all articles according to the current indications. Their disagreements were primarily resolved by consensus between the two reviewers; when consensus was not possible, input from a third investigator (M.R.) was requested and obtained.

2.5. Data Analysis

2.5.1. Descriptive Analysis

All included studies were initially summarized by descriptive analysis. Therefore, crude prevalence figures for the OROV detection rate per 100 people were calculated by specimen (e.g., blood/serum, salivary specimens, and CSF), testing strategy (e.g., studies targeting viral identification, studies targeting viral antigens, and studies targeting viral antibodies), and sampling group (e.g., symptomatic vs. asymptomatic people).

2.5.2. Meta-Analysis

Pooled estimates of OROV prevalence were calculated through a random effect model (REM) meta-analysis and reported as point estimates with their 95% confidence intervals (95%CIs). For the aims of our study, we prioritized a REM approach over a fixed effects model, as in the REM, each study estimates a different underlying actual effect, and these effects have a distribution across the levels of the variable. In other words, as random effects account for variability and differences between different entities or subjects within a larger group, the REM is usually considered more effective in dealing with the genuine differences underlying the results of the studies or heterogeneity [55,56].

2.5.3. Heterogeneity

Heterogeneity has been defined as the inconsistency of effect among the included studies and can be considered by means of the I² statistic as the percentage of total variation across the included studies likely occurring because of actual differences rather than chance [51]. For the aims of the following studies, heterogeneity was considered low for I² values ranging from 0 to 25%, moderate for I² values ranging from 26% to 50%, and substantial for I² values \geq 50%. As suggested by Hippel et al. [51], for providing a more appropriate reporting of actual heterogeneity, the 95%CIs of the I² estimates were calculated and reported.

2.5.4. Sensitivity Analysis

Sensitivity analysis is the study of how the uncertainty in the output of a mathematical model or system can be apportioned to different sources of uncertainty in its inputs. In the present systematic review and meta-analysis, the effect of each study on the pooled estimates was estimated by calculating each estimate by excluding one study at a time.

2.5.5. Publication Bias

Publication bias (i.e., the likelihood of a study being published based on the direction of the findings) was initially assessed through the calculation of funnel plots. Funnel plots are simple scatter plots of the effect estimates from individual studies plotted on the horizontal axis against the standard error of the estimated effect on the vertical axis. As a preliminary step, the asymmetry of funnel plots was visually assessed; in the presence of bias, an asymmetrical appearance to the funnel will emerge because small studies without statistically significant effects are potentially unpublished, and greater asymmetry will suggest more significant bias. Visual interpretation of the plots was assisted by implementing contours of statistical significance. The asymmetry of funnel plot outcomes with three or more included studies was then assessed by means of Egger's test [49,57]. Small-study bias was eventually assessed by means of radial plots (i.e., a graphical display for comparing

estimates that have differing precisions). A p-value < 0.05 was considered statistically significant for both publication and small-study bias.

2.5.6. Software

The screening of the retrieved articles was performed on Mendeley Reference Manager (version 2.121.0; Mendeley Ltd.; New York, NY, USA). All calculations were performed by means of R (version 4.4.1) [58] and Rstudio (version 2024.04.2 Build 764; Posit Software, PBC; Boston, MA, USA) software by means of the packages meta (version 7.0), fmsb (version 0.7.5), "epiR" (version 2.0.63), and "robvis" (version 0.3.0). Plots were calculated by means of the R packages "ggplot2" (version 3.4.3), "ggpubr" (version 0.6.0), and "PRISMA2020" (version 1.1.1) and GraphPad Prism, version 10.0 (GraphPad Software LLC, Boston, MA, USA). A Prisma2020 flow diagram was designed by means of the PRISMA2020 package [59].

3. Results

3.1. Search and Selection Process

A total of 745 entries were retrieved from the four inquired databases (i.e., 239 from Pubmed, 32.08%; 215 from EMBASE, 28.86%; 280 from SCOPUS, 37.58%; and 11 from medRxiv, 1.48%); of these, 434 were duplicated across the databases and were removed from the analyses (58.26%). Moreover, 210 of the 311 records screened by title and abstract were removed, as they were not consistent with the research aims (28.19%); regarding the 101 articles sought for retrieval, all of them were eventually retrieved and individually assessed in their full text. A total of 57 articles (7.65%) were removed, as they were not consistent with the inclusion criteria, leaving 44 articles (5.91%). However, the citation analysis led to the identification of 3 further studies that were included in the pool of sample entries, for a total of 47 observational studies (Figure 1).

Figure 1. Flow chart of search strategy according to PRISMA 2020 strategy [49,50].

The 47 retrieved studies are summarized in Table 1 and Figure 2 [10–13,15,16,19,22–24,32,34,39–41,47,60–90]. Briefly, the reported studies were published from 1976 [10] to 2024 [41,86–90], encompassing 91 series (i.e., groups of sampled individuals taken from various temporal and geographic settings), for a total of 62,827 blood samples [10–13,15,16,19,22–24,32,34,39–41,47,61–70,73–90] and 309 samples of cerebrospinal fluid (CSF) [60,71,72]. All series but one (i.e., Haiti, n = 1250 samples; 1.99% of the total blood samples) were from South America: Bolivia (4 series, 2089 blood samples; 3.33%) [24], Brazil (51 series, 22,744 blood samples; 36.20% of the total; the whole of CSF specimens) [10–13,19,39–41,60–62,64–68,71–73,77,79–82,85–89,91], Colombia (10 series, 3747 blood samples; 5.96%) [19,32,84,90], Ecuador (3 series, 883 blood samples; 1.41%) [22,24], French Guyana (1 series, 95 blood samples; 0.15%) [16], Paraguay (2 series, 340 blood samples; 0.54%) [24,47], and Peru (28 series, 31,988 blood samples; 50.91%) [13–15,34,63,69,70,75,76,78,85].

Figure 2. Summary of articles included in a systematic review on the epidemiology of Oropouche Virus infections by geographic location. References to original articles are reported in square brackets [10–13,15,16,19,22–24,32,34,39–41,47,60–90]. (Original file licensed under the GNU Free Documentation License, version 1.2; https://commons.wikimedia.org/wiki/File:A_large_blank_world_map_ with_oceans_marked_in_blue.PNG, accessed on 12 September 2024.)

Study	Country	Timeframe	Area	Sampling Strategy	Sampled Medium	Laboratory Analysis	Sample Size (N)	Positive (<i>n</i> /N, %)
D'al characteri			State of Pará	All subjects with acute		Virus isolation	247	69 (27.94%)
1976 [10]	Brazil	February 1975–April 1975	(Mojoì, Palhal, and nearby villages)	febrile illness during local outbreak	Blood	Serology (hemag- glutination)	282	119 (42.20%)
LeDuc et al., 1981 [11]	Brazil	July 1978– September 1978 May 1979–June 1979	State of Pará (Quatro Bocas and Tome Acu)	All subjects with acute febrile illness during local outbreak	Blood	Serology (hemag- glutination)	555	164 (29.55%)
				All subjects with		Virus isolation	22	1 (4.55%)
Pinheiro et al., 1982 [60]	Brazil	1980	State of Pará	suspected meningitis/encephalitis	CSF	Detection of Ig in CSF (hemaggluti- nation)	22	3 (13.64%)
Borborema et al., 1982 [12]	Brazil	May 1981–July 1981	State of Amazonas (Barcelos and Manaus)	All subjects with acute febrile illness during local outbreak	Blood	Serology (hemag- glutination)	760	254 (33.42%)
						Virus isolation	75	22 (29.33%)
Vasconcelos et al., 1989 [61] Bra	Brazil	Brazil 1987	State of Maranhao (Porto Franco)	febrile illness during local outbreak	Blood	Serology (hemagglutination + ELISA (IgM))	197	128 (64.97%)
						Virus isolation	296	10 (3.38%)
Rosa et al., 1996 [62]	Brazil	June 1994	State of Pará	Random sampling among residents	Blood	Serology (hemagglutination + ELISA (IgG))	296	245 (82.77%)
Watts et al., 1997 [63]	Peru	1992	Loreto Department (Manacamiri, Padre Cocha, Porvenir, Primavera, and Villa Punchana)	Random sampling among residents Follow-up among subjects with negative samples	Blood	ELISA (IgG)	1616	448 (27.72%)

Table 1. Summary of articles included in systematic review on epidemiology of Oropouche Virus infections.

Study	Country	Timeframe	Area	Sampling Strategy	Sampled Medium	Laboratory Analysis	Sample Size (N)	Positive (<i>n</i> /N, %)
Baisley et al., 1998 [13]	Brazil	June 1996–September 1999	State of Amazonas (Santa Clara)	Random sampling among residents (age > 5 years)	Blood	Serology (hemagglutination + ELISA (IgG))	1227	390 (31.78%)
de [63] Figueredo et al., 2004 [64]	Brazil	March 1998–December 1999	State of Amazonas	All subjects with acute febrile illness during local outbreak	Blood	Serology (hemagglutination + ELISA (IgM))	8557	3 (0.04%)
Tavares-Neto et al., 2004 [65]	Brazil	14 August 1999	State of Acre (Rio Branco)	Random sampling among residents (during HBV vaccination campaign)	Blood	Serology (hemagglutination + ELISA (IgM))	394	9 (2.28%)
da Silva Azevedo et al., 2007 [39]	Brazil	March 2003–May 2003 July 2004–August 2004	State of Pará (Parauapebas and Porto de Moz)	All subjects with acute febrile illness during local outbreak	Blood	Serology (hemagglutination + ELISA (IgM))	234	93 (39.74%)
				All subjects with equite		RT-qPCR	69	1 (1.45%)
Bernarders Terzian et al., 2009 [66]	Brazil	March 2004–October 2006	State of Acre	febrile illness during local outbreak (age > 5 years)	Blood	Serology (plaque reduction neutralization test)	357	6 (1.68%)
Course at al				All subjects with acute		Serology (hemag- glutination)	1597	90 (5.64%)
2009 [67]	Brazil	Brazil October 2006–December 2007	State of Pará	febrile illness during local outbreak	Blood	Serology (hemagglutination + ELISA (IgM))	1597	23 (1.44%)
						RT-qPCR	229	0 (-)
Manock et al., 2009 [22]	Ecuador	Arril 2001–September 2004	Pastaza Province	febrile illness during local outbreak	Blood	Serology (plaque reduction neutralization test)	304	1 (0.32%)
Mourao et al., 2009 [68]	Brazil	January 2007–November 2008	State of Amazonas (Manaus)	All subjects with acute febrile illness during local outbreak (age > 5 years)	Blood	Serology (ELISA (IgM))	631	128 (20.29%)

Table 1. Cont.	
----------------	--

Study	Country	Timeframe	Area	Sampling Strategy	Sampled Medium	Laboratory Analysis	Sample Size (N)	Positive (<i>n</i> /N, %)
Vasconcelos et al., 2009 [40]	Brazil	May 2006–June 2006	State of Pará (Magalhaes Barata and Maracana)	All subjects with acute febrile illness during local outbreak	Blood	Serology (hemagglutination + ELISA (IgM))	744	113 (15.19%)
Alvarez-Falconi et al., 2010 [69]	Peru	May 2010	Loreto Department (Bagazan)	All subjects with acute febrile illness during local outbreak	Blood	Serology (ELISA (IgM))	171	108 (63.16%)
	Bolivia		Region of Cochabamba, Conception, Magdalena, and Santa Crus	nd All subjects with acute febrile illness during local outbreak (age > 5 years) of Children with suspected Dengue hemorrhagic re fever ura,			2089	0 (-)
Forshey et al.,	Ecuador	- 2000–2007	Region of Guayaquil		Blood	Indirect im- munofluorescence	350	0 (-)
	Peru		Departments of Iquitos, La Merced, Padre Maldonado, Piura, Tumbes, and Yurimaguas		biood	RT-qPCR	18201	18 (0.10%)
	Paraguay		Region of Asunción				240	0 (-)
Aguilar et al.,	Peru	1995–2006	Loreto	All subjects with acute		Serology (plaque	1037	154 (14.85%)
2011 [70]	i ciu	2006	(Iquitos)	local outbreak	Blood	neutralization test)	1037	2 (0.19%)
Bastos et al., 2012 [71]	Brazil	2005–2010	Amazonas	All subjects with suspected CNS infection	CSF	RT-qPCR	100	3 (3.00%)
Bastos et al., 2014 [72]	Brazil	January 2010–August 2012	Amazonas	All subjects with suspected CNS infection	CSF	RT-qPCR	165	3 (1.82%)

Table	1.	Cont.	

Study	Country	Timeframe	Area	Sampling Strategy	Sampled Medium	Laboratory Analysis	Sample Size (N)	Positive (<i>n</i> /N, %)
Martins et al., 2014 [73]	Brazil	January 2011–May 2011	Amazonas (Manaus)	All subjects with acute febrile illness during local outbreak	Blood	RT-qPCR	677	0 (-)
Cardoso et al., 2015 [74]	Brazil	October 2011–July 2012	Mato Groso	All subjects with acute febrile illness during local outbreak	Blood	RT-qPCR	529	5 (0.95%)
						RT-qPCR	508	19 (3.74%)
Garcia et al.,	Dom	13 December 2014–8 January	Madra da Dias	Specimens from individuals sampled for Dengue and Leptospira	Pland	Virus isolation	508	32 (6.30%)
2016 [75] Peru	reru	2016	Madre de Dios		biood	Serology (ELISA (IgM))	508	122 (24.02%)
Alva-Urcia et al., 2017 [76]	Peru	January 2016–March 2016	Madre de Dios	All subjects with acute febrile illness during local outbreak	Blood	RT-qPCR	139	12 (8.63%)
Silva-Caso et al., 2019 [34]	Peru	January 2016–July 2016	Huanuco Region	Adults with acute febrile illness lasting < 7 days	Blood	RT-qPCR	268	46 (17.16%)
do Nascimiento et al., 2020 [77]	Brazil	February 2016–June 2016	Amazonas	All subjects with acute febrile illness during local outbreak	Blood	RT-qPCR	352	5 (1.42%)
Martins-Luna et al., 2020 [78]	Peru	February 2016–September 2016	Piura Region	Adults with acute febrile illness	Blood	RT-qPCR	496	131 (26.41%)
Rojas et al., 2020 [47]	Paraguay	April 2019	Not reported	Random sampling among people with suspected arboviral illness	Blood	RT-qPCR	100	0 (-)
Salvador et al., 2020 [79]	Brazil	November 2016–December 2017	Bahia (Salvador)	Subjects referring to a private local hospital with Dengue-like symptoms	Blood	RT-qPCR	53	2 (3.77%)
Elbadry et al., 2021 [23]	Haiti	2014	Gressier	All children from a local school with an acute febrile illness	Blood	RT-qPCR	1250	1 (0.08%)

Table 1. Cont.

Study	Country	Timeframe	Area	Sampling Strategy	Sampled Medium	Laboratory Analysis	Sample Size (N)	Positive (<i>n</i> /N, %)
Gaillet et al., 2021 [16]	French Guyana	11 August 2020–15 October 2020	Saúl	All cases with Dengue-like symptoms	Blood	RT-qPCR on mi- croneutralization test	95	23 (24.21%)
Saatkamp et al., 2021 [80]	Brazil	2016	State of Pará	All febrile subjects of adult age with an acute febrile status	Blood	RT-qPCR	49	0 (-)
Salgado et al., 2021 [81]	Brazil	Jaunuary 2014–December 2015	Nationwide	Random sampling from Brazilian armed forces	Blood	Serology (Hemag- glutination test)	298	2 (0.67%)
Correctly on the l				All subjects reporting a		Virus isolation	94	14 (14.89%)
2022 [82]	Brazil	Jaunuary 2018–February 2018	State of Pará	ate of Pará febrile illness in the previous 30 days or had contact with them		Serology (ELISA (IgM))	94	36 (38.30%)
Ciuoderis et al., 2022 [32]	Colombia	February 2019–Jaunuary 2022	Regions of Calì, Cucuta, Leticia, and Villavicencio	All febrile subjects aged over 5 years	Blood	RT-qPCR	2967	105 (3.54%)
Dias et al., 2022 [83]	Brazil	February 2016–March 2016	Mato Groso	Retrospective analysis of samples collected in subjects with a febrile illness from < 7 days	Blood	RT-qPCR	106	0 (-)
Gil-Mora et al., 2022 [84]	Colombia	2018	Cauca Department	All subjects > 18 years from the parent municipalities	Blood	Serology (plaque reduction neutralization test)	505	10 (1.98%)
Gonçalves Maciel et al., 2022 [85]	Peru	February 2018–May 2019	Puerto Maldonado, Piura, and Huanuco	All subjects reporting skin rash	Blood	RT-qPCR	340	0 (-)
Watts et al., 2022 [15]	Peru	1993–1997	Loreto department	All febrile subjects aged 1 to 60 years, symptoms lasting < 5 days	Blood	IFAT	6607	68 (1.03%)
				All subjects with a suite		RT-qPCR	166	0 (-)
De Lima et al., 2024 [86]	Brazil	August 2014–May 2015	Amapà region	febrile illness during local outbreak	Blood	Serology (plaque reduction neutralization test)	166	17 (10.24%)

Study	Country	Timeframe	Area	Sampling Strategy	Sampled Medium	Laboratory Analysis	Sample Size (N)	Positive (<i>n</i> /N, %)
Forato et al., 2024 [41]	Brazil	December 2018–December 2021	Roraima (11 municipalities)	All subjects with acute febrile illness during local outbreak	Blood	RT-qPCR	883	0 (-)
Grisales-Nieto et al., 2024 [19]	Colombia + Brazil	November 2020	Department of Leticia and Amazonas (Colombia) and State of Amazonas (Brazil)	Random sampling from residents negative to other arboviruses	Blood	RT-qPCR	175	1 (0.57%)
Moreira et al., 2024 [87]	Brazil	January 2022–March 2023	States of Rondonia and Amazonas	All subjects with acute febrile illness lasting 5 to 7 days during local outbreak Excluded indigenous people, pregnant women, and all subjects with positive testing for other arboviruses	Blood	RT-qPCR	351	27 (7.69%)
Scachetti et al., 2024 [88]	Brazil	December 2023–March 2024	State of Amazonas	All subjects with acute febrile illness during local outbreak	Blood	RT-qPCR	93	10 (10.75%)
Silva et al.,	Brazil	2019-2020	State of Amazonas	All subjects > 3 years from the communities of	Blood	Serology (immunochro- matography IgM)	205	0 (-)
2024 [89] Brazi		2017-2020	State of Aniazonas	Cararà and Espirito Santo	biood	Serology (immunochro- matography IgG)	205	0 (-)
Sanchez-Lerma et al., 2024 [90]	Colombia	January 2021–June 2023	Department of Meta	All subjects with acute febrile illness during local outbreak	Blood	RT-qPCR	100	0 (-)

 Table 1. Cont.

Note: RT-qPCR = real-time polymerase chain reaction; IFAT = indirect immunofluorescent antibody test; CNS = central nervous system; CSF = cerebrospinal fluid.

The specimens were collected from subjects either reporting any sign or symptom of arboviral infections (all CSF specimens and 57,108 blood specimens, 90.90%) or the general population (5719, 9.10%). Focusing on studies including individuals with any sign or sympin most cases, the index patients did report acute febrile illness tom. (fever > 38°) lasting 5 to 7 days and were therefore suspected of underlying arboviral infection, with a further study including individuals with cutaneous rash (340 samples, 0.54% of the total) [85]. Interestingly, in all series based on CSF samples, the sampled patients had a previous diagnosis of CNS infection. Regarding the testing strategy, 32,660 (52.00% of total samples) of the collected blood specimens targeted viral particles by means of either viral isolation studies (924 samples, 1.47%) [10,61,75,82] or viral RNA through RT-qPCR (31,726 samples, 50.50% of the total) [16,22–24,32,34,41,47,66,73–80,83,85–88,90], and in 20,975 samples (33.39%), the methods used were the confirmatory test of IFAT (20,880 samples, 33.23%) [24] or the microneutralization test (95 samples, 0.15%) [16]. In all studies on CSF, viral particles were targeted either by means of viral isolation [60] or RTqPCR [71,72]. The serological studies included a total of 24,448 specimens (38.91% of total samples); of these, 6607 in a single study by the Loreto department in Peru were tested by means of IFAT (10.51%) [15], 3194 (5.08% of total blood samples) were analyzed by means of the hemagglutination test [10–12,67] between 1976 and 2009, and 1610 (2.56%) were analyzed by means of the plaque reduction neutralization test [66,70,84,86]. All remaining samples were tested by means of ELISA, either as a single testing option (1404 samples, 2.23%) or as the confirmatory test for a hemagglutination test (11,329 samples, 18.03%). At the same time, all tests based on ELISA reported on the occurrence of IgM class antibodies, while all other studies were unable to discriminate between the occurrence of IgM and/or IgG antibodies and were considered in terms of IgM and/or IgG status (IgM/IgG). By the time of our systematic review and meta-analysis (summer 2024), no viral antigen-based studies had been identified.

Focusing on data from the general population, specimens were collected from 21 series included in eight studies [13,14,19,62,65,81,84,89]. Recruitment strategies were quite heterogeneous. While Rosa et al. [62] and Watts et al. [14] performed random sampling among the targeted population, Grisales-Nieto et al. [19] only included individuals who were previously sampled as negative for other arboviral studies. In turn, Baisley et al. [13], Silva et al. [89], and Gil-Mora et al. [84] tentatively sampled all individuals from the general population of the inquired area, excluding younger age groups, except for the study by Gil-Mora et al. [84], which included all subjects aged less than 18 years at the time of the survey. Eventually, Tavares-Neto et al. [65] randomly sampled individuals receiving the Hepatitis B Virus vaccine during a vaccination campaign, while Salgado et al. [81] reported on a sample from the Brazilian armed forces. Moreover, the aforementioned study by Watts et al. [14] performed serial sampling among participants, with a follow-up one year after the preliminary study among individuals who were initially characterized as seronegative cases.

A total of 5248 blood specimens (8.35% of total samples) targeted OROV serology by means of the hemagglutination test (298, 0.47%), the immunochromatographic test (410, 0.65%), the plaque reduction neutralization test (455, 0.72%), and mainly ELISA, either as a single testing strategy (2168, 3.45%) or as the confirmatory test for a previous hemagglutination test (1917, 3.05%). Interestingly enough, only two studies, for a total of 599 samples, specifically targeted IgM class antibodies (0.95% of total blood samples), compared with 3896 samples specifically targeting IgG class antibodies (6.20%). In contrast, both the hemagglutination and plaque reduction neutralization tests (753 samples, 1.20%) were by their design unable to characterize the detected antibodies as IgG or IgM and were therefore considered in terms of IgM and/or IgG status (IgM/IgG). Finally, only two studies, for a total of 471 samples (0.75% of total blood samples), aimed at virus identification by means of either virus isolation [62] or viral RNA [19]. No viral antigen-based studies were performed in the general population. In most studies, both in symptomatic patients and the general population, OROV was the only arbovirus tentatively detected. However, focusing on the former, paired testing for DENV was performed in 17 studies (including 34 series and 46,537 specimens) [15,22–24,32,41,47,64,67,72,73,76,79,80,82,84,85], with 9 studies (9 series and 3130 specimens) performing paired testing for CHKV [23,41,76,79,82,84–86] and 6 studies (6 series and 2758 specimens) for ZIKV [23,41,76,79,82,85]. Furthermore, four studies [65,81,84,89], including data from the general population, reported on paired tests for DENV (1557 samples), ZIKV (708 samples), and CHKV (1162 samples).

3.3. Risk of Bias Analysis

The overall quality of the included studies is summarized in Figure 3, while a detailed report for each study is provided in Appendix A Table A2. Briefly, mixed quality was documented, and the main issue shared by most of the included studies can be related to the selection bias (D1), particularly when dealing with prevalence studies based on individuals reporting any sign or symptom allegedly associated with arbovirus infection. This potential shortcoming was particularly high for the study by Sanchez-Lerma et al. [90], as the study only included 100 consecutive cases; it was, therefore, impossible to ascertain the sample's representativity. Similarly, due to the inclusion of early studies from the 1970s, the laboratory testing strategy was possibly affected by substantial uncertainties (D2), particularly when dealing with seroprevalence studies, as hemagglutination tests and plaque reduction neutralization tests were unable to dichotomize between IgM and IgG class antibodies, i.e., recent vs. previous OROV infection. Finally, the studies by Salgado et al. [81] and Elbadry et al. [23] were not only heterogeneous in terms of geographic settings, with the former study being in the Caribbean rather than South America and the latter study adopting nationwide sampling (being thus hardly comparable to other regionalbased settings), but also included two very selective population groups (i.e., students and military professionals, respectively), whose exposure and clinical baseline features were in turn very distinctive from other groups.

Figure 3. Summary of risk of bias (ROB) analysis of (a) observational studies (performed according to the risk of bias (ROB) tool from the National Toxicology Program (NTP)'s Office of Health Assessment and Translation (OHAT) handbook [54,92]).

3.4. Summary of Main Results3.4.1. Crude Prevalence EstimatesOROV Identification

As shown in Table 2, after the removal of duplicate isolates from the retrieved series, a pooled sample of 32,439 specimens tested for OROV was identified, and a crude detection rate of 1.64% was calculated. The majority of samples were collected between 1991 and 2010 (21,178, 65.29%), with the lowest detection rate (0.09%), compared with 26.74% of the 344 samples taken before 1990 and the 3.86% of the 10,917 samples collected after 2010. Assuming the studies performed before 1990 (all of them based on direct virus identification) as the reference group, Risk Ratios (RRs) of 0.003 (95%CI 0.002 to 0.005) for 1991–2010 and 0.144 (95%CI 0.118 to 0.175) after 2010 were identified.

Table 2. Occurrence of Oropouche Virus (i.e., detection of either virus isolates or RNA) from samples collected from subjects with any sign/symptom of arbovirus infection.

	Total Samples (N)	OROV-Positive Cases (<i>n</i> /N, %)	Risk Ratio (95%CI)
Overall	32,439	532, 1.64%	-
Timeframe			
Before 1990	344	92, 26.74%	REFERENCE
1991–2010	21,178	19, 0.09%	0.003 (0.002; 0.005)
After 2010	10,917	421, 3.86%	0.144 (0.118; 0.175)
Country			
Bolivia	2089	0, -	0.006 (0.001; 0.096)
Brazil	4030	162, 4.02%	REFERENCE
Colombia	3067	105, 3.42%	0.852 (0.669; 1.084)
Ecuador	579	0, -	0.021 (0.001; 0.344)
French Guyana	95	23, 24.21%	6.023 (4.092; 8.864)
Haiti	1250	1,0.08%	0.020 (0.003; 0.142)
Paraguay	340	0, -	0.037 (0.002; 0.586)
Peru	20,989	241, 1.15%	0.286 (0.235; 0.348)
Sample			
Blood	32,152	525, 1.63%	REFERENCE
CSF	287	7, 2.44%	1.494 (0.715; 3.120)
Diagnostic procedure			
Virus isolation	946	138, 14.59%	4.347 (3.612; 5.231)
RT-qPCR	10,518	353, 3.36%	REFERENCE
RT-qPCR + IFAT	20,880	18, 0.08%	0.026 (0.016; 0.041)
RT-qPCR + MNT	95	23, 24.21%	7.214 (4.981; 10.446)

Note: OROV = Oropouche Virus; 95%CI = 95% confidence interval; RT-qPCR = real-time polymerase chain reaction; CSF = cerebrospinal fluid; IFAT = indirect immunofluorescence assay; MNT = microneutralization test.

The large majority of the sampled cases were from Peru (n = 20,989; 64.70%), followed by Brazil (4030, 12.42%), Colombia (3067, 9.45%), Bolivia (2089, 6.44%), Haiti (1250, 3.85%), Ecuador (579, 1.78%), Paraguay (340, 1.05%), and French Guyana (95, 0.29%), where the latter country was also characterized by the highest detection rate (24.21%), with a corresponding RR of 6.023 (95%CI 4.092 to 8.864) compared with Brazil. On the contrary, the detection of OROV-positive specimens was substantially lower for Peru (1.15%; RR 0.286, 95%CI 0.235 to 0.348) and Haiti (0.08%; RR 0.020, 95%CI 0.003 to 0.142), and it was comparable to that of Brazil for Colombia (3.42%; RR 0.852, 95%CI 0.669 to 1.084), while no positive samples were reported from Paraguay, Bolivia, and Ecuador.

The overwhelming majority of tests were performed on blood specimens (32,152; 99.12%), with a detection rate of 1.63%, compared with 2.44% among the 287 CSF specimens (RR 1.494, 95%CI 0.715 to 3.120). When taking into account laboratory testing techniques, RT-qPCR was associated with a detection rate of 3.36%. Assuming RT-qPCR as the reference group, the highest detection rate was associated with a testing strategy where RT-qPCR

17 of 42

was the confirmatory test for a microneutralization assay (24.21%; RR 7.214, 95%CI 4.981; 10.446), followed by virus isolation (14.59%; RR 4.347, 95%CI 3.612; 5.231), while the lowest detection rate was associated with a testing strategy where RT-qPCR was performed on positive IFAT specimens (0.08%, RR 0.026, 95%CI 0.016 to 0.041).

Serology of OROV Infection

Data on the serology of cases with any sign and/or symptom of arbovirus infection (n = 24,270) are reported in Table 3 after the removal of duplicated series. A cumulative detection rate of 6.66% was calculated. More precisely, the large majority of samples were collected between 1991 and 2010 (14,192, 58.48%), followed by the timeframe after 2010 (8462, 34.58%) and the smallest group, including samples collected before 1990 (1816, 7.42%). Assuming the latter group as the reference one, both the former timeframes were associated with a substantially decreased risk for the detection OROV targeting antibodies (RR 0.108, 95%CI 0.097 to 0.120, and RR 0.128, 95%CI 0.114 to 0.143, for studies performed between 1991 and 2010, respectively).

Table 3. Seroprevalence studies on antibodies targeting the Oropouche Virus from samples collected from subjects with any sign/symptom of arbovirus infection.

	Total Samples (N)	OROV-Positive Cases (<i>n</i> /N, %)	Risk Ratio (95%CI)
Overall	24,470	1630, 6.66%	-
Timeframe			
Before 1990	1816	668, 36.78%	REFERENCE
1991–2010	14,192	565, 3.98%	0.108 (0.097; 0.120)
After 2010	8462	397, 4.69%	0.128 (0.114; 0.143)
Country			
Bolivia	2089	0, -	0.003 (0.001; 0.051)
Brazil	15,793	1177, 7.45%	REFERENCE
Colombia	50	0, -	0.134 (0.009; 2.117)
Ecuador	304	1, 0.33%	0.044 (0.006; 0.313)
Peru	8323	452, 5.43%	0.729 (0.656; 0.809)
Antibody			
IgG/IgM	13,030	898, 6.89%	1.077 (0.980; 1.184)
IgM	11,440	732, 6.40%	REFERENCE
Sample			
Blood	24,448	1627, 6.65%	REFERENCE
CSF	22	3, 13.64%	2.049 (0.715; 5.871)
Diagnostic procedure			
ELISA	13,037	755, 5.79%	REFERENCE
HAT	3216	630, 19.59%	3.383 (3.065; 3.733)
PRT	1610	177, 10.99%	1.898 (1.625; 2.217)
IFAT	6607	68, 1.03%	0.178 (0.139; 0.227)

Note: OROV = Oropouche Virus; 95%CI = 95% confidence interval; ELISA = enzyme-linked immune assay; HAT = hemagglutination test; CSF = cerebrospinal fluid; IFAT = indirect immunofluorescence assay; PRT = plaque reduction neutralization test.

The majority of samples were retrieved from Brazil (15,973, 64.54%), followed by Peru (8323, 34.01%), Bolivia (2089, 8.54%), Ecuador (304, 1.24%), and Colombia (50, 0.20%). Assuming Brazil as the reference group (7.45%), substantially lower detection rates were associated with Peru (5.43%; RR 0.729, 95%CI 0.656 to 0.809) and Ecuador (0.33%, RR 0.044, 95%CI 0.006 to 0.313), while no positive cases were found in Bolivia and Colombia.

The overwhelming majority of samples included blood samples (24,448, 99.91%) with only 22 specimens of CSF. The corresponding detection rates were 6.65% and 13.64%, but the difference was not statistically significant (RR 2.049, 95%CI 0.715 to 5.871).

Regarding the targeted antibodies, most samples did not discriminate between IgM and IgG classes (53.25%), while the remaining studies calculated the occurrence of IgM class antibodies. The corresponding detection rates were 6.89% and 6.40%, respectively, with no substantial differences (RR 1.077, 95%CI 0.980 to 1.184). Regarding the diagnostic procedure, most of the cases were analyzed by means of ELISA (13,037; 53.28%), followed by IFAT (6607, 27.00%), hemagglutination test (3216, 13.14%), and plaque reduction neutralization test (1610, 6.58%), with corresponding detection rates of 5.79%, 1.03%, 19.59%, and 10.99%. Taking into account the detection rate documented by ELISA as the reference group, the occurrence was substantially higher for studies based on the hemagglutination test (RR 3.383, 95%CI 3.065 to 3.733) and plaque reduction neutralization (RR 1.898, 95%CI 1.625 to 2.217), with a reduced rate for IFAT (RR 0.178, 95%CI 0.139 to 0.227).

Seroprevalence data from the general population are reported in Table 4. More precisely, a total of 5247 samples were analyzed, with a crude detection rate of 21.21%. All samples were collected after 1990, with 4085 cases being from the timeframe 1991–2010 (77.85%) and 1162 after 2010 (22.15%). The corresponding detection rates were 26.95% and 1.03%, respectively, with a reduced risk for specimens collected after 2010 (RR 0.038, 95%CI 0.022 to 0.067).

Table 4. Seroprevalence studies on antibodies targeting the Oropouche Virus from samples collected from the general population.

	Total Sample (N)	OROV-Positive Cases (<i>n</i> /N, %)	Risk Ratio (95%CI)
Overall	5247	1113, 21.21%	-
Timeframe			
Before 1990	0	-	-
1991–2010	4085	1101, 26.95%	REFERENCE
After 2010	1162	12, 1.03%	0.038 (0.022; 0.067)
Country			
Brazil	2625	646, 24.61%	REFERENCE
Colombia	455	10, 2.20%	0.089 (0.048; 0.165)
Peru	2168	457, 21.08%	0.857 (0.771; 0.952)
Antibody			
IgG	3896	1092, 28.03%	18.655 (9.735; 35.746)
IgG/IgM	753	12, 1.59%	1.061 (0.450; 2.500)
IgM	599	9, 1.50%	REFERENCE
Diagnostic procedure			
ELISA	4085	1101, 26.95%	REFERENCE
HAT	298	2, 0.67%	0.025 (0.006; 0.099)
PRT	455	10, 2.20%	0.082 (0.044; 0.151)
ICT	410	0, -	0.005 (0.001; 0.072)

Note: OROV = Oropouche Virus; 95%CI = 95% confidence interval; ELISA = enzyme-linked immune assay; HAT = hemagglutination test; PRT = plaque reduction neutralization test; ICT = immunochromatographic test.

The studies were performed only in Brazil (2625 samples, 50.03% of cases), Peru (2168 samples, 41.32%), and Colombia (455, 8.67%), with corresponding detection rates of 24.61%, 21.08%, and 2.20%. Assuming Brazil as the reference group, the risk for positive serostatus was significantly lower in both Peru (RR 0.857, 95%CI 0.771 to 0.952) and Colombia (RR 0.089, 95%CI 0.048 to 0.165).

The majority of samples were analyzed by means of ELISA (4085, 77.85%), followed by plaque reduction neutralization test (455, 8.67%), immunochromatographic test (410, 7.81%), and hemagglutination test (298, 5.68%). The corresponding detection rates were 26.95% (reference group), 2.20% (RR 0.082, 95%CI 0.044 to 0.151), and 0.67% (RR 0.025, 95%CI 0.006 to 0.099) with no cases detected with immunochromatographic testing (RR 0.005, 95%CI 0.001 to 0.072).

Regarding the targeted classes of antibodies, most samples specifically identified OROV targeting IgG (3896, 74.25%), with 599 samples reporting the occurrence of OROV targeting IgM (11.42%) and 753 samples not discriminating between IgG and IgM antibodies (14.35%). The corresponding prevalence rates were 28.03%, 1.50%, and 1.59%. Assuming the seroprevalence of IgM class antibodies as the reference group, a substantially higher rate for IgG antibodies was documented (RR 18.655, 95%CI 9.735 to 35.746), with comparable estimates for the studies unable to discriminate between IgG and IgM (RR 1.061, 95%CI 0.450 to 2.500).

Occurrence of Other Arboviral Infections

Table 5 reports on the detection rates for other pathogens in paired samples from the included studies. The detection rates for all sampled pathogens were substantially higher than that for OROV. More precisely, RRs of 24.816 (95%CI 21.119 to 29.159) and 23.631 (95%CI 20.584 to 27.129) were identified for DENV Virus identification and serology, respectively, compared with an RR of 7.900 (95%CI 5.386 to 11.578) and an RR of 49.500 (95%CI 12.256 to 199.921) for ZIKV and an RR of 2.207 (95%CI 1.427 to 3.412) and an RR of 3.103 (95%CI 2.056 to 4.685) for CHKV.

Table 5. Occurrence of arboviral infections, only paired studies.

Pathogen	Tested (N)	OROV Positive (n/N, %)	Arbovirus Positive (n/N, %)	Risk Ratio (95%CI)
		Virology		
DENV	27,660	152, 0.55%	3772, 13.64%	24.816 (21.119; 29.159)
ZIKV	2758	29, 1.05%	229, 8.30%	7.900 (5.386; 11.578)
CHKV	2924	29, 0.99%	64, 2.19%	2.207 (1.427; 3.412)
		Serology		
DENV	20,269	206, 1.02%	4868, 24.02%	23.631 (20.584; 27.129)
ZIKV	708	2,0.28%	99, 13.98%	49.500 (12.256; 199.921)
CHKV	1379	29, 2.10%	90, 6.53%	3.103 (2.056; 4.685)

Note: OROV = Oropouche Virus; 95%CI = 95% confidence interval; DENV = Dengue Virus; ZIKV = Zika Virus; CHKV = Chikungunya Virus.

3.4.2. Meta-Analysis of Prevalence Estimates

Detection Rates among Individuals with Signs/Symptoms of Arbovirus Infection

A REM meta-analysis was performed, and the main results for blood specimens are reported in Table 6, while the corresponding forest plots are reported in Appendix A Figures A1–A3. Briefly, the detection rate for the whole of viral isolates was 0.45% (95%CI 0.16 to 1.23), with substantial heterogeneity (I² 94.9%, 95%CI 85.7 to 93.9). In subgroup analysis, the detection rate for direct virus isolation was 13.91% (95%CI 5.66 to 30.34, $I^2 = 95.3$), compared with 0.80% (95%CI 0.31 to 2.06) for RT-qPCR as the sole detection test and 0.03% (95%CI 0.01 to 0.16, I^2 93.5%) for RT-qPCR as the confirmatory test for IFAT. The estimate for RT-qPCR as the confirmatory test for a microneutralization test was 24.21% (95% 16.65 to 33.81), but no I^2 statistics were calculated, as only one estimate was included.

Regarding serological estimates, the overall detection rate for IgM was 12.45% (95%CI 3.28 to 37.39), with substantial heterogeneity (I2 98.5%, 95%CI 98.1 to 98.8%). Studies based on ELISA as the sole testing option had an estimated detection rate of 34.83% (95%CI 20.42 to 52.69; I² 97.4%), compared with 6.61% (95%CI 0.95 to 34.27; I² 98.8%) for studies having ELISA as the confirmatory test for a hemagglutination test. Finally, the detection rates for tests unable to discriminate between IgM and IgG classes was 12.21% (95%CI 4.96 to 27.09), with substantial heterogeneity (I² 99.0%, 95%CI 98.8 to 99.2), encompassing 24.66% (95%CI 10.97 to 46.51, I² 98.7%) from studies based on hemagglutination tests, 4.31% (95%CI 1.12 to 15.14; I² 90.6%) from studies based on plaque reduction neutralization test, and 1.03% (95%CI to 1.30) from the single study based on IFAT.

Testing	No. of Series	No. of Observations	No. of Events	Detection Rate (%, 95%CI)	I ² (95%CI)	Tau ²	Q	<i>p</i> -Value
				Virological assay				
Overall	49	33,156	553	0.45 (0.16 to 1.23)	94.9% (85.7 to 93.9)	9.647	942.13	< 0.001
Virus isolation	8	1420	146	13.91 (5.66 to 30.34)	95.3%	1.875	147.87	
RT-qPCR	27	10,761	18	0.80 (0.31 to 2.06)	93.5%	5.585	402.38	
RT-qPCR (on IFAT)	13	20,880	366	0.03 (0.01 to 0.16)	0.0%	1.115	0.359	
RT-qPCR (on MNT)	1	95	23	24.21 (16.65 to 33.81)	-	-	-	
				Serology, IgM only				
Overall	12	13,037	755	12.45 (3.28 to 37.39)	98.5% (98.1 to 98.8)	6.310	726.71	< 0.001
ELISA	4	1404	394	34.83 (20.42 to 52.69)	97.4%	0.539	114.57	
ELISA (on HAT)	8	11633	361	6.61 (0.95 to 34.27)	98.8%	8.124	596.32	
				Serology, IgM/IgG				
Overall	14	11,411	872	12.21 (4.96 to 27.09)	99.0% (98.8 to 99.2)	3.318	1337.11	< 0.001
HAT	9	3194	627	24.66 (10.97 to 46.51)	98.7%	2.143	629.52	
PRT	4	1610	177	4.31 (1.12 to 15.14)	90.6%	1.501	31.90	
IFAT	1	6607	68	1.03 (0.81 to 1.30)	-	-		

Table 6. Meta-analysis of the prevalence of Oropouche Virus isolates among subjects with signs/symptoms of arbovirus infection; blood specimens (note: 95%CI = 95% confidence interval).

Note: I^2 = percent proportion of variance in study estimates that is due to heterogeneity; tau² = estimate of variance of underlying distribution of true effect sizes; Q = weighted sum of squared differences between individual study effects and pooled effect across studies; 95%CI = 95% confidence interval; RT-qPCR = real-time quantitative polymerase chain reaction; IFAT = indirect immunofluorescence analysis; MNT = microneutralization test; ELISA = enzyme-linked immune assay; HAT = hemagglutination test; PRT = plaque reduction neutralization test.

As shown in Figure 4, the pooled estimate for OROV detection in CNS specimens was 2.40% (95%CI 1.68, 5.03), with low heterogeneity (I² 0%, 95%CI 0.0 to 89.6%).

Study, Year, country	CSF+ (N.)	TOTAL (n.)			Events observ	per 100 /ations)	Prev.		95%CI
Bastos et al. 2014 Brazil	3	165	÷					1.818	[0.377;	5.221]
Bastos et al. 2012 Brazil	3	100	÷-					3.000	[0.623;	8.518]
Pinheiro et al. 1982 Brazil	1	22	-					4.545	[0.115;	22.844]
Random effects model		287	\$					2.439	[1.167;	5.026]
Heterogeneity: $I^2 = 0\%$, $p = 0$	0.68		0	20	40	60	80	100		
		Preva	alence	of CS	SF findin	as (case	s per 1	(elgoeg 00		

Figure 4. Forest plot on studies reporting on positive status for Oropouche Virus of cerebrospinal fluid (CSF) specimens (note: 95%CI = 95% confidence interval) [60,71,72].

Detection Rates in General Population

As only two series included data from viral isolates [19,62], and similarly, two series reported data on IgM [65,89], a REM meta-analysis was performed only for detection rates of IgG and for studies unable to discriminate between IgG and IgM. More precisely, the pooled detection rate for the whole of IgM class antibodies was 24.45% (95%CI 7.83 to 55.21), with substantial heterogeneity (96.6%, 95%CI 96.5 to 98.3), encompassing estimates of 59.82% (22.71 to 88.29, I² 99.5) for studies based on ELISA only and 29.31% (95%CI 21.91 to 37.99, I² 92.6%) for studies where ELISA was a confirmatory test for a hemagglutination test, and the single estimate from the series based on immunochromatography, with no positive specimens (Table 7).

Testing	No. of Series	No. of Observations	No. of Events	Detection Rate (%, 95%CI)	I ² (95%CI)	Tau ²	Q	<i>p</i> -Value
				Serology, IgG				
Overall	8	3344	1083	24.45 (7.83 to 55.21)	97.6% (96.5 to 98.3)	3.548	287.63	< 0.001
ELISA	2	1616	338	59.82 (22.71 to 88.29)	99.5%	1.357	198.31	
ELISA (on	5	1522	625	$20.21(21.01 \pm 27.00)$	07 6%	0 176	54.26	
HAT)	5	1525	655	29.31 (21.91 to 37.99)	92.070	0.176	34.20	
ICT	1	205	0	0.0 (0.00 to 100)	-	-	-	
				Serology, IgM/IgG				
Overall	4	753	12	1.42 (0.61 to 3.28)	41.9% (0.0 to 80.5)	0.251	5.17	0.160
HAT	1			0.67 (0.17 to 2.64)	-	-	-	
PRT	3			2.16 (0.99 to 4.68)	6.2%	0.018	2.13	

Table 7. Meta-analysis of the prevalence of Oropouche Virus isolates among subjects from the general population (i.e., without documented signs/symptoms of ongoing arbovirus infection).

Note: I^2 = percent proportion of variance in study estimates that is due to heterogeneity; tau² = estimate of variance of underlying distribution of true effect sizes; Q = weighted sum of squared differences between individual study effects and pooled effect across studies; 95%CI = 95% confidence interval; RT-qPCR = real-time quantitative polymerase chain reaction; ICT = immunochromatography; ELISA = enzyme-linked immune assay; HAT = hemagglutination test; PRT = plaque reduction neutralization test.

Considering the detection rates from studies unable to discriminate between IgM and IgG, a pooled estimate of 1.42% (95%CI 0.61 to 3.28), with substantial heterogeneity (I^2 41.9%, 95%CI 0.0 to 80.5), was calculated, encompassing a prevalence estimate of 2.16% (95%CI 0.99 to 4.68, I^2 6.2%) and the single estimate for the hemagglutination test.

As only two studies documented viral isolates, by means of either RT-qPCR (estimated detection rate for OROV: 0.57%) [19] or virus isolation (estimated detection rate: 3.38%) [62], a meta-analysis of the corresponding pooled estimates was not performed.

3.5. Sensitivity Analysis

A sensitivity analysis (i.e., the study of how different values of an independent variable affect a dependent variable under a given set of assumptions) was performed by removing from the REM meta-analysis one single individual series at a time; the resulting pooled estimates are reported as Appendix A Figures A6–A11.

3.5.1. Studies on Individuals Affected by Any Sign or Symptom of Arboviral Infection, Seroprevalence Studies

As highly expected due to the heterogeneity of the included studies, estimates on IgM prevalence were highly affected by the removal of individual studies (Appendix A Figure A6), and more precisely the series by Figuereido et al. [64], Manock et al. [22], and Cruz et al. [67]. Notably, the estimated detection rates for OROV-targeting IgM class antibodies increased from 12.45% (95%CI 3.28 to 37.39) to 20.17% (95%CI 8.11 to 41.98), 16.58% (95%CI 4.73 to 44.33), and 14.94% (3.76 to 44.11), respectively. On the contrary, while pooled heterogeneity remained substantially unaffected, the estimate for between-study variance (tau²) was particularly affected by the removal of the study by Figuereido et al. [64], dropping from 6.310 to 3.091. Similarly, estimates from studies on the occurrence of OROV-targeting antibodies not discriminating between IgM and IgG classes (Appendix A Figure A7) were affected by the removal of the series by Gil-Mora et al. [84], Watts et al. [15], and Bernardes Terzian et al. [66], with prevalence estimates increasing from 12.21% (95%CI 4.95 to 27.09) to 14.67% (95% 6.31 to 30.48), 14.86% (95%CI 6.31 to 31.14), and 14.19% (5.78 to 30.84). Notably, the removal of two series from a single study by Pinheiro et al. [10] impacted the pooled estimates oppositely, as the removal of the cases from the village of Mojuì from early 1976 decreased the estimated detection rate to 9.82% (95%CI 4.25 to 21.06), while the removal of other villages sampled in the following months (February to May 1975) increased the estimated detection rate to 13.69% (95%CI 5.49 to

30.22). On the contrary, the removal of single estimates did not impact on the heterogeneity of the pooled estimates.

3.5.2. Studies on Individuals Affected by Any Sign or Symptom of Arboviral Infection, OROV Detection

As shown in Appendix A Figure A8, the removal of individual series did not impact the pooled estimates.

3.5.3. Studies on General Population—Seroprevalence Estimates

As shown in Appendix A Figure A9, the removal of individual series also impacted the pooled estimates. More precisely, the removal of the samples from the village of El Tambo included in the study by Gil-Mora et al. [84] reduced the detection rate from 1.42% (95%CI 0.61 to 3.28) to 0.82% (95% 0.31 to 2.15), while omitting the report by Salgado et al. [81] increased the estimated detection rate to 2.16% (95%CI 0.98 to 4.68); interestingly enough, both series negatively impacted the heterogeneity of the estimates, as their removal reduced the pooled I² to 0% and 6%, respectively. On the contrary, when dealing with the detection rate of IgG class antibodies (Appendix A Figure A10), only two series scored a substantial impact on the pooled estimates, as the reported detection rate of 24.45% (95%CI 7.83 to 55.21) shifted to 18.53% (95%CI 6.22 to 43.82) and 37.57% (95%CI 23.19 to 54.53) following the removal of Rosa et al. [62] and Silva et al. [89], respectively. Notably, only the removal of the former study affected the pooled I² estimates, which dropped from 98% to 90%.

3.5.4. Studies on Detection of OROV in CNS

The sensitivity analysis for studies on CSF is reported in Appendix A Figure A11. Taking into account the reduced number of included studies (only three), the removal of the report by Bastos et al. [72] increased the estimated detection rate from 2.44% (95%CI 1.17 to 5.03) to 3.28% (95%CI 1.24 to 8.41).

3.6. Publication Bias

Publication bias was ascertained by calculating funnel plots for all pooled estimates with their subsequent visual inspection. In a funnel plot, the sample size is plotted against the effect size (i.e., detection rate), and as the size of the sample increases, the individual estimates of the effect likely converge around the true underlying estimate [62,65,72]. The funnel plots for prevalence estimates are reported in Appendix A Figure A12.

Due to the uneven sample size of all estimates, the funnel plots were highly asymmetrical, and this finding stresses the likelihood of publication bias. However, as shown in Table 8, Egger's test (i.e., a linear regression of the effect estimates on their standard errors weighted by their inverse variance), on the contrary, only reported substantial asymmetry for studies on OROV detection (t -4.37, bias -3.745, p < 0.001). Therefore, other potential sources of bias could explain the reported asymmetry, including the heterogeneous choices in the outcome measure and, most notably, the differences in the underlying risk, as for studies performed in settings characterized by heterogeneous incidence of the pathogen.

The analysis of small-study bias by means of radial plots (scatter plots of standardized estimates) is shown in Appendix A Figure A13. In fact, all plots were characterized by an uneven distribution of the point estimates across the regression lines, suggesting that all estimates may have been somehow affected by smaller samples.

Finding	t	df	Bias (SE)	Tau ²	<i>p</i> -Value
Symptomatic individuals Virological assay	-4.37	47	-3.745 (0.857)	16.964	<0.001
Serology, IgM only Serology, IgM + IgG	-0.84 0.20	10 12	-4.607 (5.466) 1.137 (5.796)	67.851 111.413	$0.419 \\ 0.848$
CSF findings	1.03	1	1.587 (1.543)	0.377	0.491
General population Serology, IgG only Serology, IgM + IgG	0.16 -1.42	6 2	0.817 (5.091) -1.871 (1.318)	50.087 1.287	0.878 0.292

Table 8. Summary of results of Egger's test performed on main findings reported in this meta-analysis.

Note: df = degree of freedom; SE = standard error; CSF = cerebrospinal fluid.

4. Discussion

4.1. Synthesis of Main Findings

Our systematic review with meta-analysis on the epidemiology of OROV and OF gathered a total of 47 observational studies spanning from 1975 to 2024. Most of the available evidence was collected from studies performed in South America, with a further report from the Caribbean. The collected studies were either performed on symptomatic individuals during an outbreak or as prevalence studies from the general population of areas with either documented or suspected occurrence of OROV infection and also in countries (i.e., Paraguay) where no documented OROV epidemics have occurred at least up to the present [93]. In turn, both strategies were quite heterogeneous in terms of the inquired biomarkers. A total of 33,156 individuals with signs and/or symptoms of arbovirus infection were sampled for the occurrence of OROV, either by virus isolation or by means of RT-qPCR, which was either performed on the whole of the sample or among patients where OROV infection was preventively suspected by serological tests. Not coincidentally, the estimated prevalence ranged from 13.91% (95%CI 5.66 to 30.34) in studies recurring to OROV isolation to 0.80% (95%CI 0.31 to 2.06) when all individuals with documented febrile illness in the previous days were sampled with RT-qPCR and 0.03% (95%CI 0.01 to 0.16) when RT-qPCR was the confirmatory test for IFAT. At the same time, the highest detection rate was documented in a single study that relied on RT-qPCR as the confirmatory test of a previous microneutralization test (24.21%, 95%CI 16.65 to 33.81). Similarly, serology was affected by high heterogeneity, with detection rates for IgM ranging from 6.61% (95%CI 0.95 to 34.27) when ELISA was performed as the confirmatory test of a hemagglutination test to 34.83% (95%CI 20.42 to 52.69) in studies without a previous test. Tests such as the hemagglutination test, IFAT, and plaque reduction test, unable to dichotomize between the detected IgG and IgM class antibodies, had corresponding detection rates ranging from 1.03% (95%CI 0.81 to 1.30) for IFAT, to 4.31% (95%CI 1.12 to 15.14) for the plaque reduction test and 24.66% (95% 10.97 to 46.51) for the hemagglutination test. Serology on the general population was again highly heterogenous, with a detection rate for OROV IgG ranging from 29.31% (95%CI 21.91 to 37.99) for ELISA on a hemagglutination test to 59.82% (95%CI 22.71 to 88.29) for ELISA as the only detection test. Finally, we were also able to pool data on CSF samples, with a detection rate of 2.44% (95%CI 1.68 to 5.03) among the sampled cases with a suspected viral infection from high-risk areas.

4.2. Generalizability

Having been identified since the mid-1950s [5,7,9,76], OROV can hardly be defined as a "new" virus, being rather an epitome of how neglected tropical infections can suddenly become an emerging infectious disease (EID) of potentially global reach [26,36,37,48]. According to the current WHO definition, neglected tropical diseases (NTDs) are a diverse group of conditions caused by a variety of pathogens (including viruses, bacteria, parasites, fungi, and toxins) and associated with devastating health, social, and economic consequences [94–97] with several common features. More precisely, NTDs usually affect people

living in extreme poverty in sub-Saharan Africa, Asia, Latin America, and the Caribbean, with disproportionately high occurrence in people living below the World Bank poverty figure, producing long-lasting effects either due to chronic infections, chronic disabilities, social stigma, and eventually high morbidity and economic impairment not necessarily translating into high mortality. Until recently, most NTDs were considered somehow "nonemerging" conditions, as they are due to pathogens that have afflicted humanity for centuries, usually in the very same areas where currently documented, envisaging the likelihood of their progressive eradication due to the improvements in the socio-economic status of the affected countries [94,98]. Even though, in the recent decade, large areas of South America and the Caribbean did experience sustained economic growth [99], it came with a large environmental impact and social inequalities [99–101] that, in fact, enlarged rather than removed the areas at risk for the spread of arboviruses, including OROV. With about 80% of the total population living in cities [102], not only is South America the most urbanized area in the world, but due to global climate change with heavy rains followed by extreme droughts, uncontrolled deforestation, and the issues associated with the lack of appropriate infrastructures and housing in most urban centers, it has also rapidly become a sort of safe haven for a large number of arthropod species able to host and transmit to human beings a vast array of different pathogens [8]. Not coincidentally, the ongoing OROV epidemics have emerged after the outbreak of ZIKV in 2016 [103,104], while the worst epidemic of Dengue in years is far from being over [105].

The case of OROV infection is of potential global significance for a series of reasons. First, until recently, OROV infections and OF have been considered unable to cause severe consequences, including death and long-lasting disabilities [2,7,31]. However, it should be stressed that our understanding of the true OROV epidemiology has been impaired by the limited diagnostic options and the similarly limited diagnostic opportunities of endemic countries. A key message from our study is that most of the available evidence has been collected on patients with recent history of febrile illnesses. This common blueprint has reasonably resulted in the oversampling of patients who were able to heal from the primary infection, leading to possibly underestimating the fatalities due to OF and OROV infections. In fact, "historical" studies on CSF have documented an otherwise unexpectedly high occurrence rate of neurological complications [71,72], and in post-SARS-CoV-2 pandemic settings, due to the increased availability of high-output diagnostic options (e.g., multiplex RT-qPCR), two fatal cases due to OROV have recently been diagnosed and reported [46]. Moreover, even when dealing with studies of febrile patients, the timing of sample collection and the diagnostic accuracy of the testing option can result in strikingly different estimates for the viral detection rates due to the timing of the OROV viremia. According to our current understanding, OROV viremia peaks on days three and four after the primary infection [106], which is high enough to infect biting midges, and then gradually decreases over the next 31 days, remaining detectable over time. Because of the decrease in viral copies, RT-qPCR on serum is considered reliable only during the first five days of infection [1,7,8]. Therefore, all samples collected well after the viremic peaks could fail to identify underlying viral infection, eventually explaining the very low detection rates in studies that performed RT-qPCR only as a confirmatory test. In effect, studies on the serology of OROV are quite consistent in documenting the high circulation of the pathogen, with prevalence rates that, according to the diagnostic and sampling strategies, could be higher than 50% of the parent population. In other words, our results and the emerging evidence of otherwise unexpected fatal cases suggest that in the past decade, the true disease burden due to OROV may have been extensively underestimated.

Second, while OROV is usually associated with *Culicoides paraensis* midges and *Culex quinquefasciatus* mosquitoes, not only other arthropod species have been shown able to host the pathogen, including *Aedes serratus* and *Coquillettidia venezuelensis*, but also other *Culicoides* species have been proven to be competent vectors [1,5–7,27,28]. This is particularly important from a global health perspective, as other zoonotic orthobunyaviruses, such as Schmallenbergvirus (SBV), have been documented in old-world *Culicoides* [107,108]. As

SBV is diffused in wild and domestic ruminants across Europe, the limited human reach of SBV infections should be understood as the inability of the pathogen to infect human cells rather than a lack of its circulation [108,109]. Moreover, the biology of orthobunyavirus may contribute to the rapid spread of OROV infections. Due to the segmented nature of the RNA genome, all Orthobunyaviruses could possibly reassort in the case of coinfections. In fact, there is some evidence that a large proportion of OF may be due to reassortant viruses rather than to "wild type" OROV strains [70]. This mechanism is believed to have also been involved in the evolution of a human pathogen, Ngari Virus (NRIV), which consists of the L and S segments of Bunyamwera Virus (BUNV) and the M segment of Batai Virus (BATV) [110]. As Orthobunyaviruses are endemic to many other areas of the world, including Africa, Europe, Asia, and North America, we cannot rule out that OROV may possibly spread outside Latin America due to the availability of suitable vectors and/or the acquisition of affinity to local vectors following reassorting. Interestingly enough, recent data have documented anti-OROV antibodies even in cattle and dogs from Brazilian urban areas, stressing the extensive zoonotic potential of this pathogen due to the possible reservoir population among common domestic animals [83,91]. The documented similarities between OROV and other Orthobunyaviruses represent another significant source of concern. For instance, Akabane Virus, another member of the Simbu serogroup with Culicoides midges as documented vectors, is a well-documented teratogen that causes severe fetal damage among domestic animals, particularly in cattle, buffalo, sheep, goats, and even horses [111–113]. Fetal defects associated with Akabane Virus infection include extensive CNS involvement (i.e., porencephaly and hydranencephaly) [111,113], and while very little is known about the teratogenic potential of OROV, its tropism for brain tissue and its capability to cross the placental barrier and infect the fetus represent a warning for potential risks faced by pregnant women during OROV outbreaks [45,72,114].

Nonetheless, our study suggests that OROV, despite its potential burden and its significance in terms of global health, appears as significantly less efficient than other arboviruses, such as ZIKV, CHKV, and DENV, in terms of human spread. Even though the cocirculation of these pathogens has been repetitively documented [6,44,64,73,86,115], pooled data suggest that even when and where OROV outbreaks have been reported, viral detection rates for the aforementioned arboviruses may exceed those for OROV several times (i.e., RR 2.207 (95%CI 1.427 to 3.412), RR 7.900 (95%CI 5.386 to 11.578), and RR 24.816 (95%CI 21.119 to 29.159) for the viral detection rates of DENV, ZIKV, and CHKV compared with those of OROV, respectively; RR 3.103 (95%CI 2.056 to 4.865), RR 49.500 (95%CI 12.256 to 199.921), and RR 23.631 (95%CI 20.584 to 27.129) for serology of CHKV, ZIKV, and DENV, respectively). Some explanations may be provided by the underlying biology of their competent vectors. During the four-decade time period included in the present study, Latin America was affected by the extensive re-infestation of Aedes aegypti, which resulted in the ongoing major outbreaks of DENV and contributed to a lesser extent to the previous outbreaks of CHKV and ZIKV [116–118]. A aegypti is well adapted to breeding in close association with humans [117,118] but is not considered a competent vector for OROV, which, in turn, is more frequently associated with arthropods like *Culicoides* paraensis [29,115]. As the C paraensis species thrives in close association with agricultural wastes (e.g., husks and banana stalks), OROV can unsurprisingly result in large numbers of human infections within farming communities [1–3,17]. On the contrary, its diffusion in the urban environments relies on far less effective vectors, such as *Culex quinquefasciatus*, Aedes serratus, Coquillettidia venezuelensis, and other Culicoides species, ultimately appearing marginal compared with the pathogens otherwise hosted by A aegypti (i.e., CHKV, ZIKV, and DENV) [1-3].

Unfortunately, far from diminishing the actual burden of OROV infections, the other side of the coin is that arboviruses emerge as a cumulative threat, urging for a more comprehensive approach addressing these pathogens, their hosts, and vectors as a whole [119–121]. This One Health approach has been repetitively advocated by global [121,122], regional [123], national, and even local health authorities, but way more

rarely implemented [120,121,124–126]. In this regard, a success story can be identified in the Italian National Plan for Prevention, Surveillance, and Response to Arbovirosis, which, since 2018, has tracked the circulation of zoonotic viruses such as West Nile Virus, Tick-Borne Encephalitis Virus, Usutu Virus, Toscana Virus, and even DENV, ZIKV, and CHKV [120,121,127].

This integrated surveillance is coordinated by Istituto Superiore di Sanità (ISS) and (for the West Nile and Usutu Viruses) Istituto Zooprofilattico of Abruzzo and Molise (Izs-AM), in collaboration with the Ministry of Health [127,128]. Through the active integration and collaboration of professionals with a background in human medicine, veterinary medicine, entomology, and more recently, even climatology, this integrated surveillance not only regularly publishes surveillance reports but provides the blueprints for specifically tailored response plans to ensure the early detection of potential cases and minimize any spread of diseases [124–126,129].

4.3. Limitations

Despite its potential significance from a public health point of view, our study is affected by several shortcomings, including the intrinsic limits of systematic reviews and meta-analyses and those associated with the studies we gathered.

First and foremost, the quality of the evidence we reported is dependent on that of the parent studies. In fact, the preventive ROB analysis documented the uneven quality of the source studies, which in turn depends on the heterogeneous sampling and reporting strategies. On the one hand, studies only including subjects affected by febrile illness are limitedly representative when dealing with the actual incidence of OROV infection, as the included series did not take into account asymptomatic and/or afebrile patients. The fact that most early studies reported on outbreaks where OROV was almost certainly the causative agent greatly contributes to the selection bias [10–12,60,106], especially when the comparison is made with studies that may have been designed in order to document the occurrence of DENV, CHKV, or ZIKV infections, leading to the heterogeneous sampling we documented across the four-decade time period we included in this study [31,41,86,87,89,90]. On the other hand, while studies on the general population may hint at the cumulative occurrence of OROV infections in a certain area, serology data are of limited reliability when dealing with any tentative reconstruction of their incidence. Moreover, the focal nature of OROV outbreaks, which in turn results from the biology of the documented vectors, could significantly skew estimates of prevalence in what was otherwise considered "general populations" [14,15,63,84,87].

Second, as the studies span over four decades, diagnostic strategies have evolved over time in order to cope with the increasing availability of accurate and effective diagnostic options, but also with the constraints of field research studies [2,10,36,39,130]. In fact, most of the studies were performed in areas within the Amazonas, and samples were obtained in limited-resource areas. Moreover, laboratory techniques have evolved only in recent years by guaranteeing the simultaneous assessment of several pathogens at the same time (e.g., by means of multiplex PCR), leading to the potential oversampling of OROV in earlier studies compared with lower estimates in more recent reports [44,65,67,72,76,78,84,85,89,90].

Third, we must stress the potentially limited representativity of the pooled sample. According to available data, South America's population ranges between 424 and 442 million people [131]. Focusing on the serology of OROV, the pooled sample included a total of 24,470 cases with any signs or symptoms and 5247 cases from the general population, for a total of around 30,000 people; our study only encompasses around 0.007% of the total population of South America. The pooled sample is also scarcely representative of the actual demographics of the parent countries. Brazil, with around 201 million people, has by far the largest population in South America (around 45.48% to 47.41% of the total population), and also, in our sample, the most significant proportion of cases was documented in Brazil (around 61.39%, including both cases from outbreaks and the general population). However, the second largest population group was collected in Peru, which accounts for

around 34 million people, which is around 8% of the population of South America but encompassed 34.63% of our pooled sample and 41.11% of subjects sampled from the general population. The over-representativity of some areas is even more evident when focusing on the detection of viral RNA or viral isolation, as Peru encompassed two-thirds of the pooled sample, and Brazil only contributed around 10% of the sample. Finally, even within these large samples, the representativity of the national level is limited. The large majority of samples were retrieved in the areas of the Amazonas, which are reasonably characterized by the highest prevalence of vectors and pathogens but account for a reduced proportion of the total population. In other words, the pooled estimates reasonably overestimated the actual occurrence of OROV; a quite cautious approach in their generalization is, therefore, highly warranted.

Fourth, our estimates were reasonably affected by a substantial small-study effect. In fact, substantial differences in the detection rates for OROV were identified, with crude estimates for viral RNA and viral cultures of 1.64% compared with a pooled estimate of 0.45% (95%CI 0.16 to 1.23), and similar differences were identified for all other biomarkers. Even though these results may appear quite confusing, it should be stressed that the meta-analytical approach was adopted to better cope with potential confounders and sources of bias associated with source studies than otherwise allowed by the simple cumulative summary of individual data [132,133]. Notably, in this specific case, the simple algebraic sum of the prevalence has reasonably determined the substantial underestimation of the actual prevalence rates for OROV. Therefore, while the high heterogeneity of source studies urges for a quite cautious appraisal of our results, the substantial differences between the crude and pooled estimates reasonably stress how a REM meta-analytical approach likely represents the more appropriate way for handling the highly variable landscape of observational studies on the OROV detection rates.

5. Conclusions

OROV, the causal agent of OF, an NTD, has recently been characterized as an emergent zoonotic disease, not only in South America but also from a global perspective. Our systematic review with meta-analysis suggests that OROV infections may be largely underestimated due to the sampling and testing strategies, focusing on the assessment of ongoing outbreaks rather than on the general population. Nonetheless, the characteristics of this pathogen, its documented large array of hosts and vectors, and the role of environmental and socioeconomic factors collectively highlight how OROV could fail to obtain a global reach in the near future. In fact, pooled estimates suggest that DENV, CHKV, and ZIKV are far more effective in causing local epidemics, particularly in urban areas than OROV, possibly due to the underlying biology of competent vectors. However, the recent history of West Nile Virus and, most notably, Dengue, their initial spread in North American and Western European countries, and the subsequent spread to most of western Europe and Eurasia suggest that national and international surveillance plans for arboviruses should include OROV and OF in order to rapidly identify the potential spread of this pathogen outside of Latin America. A comprehensive "One Health" approach, through the collaboration of professionals from human, veterinary medicine, entomology, biology, and environmental sciences, could, therefore, guarantee effective prevention and mitigation strategies.

Supplementary Materials: The following supporting information can be downloaded at: https://www.mdpi.com/article/10.3390/v16091498/s1, Table S1: PRISMA checklist.

Author Contributions: Conceptualization, M.R., A.C., R.S. and F.P.B.; methodology, M.R., A.C., S.T. and M.B.; software, M.R., M.B. and S.C.; validation, E.M.F., R.G., S.C., S.G. and D.F.; formal analysis, M.R., M.B., S.C. and S.G.; investigation, M.R., F.P.B. and S.T.; resources, F.M.; data curation, M.R., D.F., F.M. and E.M.F.; writing—original draft preparation, M.R., S.C., M.B., E.M.F., R.S. and F.P.B.; writing—review and editing, A.C., S.G., E.M.F., M.R. and F.P.B.; visualization, M.R., S.G., S.T., D.F., A.C. and P.G.G.; supervision, A.C., S.T., D.F., R.S. and P.G.G.; project administration, M.R. and F.M.;

funding acquisition, M.R. and F.M. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Source data are available upon request to the corresponding authors.

Acknowledgments: Authors would like to extend their sincere appreciation to Watts DM for their assistance in the early stages of this research.

Conflicts of Interest: The authors declare no conflicts of interest.

Appendix A

Table A1. Research strategy and entries found by searching databases.

Database	Keywords Searched	No. of Entries Found
Pubmed	"Oropouche orthobunyavirus" [Supplementary Concept] OR "Oropouche fever" OR "Oropouche virus" OR "oropouche" OR "OROV"	239
EMBASE	'Oropouche orthobunyavirus' OR 'Oropouche virus' OR 'oropouche fever'	215
SCOPUS	"Oropouche orthobunyavirus" OR "Oropouche virus" OR "oropouche fever" OR "oropouche"	280
MedRxiv	"Oropouche orthobunyavirus" OR "Oropouche fever" OR "Oropouche virus" OR "oropouche" OR "OROV"	11

			Events per	100		
Study, Year, country	OROV+ (N.) T	OTAL (n.)	observati	ons	Prev.	95%CI
LABORATORY = ELISA I(gM)			4			
Mourao et al. 2009 Brazil	128	631	+		20.285	[17.214; 23.638]
Alvarez-Fanconi et al. 2010 Peru	108	171			63.158	[55.457; 70.394]
Garcia et al. 2016 Peru	122	508	-		24.016	[20.363; 27.974]
Carvalho et al. 2022 Brazil	36	94	1		38.298	[28.456; 48.898]
Random effects model		3494			36.874	[20.418: 52.031]
$f(x) = x^2 + y^2 + y^2$						
LABORATORY = remagnitumentan + ELGA Ugh	0		1			
Vasconcelos et al. (Maranhao) 1989 Brazil	128	197	1		64.975	[57.872; 71.619]
de Figuereido et al. 2004 Brazil	3	8557	d		0.035	[0.007; 0.102]
da Silva Azevedo et al. (Parauapebas) 2007 Brazil	32	125			25.600	[18.216; 34.176]
da Silva Azevedo et al. (Porto de Moz) 2007 Brazil	61	109	1	-	55.963	[46.133; 65.461]
Manock et al. 2009 Equador	1	304 +			0.329	[0.008; 1.819]
Cruz et al. 2009 Brazil	23	1597	4		1.440	[0.915; 2.153]
Vasconcelos et al. (Magalhaes Barata) 2009 Brazil	92	651	*		14.132	[11.547; 17.047]
Vasconcelos et al. (Maracana) 2009 Brazil	21	93			22.581	[14.554; 32.422]
Rendom effects model		11663 🥌			0.005	[8:950; 34:207]
LINEAC DE						
Random effects model		13037 -	1		12.455	[3.278; 37.390]
Heterogeneity: /2 = 98%, p < 0.01		1.1	1 1 1 1	-1-1-1		
Test for subgroup differences: $\chi_1^2 = 3.47$, df = 1 (p = 0.06)		0 ·	10 20 30 40	50 60 70		
	Prevalen	re of OROV low	+ isolates (cases	ner 100 neonle) symoto	matic cases

Figure A1. Forest plot on studies reporting on IgM seroprevalence for Oropouche Virus (OROV) among individuals reporting any febrile illness symptom (note: 95%CI = 95% confidence interval) [23,40,41,62,65,68–70,76,83].

Table A2. A summary of risk of bias assessment according to the risk of bias (ROB) tool from the National Toxicology Program (NTP)'s Office of Health Assessment and Translation (OHAT) handbook [55,93] on observational studies included in the meta-analysis. Note: O = definitively low; O = probably low; O = probably high; O = definitively high.

Study	D1. Selection	D2. Confounding	D3. Attrition/Exclusion	D4. Detection		D5. Selective Reporting	D6. Other
	Did selection of study participants result in appropriate comparison groups?	Did the study design or analysis account for important confounding and modifying variables?	Were outcome data complete with respect to attrition or exclusion from analysis?	Can we be confident in the exposure characterization?	Can we be confident in the outcome assessment?	Were all measured outcomes reported?	Were there any other potential threats to internal validity?
Pinheiro et al., 1976 [10]	٢	٢	٢	00	00	٢	٢
LeDuc et al., 1981 [11]	\odot	٢	٢	00	00	\odot	٢
Pinheiro et al., 1982 [61]	\odot	٢	00	٢	00	00	00
Borborema et al., 1982 [12]	٢	٢	00	\odot	00	00	00
Vasconcelos et al., 1989 [62]	\odot	٢	00	٢	00	00	00
Rosa et al., 1996 [63]	\odot	٢	00	٢	\odot	٢	٢
Watts et al., 1997 [64]	\odot	٢	00	٢	\odot	٢	٢
Baisley et al., 1998 [14]	\odot	٢	00	٢	0	\odot	٢
de Figueredo et al., 2004 [65]	\odot	٢	00	٢	\odot	٢	٢
Tavares Neto et al., 2004 [66]	\odot	٢	00	٢	\odot	٢	٢
da Silva Azevedo et al., 2007 [40]	\odot	٢	00	٢	\odot	٢	٢
Bernarders Terzian et al., 2009 [67]	\odot	\odot	00	\odot	0	٢	٢
Cruz et al., 2009 [68]	\odot	٢	00	\odot	0	٢	٢
Manock et al., 2009 [23]	\odot	٢	00	٢	\odot	٢	٢
Mourao et al., 2009 [69]	٢	٢	٢	\odot	0	٢	\odot
Vasconcelos et al., 2009 [41]	٢	٢	00	\odot	0	٢	٢
AlvarezKFalconi et al., 2010 [70]	٢	٢	٢	\odot	0	٢	٢
Forshey et al., 2010 [25]	٢	٢	٢	\odot	0	٢	٢
Aguilar et al., 2011 [71]	00	٢	00	\odot	0	٢	٢
Bastos et al., 2012 [72]	٢	٢	٢	\odot	0	٢	٢
Bastos et al., 2014 [73]	\odot	٢	00	\odot	\odot	٢	٢
do Calmo Martins et al., 2014 [74]	\odot	٢	00	\odot	0	٢	٢
Cardoso et al., 2015 [75]	\odot	٢	٢	\odot	0	٢	٢
Garcia et al., 2016 [76]	00	٢	00	٢	٢	٢	٢
Alva-Urcia et al., 2017 [77]	\odot	٢	٢	٢	٢	٢	٢
SilvaKCaso et al., 2019 [35]	٢	٢	٢	00	00	\odot	٢
do Nascimiento et al., 2020 [78]	٢	٢	٢	00	00	٢	٢

lable A2. Co

Study	D1. Selection	D2. Confounding	D3. Attrition/Exclusion	D4. Detection		D5. Selective Reporting	D6. Other
MartinsKLuna et al., 2020 [79]	٢	٢	00	0	00	00	00
Rojas et al., 2020 [48]	٢	٢	00	٢	00	00	00
Salvador et al., 2020 [80]	٢	٢	00	٢	00	00	00
Elbadry et al., 2021 [24]	٢	٢	00	٢	٢	\odot	٢
Gaillet et al., 2021 [17]	٢	٢	00	٢	٢	\odot	٢
Saatkamp et al., 2021 [81]	٢	٢	00	٢	٢	\odot	٢
Salgado et al., 2021 [82]	٢	©	00	٢	٢	0	٢
Carvalho et al., 2022 [83]	٢	٢	00	٢	٢	\odot	٢
Ciuoderis et al., 2022 [33]	٢	٢	00	٢	٢	\odot	٢
Dias et al., 2022 [84]	٢	٢	00	٢	٢	\odot	٢
Gil-Mora et al., 2022 [85]	٢	©	00	٢	٢	0	٢
Gonçalves Maciel et al., 2022 [86]	٢	٢	00	٢	٢	\odot	٢
Watts et al., 2022 [16]	٢	٢	©	٢	٢	\odot	٢
De Lima et al., 2024 [87]	٢	٢	00	٢	٢	\odot	٢
Forato et al., 2024 [42]	٢	©	٢	٢	٢	0	٢
GrisalesKNieto et al., 2024 [20]	٢	٢	٢	٢	٢	\odot	٢
Moreira et al., 2024 [88]	00	٢	00	٢	٢	\odot	٢
Scachetti et al., 2024 [89]	٢	00	00	٢	00	\odot	٢
Silva et al., 2024 [90]	00	٢	00	٢	٢	\odot	٢
Sanchez-Lerma et al., 2024	00	٢	٢	\odot	\odot	٢	٢

				Events per 100			
Study, Year, country	OROV+ (N.)	TOTAL (n.)		observations		Prev.	95%CI
LABORATORY = No. supportion			1				
Pinheiro el al (Mejul) 1976 Brazil	105	130	1.1			+ 80.769	[72.934; 87.151]
Pinheiro et al. (Mojul) 1976 Brazil	13	109	-			11.927	[6.506; 19.531]
Pinheiro el al (other villages) 1976 Brazil	1	43	-			2.326	[0.059; 12.289]
LeDuc et al. (Quatro Bocas) 1981 Brazil	23	68	1			33,824	[22.789; 46,317]
LeDuc et al. (Quatro Bocas) 1981 Brazil	57	292	1.1	-		19,521	(15.133: 24.539)
LeDuc et al. (Tome Acu) 1981 Brazil	84	195	1111			43.077	[36.023, 50.344]
Pinheiro et al. (Barcelos) 1982 Brazil	171	264	- i -			64.773	[58.680, 70.529]
Pinheiro et al. (Manaus) 1982 Brazil	83	496	1.000			16,734	[13.555; 20.316]
Cruz et al. 2009 Brazil	90	1597	= 1			5,636	[4.556] 6.882]
Earmont a third # anothi		1.104	-			24,039	100,005,48 2013
maximum and provide							
LARORATORY = /FIN			. 1				
Watts et al. 2022 Peru	68	6607	8			1 029	[0.600; 1 303]
LADION DITE - Planar incontinue March	and the second second	0	. 1				
Bernardes Terzian et al. (Acre) 2009 Brazil	6	357	e 1.			1.681	(0.619: 3.622)
Aguilar et al. 2011 Peru	154	1037	- See -			14.851	[12.740; 17.163]
Gil-Mora et al. (Calolo) 2022 Colombia	0	50	e 11 -			0.000	[0.000] 7.112]
da Lima et al. 2024 Brazil	17	166	-			10.241	[5.080 15.890]
Financiam II model		70.00	-			4.000	1.1-024-03-000
			1				
Random effects model		11411	÷	-		12.207	[4.946; 27.086]
Holorogenuity $T' = 90\%$, $\mu < 0.01$				1 1 1	1.1		
Test for subgroup differences: χ^2_3 = 48.33, d1 = 2	(p + 0.01)		0 10 20	30 40 50	60 7	0	township manual

Figure A2. Forest plot on studies reporting on IgM/IgG seroprevalence for Oropouche among individuals reporting any febrile illness symptom (note: 95%CI = 95% confidence interval; IFAT = indirect immunofluorescent antibody test) [10–12,16,61,68,71,85,87].

Events per 100

Study, Year, country	OROV+ (N.)	TOTAL (n.)	observations	Prev.	95%CI
1 1000 1700V - DT -000					
LABORATORY = RT-qPCR		e0 -		1.440	(0.037) 7.9131
Manock et al. 2009 Equador	0	229		0.000	[0.000: 1.598]
Aquilar et al. 2011 Peru	2	1037 1		0.193	[0.023: 0.695]
do Calmo Alves Martins 2014 Brazil	0	677 🖮		0.000	[0.000; 0.543]
Cardoso et al. (Cuiabà) 2015 Brazil	3	396		0.758	[0.157; 2.198]
Cardoso et al. (nearby cities) 2015 Brazil	1	68 🐖		1.471	[0.037; 7.923]
Cardoso et al. (Varzea Grande) 2015 Brazil	1	65 🛲		1.538	[0.039; 8.276]
Garcia et al. 2016 Peru	19	508 🗯		3.740	[2.267; 5.779]
Alva-Urcia et al. 2017 Peru	12	139	-	8.633	[4.541; 14.595]
Silva-Caso et al. 2019 Peru	46	268	-*-	17.164	[12.849; 22.223]
do Nascimiento et al. 2020 Brazil	5	352 #		1.420	[0.463; 3.284]
Reise et al. 2020 Reserveu	131	490 :	-#-	20.411	[22.001; 30.020]
Salvador et al. 2020 Paraguay	2	53	_	3 774	[0.000, 3.022]
Elbadry et al. 2021 Haiti	1	1250		0.080	[0.002: 0.445]
Saatkamp et al. 2021 Brazil	0	49 1		0.000	[0.000; 7.252]
Ciuoderis et al. (Cali) 2022 Colombia	3	164 🗰		1.829	[0.379; 5.253]
Ciuoderis et al. (Cucuta) 2022 Colombia	3	193 🗮		1.554	[0.322; 4.475]
Ciuoderis et al. (Leticia) 2022 Colombia	48	887 =		5.411	[4.017; 7.111]
Ciuoderis et al. (Villavicencio) 2022 Colombia	51	1723		2.960	[2.212; 3.874]
Dias et al. 2022 Brazil	0	106 🤟		0.000	[0.000; 3.420]
Goncalves Maciel et al. 2022 Peru	0	340 📖		0.000	[0.000; 1.079]
da Lima et al. 2024 Brazil	0	166 🕪		0.000	[0.000; 2.198]
Forato et al. 2024 Brazil	0	882 10		0.000	[0.000: 0.417]
Moreira et al. 2024 Brazil	27	351 -		7.692	[5.130; 10.995]
Scachetti et al. 2024 Brazil	10	93 :	-	10.753	[5.278; 18.887]
Pandom effects model	0	10761		0.000	[0.000, 3.022]
Materopaneity: $J^2 = 9.4\%$, $n < 0.01$		10701		0.700	[0.300, 2.033]
removagements - existin - even					
LABORATORY = RT-qPCR + microneutrali	zation test				
Gaillet et al. 2021 French Guyana	23	95		24.211	[16.008; 34.081]
LABORATORY = RT-qPCR on IFA					
Forshey et al. (Asuncion) 2010 Paraguay	0	240 🖷		0.000	[0.000; 1.525]
Forshey et al. (Cochabamba) 2010 Bolivia	0	256 18		0.000	[0.000; 1.431]
Forshey et al. (Cusco) 2010 Peru	1	826		0.121	[0.003; 0.673]
Forshey et al. (Guayaquii) 2010 Equador	10	10730 10		0.000	[0.000; 1.048]
Forshey et al. (La Merced) 2010 Peru	10	774 1		0.149	[0.000; 0.242]
Forshey et al. (Mandalena) 2010 Pellu	0	173 1		0.000	[0.000; 2.110]
Forshey et al. (P Maldonado) 2010 Peru	1	1215		0.082	[0.002: 0.458]
Forshey et al. (Piura) 2010 Peru	0	1984 10		0.000	[0.000; 0.186]
Forshey et al. (Santa Cruz) 2010 Bolivia	0	1280		0.000	[0.000; 0.288]
Forshey et al. (Tumbes) 2010 Peru	0	1211		0.000	[0.000; 0.304]
Forshey et al. (Yurimaguas) 2010 Peru	0	1452 🔘		0.000	[0.000; 0.254]
Forshey et al. (Concepcion) 2010 Bolivia	0	380 🔅		0.000	[0.000; 0.966]
Random effects model		20880		0.026	[0.005; 0.156]
Heterogeneity: $I^2 = 0\%$, $p = 1.00$					
LABORATORY = Virus isolation				07.0.5	
Pinneiro et al. (Mojul) 1976 Brazil Dishaira et al. (ather ulligger) 1076 Brazil	42	151		27.815	[20.839; 35.683]
Finneno et al. (other villages) 1976 Brazil Dinhaito et al. (Dalbal) 1976 Brazil	1	37	×	2.273	[42 100: 75 2/4]
Pinheito et al. (Palhal) 1976 Brazil	22	15 -		26 667	[77.787:55.100]
Borborema et al. 1982 Brazil	9	496 🖛	-	1.815	[0.833: 3.416]
Vasconcelos et al. (Maranhao) 1989 Brazil	22	75		29.333	[19.381; 40.978]
Garcia et al. 2016 Peru	32	508 -		6.299	[4.348; 8.777]
Carvalho et al. 2022 Brazil	14	94 -	*	14.894	[8.389; 23.725]
Random effects model		1420		13.913	[5.657; 30.342]
Heterogeneity: $I^2 = 95\%$, $p < 0.01$					
Random effects model		33156		0.447	[0.162; 1.227]
Heterogeneity: I ^z = 95%, p < 0.01		0 1	0 20 30 40 50 60 3	70	
Test for subgroup differences: χ_3^* = 93.29, df = 3 (p	< 0.01)		· 20 30 40 30 60 /	~	F

Figure A3. Forest plot on studies reporting on Oropouche Virus (OROV) isolates either through viral identification or real-time (quantitative) polymerase chain reaction (RT-qPCR) among symptomatic individuals (note: 95%CI = 95% confidence interval; IFA = indirect immunofluorescence assay) [10–12,14,16,17,20,23–25,33,35,40–42,48,61–91].

Study, Year, country	OROV+ (N.)	rotal (n.)	Events per 100 observations	Prev.	95%CI
LABORATORY = Homagglutimation least					
Salgado et al. 2021 Brazil	2	298 7		0.671	[0.081; 2.403]
LABORATORY = Planue Reduction Neutralization Te	/er				
Gil-Mora et al. (El Tambo) 2022 Colombia	8	263 🗰		3.042	[1.322; 5.905]
Gil-Mora et al. (La Sierra) 2022 Colombia	1	40 🔆 🗕		2.500	[0.063; 13.159]
Gil-Mora et al. (Santander de Quilichao) 2022 Colombia	1	152 +		0.658	[0.017; 3.611]
Random effects model		498 0		2,112	[0,815-4,679]
taking mity (* 1990) 1 824					
Random effects model		753		1.418	[0.607; 3.276]
Heterogeneity: $I^2 = 42\%$, $p = 0.16$		L 1	1 1 1 1 1		
Test for subgroup differences: $\chi_1^2 = 2.10$, df = 1 (p = 0.15)		0 10	20 30 40 50 60	70	
	Prevalenc	e of OROV IgM/IgG	+ isolates (cases per 100 p	beople) asy	mptomtic cases

Figure A4. Forest plot on studies reporting on IgM/IgG for Oropouche Virus (OROV) seroprevalence among asymptomatic individuals (note: 95%CI = 95% confidence interval) [82,85].

			Events per 10	0			
Study, Year, country	OROV+ (N.)	TOTAL (n.)	observations	5	Prev.		95%CI
LABORATORY = ELISA (IgG)							
Watts et al. (Manacamiri) 1997 Peru	33	137	-		24.088	[17.198;	32.132]
Watts et al. (Padre Cocha) 1997 Peru	94	321			29.283	[24.361:	34.593]
Watts et al. (Porvenir) 1997 Peru	45	99			45.455	[35.414;	55.775]
Watts et al. (Primavera) 1997 Peru	103	567	+		18.166	[15.077;	21.591]
Watts et al. (Villa Punchana) 1997 Peri	u 173	492	*		35.163	[30.942;	39.563]
Random effects model		1616	~		20.311	[21.043;	37.993]
$Helling(a, a, b) \in Sp(1, b) \in Sp(1, b)$							
LABORATORY = hemaggluUnation +	ELISA IIgG	i)					
Rosa et al. 1996 Brazil	245	296			82,770	[77.976;	86.894]
Baisley et al. 1998 Brazil	390	1227	Ŧ		31.785	[29.185;	34.472]
Random effects model		152.8		-	59,817	122.713;	88,2911
Filleropennik (² + 00), p + 0.03							
LABORATORY = Immunocroning	aphić test, P	00					
Silva et al. 2024 Brazil	0	205 🖾			0.000	[0.000]	1.783]
Random effects model		3344			24.452	[7.832;	55.214]
Heterogeneity: /2 = 98%, p < 0.01			1 1 1	1		100	1.000
Test for subgroup differences: χ_2^2 = 2.25, df	= 2 (p = 0.32)	0	20 40 60	80	100		

Prevalence of IgG (cases per 100 people), asymptomatic cases

Figure A5. Forest plot on studies reporting on IgG seroprevalence for Oropouche Virus (OROV) among asymptomatic individuals (note: 95%CI = 95% confidence interval; ELISA = enzyme-linked immune assay) [14,15,63,90].

Study	Events per 100 observations	Events	95%-CI	P-value	Tau2	Tau	12
Omitting Vasconcelos et al. (Maranhao) 1989 Brazil		10.09	[2.46; 33.31]	1000	6.2522	2.5004	98%
Omitting de Figuereido et al. 2004 Brazil		20.17	[8.11; 41.98]		3.0908	1.7581	98%
Omitting da Silva Azevedo et al. (Parauapebas) 2007 Brazil	-10	11.55	[2.66; 38.40]		6.8665	2.6204	99%
Ornitting da Silva Azevedo et al. (Porto de Moz) 2007 Brazil	-10	10.40	[2.49; 34.57]		6.4455	2.5388	99%
Omitting Manock et al. 2009 Equador		16.58	[4.73; 44.33]	Y 1 S	5.4603	2.3367	99%
Ornitting Mourao et al. 2009 Brazil		11.83	[2.72; 39.16]	11 1 2	6.9121	2.6291	99%
Omitting Cruz et al. 2009 Brazil	- 10	14.94	[3.76; 44.11]		6.3404	2.5180	98%
Omitting Vasconcelos et al. (Magalhaes Barata) 2009 Brazil		12.25	[2.82; 40.20]	11 1 2	6.9414	2.6347	99%
Omitting Vasconcelos et al. (Maracana) 2009 Brazil		11.72	[2.70; 38.84]		6.8920	2.6253	99%
Omitting Alvarez-Fanconi et al. 2010 Peru	-8	10.16	[2.47: 33.58]	1111	6.2953	2,5090	98%
Omitting Garcia et al. 2016 Peru	-18	11.62	[2.68; 38.61]	11 1 2	6.8819	2.6233	99%
Omitting Carvalho et al. 2022 Brazil		11.02	[2.57; 36,77]	21.19	6.7230	2.5929	99%
Random effects model		12.45	[3.28; 37.39]		6.3098	2.5119	98%
	40 -20 0 20 40						

Figure A6. Sensitivity analysis for meta-analysis of seroprevalence of Oropouche Virus IgM among subjects with any sign or symptom for arbovirus infection [23,40,41,62,65,68–70,76,83].

33 of 42

Study	Events per 100 observations	Events	95%-CI	P-value	Tau2	Tau	12
Omitting Pinheiro et al. (Mojui) 1976 Brazil	100	9.82	[4.25; 21.06]		2.5245	1.5889	99%
Omitting Pinheiro et al. (Mojul) 1976 Brazil		12.15	[4.54; 28.67]		3.6279	1.9047	99%
Omitting Pinheiro et al. (other villages) 1976 Brazil	- 80	13.69	[5.49; 30.22]	1.1.1	3.2729	1.8091	99%
Omitting LeDuc et al. (Quatro Bocas) 1981 Brazil	-8	11.09	[4.19: 26.23]		3.4911	1.8684	99%
Omitting LeDuc et al. (Quatro Bocas) 1981 Brazil		11.64	[4.34: 27.67]		3.6155	1.9015	99%
Omitting LeDuc et al. (Tome Acu) 1981 Brazil		10.80	[4.14: 25.34]	1.1	3.3768	1.8376	99%
Omitting Borborema et al. (Barcelos) 1982 Brazil		10.23	[4.12; 23.20]	. 1	3.0027	1.7328	99%
Omitting Borborema et al. (Manaus) 1982 Brazil		11.79	[4.39; 28.00]		3.6300	1.9052	99%
Omitting Bernardes Terzian et al. (Acre) 2009 Brazil		14.19	(5.78: 30.84]		3.1340	1.7703	99%
Omitting Cruz et al. 2009 Brazil	-8	12.88	[4.89; 29.82]		3.5450	1.8828	99%
Omitting Aguilar et al. 2011 Peru	-8	11.90	[4.43: 28.24]		3.6363	1.9069	99%
Omitting Gil-Mora et al. (Caloto) 2022 Colombia		14.67	[6.31: 30.48]	. 1	2.8750	1.6956	99%
Omitting Watts et al. 2022 Peru		14.86	16.31: 31.141	1 2 2	2.8660	1.6929	98%
Omitting de Lima et al. 2024 Brazil		12.29	[4.60; 28.93]		3.6222	1.9032	99%
Random effects model	· · · · · · · · ·	12.21	[4.95; 27.09]		3.3181	1.8216	99%
-30	-20 -10 0 10 20 3	0					

Figure A7. Sensitivity analysis for meta-analysis of seroprevalence of Oropouche Virus IgM/IgG among subjects with any sign or symptom for arbovirus infection [10–12,16,61,68,71,85,87].

Study observations Events 99%-CI P-value Tau		Events per 100						
Omiting Pinheiro et al. (Mojul) 1976 Brazil 0.40 0.151 121 9.4370 3.0720 95% Omiting Pinheiro et al. (Pahal) 1976 Brazil 0.43 0.151 121 1.0022 3.1637 95% Omiting Pinheiro et al. (Pahal) 1976 Brazil 0.41 0.151 1.131 9.5145 3.0846 95% Omiting Pinheiro et al. (Pahal) 1976 Brazil 0.41 0.151 1.121 1.01447 3.1633 95% Omiting Bernardes Terzian et al. (Accr) 2009 Brazil 0.40 0.151 1.121 1.01473 3.1633 95% Omiting Forshey et al. (Cusco) 2010 Paraguay 0.48 0.181 1.321 9.4718 3.0776 95% Omiting Forshey et al. (Cusco) 2010 Para 0.46 0.181 3.21 9.4718 3.0776 95% Omiting Forshey et al. (Madpalana) 2010 Bolivia 0.48 0.181 3.21 9.4718 3.0776 95% Omiting Forshey et al. (Madpalana) 2010 Bolivia 0.46 0.181 3.21 9.4223 3.0716 95% Omiting Forshey et al. (Madpalana) 2010 Bolivia	Study	observations	Events	95%-CI	P-value	Tau2	Tau	12
Omitting Pinheiro et al. (altar) 1976 Brazil 0.43 [0.15; 1.2] .10.0022 3.1637 95% Omitting Pinheito et al. (Palhal) 1976 Brazil 0.41 [0.15; 1.0] .9.2872 95% Omitting Dinheito et al. (Palhal) 1976 Brazil 0.41 [0.15; 1.2] .9.1453 3.0846 95% Omitting Bornedes Terzina et al. (Acre) 2009 Brazil 0.40 [0.15; 1.2] .9.1450 3.0669 95% Omitting Gronedes Terzina et al. (Acre) 2009 Brazil 0.44 [0.16; 1.32] .9.4715 3.0767 95% Omitting Forshey et al. (Lochabamba) 2010 Bolivia 0.48 [0.16; 1.32] .9.4715 3.0767 95% Omitting Forshey et al. (Guayaquil) 2010 Equador 0.48 [0.16; 1.32] .9.4721 3.0767 95% Omitting Forshey et al. (La Merced) 2010 Peru 0.45 [0.16; 1.32] .9.4223 3.0741 95% Omitting Forshey et al. (La Merced) 2010 Peru 0.46 [0.16; 1.32] .9.4243 3.122 95% Omitting Forshey et al. (Paldonado) 2010 Peru 0.45 [0.16; 1.32] .9.4243 3.122 95% Omitting Forshey et al. (Paldonado) 2010 Peru 0.51 [0.19; 1.36] .9.1593 3.0255 95% Omitting Forshey et al. (Paldonado) 2010 Peru 0.51 [0.19; 1.36] .9.1593 3.0256 95% <td>Omitting Pinheiro et al. (Mojuì) 1976 Brazil</td> <td></td> <td>0.40</td> <td>[0.15; 1.12]</td> <td></td> <td>9.4370</td> <td>3.0720</td> <td>95%</td>	Omitting Pinheiro et al. (Mojuì) 1976 Brazil		0.40	[0.15; 1.12]		9.4370	3.0720	95%
Omittig Pinhelio et al. (Palha) 1976 Brazil 0.41 (0.15; 1.13) 9.5270 2.92878 95% Omittig Dirborema et al. 1982 Brazil 0.42 (0.15; 1.13) 9.5145 3.0846 95% Omittig Derborema et al. 1982 Brazil 0.42 (0.15; 1.12) 1.00447 3.1683 95% Omittig Bernardes Terzian et al. (Acro) 2009 Brazil 0.43 (0.15; 1.12) 9.4761 3.0767 95% Omittig Groshey et al. (Asuncion) 2010 Paraguay 0.48 (0.18; 1.32) 9.4715 3.0776 95% Omittig Forshey et al. (Cusco) 2010 Paru 0.46 (0.18; 1.32) 9.4715 3.0776 95% Omittig Forshey et al. (Quadorado) 2010 Paru 0.46 (0.18; 1.32) 9.4715 3.0776 95% Omittig Forshey et al. (Quadorado) 2010 Paru 0.46 (0.18; 1.32) 9.4715 3.0776 95% Omittig Forshey et al. (Magdalena) 2010 Paru 0.45 (0.18; 1.32) 9.414 3.0828 95% Omittig Forshey et al. (Pura) 2010 Paru 0.45 (0.18; 1.32) 9.4726 3.0286 95% Omittig Forshey et al. (Pura) 2010 Paru 0.51 (0.19; 1.36) 9.1726 3.0286 95% Omittig Forshey et al. (Pura) 2010 Paru 0.51 (0.19; 1.36) 9.1726 3.0286 95% Omittig Forshey et al. (Pura) 2010 Bolvia 0.51 (0.19; 1.36) 9.1726 3.0286 9	Omitting Pinheiro et al. (other villages) 1976 Brazil		0.43	[0.15; 1.21]		10.0092	3.1637	95%
Omitting Pinhelio et al. (Paihaj) 1976 Brazil 0.41 (0.15; 1.13) .9.5145 3.0846 95% Omitting Borborema et al. 1982 Brazil 0.40 (0.15; 1.20) .9.4140 3.0689 95% Omitting Gorderds Terzina et al. (Acre) 2009 Brazil 0.44 (0.15; 1.22) .9.4140 3.0689 95% Omitting Gorderds Terzina et al. (Acre) 2009 Brazil 0.44 (0.18; 1.32) .9.4715 3.0776 95% Omitting Forshey et al. (Lochabamba) 2010 Bolivia 0.48 (0.18; 1.32) .9.4715 3.0776 95% Omitting Forshey et al. (Lochabamba) 2010 Berui 0.48 (0.18; 1.32) .9.4414 3.0682 95% Omitting Forshey et al. (Liquices) 2010 Peru 0.46 (0.16; 1.28) .9.4424 3.0782 95% Omitting Forshey et al. (Magdalena) 2010 Berui 0.46 (0.16; 1.28) .9.4424 3.0522 93% Omitting Forshey et al. (Magdalena) 2010 Berui 0.46 (0.17; 1.31) .9.1583 3.0446 95% Omitting Forshey et al. (Magdalena) 2010 Berui 0.47 (0.17; 1.30) .9.1583 3.0446 95% Omitting Forshey et al. (Guangauja) 2010 Berui 0.51 (0.18; 1.34] .9.2625 3.0047 95% Omitting Forshey et al. (Concepcion) 2010 Peru 0.51 (0.19; 1.36] .9.1726 3.0226 95% Omitting Forshey et al. (Concepcion) 2010 Peru 0.55 (0.19; 1.36] .9.1726 3.0226 95% Omitting Forshey et al. (Concepcion) 2010 Peru 0.55 (0.19; 1.33]	Omitting Pinheito et al. (Palhal) 1976 Brazil		0.41	[0.15; 1.09]		8.9270	2.9878	95%
Omiting Gorborema et al. 1982 Brazil	Omitting Pinheito et al. (Palhal) 1976 Brazil		0.41	[0.15; 1.13]		9.5145	3.0846	95%
Omiting Vasconcelos et al. (Maranhao) 1989 Brazil 0.40 [0.15; 1.2] .9.4180 3.0689 95% Omiting Manock et al. (Acre) 2009 Brazil 0.43 [0.15; 1.2] .10.192 3.1653 35% Omiting Forshey et al. (Acuco) 2010 Paraguay 0.48 [0.18; 1.32] .9.4715 3.0776 95% Omiting Forshey et al. (Acuco) 2010 Paraguay 0.48 [0.18; 1.32] .9.4715 3.0776 95% Omiting Forshey et al. (Guayaqui) 2010 Equador 0.48 [0.18; 1.32] .9.4424 3.1522 30% Omiting Forshey et al. (Maranhao) 2010 Paru 0.445 [0.16; 1.22] .9.4424 3.1522 30% Omiting Forshey et al. (Magdalena) 2010 Bolivia 0.445 [0.16; 1.23] .9.4444 3.1522 30% Omiting Forshey et al. (Para) 2010 Paru 0.50 [0.18; 1.34] .9.2653 3.0446 95% Omiting Forshey et al. (Para) 2010 Paru 0.51 [0.19; 1.36] .9.1726 3.0285 30% Omiting Forshey et al. (Cuchecion) 2010 Bolivia 0.51 [0.19; 1.36] .9.1726 3.0286 30% Omiting Forshey et al. (Cuchecion) 2010 Bolivia 0.51 [0.19; 1.36] .9.1726 3.0286 30% Omiting Forshey et al. (Cuchecion) 2010 Bolivia 0.51 [0.19; 1.36] .9.1726 3.0286 30% Omiting Forshey et al. (Cuchecion) 2010 Bolivia 0.45 [0.16; 1.27] .9.373 3.123 15% Omiting Gorda et al. 2016 Paru	Omitting Borborema et al. 1982 Brazil		0.42	[0.15; 1.20]		10.0447	3.1693	95%
Omiting Bernardes Terzian et al. (Acue) 2009 Brazil 0.43 0.15, 1.22] 1.0.192 2.1653 95% Omiting Forshey et al. (Acuncion) 2010 Paraguay 0.48 0.18, 1.32] 9.4715 3.077 65% Omiting Forshey et al. (Cusco) 2010 Paraguay 0.48 0.18, 1.32] 9.4715 3.077 65% Omiting Forshey et al. (Cusco) 2010 Paraguay 0.48 0.18, 1.32] 9.422 3.0761 95% Omiting Forshey et al. (Lawaquil) 2010 Equador 0.46 0.18, 1.23] 9.4441 3.0682 95% Omiting Forshey et al. (Hadgalena) 2010 Bolvia 0.45 0.18, 1.24] 9.9424 3.1532 93% Omiting Forshey et al. (Paddonado) 2010 Peru 0.45 0.18, 1.34] 9.92693 3.0446 95% Omiting Forshey et al. (Paddonado) 2010 Peru 0.47 0.17, 1.31] 9.1558 3.048 95% Omiting Forshey et al. (Paddonado) 2010 Peru 0.47 0.51 0.19, 1.36] 9.1599 3.0265 95% Omiting Forshey et al. (Turinaguas) 2010 Peru 0.51 0.19, 1.36] 9.1593 3.0241 95% 0.0118, 1.34] 9.92693 3.0265 95% Omiting Gorshey et al. (Turinaguas) 2010 Peru 0.51 0.51 0.19, 1.36] 9.1730 3.0276 95% Omiting Gorshey et al. (Turinaguas) 2010 Peru 0.51 0.50 0.51 9.173 3.0527 95% </td <td>Omitting Vasconcelos et al. (Maranhao) 1989 Brazil</td> <td></td> <td>0.40</td> <td>[0.15; 1.12]</td> <td></td> <td>9.4180</td> <td>3.0689</td> <td>95%</td>	Omitting Vasconcelos et al. (Maranhao) 1989 Brazil		0.40	[0.15; 1.12]		9.4180	3.0689	95%
Omiting Manock et al. 2009 Equador 0.48 0.18 1.31 9.4781 3.0787 95% Omiting Forshey et al. (Cachabamba) 2010 Bolivia 0.48 0.18 1.32 9.4751 3.076 95% Omiting Forshey et al. (Guayaqui) 2010 Equador 0.48 0.18 1.32 9.4723 3.076 95% Omiting Forshey et al. (Guayaqui) 2010 Equador 0.48 0.18 1.32 9.4743 3.078 75% Omiting Forshey et al. (Iquitos) 2010 Peru 0.45 0.18 1.32 9.4444 3.0882 95% Omiting Forshey et al. (Magdalena) 2010 Bolivia 0.45 0.18 1.32 9.4448 3.532 33% Omiting Forshey et al. (Maddonado) 2010 Peru 0.45 0.18 1.34 9.2693 3.0446 95% Omiting Forshey et al. (Mangdalonado) 2010 Bolivia 0.45 0.51 0.191 1.36 9.1726 3.0286 95% Omiting Forshey et al. (Crunepcion) 2010 Bolivia 0.51 0.51 0.51 9.191 3.31 9.4006 3.0660 95% Omiting Gorshey et al. (Crunepcion) 2010 Bolivia 0.45 0.51 0.51 0.51 9.573 7.571 95% Omiting Gordoso et al. (Cruica) 2015 Brazil 0.45 0.615 1.22 10.0167 3.1671 19% Omiting Gordoso et al. (Cruica) 2015 Brazil 0.43 <td< td=""><td>Omitting Bernardes Terzian et al. (Acre) 2009 Brazil</td><td></td><td>0.43</td><td>[0.15; 1.22]</td><td></td><td>10.0192</td><td>3.1653</td><td>95%</td></td<>	Omitting Bernardes Terzian et al. (Acre) 2009 Brazil		0.43	[0.15; 1.22]		10.0192	3.1653	95%
Omitting Forshey et al. (Asuncion) 2010 Paraguay 0.48 (0.18; 1.32) 9.4715 3.0776 95% Omitting Forshey et al. (Cusco) 2010 Peru 0.46 (0.18; 1.32) 9.4223 3.0776 95% Omitting Forshey et al. (Layaquil) 2010 Equador 0.46 (0.18; 1.32) 9.4413 3.0628 95% Omitting Forshey et al. (Layaquil) 2010 Peru 0.46 (0.18; 1.32) 9.4413 3.0628 95% Omitting Forshey et al. (Marced) 2010 Peru 0.47 (0.17; 1.31) 9.5158 3.048 95% Omitting Forshey et al. (Marced) 2010 Peru 0.47 (0.17; 1.31) 9.5158 3.048 95% Omitting Forshey et al. (Marced) 2010 Peru 0.47 (0.17; 1.30] 9.7535 3.1221 95% Omitting Forshey et al. (Tumbes) 2010 Peru 0.51 (0.19; 1.36] 9.1728 3.0265 95% Omitting Forshey et al. (Tumbes) 2010 Peru 0.51 (0.19; 1.36] 9.1728 3.0266 95% Omitting Forshey et al. (Tumbes) 2010 Peru 0.51 (0.19; 1.36] 9.1728 3.0266 95% Omitting Forshey et al. (Tumbes) 2010 Peru 0.51 (0.19; 1.36] 9.1728 3.0266 95% Omitting Cardoso et al. (Narins 2014 Brazil 0.49 (0.18; 1.32) 9.4063 3.0660 95% Omitting Cardoso et al. (Narins 2014 Brazil 0.43 (0.15; 1.23) 9.4063 3.0660 95% Omitting Garcia et al. 2017 Peru 0.41 (0.15; 1.21) 10.01873 3162 95% Omitting Ga	Omitting Manock et al. 2009 Equador		0.48	[0.18; 1.31]		9.4781	3.0787	95%
Omitting Forshey et al. (Cochabamba) 2010 Bolivia 0.48 (0.16; 1.32) 9.4622 3.0761 95% Omitting Forshey et al. (Guayaqui) 2010 Equador 0.46 (0.16; 1.32) 9.4423 3.0761 95% Omitting Forshey et al. (Guayaqui) 2010 Equador 0.49 (0.16; 1.32) 9.4423 3.0822 93% Omitting Forshey et al. (Magdalena) 2010 Bolivia 0.45 (0.16; 1.32) 9.4423 3.0824 95% Omitting Forshey et al. (Magdalena) 2010 Bolivia 0.46 (0.16; 1.32) 9.5758 3.0446 95% Omitting Forshey et al. (Pura) 2010 Peru 0.51 (0.19; 1.37) 9.0528 3.0067 95% Omitting Forshey et al. (Pura) 2010 Peru 0.51 (0.19; 1.37) 9.0528 3.0067 95% Omitting Forshey et al. (Tumbes) 2010 Peru 0.51 (0.19; 1.36] 9.1728 3.0268 95% Omitting Forshey et al. (Tumbes) 2010 Peru 0.51 (0.19; 1.36] 9.1728 3.0268 95% Omitting Corshey et al. (Yuringuas) 2010 Peru 0.51 (0.19; 1.36] 9.1728 3.0268 95% Omitting Corshey et al. (Yuringuas) 2010 Peru 0.51 (0.19; 1.36] 9.1728 3.0268 95% Omitting Corshey et al. (Yuringuas) 2010 Peru 0.51 (0.19; 1.36] 9.1728 3.0268 95% Omitting Cardos et al. (Conseopion) 2010 Bolivia 0.49 (0.16; 1.32) 10.0557 3.1711 95% Omitting Cardos et al. (Conseopion) 2015 Brazil 0.43 (0.15; 1.22) 10.0187 3.1652 95%<	Omitting Forshey et al. (Asuncion) 2010 Paraguay	-	0.48	[0.18; 1.32]		9.4715	3.0776	95%
Omitting Forshey et al. (Cusco) 2010 Equador 0.49 [0.16; 1.29] 9.8232 3.1342 95% Omitting Forshey et al. (La Warced) 2010 Peru 0.49 [0.16; 1.28] 9.9424 3.1532 93% Omitting Forshey et al. (Marced) 2010 Peru 0.47 [0.17; 1.31] 9.5158 3.0448 95% Omitting Forshey et al. (La Marced) 2010 Peru 0.47 [0.17; 1.31] 9.5158 3.0448 95% Omitting Forshey et al. (Marced) 2010 Peru 0.47 [0.17; 1.31] 9.5158 3.0448 95% Omitting Forshey et al. (Pura) 2010 Belvia 0.47 [0.17; 1.31] 9.5158 3.0448 95% Omitting Forshey et al. (Turimaguas) 2010 Peru 0.50 [0.19; 1.36] 9.1728 3.0286 95% Omitting Forshey et al. (Turimaguas) 2010 Peru 0.51 [0.19; 1.36] 9.1728 3.0286 95% Omitting Gorshey et al. (Cuciba) 2010 Belvia 0.51 [0.19; 1.36] 9.1728 3.0286 95% Omitting Gardos et al. (Cuiba) 2015 Brazil 0.43 [0.15; 1.22] 10.0653 3.1711 95% Omitting Gardos et al. (Cuiba) 2015 Brazil 0.43 [0.15; 1.22] 10.0192 3.1563 95% Omitting Gardia et al. 2016 Peru 0.41 [0.14; 1.15] 9.8243 3.1349 95% Omitting Gardia et al. 2015 Paral 0.43 [0.15; 1.22] 10.0192 3.1563 95% Omitting Gardia et al. 2015 Paral 0.43 [0.15; 1.22] 10.0192 3.1563 95% Omitting Gardia et	Omitting Forshey et al. (Cochabamba) 2010 Bolivia		0.48	[0.18; 1.32]		9.4622	3.0761	95%
Omitting Forshey et al. (guayaqui) 2010 Equador 0.45 [0.16; 1.28] 9.4141 3.0882 95% Omitting Forshey et al. (a Merced) 2010 Peru 0.45 [0.16; 1.28] 9.424 3.1532 93% Omitting Forshey et al. (Maddalena) 2010 Delvia 0.46 [0.17; 1.31] 9.5158 3.0248 95% Omitting Forshey et al. (Phaldonado) 2010 Peru 0.47 [0.17; 1.30] 9.558 3.0248 95% Omitting Forshey et al. (Santa Cruz) 2010 Bolivia 0.51 [0.19; 1.36] 9.1728 3.0268 95% Omitting Forshey et al. (Tumbes) 2010 Peru 0.51 [0.19; 1.36] 9.1728 3.0268 95% Omitting Forshey et al. (Tumbes) 2010 Peru 0.51 [0.19; 1.36] 9.1728 3.0268 95% Omitting Forshey et al. (Tumbes) 2010 Peru 0.51 [0.19; 1.36] 9.1728 3.0286 95% Omitting Forshey et al. (Tumbes) 2010 Peru 0.51 [0.19; 1.36] 9.1728 3.0286 95% Omitting Forshey et al. (Virinaguas) 2010 Peru 0.51 [0.19; 1.36] 9.1728 3.0286 95% Omitting Garcia et al. (Concepcion) 2010 Bolivia 0.43 [0.15; 1.27] 9.0637 3.0528 121 95% Omitting Cardoso et al. (Uniting Unitip Concepcion) 2010 Bolivia 0.43 [0.15; 1.27] 10.0457 3.171 95% Omitting Cardoso et al. (Varzae Grande) 2015 Brazil 0.43 [0.15; 1.22] 10.0457 3.1571 95% Omitting Garcia et al. 2016 Peru 0.41 [0.14; 1.16] 9.8424 3	Omitting Forshey et al. (Cusco) 2010 Peru		0.46	[0.16; 1.29]		9.8232	3.1342	95%
Omitting Forshey et al. (Lquitos) 2010 Peru 0.45 [0.16; 1.28] 9.9424 3, 1532 93% Omitting Forshey et al. (Magdalena) 2010 Bolivia 0.46 [0.17; 1.31] 9.5158 3, 0244 95% Omitting Forshey et al. (Plura) 2010 Peru 0.47 [0.17; 1.31] 9.5158 3, 0244 95% Omitting Forshey et al. (Plura) 2010 Peru 0.47 [0.17; 1.31] 9.5558 3, 0246 95% Omitting Forshey et al. (Plura) 2010 Peru 0.51 [0.19; 1.36] 9.1599 3, 0265 95% Omitting Forshey et al. (Concepcion) 2010 Peru 0.51 [0.19; 1.36] 9.1726 3, 0286 95% Omitting Forshey et al. (Concepcion) 2010 Bolivia 0.49 [0.18; 1.33] 9.4006 3, 0060 95% Omitting Aguilar et al. 2011 Peru 0.49 [0.16; 1.27] 9.9373 3, 1521 95% Omitting Cardoso et al. (Catabà) 2015 Brazil 0.43 [0.15; 1.23] 10.0567 3, 1711 95% Omitting Garcia et al. 2016 Peru 0.41 [0.14; 1.16] 9.9424 3, 1334 95% Omitting Garcia et al. 2016 Peru 0.43 [0.15; 1.22] 10.0187 3, 1552 95% Omitting Garcia et al. 2017 Peru 0.41 [0.14; 1.16] 9.9406 3, 0055 957 3, 1771 95% Omitting Garcia et al. 2019 Peru 0.41 [0.14; 1.16] 9.9425 3, 1344 95% Omitting Garcia et al. 2019 Peru 0.41 [0.14; 1.16] 9.8424 3, 1344 95% Omitting Garcia et al. 2019	Omitting Forshey et al. (Guayaquil) 2010 Equador		0.49	[0.18; 1.32]		9.4141	3.0682	95%
Omitting Forshey et al. (La Merced) 2010 Peru 0.48 [0.17, 1.31] 9.2639 3.0446 95% Omitting Forshey et al. (P Maldonado) 2010 Peru 0.47 [0.17, 1.31] 9.7535 3.1231 95% Omitting Forshey et al. (P Maldonado) 2010 Peru 0.47 [0.17, 1.30] 9.7535 3.0287 95% Omitting Forshey et al. (Tumbes) 2010 Peru 0.51 [0.19, 1.36] 9.1726 3.0286 95% Omitting Forshey et al. (Tumbes) 2010 Peru 0.51 [0.19, 1.36] 9.1726 3.0286 95% Omitting Forshey et al. (Tumbes) 2010 Peru 0.51 [0.19, 1.36] 9.1726 3.0286 95% Omitting Forshey et al. (Tumbes) 2010 Peru 0.51 [0.19, 1.36] 9.1726 3.0286 95% Omitting Forshey et al. (Cincepcion) 2010 Bolivia 0.45 [0.16, 1.27] 9.9357 3.1521 95% Omitting Cardoso et al. Calaba 2014 Brazil 0.50 [0.18, 1.34] 9.29357 3.1571 95% Omitting Cardoso et al. Calaba 2015 Brazil 0.43 [0.15, 1.22] 10.0192 3.1652 95% Omitting Garcia et al. 2016 Peru 0.41 [0.14, 1.16] 9.8423 3.1439 95% Omitting Garcia et al. 2017 Peru 0.41 [0.14, 1.16] 9.84	Omitting Forshey et al. (Iquitos) 2010 Peru		0.45	[0.16; 1.28]		9.9424	3.1532	93%
Omitting Forshey et al. (Malgodalena) 2010 Bolivia 0.48 [0.17; 1.31] 9.9158 3.0848 95% Omitting Forshey et al. (Pura) 2010 Peru 0.47 [0.17; 1.33] 9.0525 3.0087 95% Omitting Forshey et al. (Tumbes) 2010 Peru 0.51 [0.19; 1.36] 9.1726 3.0286 95% Omitting Forshey et al. (Tumbes) 2010 Peru 0.55 [0.19; 1.36] 9.1726 3.0286 95% Omitting Forshey et al. (Tumbes) 2010 Peru 0.55 [0.19; 1.36] 9.1301 3.0216 95% Omitting Agular et al. 2011 Peru 0.55 [0.19; 1.36] 9.1301 3.0216 95% Omitting Cardoss et al. (Cuiabà) 2015 Brazil 0.45 [0.16; 1.23] 10.0557 3.1711 95% Omitting Garcia et al. 2016 Peru 0.43 [0.15; 1.22] 10.0192 3.1652 95% Omitting Garcia et al. 2016 Peru 0.41 [0.15; 1.18] 9.9709 3.1577 95% Omitting Garcia et al. 2016 Peru 0.41 [0.14; 1.16] 9.8423 3.1344 95% Omitting Marins-Luna et al. 2020 Parazil 0.42 [0.15; 1.21] 10.0157 3.1711 95% Omitting Marins-Luna et al. 2020 Parazil 0.42 [0.15; 1.12] 10.0157 3.1711 95% Omitting Marins-Luna et al. 2020 Parazil 0.42 [0.15; 1.12] 9.4563 3.0751 94% Omitting Marins-Luna et al. 2020 Parazil 0.42 [0.15; 1.12] 9.4563 3.0579 95% Omitting Bavador et al. 2020 Parazil <	Omitting Forshey et al. (La Merced) 2010 Peru		0.50	[0.18; 1.34]		9.2693	3.0446	95%
Omitting Forshey et al. (Prival 2010 Peru 0.47 (0.17; 1.30) 9.7525 3.1231 95% Omitting Forshey et al. (Santa Cruz) 2010 Bolivia 0.51 (0.19; 1.36] 9.1529 3.0265 95% Omitting Forshey et al. (Turimes) 2010 Peru 0.51 (0.19; 1.36] 9.1529 3.0265 95% Omitting Forshey et al. (Turimes) 2010 Peru 0.51 (0.19; 1.36] 9.1726 3.0268 95% Omitting Forshey et al. (Turimes) 2010 Bolivia 0.51 (0.19; 1.36] 9.1301 3.0216 95% Omitting Groshey et al. (Concepcion) 2010 Bolivia 0.45 (0.16; 1.27] 9.9357 3.1521 95% Omitting do Calmo Alves Martins 2014 Brazil 0.45 (0.16; 1.27] 9.9357 3.1521 95% Omitting Cardoso et al. (Cuiab) 2015 Brazil 0.43 (0.15; 1.22] 10.0192 3.1653 95% Omitting Cardoso et al. (Varzea Grande) 2015 Brazil 0.43 (0.15; 1.22] 10.0192 3.1653 95% Omitting Garcia et al. 2016 Peru 0.41 (0.14; 1.16] 9.8424 3.1349 95% Omitting Mar-Loria et al. 2017 Peru 0.41 (0.14; 1.15] 9.8242 3.1349 95% Omitting Roise et al. (2019 Peru 0.41 (0.14; 1.15] 9.8243 3.1344 95% Omitting Marins-Luna et al. 2020 Prazi 0.42 (0.15; 1.21] 10.0561 3.071 94% Omitting Roise et al. 2020 Paraguay 0.42 (0.15; 1.12] 9.6451 3.075 95% Omitting Gardet et a	Omitting Forshey et al. (Magdalena) 2010 Bolivia		0.48	[0.17; 1.31]		9.5158	3.0848	95%
Omitting Forshey et al. (Fura) 2010 Bolivia 0.51 (0.19; 1.36) 9.052/5 3.0087 95% Omitting Forshey et al. (Turmbes) 2010 Peru 0.50 (0.19; 1.36) 9.1726 3.0266 95% Omitting Forshey et al. (Concepcion) 2010 Bolivia 0.45 (0.19; 1.36) 9.1301 3.0216 95% Omitting Forshey et al. (Concepcion) 2010 Bolivia 0.45 (0.16; 1.13) 9.4006 3.0660 95% Omitting Cardoso et al. (Cuiaba) 2015 Brazil 0.45 (0.16; 1.12) 9.9337 3.1521 95% Omitting Cardoso et al. (Varzea Grande) 2015 Brazil 0.43 (0.15; 1.22) 10.0187 3.1652 95% Omitting Garcia et al. 2016 Peru 0.41 (0.15; 1.12) 10.0187 3.1652 95% Omitting Cardoso et al. (Varzea Grande) 2015 Brazil 0.43 (0.15; 1.12) 10.0187 3.1652 95% Omitting Ava-Urcia et al. 2017 Peru 0.41 (0.15; 1.12) 10.0187 3.1571 95% Omitting Martins-Luna et al. 2020 Parau 0.41 (0.41; 1.15) 9.8243 3.1344 95% Omitting Garcia et al. 2019 Peru 0.41 (0.15; 1.12) 9.0561 3.0751 94% Omitting Martins-Luna et al. 2020 Parau 0.42 (0.15; 1.12) 9.96451 3.0529 95% Omitting Garcia et al. 2020 Parau 0.47 (0.17; 1.30) 9.779 3.1222	Omitting Forshey et al. (P Maldonado) 2010 Peru		0.47	[0.17; 1.30]		9.7535	3.1231	95%
Omitting Forshey et al. (Santa Cru2) 2010 Bolivia 0.51 [0.19; 1.36] 9.1599 3.0265 95% Omitting Forshey et al. (Yurimaguas) 2010 Peru 0.50 [0.19; 1.36] 9.1301 3.0216 95% Omitting Forshey et al. (Yurimaguas) 2010 Peru 0.49 [0.18; 1.33] 9.4006 3.0660 95% Omitting Gorshey et al. (Curuba) 2015 Brazil 0.49 [0.16; 1.27] 9.9357 3.1521 95% Omitting Cardoso et al. (ucitab) 2015 Brazil 0.43 [0.15; 1.22] 10.0192 3.1653 95% Omitting Gardoso et al. (varzea Grande) 2015 Brazil 0.43 [0.15; 1.22] 10.0187 3.1652 95% Omitting Garcia et al. 2016 Peru 0.41 [0.14; 1.16] 9.9709 3.1577 95% Omitting darcia et al. 2017 Peru 0.41 [0.14; 1.16] 9.8423 3.1344 95% Omitting Biva-Case ot al. (2020 Brazil 0.41 [0.14; 1.16] 9.8243 3.1344 95% Omitting Garcia et al. 2017 Peru 0.41 [0.14; 1.16] 9.8243 3.1344 95% Omitting Biva-Case ot al. 2020 Brazil 0.41 [0.14; 1.16] 9.8245 3.1025 95% Omitting Garcia et al. 2017 Peru 0.41 [0.14; 1.16] 9.8245 3.1025 95% Omitting Biva-Case et al. 2020 Prazil 0.41 [0.14; 1.16] 9.8245 3.1025 95% Omitting Biva-Case et al. 2020 Prazil 0.41 [0.14; 1.13] 9.6255 3.1025 95% Omitting Gailel et al. 2021 Fracil	Omitting Forshey et al. (Piura) 2010 Peru	-	- 0.51	[0.19; 1.37]		9.0525	3.0087	95%
Omitting Forshey et al. (fumbes) 2010 Peru 0.50 [0.19; 1.36] 9.1726 3.0268 95% Omitting Forshey et al. (Concepcion) 2010 Bolivia 0.49 [0.18; 1.33] 9.4006 3.0660 95% Omitting Garcia et al. 2011 Peru 0.45 [0.16; 1.27] 9.9357 3.1521 95% Omitting Cardoso et al. (Cuiaba) 2015 Brazil 0.43 [0.15; 1.22] 10.0557 3.1711 95% Omitting Garcia et al. 2016 Peru 0.43 [0.15; 1.22] 10.0187 3.1652 95% Omitting Garcia et al. 2016 Peru 0.41 [0.14; 1.16] 9.8424 3.1439 95% Omitting Garcia et al. 2016 Peru 0.41 [0.14; 1.16] 9.8424 3.1439 95% Omitting Garcia et al. 2017 Peru 0.41 [0.14; 1.16] 9.8424 3.1439 95% Omitting Garcia et al. 2020 Peru 0.41 [0.14; 1.16] 9.8423 3.1344 95% Omitting Savador et al. 2020 Paraula 0.42 [0.15; 1.22] 10.0561 3.1711 95% Omitting Savador et al. 2020 Paraula 0.41 [0.14; 1.16] 9.8423 3.1344 95% Omitting Savador et al. 2020 Paraula 0.42 [0.15; 1.22] 10.0561 3.1711 95% Omitting Savador et al. 2020 Paraula 0.41 [0.14; 1.16] 9.8423 3.1344 95% Omitting Savador et al. 2020 Paraula 0.41 [0.14; 1.16] 9.8423 3.1344 95% Omitting Savador et al. 2020 Paraula 0.41 [0.14; 1.16] 9.847	Omitting Forshey et al. (Santa Cruz) 2010 Bolivia		- 0.51	[0.19; 1.36]		9.1599	3.0265	95%
Omitting Forshey et al. (Purimaguas) 2010 Peru 0.51 [0.19 (1.36] 9.1301 3.0216 95% Omitting Aguilar et al. 2011 Peru 0.45 [0.16; 1.27] 9.9357 3.1521 95% Omitting Cardoso et al. (Cuiabà) 2015 Brazil 0.45 [0.16; 1.27] 9.9357 3.1521 95% Omitting Cardoso et al. (Cuiabà) 2015 Brazil 0.43 [0.15; 1.22] 10.0187 3.1652 95% Omitting Gardoso et al. (Varzea Grande) 2015 Brazil 0.43 [0.15; 1.22] 10.0187 3.1652 95% Omitting Gardoso et al. (Varzea Grande) 2015 Brazil 0.43 [0.15; 1.22] 10.0187 3.1652 95% Omitting Garcia et al. 2016 Peru 0.41 [0.14; 1.16] 9.8423 3.1439 95% Omitting Mura-Urcia et al. 2017 Peru 0.41 [0.14; 1.15] 9.8243 3.1344 95% Omitting Mura-Lucia et al. 2020 Brazil 0.41 [0.14; 1.13] 9.6255 3.1025 95% Omitting Rive-Caso et al. 2020 Para 0.44 [0.14; 1.13] 9.6255 3.1025 95% Omitting Rive-Caso et al. 2020 Para 0.42 [0.15; 1.21] 10.0561 3.1711 95% Omitting Gardar et al. 2021 Parau 0.44 [0.14; 1.13] 9.6255 3.1025 95% Omitting Gailet et al. 2021 Frach Guyana 0.47 [0.17; 1.30] 9.5791 3.0950 95% Omitting Gailet et al. 2021 Frach Guyana 0.42 [0.15; 1.12] 9.6425 3.1022 95% Omitting Guoderis et al. (Cali) 2022 Co	Omitting Forshey et al. (Tumbes) 2010 Peru		- 0.50	[0.19; 1.36]	•	9.1726	3.0286	95%
Omitting Porshey et al. (Concepcion) 2010 Boilvia 0.49 [0.16; 1.33] 9.4000 3.00000 3.00000 3.0000 3.0000 3.0000 3.0000 3.0000 3.0000 3.0000 3.00000 3.0000 3.0000 3.0000 3.0000 3.00000 3.00000 3.00000 3.00000000	Omitting Forshey et al. (Yurimaguas) 2010 Peru		- 0.51	[0.19; 1.36]		9.1301	3.0216	95%
Omitting Aguiar et al. 2011 Peru 0.43 0.16, 1.27 9.3937 3.1521 9.2961 3.1621 9.2961 3.1621 9.2961 3.1621 9.2961 3.1621 9.2961 3.1621 9.2961 3.1621 9.2961 3.1621 9.2961 3.1621 9.2961 3.1621 9.2961 3.1621 9.2961 3.1621 9.2961 3.1621 9.57 3.1711 95% Omitting Cardoso et al. (Varzea Grande) 2015 Brazil 0.43 [0.15; 1.22] 1.0.0192 3.1652 95% Omitting Garcia et al. 2016 Peru 0.41 [0.14; 1.16] 9.8423 3.1344 95% Omitting Naccaso et al. 2019 Peru 0.41 [0.14; 1.15] 9.8255 3.1025 95% Omitting Rojas et al. 2020 Prazil 0.44 [0.15; 1.21] 1.0.0561 3.1711 95% Omitting Gaized et al. 2020 Prazil 0.47 [0.17; 1.30] 9.5791 3.0950 95% Omitting Gaized et al. 2021 Prazil 0.47 [0.17; 1.30] 9.5791 3.0950 95% Omitting Gaized et al. 2021 Prazil 0.47 [0.17; 1.30] 9.7473 3.1222 95%	Omitting Forsney et al. (Concepcion) 2010 Bolivia	-	0.49	[0.16; 1.33]		9.4006	3.0000	95%
Omitting Cardoso et al. (Cuiabà) 2015 Brazil 0.43 0.15; 1.23 10.0557 3.1711 95% Omitting Cardoso et al. (Cuiabà) 2015 Brazil 0.43 0.15; 1.22 10.0182 3.1653 95% Omitting Cardoso et al. (Varzea Grande) 2015 Brazil 0.43 0.15; 1.22 10.0182 3.1653 95% Omitting Garcia et al. 2016 Peru 0.41 0.15; 1.23 10.0557 3.1711 95% Omitting Garcia et al. 2016 Peru 0.41 0.41; 1.16] 9.8243 3.1344 95% Omitting Garcia et al. 2017 Peru 0.41 0.41; 1.16] 9.8243 3.1344 95% Omitting Markes Macine et al. 2020 Brazil 0.42 0.41 10.41; 1.13] 9.6255 3.1025 95% Omitting Marins-Luna et al. 2020 Peru 0.41 0.41; 1.13] 9.6255 3.1025 95% 95% Omitting Balvador et al. 2020 Paraguay 0.42 10.15; 1.12] 9.4561 3.0751 94% Omitting Gailed et al. 2020 Paraguay 0.47 10.17; 1.30] 9.5791 3.0950 95% Omitting Gailed et al. 2021 Frach Guyana 0.47 10.17; 1.30] 9.779 3.1222 95% Omitting Ciuoderis et al. (Cucia) 2022 Colombia 0.47 10.71; 1.30] 9.7473 3.1052 95% Omitting Ciuoderis et al. (Cucia) 2022 Colombia 0.41 0.41 1.41; 1.16] <td>Omitting Aguilar et al. 2011 Peru</td> <td></td> <td>0.45</td> <td>[0.16; 1.27]</td> <td></td> <td>9.9357</td> <td>3.1521</td> <td>95%</td>	Omitting Aguilar et al. 2011 Peru		0.45	[0.16; 1.27]		9.9357	3.1521	95%
Omitting Cardos of et al. (Culata) 2019 Brazil 0.43 [0.15, 1.22] 10.0192 3.1653 95% Omitting Garcias et al. 2016 Peru 0.43 [0.15, 1.22] 10.0192 3.1653 95% Omitting Garcia et al. 2016 Peru 0.41 [0.14, 1.16] 9.842 3.1439 95% Omitting Garcia et al. 2016 Peru 0.41 [0.14, 1.16] 9.842 3.1439 95% Omitting Garcia et al. 2017 Peru 0.41 [0.14, 1.16] 9.8424 3.1439 95% Omitting Martins-Luna et al. 2020 Brazil 0.41 [0.14, 1.13] 9.6255 3.1025 95% Omitting Garcia et al. 2020 Peru 0.41 [0.15, 1.22] 10.0561 3.1711 95% Omitting Narins-Luna et al. 2020 Brazil 0.41 [0.14, 1.13] 9.6255 3.1025 95% Omitting Garcia et al. 2020 Paraguay 0.47 [0.17, 1.30] 9.5791 3.0950 95% Omitting Gailet et al. 2021 Fracil 0.42 [0.15, 1.12] 9.4561 3.0751 94% Omitting Gailet et al. 2021 Fracil 0.47 [0.17, 1.30] 9.5791 3.0950 95% Omitting Gailet et al. 2021 Fracil 0.47 [0.17, 1.130] 9.4793 3.1222 95% Omitting Gailet et al. 2021 Fracil 0.47 [0.17, 1.28] 9.6425 3.1052 95% Omitting Gailet et al. 2021 Fracil <	Omitting do Calmo Alves Martins 2014 Brazil		0.50	[0.16; 1.34]		9.2901	3.0469	95%
Omitting Carloss et al. (Ivarzea Grande) 2015 Brazil 0.43 0.15, 1.22 10.0187 3.1652 95% Omitting Garcia et al. 2016 Peru 0.41 0.15, 1.22 10.0187 3.1652 95% Omitting Garcia et al. 2017 Peru 0.41 0.14; 1.16] 9.8842 3.1344 95% Omitting Ava-Urcia et al. 2017 Peru 0.41 0.14; 1.15] 9.8843 3.1344 95% Omitting Marins-Luna et al. 2020 Peru 0.41 0.14; 1.15] 9.8843 3.1344 95% Omitting Rojas et al. 2020 Peru 0.41 0.14; 1.13] 9.6255 3.1057 95% Omitting Balvador et al. 2020 Peru 0.40 0.15; 1.12] 9.4561 3.0751 94% Omitting Gailet et al. 2021 Brazil 0.42 0.15; 1.12] 9.94561 3.0579 95% Omitting Gailet et al. 2021 Brazil 0.47 0.17; 1.30] 9.7479 3.1222 95% Omitting Cuoderis et al. (Cali) 2022 Colombia 0.41 0.14; 1.14] 9.6801 3.113 95% Omitting Guoderis et al. 2022 Brazil 0.41 0.14; 1.17] 9.913 3.142 95% Omitting Guoderis et	Omitting Cardoso et al. (Culaba) 2015 Brazil		0.43	[0.15; 1.23]		10.0557	3.1/11	95%
Omitting Garcia et al. 2016 Peru 0.41 [0.15; 1.18] 9.8842 3.1439 95% Omitting Garcia et al. 2016 Peru 0.41 [0.14; 1.16] 9.8842 3.1344 95% Omitting Garcia et al. 2017 Peru 0.41 [0.14; 1.15] 9.8243 3.1344 95% Omitting Garcia et al. 2017 Peru 0.41 [0.14; 1.15] 9.8243 3.1344 95% Omitting Martins-Luna et al. 2020 Brazil 0.41 [0.14; 1.15] 9.8243 3.1344 95% Omitting Garcia et al. 2020 Peru 0.41 [0.14; 1.16] 9.8842 3.1344 95% Omitting Martins-Luna et al. 2020 Peru 0.41 [0.14; 1.13] 9.6525 3.1025 95% Omitting Gais et al. 2020 Paraguay 0.47 [0.17; 1.30] 9.5791 3.0950 95% Omitting Gailet et al. 2021 French Guyana 0.47 [0.17; 1.30] 9.7479 3.1222 95% Omitting Saatkamp et al. 2021 Frazil 0.47 [0.17; 1.30] 9.7479 3.1222 95% Omitting Ciuderis et al. (Caula) 2022 Colombia 0.47 [0.17; 1.30] 9.6425 3.1052 95% Omitting Ciuderis et al. (Caula) 2022 Colombia 0.47 [0.17; 1.30] 9.6425 3.1052 95% Omitting Ciuderis et al. (Caula) 2022 Colombia 0.47 [0.17; 1.30] 9.6425 3.1052 95% Omitting Ciuderis et al. (Caula) 2022 Colombia 0.47 [0.17; 1.30] 9.6425 3.1052 95% Omitting Gancalves Maciel et al. 2022 Peru 0.48 [0.15	Omitting Cardoso et al. (Varzoa Grande) 2015 Brazil	-	0.43	[0.15, 1.22]		10.0192	3.1055	95%
Omitting Garcia et al. 2016 Peru 0.41 [0.14; 1.16] 9.8424 3.1349 95% Omitting Martins-Luna et al. 2020 Brazil 0.41 [0.14; 1.16] 9.8424 3.1349 95% Omitting Martins-Luna et al. 2020 Brazil 0.41 [0.14; 1.16] 9.8424 3.1349 95% Omitting Martins-Luna et al. 2020 Brazil 0.42 [0.15; 1.21] 10.0561 3.0751 94% Omitting Balvador et al. 2020 Brazil 0.42 [0.15; 1.12] 9.4561 3.0751 94% Omitting Gailet et al. 2021 Brazil 0.47 [0.17; 1.30] 9.5791 3.0950 95% Omitting Gailet et al. 2021 French Guyana 0.47 [0.17; 1.30] 9.7479 3.1222 95% Omitting Ciuoderis et al. (Cali) 2022 Colombia 0.47 [0.17; 1.28] 9.6425 3.1052 95% Omitting Ciuoderis et al. (Cucuta) 2022 Colombia 0.42 [0.15; 1.12] 9.6801 3.1113 95% Omitting Ciuoderis et al. (Cucuta) 2022 Colombia 0.42 [0.15; 1.21] 10.0487 3.1700 95% Omitting Ciuoderis et al. (Ulaivicencio) 2022 Colombia 0.42 [0.15; 1.21] 10.0487 3.1700 95% Omitting Gailet et al. 2022 Brazil 0.47 [0.17; 1.30] 9.5731 3.0840 85% Omitting Ciuoderis et al. (Ulaivicencio) 2022 Colombia 0.42 [0.15; 1.21] 10.0487 3.1700 95% Omitting Giuoderis et al. (Villavicencio) 2022 Colombia 0.42 [0.15; 1.13] 9.5731 3.0840 85%	Omitting Carcia et al. (Valzea Grande) 2010 Diazi	- ÷	0.43	[0.15, 1.22]	•	9 9709	3 1577	95%
Omitting Giva-Urcia et al. 2017 Peru 0.41 [0.14; 1.15] 9.8243 3.1344 95% Omitting Martins-Luna et al. 2020 Peru 0.41 [0.14; 1.15] 9.8243 3.1344 95% Omitting Martins-Luna et al. 2020 Peru 0.41 [0.14; 1.15] 9.8255 3.1025 95% Omitting Martins-Luna et al. 2020 Peru 0.42 [0.15; 1.21] 10.0561 3.0751 94% Omitting Rojas et al. 2020 Paraguay 0.47 [0.17; 1.30] 9.5791 3.0950 95% Omitting Gaillet et al. 2021 Brazil 0.47 [0.17; 1.30] 9.7479 3.1222 95% Omitting Gaillet et al. 2021 Frach Guyana 0.47 [0.17; 1.28] 9.86425 3.1052 95% Omitting Guoderis et al. (Cacuta) 2022 Colombia 0.47 [0.17; 1.28] 9.6425 3.1052 95% Omitting Ciuoderis et al. (Cacuta) 2022 Colombia 0.47 [0.17; 1.28] 9.6425 3.1052 95% Omitting Ciuoderis et al. (Cacuta) 2022 Colombia 0.42 [0.15; 1.12] 10.0487 3.1700 95% Omitting Ciuoderis et al. (Clucia) 2022 Colombia 0.42 [0.15; 1.21] 10.0487 3.1700 95% Omitting Giuoderis et al. (Clucia) 2022 Colombia 0.42 [0.15; 1.21] 10.0487 3.1700 95% Omitting Giuoderis et al. (Villavicencio) 2022 Colombia 0.42 [0.15; 1.21] 10.0487 3.1700 95% Omitting Goncalves Maciel et al. 2022 Peru 0.47 [0.17; 1.30] 9.5711 3.0940 95% <t< td=""><td>Omitting Garcia et al. 2016 Peru</td><td></td><td>0.41</td><td>[0.14:1.16]</td><td></td><td>9 8842</td><td>3 1439</td><td>95%</td></t<>	Omitting Garcia et al. 2016 Peru		0.41	[0.14:1.16]		9 8842	3 1439	95%
Omitting Silva-Caso et al. 2019 Peru 0.41 [0.14; 1.13] 9.6225 3.1025 95% Omitting Martins-Luna et al. 2020 Paraguay 0.41 [0.14; 1.13] 9.6255 3.1025 95% Omitting Martins-Luna et al. 2020 Paraguay 0.42 [0.15; 1.21] 10.0561 3.1711 95% Omitting Gais et al. 2020 Paraguay 0.47 [0.17; 1.30] 9.5791 3.0950 95% Omitting Gais et al. 2020 Paraguay 0.47 [0.17; 1.30] 9.7479 3.1222 95% Omitting Gaillet et al. 2021 Franch Guyana 0.47 [0.17; 1.30] 9.7479 3.1222 95% Omitting Saatkamp et al. 2021 Brazil 0.47 [0.17; 1.30] 9.7479 3.1222 95% Omitting Ciuoderis et al. (Caucua) 2022 Colombia 0.47 [0.17; 1.28] 9.6425 3.1052 95% Omitting Ciuoderis et al. (Clucua) 2022 Colombia 0.41 [0.14; 1.14] 9.6801 3.1113 95% Omitting Ciuoderis et al. (Clucua) 2022 Colombia 0.42 [0.15; 1.21] 10.0412 3.1688 95% Omitting Ciuoderis et al. (Vilavicencio) 2022 Colombia 0.41 [0.14; 1.17] 9.9911 3.1621 95% Omitting Goncalves Maciel et al. 2022 Pravil 0.49 [0.18; 1.32] 9.4187 3.0690 95% Omitting Goncalves Maciel et al. 2022 Pravil 0.41 [0.14; 1.16] 9.8443 3.1376 95% Omitting Goncalves Maciel et al. 2024 Brazil 0.41 [0.14; 1.16] 9.8443 3.1376 95% Omi	Omitting Alva-Urcia et al. 2017 Peru		0.41	[0.14; 1.16]		9 8243	3 1344	95%
Omitting do Nascimiento et al. 2020 Brazil 0.42 [0.15; 1.21] 10.0561 3.1711 95% Omitting Martins-Luna et al. 2020 Peru 0.40 [0.15; 1.21] 10.0561 3.1771 95% Omitting Salvador et al. 2020 Brazil 0.47 [0.17; 1.30] 9.5791 3.0950 95% Omitting Bibadry et al. 2021 Brazil 0.47 [0.17; 1.30] 9.7479 3.1222 95% Omitting Caillet et al. 2021 French Guyana 0.47 [0.17; 1.30] 9.7479 3.1222 95% Omitting Caivalho et al. 2021 Brazil 0.47 [0.17; 1.30] 9.7479 3.1222 95% Omitting Caivalho et al. 2021 Brazil 0.47 [0.17; 1.30] 9.7479 3.1222 95% Omitting Caivalho et al. 2022 Brazil 0.47 [0.17; 1.30] 9.7479 3.1222 95% Omitting Ciuoderis et al. (Cali) 2022 Colombia 0.47 [0.17; 1.30] 9.6425 3.1052 95% Omitting Ciuoderis et al. (Cali) 2022 Colombia 0.42 [0.15; 1.21] 10.0487 3.1700 95% Omitting Ciuoderis et al. (Calia) 2022 Colombia 0.42 [0.15; 1.21] 10.0487 3.1700 95% Omitting Ciuoderis et al. (Villavicencio) 2022 Colombia 0.42 [0.15; 1.18] 9.9991 3.1621 95% Omitting Goncalves Maciel et al. 2022 Brazil 0.47 [0.17; 1.30] 9.5731 3.0940 95% Omitting Goncalves Maciel et al. 2024 Brazil 0.48 [0.17; 1.31] 9.5211 3.0856 95% Omitting Gonca	Omitting Silva-Caso et al. 2019 Peru		0.41	[0.14:1.13]		9.6255	3 1025	95%
Omitting Martins-Luna et al. 2020 Peru 0.40 [0.15; 1.12] 9.4561 3.0751 94% Omitting Rojas et al. 2020 Brazil 0.47 [0.17; 1.30] 9.5791 3.0950 95% Omitting Bladry et al. 2020 Brazil 0.47 [0.17; 1.30] 9.5791 3.0950 95% Omitting Gaillet et al. 2021 Brazil 0.47 [0.17; 1.30] 9.7479 3.1222 95% Omitting Gaillet et al. 2021 Brazil 0.47 [0.17; 1.28] 9.6425 3.1052 95% Omitting Cavalho et al. 2022 Brazil 0.47 [0.17; 1.28] 9.6425 3.1052 95% Omitting Ciuoderis et al. (Cali) 2022 Colombia 0.42 [0.15; 1.21] 10.0412 3.1888 95% Omitting Ciuoderis et al. (Leticia) 2022 Colombia 0.42 [0.15; 1.21] 10.0487 3.1700 95% Omitting Ciuoderis et al. (Leticia) 2022 Colombia 0.42 [0.15; 1.21] 10.0487 3.1700 95% Omitting Ciuoderis et al. (Leticia) 2022 Colombia 0.42 [0.15; 1.21] 10.0487 3.1700 95% Omitting Ciuoderis et al. (Villavicencio) 2022 Colombia 0.42 [0.15; 1.21] 10.0487 3.1700 95% Omitting Goncalves Maciel et al. 2022 Brazil 0.47 [0.17; 1.30] 9.5731 3.0940 95% Omitting Goncalves Maciel et al. 2022 Pravil 0.49 [0.18; 1.32] 9.4187 3.0690 95% Omitting Moreira et al. 2024 Brazil 0.41 [0.14; 1.16] 9.5211 3.0856 95% Omitting Kachet	Omitting do Nascimiento et al. 2020 Brazil		0.42	[0.15: 1.21]		10.0561	3,1711	95%
Omitting Rojas et al. 2020 Paraguay 0.47 [0.17; 1.30] 9.5791 3.0950 95% Omitting Salvador et al. 2020 Brazil 0.42 [0.15; 1.19] 9.9836 3.1597 95% Omitting Gaillet et al. 2021 Hait 0.47 [0.17; 1.30] 9.7479 3.1222 95% Omitting Gaillet et al. 2021 Frach Guyana 0.47 [0.17; 1.28] 9.6425 3.1052 95% Omitting Carvalho et al. 2022 Brazil 0.47 [0.17; 1.28] 9.6425 3.1052 95% Omitting Ciuoderis et al. (Cauta) 2022 Colombia 0.42 [0.15; 1.12] 10.0412 3.1688 95% Omitting Ciuoderis et al. (Leticia) 2022 Colombia 0.42 [0.15; 1.21] 10.0417 3.1700 95% Omitting Ciuoderis et al. (Leticia) 2022 Colombia 0.42 [0.15; 1.21] 10.04187 3.1700 95% Omitting Ciuoderis et al. (Ulavicencio) 2022 Colombia 0.42 [0.15; 1.18] 9.9991 3.1621 95% Omitting Giuoderis et al. (Villavicencio) 2022 Colombia 0.47 [0.17; 1.30] 9.5731 3.0940 95% Omitting Goncalves Maciel et al. 2022 Peru 0.49 [0.18; 1.32] 9.4187 3.0690 95% Omitting Moreira et al. 2024 Brazil 0.41 [0.14; 1.16] 9.5211 3.0856 95% Omitting Moreira et al. 2024 Brazil 0.41 [0.14; 1.16] 9.5443 3.1376 95% Omitting Moreira et al. 2024 Brazil 0.41 [0.14; 1.16] 9.5791 3.0950 95% Omitting Sanchez	Omitting Martins-Luna et al. 2020 Peru		0.40	[0.15: 1.12]		9.4561	3.0751	94%
Omitting Salvador et al. 2020 Brazil 0.42 [0.15; 1.19] 9.9836 3.1597 95% Omitting Galuders et al. 2021 Haiti 0.47 [0.17; 1.30] 9.7479 3.1222 95% Omitting Gaildet et al. 2021 Brazil 0.40 [0.15; 1.12] 9.5024 3.0826 95% Omitting Carvalho et al. 2022 Brazil 0.41 [0.14; 1.14] 9.6801 3.1113 95% Omitting Ciuoderis et al. (Cauta) 2022 Colombia 0.42 [0.15; 1.20] 10.0412 3.1688 95% Omitting Ciuoderis et al. (Cauta) 2022 Colombia 0.42 [0.15; 1.21] 10.0487 3.1700 95% Omitting Ciuoderis et al. (Cauta) 2022 Colombia 0.42 [0.15; 1.21] 10.0487 3.1700 95% Omitting Ciuoderis et al. (Cucuta) 2022 Colombia 0.42 [0.15; 1.18] 9.9991 3.1621 95% Omitting Ciuoderis et al. (Villavicencio) 2022 Colombia 0.42 [0.15; 1.18] 9.9991 3.1621 95% Omitting Guoderis et al. (Villavicencio) 2022 Colombia 0.44 [0.14; 1.17] 9.9113 3.1482 95% Omitting Guoderis et al. (Villavicencio) 2022 Colombia 0.44 [0.15; 1.13] 9.9391 3.1621 95% Omitting Guoderis et al. 2024 Brazil 0.47 [0.17; 1.30] 9.5731 3.0940 95% Omitting Forato et al. 2024 Brazil 0.48 [0.17; 1.31] 9.5211 3.0856 95% Omitting Scachetti et al. 2024 Brazil 0.41 [0.14; 1.16] 9.8443 3.1376 95% <	Omitting Rojas et al. 2020 Paraguay		0.47	[0.17: 1.30]		9.5791	3.0950	95%
Omitting Elbadry et al. 2021 Haiti 0.47 [0.17; 1.30] 9.7479 3.1222 95% Omitting Gaillet et al. 2021 Franch Guyana 0.40 [0.15; 1.12] 9.5024 3.0826 95% Omitting Saatkamp et al. 2021 Brazil 0.47 [0.17; 1.28] 9.6425 3.1052 95% Omitting Ciuoderis et al. (Cali) 2022 Colombia 0.47 [0.17; 1.20] 10.0412 3.1688 95% Omitting Ciuoderis et al. (Cucuta) 2022 Colombia 0.42 [0.15; 1.21] 10.0412 3.1688 95% Omitting Ciuoderis et al. (Cucuta) 2022 Colombia 0.42 [0.15; 1.21] 10.0477 3.1700 95% Omitting Ciuoderis et al. (Villavicencio) 2022 Colombia 0.42 [0.15; 1.18] 9.9991 3.1621 95% Omitting Goncalves Maciel et al. 2022 Peru 0.47 [0.17; 1.30] 9.5731 3.0940 95% Omitting Forato et al. 2024 Brazil 0.48 [0.17; 1.31] 9.5211 3.0856 95% Omitting Scachetti et al. 2024 Brazil 0.41 [0.14; 1.16] 9.8443 3.1376 95% Omitting Scachetti et al. 2024 Brazil 0.41 [0.14; 1.16] 9.8443 3.1376 95% Omitting Sanchez-Lerma et al. 2024 Colombia 0.47 [0.17; 1.30] 9.5791 3.0950 95% Random effects model 0.45 [0.16; 1.23] 9.6471 3.1060 95%	Omitting Salvador et al. 2020 Brazil		0.42	[0.15: 1.19]		9.9836	3.1597	95%
Omitting Gaillet et al. 2021 French Guyana 0.40 [0.15; 1.12] 9.5024 3.0826 95% Omitting Saatkamp et al. 2021 Brazil 0.47 [0.17; 1.28] 9.6425 3.1052 95% Omitting Ciuoderis et al. (2ali) 2022 Colombia 0.41 [0.14; 1.14] 9.6801 3.1113 95% Omitting Ciuoderis et al. (Cauli) 2022 Colombia 0.42 [0.15; 1.21] 10.0412 3.1688 95% Omitting Ciuoderis et al. (Cucuta) 2022 Colombia 0.42 [0.15; 1.21] 10.0487 3.1700 95% Omitting Ciuoderis et al. (Cucuta) 2022 Colombia 0.42 [0.15; 1.21] 10.0487 3.1700 95% Omitting Ciuoderis et al. (Cucuta) 2022 Colombia 0.42 [0.15; 1.18] 9.99113 3.1482 95% Omitting Ciuoderis et al. (Villavicencio) 2022 Colombia 0.42 [0.15; 1.18] 9.9913 3.170 95% Omitting Goncalves Maciel et al. 2022 Brazil 0.47 [0.17; 1.30] 9.5731 3.0940 95% Omitting Goncalves Maciel et al. 2022 Peru 0.49 [0.18; 1.32] 9.4187 3.0690 95% Omitting Forato et al. 2024 Brazil 0.48 [0.17; 1.31] 9.5213 .0856 95% Omitting Scachetti et al. 2024 Brazil 0.41 [0.14; 1.16] 9.8443 3.1376 95% Omitting Scachetti et al. 2024 Brazil 0.41 [0.14; 1.16] 9.8443 3.1376 95% Omitting Sanchez-Lerma et al. 2024 Colombia 0.47 [0.17; 1.30] 9.5791 3.0950 95%	Omitting Elbadry et al. 2021 Haiti	- 8	0.47	[0.17; 1.30]		9.7479	3.1222	95%
Omitting Saatkamp et al. 2021 Brazil 0.47 [0.17; 1.28] 9.6425 3.1052 95% Omitting Carvalho et al. 2022 Brazil 0.41 [0.14; 1.14] 9.6801 3.1113 95% Omitting Ciuoderis et al. (Cali) 2022 Colombia 0.42 [0.15; 1.21] 10.0412 3.1688 95% Omitting Ciuoderis et al. (Leticia) 2022 Colombia 0.42 [0.15; 1.21] 10.0417 3.1700 95% Omitting Ciuoderis et al. (Leticia) 2022 Colombia 0.42 [0.15; 1.21] 10.0417 3.1700 95% Omitting Ciuoderis et al. (Villavicencio) 2022 Colombia 0.42 [0.15; 1.18] 9.9991 3.1621 95% Omitting Goncalves Maciel et al. 2022 Brazil 0.47 [0.17; 1.30] 9.5731 3.0940 95% Omitting Goncalves Maciel et al. 2022 Peru 0.49 [0.18; 1.32] 9.4187 3.0690 95% Omitting Moreira et al. 2024 Brazil 0.49 [0.18; 1.35] 9.2423 3.0401 95% Omitting Moreira et al. 2024 Brazil 0.41 [0.14; 1.16] 9.8443 3.1376 95% Omitting Scachetti et al. 2024 Brazil 0.41 [0.14; 1.15] 9.5791 3.0950 95% Omitting Sanchez-Lerma et al. 2024 Colombia 0.47 [0.17; 1.30] 9.5791 3.0950 95% Random effects model 0.45 [0.16; 1.23] 9.6471 3.1060 95%	Omitting Gaillet et al. 2021 French Guyana	- <u></u>	0.40	[0.15; 1.12]		9.5024	3.0826	95%
Omitting Carvalho et al. 2022 Brazil 0.41 [0.14; 1.14] 9.6801 3.1113 95% Omitting Ciuoderis et al. (Cali) 2022 Colombia 0.42 [0.15; 1.20] 10.0412 3.1688 95% Omitting Ciuoderis et al. (Cucuta) 2022 Colombia 0.42 [0.15; 1.21] 10.0412 3.1688 95% Omitting Ciuoderis et al. (Leticia) 2022 Colombia 0.42 [0.15; 1.21] 10.0487 3.1700 95% Omitting Ciuoderis et al. (Villavicencio) 2022 Colombia 0.42 [0.15; 1.18] 9.9991 3.1621 95% Omitting Giacetare al. 2022 Brazil 0.47 [0.17; 1.30] 9.5731 3.0940 95% Omitting Garvato et al. 2024 Brazil 0.48 [0.17; 1.31] 9.5211 3.0866 95% Omitting Forato et al. 2024 Brazil 0.41 [0.14; 1.16] 9.8443 3.1376 95% Omitting Sanchez-Lerma et al. 2024 Colombia 0.47 [0.17; 1.30] 9.5791 3.0950 95% Random effects model 0.45 [0.16; 1.23] 9.6471 3.1060 95%	Omitting Saatkamp et al. 2021 Brazil		0.47	[0.17; 1.28]		9.6425	3.1052	95%
Omitting Ciuoderis et al. (Cali) 2022 Colombia 0.42 [0.15; 1.20] 10.0412 3.1688 95% Omitting Ciuoderis et al. (Cucuta) 2022 Colombia 0.42 [0.15; 1.21] 10.0487 3.1700 95% Omitting Ciuoderis et al. (Cucuta) 2022 Colombia 0.42 [0.15; 1.21] 10.0487 3.1700 95% Omitting Ciuoderis et al. (Villavicencio) 2022 Colombia 0.41 [0.14; 1.17] 9.9113 3.1482 95% Omitting Ciuoderis et al. (Villavicencio) 2022 Colombia 0.42 [0.15; 1.8] 9.9991 3.1621 95% Omitting Goncalves Maciel et al. 2022 Brazil 0.47 [0.17; 1.30] 9.5731 3.0940 95% Omitting Forato et al. 2024 Brazil 0.48 [0.17; 1.31] 9.5211 3.0850 95% Omitting Scachetti et al. 2024 Brazil 0.41 [0.14; 1.16] 9.8443 3.1376 95% Omitting Sanchez-Lerma et al. 2024 Colombia 0.45 [0.16; 1.23] 9.6471 3.1060 95% Random effects model 0.45 [0.16; 1.23] 9.6471 3.1060 95%	Omitting Carvalho et al. 2022 Brazil		0.41	[0.14; 1.14]		9.6801	3.1113	95%
Omitting Ciuoderis et al. (Cucuta) 2022 Colombia 0.42 [0.15; 1.21] 10.0487 3.1700 95% Omitting Ciuoderis et al. (Leticia) 2022 Colombia 0.41 [0.14; 1.17] 9.9113 3.1482 95% Omitting Ciuoderis et al. (Villavicencio) 2022 Colombia 0.41 [0.14; 1.17] 9.9113 3.1482 95% Omitting Dias et al. 2022 Brazil 0.47 [0.17; 1.30] 9.5731 3.0940 95% Omitting Goncalves Maciel et al. 2022 Peru 0.49 [0.18; 1.32] 9.4187 3.0690 95% Omitting Forato et al. 2024 Brazil 0.48 [0.17; 1.31] 9.5211 3.0856 95% Omitting Scachetti et al. 2024 Brazil 0.41 [0.14; 1.16] 9.8443 3.1376 95% Omitting Scachetti et al. 2024 Brazil 0.41 [0.14; 1.15] 9.7745 3.1264 95% Omitting Sanchez-Lerma et al. 2024 Colombia 0.47 [0.17; 1.30] 9.5791 3.0950 95% Random effects model 0.45 [0.16; 1.23] 9.6471 3.1060 95%	Omitting Ciuoderis et al. (Cali) 2022 Colombia		0.42	[0.15; 1.20]		10.0412	3.1688	95%
Omitting Ciuoderis et al. (Leticia) 2022 Colombia 0.41 [0.14; 1.17] 9.9113 3.1482 95% Omitting Ciuoderis et al. (Villavicencio) 2022 Colombia 0.42 [0.15; 1.18] 9.9991 3.1621 95% Omitting Dias et al. 2022 Brazil 0.47 [0.17; 1.30] 9.5731 3.0940 95% Omitting Goncalves Maciel et al. 2022 Peru 0.49 [0.18; 1.32] 9.4187 3.0690 95% Omitting Goncalves Maciel et al. 2024 Brazil 0.49 [0.18; 1.32] 9.4187 3.0690 95% Omitting Moreira et al. 2024 Brazil 0.48 [0.17; 1.31] 9.5211 3.0856 95% Omitting Scachetti et al. 2024 Brazil 0.41 [0.14; 1.16] 9.4443 3.1376 95% Omitting Scachetti et al. 2024 Colombia 0.41 [0.14; 1.15] 9.5774 5.3.1264 95% Omitting Sanchez-Lerma et al. 2024 Colombia 0.47 [0.17; 1.30] 9.5791 3.0950 95% Random effects model 0.45 [0.16; 1.23] 9.6471 3.1060 95%	Omitting Ciuoderis et al. (Cucuta) 2022 Colombia		0.42	[0.15; 1.21]		10.0487	3.1700	95%
Omitting Ciuoderis et al. (Villavicencio) 2022 Colombia 0.42 [0.15; 1.18] 9.9991 3.1621 95% Omitting Dias et al. 2022 Brazil 0.47 [0.17; 1.30] 9.5731 3.0940 95% Omitting Goncalves Maciel et al. 2022 Peru 0.49 [0.18; 1.32] 9.4187 3.0690 95% Omitting Ga Lima et al. 2024 Brazil 0.48 [0.17; 1.31] 9.5211 3.0856 95% Omitting Moreira et al. 2024 Brazil 0.41 [0.14; 1.16] 9.8443 3.1376 95% Omitting Sanchez-Lerma et al. 2024 Colombia 0.47 [0.17; 1.30] 9.5791 3.0950 95% Random effects model 0.45 [0.16; 1.23] 9.6471 3.1060 95%	Omitting Ciuoderis et al. (Leticia) 2022 Colombia	-	0.41	[0.14; 1.17]		9.9113	3.1482	95%
Omitting Dias et al. 2022 Brazil 0.47 [0.17; 1.30] 9.5731 3.0940 95% Omitting Goncalves Maciel et al. 2022 Peru 0.49 [0.18; 1.32] 9.4187 3.0690 95% Omitting Ga Lima et al. 2024 Brazil 0.48 [0.17; 1.31] 9.5211 3.0856 95% Omitting Soracheti et al. 2024 Brazil 0.50 [0.18; 1.35] 9.2423 3.0401 95% Omitting Scachetti et al. 2024 Brazil 0.41 [0.14; 1.16] 9.8443 3.1376 95% Omitting Sanchez-Lerma et al. 2024 Colombia 0.47 [0.17; 1.30] 9.5791 3.0950 95% Random effects model 0.45 [0.16; 1.23] 9.6471 3.1060 95%	Omitting Ciuoderis et al. (Villavicencio) 2022 Colombia		0.42	[0.15; 1.18]		9.9991	3.1621	95%
Omitting Goncalves Maciel et al. 2022 Peru 0.49 [0.18; 1.32] 9.4187 3.0690 95% Omitting da Lima et al. 2024 Brazil 0.48 [0.17; 1.31] 9.5211 3.0856 95% Omitting Forato et al. 2024 Brazil 0.48 [0.17; 1.31] 9.5211 3.0856 95% Omitting Moreira et al. 2024 Brazil 0.41 [0.14; 1.16] 9.8443 3.1376 95% Omitting Scachetti et al. 2024 Brazil 0.41 [0.14; 1.15] 9.7745 3.1264 95% Omitting Sanchez-Lerma et al. 2024 Colombia 0.47 [0.17; 1.30] 9.5791 3.0950 95% Random effects model 0.45 [0.16; 1.23] 9.6471 3.1060 95%	Omitting Dias et al. 2022 Brazil		0.47	[0.17; 1.30]		9.5731	3.0940	95%
Omitting da Lima et al. 2024 Brazil 0.48 [0.17; 1.31] 9.5211 3.0856 95% Omitting Forato et al. 2024 Brazil 0.50 [0.18; 1.35] 9.2423 3.0401 95% Omitting Moreira et al. 2024 Brazil 0.41 [0.14; 1.16] 9.8443 3.1376 95% Omitting Scachetti et al. 2024 Brazil 0.41 [0.14; 1.15] 9.7745 3.1264 95% Omitting Sanchez-Lerma et al. 2024 Colombia 0.47 [0.17; 1.30] 9.5791 3.0950 95% Random effects model 0.45 [0.16; 1.23] 9.6471 3.1060 95%	Omitting Goncalves Maciel et al. 2022 Peru		0.49	[0.18; 1.32]		9.4187	3.0690	95%
Omitting Forato et al. 2024 Brazil 0.50 [0.18; 1.35] 9.2423 3.0401 95% Omitting Moreira et al. 2024 Brazil 0.41 [0.14; 1.16] 9.8443 3.1376 95% Omitting Scachetti et al. 2024 Brazil 0.41 [0.14; 1.15] 9.7745 3.1264 95% Omitting Sanchez-Lerma et al. 2024 Colombia 0.47 [0.17; 1.30] 9.5791 3.0950 95% Random effects model 0.45 [0.16; 1.23] 9.6471 3.1060 95%	Omitting da Lima et al. 2024 Brazil		0.48	[0.17; 1.31]		9.5211	3.0856	95%
Omitting Moreira et al. 2024 Brazil 0.41 [0.14; 1.16] 9.8443 3.1376 95% Omitting Scachetti et al. 2024 Brazil 0.41 [0.14; 1.16] 9.7745 3.1264 95% Omitting Sanchez-Lerma et al. 2024 Colombia 0.41 [0.14; 1.15] 9.7745 3.1264 95% Random effects model 0.47 [0.17; 1.30] 9.6771 3.1060 95%	Omitting Forato et al. 2024 Brazil		0.50	[0.18; 1.35]		9.2423	3.0401	95%
Omitting Scachetti et al. 2024 Brazil 0.41 [0.14; 1.15] 9.7745 3.1264 95% Omitting Sanchez-Lerma et al. 2024 Colombia 0.47 [0.17; 1.30] 9.5791 3.0950 95% Random effects model 0.45 [0.16; 1.23] 9.6471 3.1060 95%	Omitting Moreira et al. 2024 Brazil		0.41	[0.14; 1.16]		9.8443	3.1376	95%
Omitting Sanchez-Lerma et al. 2024 Colombia 0.47 [0.17; 1.30] 9.5791 3.0950 95% Random effects model 0.45 [0.16; 1.23] 9.6471 3.1060 95%	Omitting Scachetti et al. 2024 Brazil		0.41	[0.14; 1.15]		9.7745	3.1264	95%
Random effects model 0.45 [0.16; 1.23] . 9.6471 3.1060 95%	Omitting Sanchez-Lerma et al. 2024 Colombia		0.47	[0.17; 1.30]		9.5791	3.0950	95%
	Random effects model		0.45	[0.16; 1.23]		9.6471	3.1060	95%
-1 -0.8 0 0.8 1								

Figure A8. Sensitivity analysis for meta-analysis of viral isolates for Oropouche Virus (viral particles and/or viral RNA) among subjects with any sign or symptom for arbovirus infection [10–12,14,16,17,20,23–25,33,35,40–42,48,61–91].

Study		Ever obs	nts per ervatio	100 ons	Events	95%·	CI	P-value	Tau2	Tau	12
Omitting Gil-Mora et al. (El Tambo) 2022 Colombia Omitting Gil-Mora et al. (La Sierra) 2022 Colombia Omitting Gil-Mora et al. (Santander de Quilichao) 2022 Colombia Omitting Salgado et al. 2021 Brazil			*		 0.82 1.30 1.71 2.16	[0.31; 2.1 [0.48; 3.4 [0.72; 4.0 [0.98; 4.6	15] 15] 03] 68]	-	0 0.3273 0.2205 0.0179	0 0.5721 0.4696 0.1339	0% 61% 47% 6%
Random effects model	-4	-2		2	 1.42	[0.61; 3.2	28]		0.2505	0.5005	42%

Figure A9. Sensitivity analysis for meta-analysis of seroprevalence of Oropouche Virus IgM/IgG among subjects without any sign or symptom for arbovirus infection [82,85].

Study	I	Event obse	ts per ervati	r 100 ons		E	vents	95%-CI	P-value	Tau2	Tau	12
Omitting Rosa et al. 1996 Brazil			_	- i -			18.53	[6.22; 43.82]		2.5840	1.6075	90%
Omitting Watts et al. (Manacamiri) 1997 Peru			_				23.94	[6.03; 60.70]		4.3666	2.0897	98%
Omitting Watts et al. (Padre Cocha) 1997 Peru			_			_	23.21	[5.79; 59.77]		4.3729	2.0912	98%
Omitting Watts et al. (Porvenir) 1997 Peru			_	-		_	21.54	[5.46; 56.65]		4.1963	2.0485	98%
Omitting Watts et al. (Primavera) 1997 Peru			_	- 1			24.94	[6.39; 61.77]		4.3152	2.0773	97%
Omitting Watts et al. (Villa Punchana) 1997 Peru			_	-		_	22.52	[5.62; 58.68]		4.3367	2.0825	98%
Omitting Baisley et al. 1998 Brazil			_	-		_	22.90	[5.71; 59.31]		4.3634	2.0889	98%
Omitting Silva et al. 2024 Brazil				+		-	37.57	[23.19; 54.53]		0.8460	0.9198	98%
Random effects model			-			-	24.45	[7.83; 55.21]		3.5478	1.8836	98%
-60	-40	-20	0	20	40	60						

Figure A10. Sensitivity analysis for meta-analysis of seroprevalence of Oropouche Virus IgG among subjects with any sign or symptom for arbovirus infection [14,15,63,90].

Study	Eve ot	ents per oservatio	100 ns	Events	95%-CI	P-value	Tau2	Tau	12
Omitting Bastos et al. 2014 Brazil		_		- 3.28	[1.24; 8.41]		0	0	0%
Omitting Bastos et al. 2012 Brazil			<u> </u>	2.14	[0.81; 5.56]		0	0	0%
Omitting Pinheiro et al. 1982 Brazil		+		2.26	[1.02; 4.95]		0	0	0%
Random effects model	Г <u> </u>	<		2.44	[1.17; 5.03]		0	0	0%
	-5	0	5						

Figure A11. Sensitivity analysis for meta-analysis of viral isolates for Oropouche Virus (viral particles and/or viral RNA) from cerebrospinal fluid of subjects with any sign or symptom for arbovirus infection [61,72,73].

Figure A12. Cont.

Figure A12. Funnel plots for findings included in meta-analysis: (**a**) seroprevalence of IgM for Oropouche Virus (OROV) among individuals with any sign/symptom of arbovirus infection; (**b**) seroprevalence of OROV IgG/IgM among individuals with any sign/symptom of arbovirus infection; (**c**) prevalence of OROV isolates (viral particles and/or viral RNA) among individuals with any sign/symptom of arbovirus infection; (**d**) seroprevalence of OROV IgG/IgM among individuals with any sign/symptom of arbovirus infection; (**e**) seroprevalence of OROV IgG among individuals with any sign/symptom of arbovirus infection; (**f**) prevalence of OROV isolates (viral particles and/or viral RNA) within cerebrospinal fluid of individuals with any sign/symptom of arbovirus infection; (**f**) prevalence of OROV isolates (viral particles and/or viral RNA) within cerebrospinal fluid of individuals with any sign/symptom of arbovirus infection; (**f**) prevalence of or OROV isolates (viral particles and/or viral RNA) within cerebrospinal fluid of individuals with any sign/symptom of arbovirus infection; (**f**) prevalence of OROV isolates (viral particles and/or viral RNA) within cerebrospinal fluid of individuals with any sign/symptom of arbovirus infection [10–12,14,16,17,20,23–25,33,35,40–42,48,61–91].

Figure A13. Cont.

Figure A13. Radial plots for findings included in meta-analysis: (**a**) seroprevalence of IgM for Oropouche Virus (OROV) among individuals with any sign/symptom of arbovirus infection; (**b**) seroprevalence of OROV IgG/IgM among individuals with any sign/symptom of arbovirus infection; (**c**) prevalence of OROV isolates (viral particles and/or viral RNA) among individuals with any sign/symptom of arbovirus infection; (**d**) seroprevalence of OROV IgG/IgM among individuals with any sign/symptom of arbovirus infection; (**e**) seroprevalence of OROV IgG among individuals with any sign/symptom of arbovirus infection; (**f**) prevalence of OROV isolates (viral particles and/or viral RNA) within cerebrospinal fluid of individuals with any sign/symptom of arbovirus infection; (**f**) prevalence of OROV isolates (viral particles and/or viral RNA) within cerebrospinal fluid of individuals with any sign/symptom of arbovirus infection; (**f**) prevalence of or OROV isolates (viral particles and/or viral RNA) within cerebrospinal fluid of individuals with any sign/symptom of arbovirus infection; 10–12,14,16,17,20,23–25,33,35,40–42,48,61–91].

References

- Wesselmann, K.M.; Postigo-Hidalgo, I.; Pezzi, L.; de Oliveira-Filho, E.F.; Fischer, C.; de Lamballerie, X.; Drexler, J.F. Emergence of Oropouche Fever in Latin America: A Narrative Review. *Lancet Infect. Dis.* 2024, 24, e439–e452. [CrossRef] [PubMed]
- 2. Sakkas, H.; Bozidis, P.; Franks, A.; Papadopoulou, C. Oropouche Fever: A Review. Viruses 2018, 10, 175. [CrossRef] [PubMed]
- Pereira, R.S.; Colangelo, J.F.; Souza, P.G.A.; de Carvalho, L.G.F.; da Cruz Nizer, W.S.; Lima, W.G. Epidemiological Aspects of the Oropouche Virus (*Orthobunyavirus*) in South America: A Systematic Review. *Rev. Colomb. Cienc. Quim. Farm.* 2022, *51*, 166–184. [CrossRef]
- Tilston-Lunel, N.L.; Hughes, J.; Acrani, G.O.; da Silva, D.E.A.; Azevedo, R.S.S.; Rodrigues, S.G.; Vasconcelos, P.F.C.; Nunes, M.R.T.; Elliott, R.M. Genetic Analysis of Members of the Species Oropouche Virus and Identification of a Novel M Segment Sequence. J. Gen. Virol. 2015, 96, 1636–1650. [CrossRef]
- Sah, R.; Srivastava, S.; Kumar, S.; Golmei, P.; Rahaman, S.A.; Mehta, R.; Ferraz, C.; Apostolopoulos, V.; Rodriguez-Morales, A.J. Oropouche Fever Outbreak in Brazil: An Emerging Concern in Latin America. *Lancet Microbe* 2024, 404, 100904. [CrossRef]

- 6. Martins-Filho, P.R.; Soares-Neto, R.F.; de Oliveira-Junior, J.M.; Alves dos Santos, C. The Underdiagnosed Threat of Oropouche Fever amidst Dengue in Brazil. *Lancet Reg. Health Am.* **2024**, *32*, 100718. [CrossRef]
- Zhang, Y.; Liu, X.; Wu, Z.; Feng, S.; Lu, K.; Zhu, W.; Sun, H.; Niu, G. Oropouche Virus: A Neglected Global Arboviral Threat. Virus Res 2024, 341, 199318. [CrossRef]
- Files, M.A.; Hansen, C.A.; Herrera, V.C.; Schindewolf, C.; Barrett, A.D.T.; Beasley, D.W.C.; Bourne, N.; Milligan, G.N. Baseline Mapping of Oropouche Virology, Epidemiology, Therapeutics, and Vaccine Research and Development. NPJ Vaccines 2022, 7, 38. [CrossRef]
- Anderson, C.R.; Spence, L.; Downs, W.G.; Aitken, T.H.G. Oropouche Virus: A New Human Disease Agent from Trinidad, West Indie. Am. J. Trop. Med. Hyg. 1961, 10, 574–578. [CrossRef]
- 10. Pinheiro, F.P.; Travassos da Rosa, A.P.; Travassos da Rosa, J.F.; Bensabath, G. An Outbreak of Oropouche Virus Disease in the Vicinity of Santarem, Para, Brazil. *Tropenmed Parasitol.* **1976**, 27, 213–223.
- 11. Leduc, J.W.; Hoch, A.L.; Pinheiro, F.P.; Travassos Da Rosa, A.P.A. Epidemic Oropouche Virus Disease in Northern Brazil. *Bull. Pan. Am. Hdh. Orp.* **1981**, *15*, 97–103.
- 12. Borborema, C.A.T.; Pinheiro, F.P.; Albuqiierque, B.C.; da Rosa, A.P.; Da Rosa, J.F.; Dourado, H.V. Primeiro Registro de Epidemias Causadas Pelo Virus Oropouche No Estado Do Amazonas. *Rev. Inst. Med. Trop. São. Paulo.* **1982**, *24*, 132–139.
- 13. Baisley, K.J.; Watts, D.M.; Munstermann, L.E.; Wilson, M.L. Epidemiology of Endemic Oropouche Virus Transmission in Upper Amazonian Peru. *Am. J. Trop. Med. Hyg.* **1998**, *59*, 710–716. [CrossRef]
- 14. Watts, D.M.; Phillips, I.; Callahan, J.D.; Griebenow, W.; Hyams, K.C.; Hayes, A.G. Oropouche Virus Transmission in the Amazon River Basin of Peru. *Am. J. Trop. Med. Hyg.* **1997**, *56*, 148–152. [CrossRef] [PubMed]
- Watts, D.M.; Russell, K.L.; Wooster, M.T.; Sharp, T.W.; Morrison, A.C.; Kochel, T.J.; Bautista, C.T.; Block, K.; Guevara, C.; Aguilar, P.; et al. Etiologies of Acute Undifferentiated Febrile Illnesses in and near Iquitos from 1993 to 1999 in the Amazon River Basin of Peru. Am. J. Trop. Med. Hyg. 2022, 107, 1114–1128. [CrossRef]
- 16. Gaillet, M.; Pichard, C.; Restrepo, J.; Lavergne, A.; Perez, L.; Enfissi, A.; Abboud, P.; Lambert, Y.; Ma, L.; Monot, M.; et al. Outbreak of Oropouche Virus in French Guiana. *Emerg. Infect. Dis.* **2021**, *27*, 2711–2714. [CrossRef] [PubMed]
- Bonifay, T.; Le Turnier, P.; Epelboin, Y.; Carvalho, L.; De Thoisy, B.; Djossou, F.; Duchemin, J.B.; Dussart, P.; Enfissi, A.; Lavergne, A.; et al. Review on Main Arboviruses Circulating on French Guiana, An Ultra-Peripheric European Region in South America. *Viruses* 2023, 15, 1268. [CrossRef]
- 18. Gomez-Camargo, D.E.; Egurrola-Pedraza, J.A.; Cruz, C.D.; Popuche, D.; Ochoa-Diaz, M.M.; Guevara, C.; Silva, M.; Abente, E.J.; Ampuero, J.S. Evidence of Oropouche Infection, Colombia, 2017. *Emerg. Infect. Dis.* **2021**, *27*, 1756–1758. [CrossRef]
- Grisales-Nieto, J.C.; Luz, S.L.B.; Alves Do Nascimento, V.; Gomes Naveca, F.; Murcia-Montaño, L.M.; Romero-Vesga, K.N.; Bellido-Cuellar, O.E.; Carvajal-Cortés, J.J. First Case of Oropouche Fever Detected in the International Border Region of the Colombian Amazon: Clinical Characteristics and Molecular Diagnosis. *Mem. Inst. Oswaldo. Cruz.* 2024, 119, e230221. [CrossRef]
- Silva-Ramos, C.R.; Faccini-Martínez, Á.A.; Serna-Rivera, C.C.; Mattar, S.; Hidalgo, M. Etiologies of Zoonotic Tropical Febrile Illnesses That Are Not Part of the Notifiable Diseases in Colombia. *Microorganisms* 2023, 11, 2154. [CrossRef]
- 21. Wise, E.L.; Pullan, S.T.; Marquez, S.; Paz, V.; Mosquera, J.D.; Zapata, S.; Jackson, S.K.; Fejer, G.; Trueba, G.; Logue, C.H.; et al. Isolation of Oropouche Virus from Febrile Patient, Ecuador. *Emerg. Infect. Dis.* **2018**, *24*, 935–937. [CrossRef] [PubMed]
- Manock, S.R.; Jacobsen, K.H.; Brito De Bravo, N.; Russell, K.L.; Negrete, M.; Olson, J.G.; Sanchez, J.L.; Blair, P.J.; Smalligan, R.D.; Quist, B.K.; et al. Etiology of Acute Undifferentiated Febrile Illness in the Amazon Basin of Ecuador. *Am. J. Trop. Med. Hyg.* 2009, *81*, 146–151. [CrossRef] [PubMed]
- Elbadry, M.A.; Durães-Carvalho, R.; Blohm, G.M.; Stephenson, C.J.; Loeb, J.C.; White, S.K.; Telisma, T.; Chavannes, S.; Beau De Rochars, V.M.; Salemi, M.; et al. Orthobunyaviruses in the Caribbean: Melao and Oropouche Virus Infections in School Children in Haiti in 2014. *PLoS Negl. Trop. Dis.* 2021, 15, e0009494. [CrossRef] [PubMed]
- Forshey, B.M.; Guevara, C.; Laguna-Torres, V.A.; Cespedes, M.; Vargas, J.; Gianella, A.; Vallejo, E.; Madrid, C.; Aguayo, N.; Gotuzzo, E.; et al. Arboviral Etiologies of Acute Febrile Illnesses in Western South America, 2000–2007. *PLoS Negl. Trop. Dis.* 2010, 4, e787. [CrossRef] [PubMed]
- 25. Toledo, M.E.; Monteagudo Diaz, S.; Montenegro Calderón, T.; Kreppel, K.; Van Damme, E.; Vanlerberghe, V. Preparedness for Emerging Epidemic Threats: Detection of Oropouche Circulation in Cuba. *Lancet Infect. Dis.* **2024**, *24*, e484. [CrossRef]
- Castilletti, C.; Mori, A.; Matucci, A.; Ronzoni, N.; Van Duffel, L.; Rossini, G.; Sponga, P.; D'Errico, M.L.; Rodari, P.; Cristini, F.; et al. Oropouche Fever Cases Diagnosed in Italy in Two Epidemiologically Non-Related Travellers from Cuba, Late May to Early June 2024. Eurosurveillance 2024, 29, 2400362. [CrossRef]
- 27. McGregor, B.L.; Connelly, C.R.; Kenney, J.L. Infection, Dissemination, and Transmission Potential of North American Culex Quinquefasciatus, Culex Tarsalis, and Culicoides Sonorensis for Oropouche Virus. *Viruses* **2021**, *13*, 226. [CrossRef]
- de Mendonça, S.F.; Rocha, M.N.; Ferreira, F.V.; Leite, T.H.J.F.; Amadou, S.C.G.; Sucupira, P.H.F.; Marques, J.T.; Ferreira, A.G.A.; Moreira, L.A. Evaluation of Aedes Aegypti, Aedes Albopictus, and Culex Quinquefasciatus Mosquitoes Competence to Oropouche Virus Infection. *Viruses* 2021, 13, 755. [CrossRef]
- 29. Pinheiro, F.P.; Travassos Da Rosa, A.P.A.; Gomes, M.L.C.; LeDuc, J.W.; Hoch, A.L. Transmission of Oropouche Virus from Man to Hamster by the Midge Culicoides Paraensis. *Science* **1982**, *215*, 1251–1253. [CrossRef]
- Romero-Alvarez, D.; Escobar, L.E. Vegetation Loss and the 2016 Oropouche Fever Outbreak in Peru. *Mem. Inst. Oswaldo. Cruz.* 2017, 112, 292–298. [CrossRef]

- 31. Roney, M.; Aluwi, M.F.F.M. Oropouche Fever Outbreak Is Emerging Concern in American Countries. *Bull. Natl. Res. Cent.* 2024, 48, 76. [CrossRef]
- Ciuoderis, K.A.; Berg, M.G.; Perez, L.J.; Hadji, A.; Perez-Restrepo, L.S.; Aristizabal, L.C.; Forberg, K.; Yamaguchi, J.; Cardona, A.; Weiss, S.; et al. Oropouche Virus as an Emerging Cause of Acute Febrile Illness in Colombia. *Emerg. Microbes Infect.* 2022, 11, 2645–2657. [CrossRef]
- 33. Romero-Alvarez, D.; Escobar, L.E.; Auguste, A.J.; Del Valle, S.Y.; Manore, C.A. Transmission Risk of Oropouche Fever across the Americas. *Infect. Dis. Poverty* **2023**, *12*, 47. [CrossRef]
- Silva-Caso, W.; Aguilar-Luis, M.A.; Palomares-Reyes, C.; Mazulis, F.; Weilg, C.; del Valle, L.J.; Espejo-Evaristo, J.; Soto-Febres, F.; Martins-Luna, J.; del Valle-Mendoza, J. First Outbreak of Oropouche Fever Reported in a Non-Endemic Western Region of the Peruvian Amazon: Molecular Diagnosis and Clinical Characteristics. *Int. J. Infect. Dis.* 2019, *83*, 139–144. [CrossRef] [PubMed]
- 35. Romero-Alvarez, D.; Escobar, L.E. Oropouche Fever, an Emergent Disease from the Americas. *Microbes Infect.* **2018**, *20*, 135–146. [CrossRef] [PubMed]
- 36. Fujita, D.M.; Salvador, F.S.; da Silva Nali, L.H.; de Andrade Júnior, H.F. Oropouche in Brazil in 2024. J. Travel. Med. 2024, 31, taae075. [CrossRef] [PubMed]
- Lorenz, C.; Chiaravalloti-Neto, F. Brazil Reports an Increased Incidence of Oropouche and Mayaro Fever in the Amazon Region. *Travel. Med. Infect. Dis.* 2024, 58, 102692. [CrossRef]
- 38. Pan American Health Organization. *Public Health Risk Assessment Related to Oropouche Virus (OROV) in the Region of the Americas General Risk Statement;* Pan American Health Organization: Washington, DC, USA, 2024.
- da Silva Azevedo, R.D.S.; Nunes, M.R.T.; Chiang, J.O.; Bensabath, G.; Vasconcelos, H.B.; das Neves Pinto, A.Y.; Martins, L.C.; de Oliveira Monteiro, H.A.; Rodrigues, S.G.; da Costa Vasconcelos, P.F. Reemergence of Oropouche Fever, Northern Brazil. *Emerg. Infect. Dis.* 2007, 13, 912–915. [CrossRef]
- Vasconcelos, H.B.; Azevedo, R.S.S.; Casseb, S.M.; Nunes-Neto, J.P.; Chiang, J.O.; Cantuária, P.C.; Segura, M.N.O.; Martins, L.C.; Monteiro, H.A.O.; Rodrigues, S.G.; et al. Oropouche Fever Epidemic in Northern Brazil: Epidemiology and Molecular Characterization of Isolates. *J. Clin. Virol.* 2009, 44, 129–133. [CrossRef]
- Forato, J.; Meira, C.A.; Claro, I.M.; Amorim, M.R.; de Souza, G.F.; Muraro, S.P.; Toledo-Teixeira, D.A.; Dias, M.F.; Meneses, C.A.R.; Angerami, R.N.; et al. Molecular Epidemiology of Mayaro Virus among Febrile Patients, Roraima State, Brazil, 2018–2021. *Emerg. Infect. Dis.* 2024, 30, 1013–1016. [CrossRef]
- 42. Tesh, R.B. The Emerging Epidemiology of Venezuelan Hemorrhagic Fever and Oropouche Fever in Tropical South America. *Ann. N. Y. Acad. Sci.* **1994**, 740, 129–137. [CrossRef] [PubMed]
- Chiang, J.O.; Azevedo, R.S.; Justino, M.C.A.; Matos, H.J.; Cabeça, H.L.S.; Silva, S.P.; Henriques, D.F.; Silva, E.V.P.; Andrade, G.S.S.; Vasconcelos, P.F.; et al. Neurological Disease Caused by Oropouche Virus in Northern Brazil: Should It Be Included in the Scope of Clinical Neurological Diseases? *J. Neurovirol.* 2021, 27, 626–630. [CrossRef] [PubMed]
- Pavon, J.A.R.; Neves, N.A.D.S.; Silva, L.C.F.; Azevedo, F.K.D.; Junior, F.; Nunes, M.R.T.; Slhessarenko, R.D. Neurological Infection by Chikungunya and a Triple Arbovirus Co-Infection in Mato Grosso, Central Western Brazil during 2019. J. Clin. Virol. 2022, 146, 105056. [CrossRef]
- 45. Garcia Filho, C.; Silva Lima Neto, A.; Maria Peixoto Cabral Maia, A.; Osvaldo Rodrigues Silva, L.; da Costa Cavalcante, R.; da Silva Monteiro, H.; Carneiro Alves Marques, K.; de Souza Oliveira, R.; de Andrade Cordeiro Gadelha, S.; Nunes de Melo, D.; et al. Vertical Transmission of Oropouche Virus in a Newly Affected Extra-Amazon Region: A Case Study of Fetal Infection and Death in Ceará, Brazil. *SciELO Preprints* 2024. [CrossRef]
- 46. Carlos Bandeira, A.; Fernandes, A.C.; Da, N.; Barbosa, S.; Souza, M.; Da, R.; Saavedra, C.; Pereira, M.; Patricia, S.; Santos, O.; et al. Clinical Profile of Oropouche Fever in Bahia, Brazil: Unexpected Fatal Cases. *SciELO Preprints* **2024**. [CrossRef]
- Rojas, A.; Stittleburg, V.; Cardozo, F.; Bopp, N.; Cantero, C.; López, S.; Bernal, C.; Mendoza, L.; Aguilar, P.; Pinsky, B.A.; et al. Real-Time RT-PCR for the Detection and Quantitation of Oropouche Virus. *Diagn. Microbiol. Infect. Dis.* 2020, 96, 114894. [CrossRef]
- 48. Lachmann, R.; Meincke, M.; Grünewald, T.; Brockmann, S.; Frank, C.; Schmidt-Chanasit, J.; Wilking, H. Erste Oropouche-Fieber-Fälle in Deutschland Unter Reiserückkehrenden Aus Kuba. *Epidemiol. Bull.* **2024**, *31*, 12–14.
- Moher, D.; Liberati, A.; Tetzlaff, J.; Altman, D.G.; Altman, D.; Antes, G.; Atkins, D.; Barbour, V.; Barrowman, N.; Berlin, J.A.; et al. Preferred Reporting Items for Systematic Reviews and Meta-Analyses: The PRISMA Statement. *PLoS Med.* 2009, 7, 889–896. [CrossRef]
- 50. Rethlefsen, M.L.; Kirtley, S.; Waffenschmidt, S.; Ayala, A.P.; Moher, D.; Page, M.J.; Koffel, J.B. PRISMA-S: An Extension to the PRISMA Statement for Reporting Literature Searches in Systematic Reviews. *Syst. Rev.* **2021**, *10*, 39. [CrossRef]
- Von Hippel, P.T. The Heterogeneity Statistic I² Can Be Biased in Small Meta-Analyses. BMC Med. Res. Methodol. 2015, 15, 35. [CrossRef]
- 52. Krumpal, I. Determinants of Social Desirability Bias in Sensitive Surveys: A Literature Review. *Qual. Quant.* 2013, 47, 2025–2047. [CrossRef]
- 53. National Institutes of Health. *OHAT Risk of Bias Rating Tool for Human and Animal Studies;* National Institutes of Health: Bethesda, MD, USA, 2015.
- 54. Eick, S.M.; Goin, D.E.; Chartres, N.; Lam, J.; Woodruff, T.J. Assessing Risk of Bias in Human Environmental Epidemiology Studies Using Three Tools: Different Conclusions from Different Tools. *Syst. Rev.* **2020**, *9*, 249. [CrossRef] [PubMed]

- 55. Higgins, J.P.T.; Thompson, S.G.; Spiegelhalter, D.J. A Re-Evaluation of Random-Effects Meta-Analysis. J. R. Stat. Soc. Ser. A Stat. Soc. 2009, 172, 137–159. [CrossRef] [PubMed]
- Higgins, J.P.T.; Thompson, S.G.; Deeks, J.J.; Altman, D.G. Measuring Inconsistency in Meta-Analyses. Br. Med. J. 2003, 327, 557–560. [CrossRef]
- 57. Begg, C.B.; Mazumdar, M. Operating Characteristics of a Rank Correlation Test for Publication Bias. *Biometrics* **1994**, *50*, 1088–1101. [CrossRef] [PubMed]
- 58. R Development Core Team. *R a Language and Environment for Statistical Computing: Reference Index;* R Foundation for Statistical Computing: Vienna, Austria, 2010; ISBN 3900051070.
- 59. Haddaway, N.R.; Page, M.J.; Pritchard, C.C.; McGuinness, L.A. PRISMA2020: An R Package and Shiny App for Producing PRISMA 2020-Compliant Flow Diagrams, with Interactivity for Optimised Digital Transparency and Open Synthesis. *Campbell Syst. Rev.* **2022**, *18*, e1230. [CrossRef]
- 60. Pinheiro, F.P.; Rocha, A.G.; Freitas, R.B.; Ohana, B.A.; Travassos da Rosa, A.P.A.; Rogerio, J.S.; Linhares, A.C. Meningite associada as infeccoes por virus Oropouche. *Rev. Inst. Med. Trop. Sao. Paolo.* **1982**, *24*, 246–251.
- Vasconcelos, P.F.C.D.; Travassos Da Rosa, J.F.S.; Guerreiro, S.C.; Dégallier, N.; Travassos Da Rosa, E.S.; Travassos Da Rosa, A.P.D.A. Primeiro Registro De Epidemias Causadas Pelo Vírus Oropouche Nos Estados Do Maranhão E Goiás, Brasil. *Rev. Inst. Med. Trop.* Sao. Paolo. 1989, 31, 271–278. [CrossRef]
- 62. Rosa, P.A.T.; Rodrigues, S.G.; Nunes, M.R.T.; Magalhães, T.F.; Rosa, J.F.S.T.; Vasconcelos, P.F.C. Epidemia De Febre Do Oropouche Em Serra Pelada, Município De Curionópolis, Pará, 1994. *Rev. Soc. Bras. Med. Trop.* **1996**, *29*, 537–541. [CrossRef]
- Watts, D.M.; Lavera, V.; Callahan, J.; Rossi, C.; Oberste, M.S.; Roehrig, J.T.; Cropp, C.B.; Karabatsos, N.; Smith, J.F.; Gubler, D.J.; et al. Venezuelan Equine Encephalitis and Oropouche Virus Infections among Peruvian Army Troops in the Amazon Region of Peru. Am. J. Trop. Med. Hyg. 1997, 56, 661–667. [CrossRef]
- 64. De Figueiredo, R.M.P.; Thatcher, B.D.; de Lima, M.L.; Almeida, T.C.; Alecrim, W.D.; de Farias Guerra, M.V. Doenças Exantemáticas e Primeira Epidemia de Dengue Ocorrida Manaus, Amazonas, No Período de 1998–1999. *Rev. Soc. Bras. Med. Trop.* **2004**, *37*, 476–479. [CrossRef] [PubMed]
- 65. Tavares-Neto, J.; Freitas-Carvalho, J.; Teixeira Nunes, M.R.; Rocha, G.; Rodrigues, S.G.; Damasceno, E.; Darub, R.; Viana, S.; da Costa Vasconcelos, P.F. Pesquisa de Anticorpos Contra Arbovírus e o Vírus Vacinal Da Febre Amarela Em Uma Amostra Da População de Rio Branco, Antes e Três Meses Após a Vacina 17D. *Rev. Soc. Bras. Med. Trop.* 2004, 37, 1–6. [CrossRef] [PubMed]
- Terzian, B.; de Moraes Bronzoni, R.V.; Paiva Drumond, B.; Da Silva-Nunes, M.; Santos da Silva, N.; Ferreira, M.U.; Sperança, M.A.; Nogueira, M.L. Sporadic Oropuche Virus Infection, Acre, Brazil. *Emerg. Infect. Dis.* 2009, 15, 348–350. [CrossRef]
- 67. Cruz, A.C.R.; do Socorro Correa dos Prazeres, A.; Colares Gama, E.; Furtado de Lima, M.; do Socorro Silva Azevedo, R.; Medeiros Neves Casseb, L.; Pinto Nunes Neto, J.; Carício Martins, L.; Oliveira Chiang, J.; Guerreiro Rodrigues, S.; et al. Vigilância Sorológica Para Arbovírus Em Juruti, Pará, Brasil Serological Survey for Arboviruses. *Cad. Saude Publica* 2009, 25, 2517–2523. [CrossRef]
- 68. Mourao, M.P.G.; Bastos, M.S.; Gimaque, J.B.L.; Mota, B.R.; Souza, G.S.; Grimmer, G.H.N.; Galusso, E.S.; Arruda, E.; Figuereido, L.T.M. Oropouche Fever Outbreak, Manaus, Brazil, 2007–2008. *Emerg. Infect. Dis.* **2009**, *16*, 2063–2064. [CrossRef]
- Alvarez-Falconi, P.P.; Amanda, B.; Ruiz, R. Brote de Fiebre de Oropuche En Bagazán, Martín-Perú: Evaluación Epidemiológica, Manifestaciones Gastrointestinales y Hemorrágicas. *Rev. Gastroenterol. Perú* 2010, 30–34, 334–340.
- Aguilar, P.V.; Barrett, A.D.; Saeed, M.F.; Watts, D.M.; Russell, K.; Guevara, C.; Ampuero, J.S.; Suarez, L.; Cespedes, M.; Montgomery, J.M.; et al. Iquitos Virus: A Novel Reassortant Orthobunyavirus Associated with Human Illness in Peru. *PLoS Negl. Trop. Dis.* 2011, 5, e1315. [CrossRef]
- Bastos, M.D.S.; Figueiredo, L.T.M.; Naveca, F.G.; Monte, R.L.; Lessa, N.; De Figueiredo, R.M.P.; Gimaque, J.B.D.L.; João, G.P.; Ramasawmy, R.; Mourão, M.P.G. Short Report: Identification of Oropouche Orthobunyavirus in the Cerebrospinal Fluid of Three Patients in the Amazonas, Brazil. *Am. J. Trop. Med. Hyg.* 2012, *86*, 732–735. [CrossRef] [PubMed]
- Bastos, M.S.; Lessa, N.; Naveca, F.G.; Monte, R.L.; Braga, W.S.; Figueiredo, L.T.M.; Ramasawmy, R.; Mourão, M.P.G. Detection of Herpesvirus, Enterovirus, and Arbovirus Infection in Patients with Suspected Central Nervous System Viral Infection in the Western Brazilian Amazon. J. Med. Virol. 2014, 86, 1522–1527. [CrossRef]
- Martins, V.D.C.A.; De Bastos, M.S.; Ramasawmy, R.; De Figueiredo, R.P.; Gimaque, J.B.L.; Braga, W.S.M.; Nogueira, M.L.; Nozawa, S.; Naveca, F.G.; Figueiredo, L.T.M.; et al. Clinical and Virological Descriptive Study in the 2011 Outbreak of Dengue in the Amazonas, Brazil. *PLoS ONE* 2014, 9, e100535. [CrossRef]
- 74. Cardoso, B.F.; Serra, O.P.; Da Silva Heinen, L.B.; Zuchi, N.; De Souza, V.C.; Naveca, F.G.; Dos Santos, M.A.M.; Slhessarenko, R.D. Detection of Oropouche Virus Segment s in Patients and in Culex Quinquefasciatus in the State of Mato Grosso, Brazil. *Mem. Inst. Oswaldo. Cruz.* 2015, 110, 745–754. [CrossRef] [PubMed]
- García, M.P.; Merino, N.S.; Figueroa, D.; Marcelo, A.; Tineo, V.E.; Manrique, C.; Donaires, F.; Céspedes, M.; Cabrera, R. Detection of Oropouche Viral Circulation in Madre de Dios Region, Peru (December 2015 to January 2016). *Rev. Peru. Med. Exp. Salud. Publica* 2016, 33, 380–381. [CrossRef]
- 76. Alva-Urcia, C.; Aguilar-Luis, M.A.; Palomares-Reyes, C.; Silva-Caso, W.; Suarez-Ognio, L.; Weilg, P.; Manrique, C.; Vasquez-Achaya, F.; Del Valle, L.J.; Del Valle-Mendoza, J. Emerging and Reemerging Arboviruses: A New Threat in Eastern Peru. *PLoS ONE* 2017, 12, e0187897. [CrossRef]
- 77. Do Nascimento, V.A.; Santos, J.H.A.; Monteiro, D.C.A.S.; Pessoa, K.P.; Cardoso, A.J.L.; de Souza, V.C.; Abdalla, L.F.; Naveca, F.G. Oropouche Virus Detection in Saliva and Urine. *Mem. Inst. Oswaldo. Cruz.* **2020**, *115*, e190338. [CrossRef]

- 78. Martins-Luna, J.; Del Valle-Mendoza, J.; Silva-Caso, W.; Sandoval, I.; Del Valle, L.J.; Palomares-Reyes, C.; Carrillo-Ng, H.; Peña-Tuesta, I.; Aguilar-Luis, M.A. Oropouche Infection a Neglected Arbovirus in Patients with Acute Febrile Illness from the Peruvian Coast. *BMC Res. Notes* **2020**, *13*, 67. [CrossRef] [PubMed]
- dos Santos Fonseca, L.M.; Carvalho, R.H.; Bandeira, A.C.; Sardi, S.I.; Campos, G.S. Oropouche Virus Detection in Febrile Patients' Saliva and Urine Samples. *Jpn. J. Infect. Dis.* 2020, 73, 164–165. [CrossRef]
- Saatkamp, C.J.; Rodrigues, L.R.R.; Pereira, A.M.N.; Coelho, J.A.; Marques, R.G.B.; Souza, V.C.D.; Nascimento, V.A.D.; Saatkamp, J.G.D.S.; Naveca, F.G.; Figueiredo, R.M.P.D. Mayaro Virus Detection in the Western Region of Pará State, Brazil. *Rev. Soc. Bras. Med. Trop.* 2021, 54, e0055. [CrossRef] [PubMed]
- 81. Salgado, B.B.; de Jesus Maués, F.C.; Pereira, R.L.; Chiang, J.O.; de Oliveira Freitas, M.N.; Ferreira, M.S.; Martins, L.C.; da Costa Vasconcelos, P.F.; Ganoza, C.; Lalwani, P. Prevalence of Arbovirus Antibodies in Young Healthy Adult Population in Brazil. *Parasit. Vectors* **2021**, *14*, 403. [CrossRef] [PubMed]
- 82. Carvalho, V.L.; Azevedo, R.S.S.; Carvalho, V.L.; Azevedo, R.S.; Henriques, D.F.; Cruz, A.C.R.; Vasconcelos, P.F.C.; Martins, L.C. Arbovirus Outbreak in a Rural Region of the Brazilian Amazon. *J. Clin. Virol.* **2022**, *150–151*, 105155. [CrossRef]
- Dias, H.G.; Dos Santos, F.B.; Pauvolid-Corrêa, A. An Overview of Neglected Orthobunyaviruses in Brazil. *Viruses* 2022, 14, 987. [CrossRef]
- Gil-Mora, J.; Acevedo-Gutierrez, L.Y.; Betancourt-Ruiz, P.L.; Martinez-Diaz, H.C.; Fernandez, D.; Bopp, N.E.; Olaya-Masmela, L.A.; Bolaños, E.; Benavides, E.; Villasante-Tezanos, A.; et al. Arbovirus Antibody Seroprevalence in the Human Population from Cauca, Colombia. Am. J. Trop. Med. Hyg. 2022, 107, 1218–1225. [CrossRef] [PubMed]
- Gonçalves Maciel, L.H.; Vieira da Rocha Neto, C.; Ferreira Martins, Y.; de Azevedo Furtado, F.; Cunha Teixeira, P.; Oliveira Dias, M.Y.; Batista Rodrigues, Y.K.; Ribeiro Piauilino, I.C.; Pinto, S.D.; Côrte Alencar, A.C.; et al. Prevalence of Arboviruses and Other Infectious Causes of Skin Rash in Patients Treated at a Tertiary Health Unit in the Brazilian Amazon. *PLoS Negl. Trop. Dis.* 2022, 16, e0010727. [CrossRef] [PubMed]
- de Lima, R.C.; Dias, H.G.; de Souza, T.M.A.; Familiar-Macedo, D.; Ribeiro, E.D.; Corrêa, V.C.E.; Pauvolid-Corrêa, A.; de Azeredo, E.L.; dos Santos, F.B. Oropouche Virus Exposure in Febrile Patients during Chikungunya Virus Introduction in the State of Amapá, Amazon Region, Brazil. *Pathogens* 2024, 13, 469. [CrossRef] [PubMed]
- Moreira, H.M.; Sgorlon, G.; Queiroz, J.A.S.; Roca, T.P.; Ribeiro, J.; Teixeira, K.S.; Passos-Silva, A.M.; Araújo, A.; Gasparelo, N.W.F.; Dos Santos, A.D. Outbreak of Oropouche Virus in Frontier Regions in Western Amazon. *Microbiol. Spectr.* 2024, 12, e0162923. [CrossRef] [PubMed]
- Scachetti, G.C.; Forato, J.; Claro, I.M.; Hua, X.; Salgado, B.B.; Vieira, A.; Simeoni, C.L.; C Barbosa, A.R.; Rosa, I.L.; de Souza, G.F.; et al. Reemergence of Oropouche Virus between 2023 and 2024 in Brazil. *MedRxiv* 2024. 2024.07.27.24310296 (*epub ahead of print*). [CrossRef]
- Silva, J.C.D.O.; Siqueira, I.R.F.; Dornelas, L.F.; Ribeiro, C.M.; Gomes, J.P.B.; Guadagnin, I.W.; Pereira, A.R.; Julião, G.R.; Camargo, J.D.S.A.A.; Basano, S.A.; et al. Occurrence of Arbovirus Infections in Two Riverine Populations in the Municipality of Humaitá, Amazonas, Brazil. *Rev. Soc. Bras. Med. Trop.* 2024, 57, e004032024. [CrossRef]
- Sánchez-Lerma, L.; Rojas-Gulloso, A.; Miranda, J.; Tique, V.; Patiño, L.H.; Rodriguez, D.; Contreras, V.; Paniz-Mondolfi, A.; Pavas, N.; Ramírez, J.D.; et al. Unexpected Arboviruses Found in an Epidemiological Surveillance of Acute Tropical Febrile Syndrome in the Department of Meta, Eastern Colombia. J. Infect. Public. Health 2024, 17, 102510. [CrossRef]
- 91. Dias, H.G.; de Lima, R.C.; Barbosa, L.S.; de Souza, T.M.A.; Badolato-Correa, J.; Maia, L.M.S.; da Silva Ferreira, R.; da Silva Neves, N.A.; de Souza Costa, M.C.; Martins, L.R.; et al. Retrospective Molecular Investigation of Mayaro and Oropouche Viruses at the Human-Animal Interface in West-Central Brazil, 2016–2018. PLoS ONE 2022, 17, e0277612. [CrossRef]
- 92. National Toxicology Program. Handbook for Conducting a Literature-Based Health Assessment Using OHAT Approach for Systematic Review and Evidence Integration; National Toxicology Program: Triangle Park, NC, USA, 2019.
- 93. Liu, B.M. Epidemiological and Clinical Overview of the 2024 Oropouche Virus Disease Outbreaks, an Emerging/Re-Emerging Neurotropic Arboviral Disease and Global Public Health Threat. J. Med. Virol. 2024, 96, https. [CrossRef]
- 94. Molyneux, D.H.; Hotez, P.J.; Fenwick, A. "Rapid-Impact Interventions": How a Policy of Integrated Control for Africa's Neglected Tropical Diseases Could Benefit the Poor. *PLoS Med.* **2005**, *2*, 1064–1070. [CrossRef]
- Hotez, P.J.; Molyneux, D.H.; Fenwick, A.; Ottesen, E.; Sachs, S.E.; Sachs, J.D. Incorporating a Rapid-Impact Package for Neglected Tropical Diseases with Programs for HIV/AIDS, Tuberculosis, and Malaria: A Comprehensive pro-Poor Health Policy and Strategy for the Developing World. *PLoS Med.* 2006, *3*, 576–584. [CrossRef] [PubMed]
- Hotez, P.J.; Molyneux, D.H.; Fenwick, A.; Kumaresan, J.; Ehrlich Sachs, S.; Sachs, J.D.; Savioli, L. Control of Neglected Tropical Diseases. N. Engl. J. Med. 2007, 357, 1018–1027. [CrossRef] [PubMed]
- Brady, M.A.; Hooper, P.J.; Ottesen, E.A. Projected Benefits from Integrating NTD Programs in Sub-Saharan Africa. *Trends Parasitol.* 2006, 22, 285–291. [CrossRef] [PubMed]
- Yajima, A.; Lin, Z.; Mohamed, A.J.; Dash, A.P.; Rijal, S. Finishing the Task of Eliminating Neglected Tropical Diseases(NTDs) in WHO South-East Asia Region: Promises Kept, Challenges, and the Way Forward. *Lancet Reg. Health-Southeast Asia* 2023, 18, 100302. [CrossRef] [PubMed]
- 99. United Nations. Preliminary Overview of the Economies of Latin America and the Caribbean 2023; United Nations: Santiago, Chile, 2023.

- Giglio, E. Extractivism and Its Socio-Environmental Impact in South America. Overview of the "Lithium Triangle". *America. Crit.* 2021, *5*, 47–53. [CrossRef]
- Abramo, L.; Cecchini, S.; Ullmann, H. Addressing Health Inequalities in Latin America: The Role of Social Protection. *Ciência Saúde Coletiva* 2020, 25, 1587–1598. [CrossRef]
- 102. World Economic Forum Latin America's Cities Are Ready to Take Off. But Their Infrastructure Is Failing Them. Available online: https://www.weforum.org/agenda/2018/06/latin-america-cities-urbanization-infrastructure-failing-robert-muggah/#: ~:text=Sprawling%20Latin%20American%20cities%20often,most%20congested%20on%20the%20planet. (accessed on 28 August 2024).
- 103. Siedner, M.J.; Ryan, E.T.; Bogoch, I.I. Gone or Forgotten? The Rise and Fall of Zika Virus. Lancet Public Health 2018, 3, e109–e110. [CrossRef]
- 104. Baud, D.; Gubler, D.J.; Schaub, B.; Lanteri, M.C.; Musso, D. An Update on Zika Virus Infection. *Lancet* 2017, 390, 2099–2109. [CrossRef]
- 105. Ly, H. Dengue Fever in the Americas. Virulence 2024, 15, 2375551. [CrossRef]
- 106. Travassos Da Rosa, J.F.; De Souza, W.M.; De Paula Pinheiro, F.; Figueiredo, M.L.; Cardoso, J.F.; Acrani, G.O.; Teixeira Nunes, M.R. Oropouche Virus: Clinical, Epidemiological, and Molecular Aspects of a Neglected Orthobunyavirus. *Am. J. Trop. Med. Hyg.* 2017, 96, 1019–1030. [CrossRef]
- Collins, Á.B.; Doherty, M.L.; Barrett, D.J.; Mee, J.F. Schmallenberg Virus: A Systematic International Literature Review (2011–2019) from an Irish Perspective. *Ir. Vet. J.* 2019, 72, 9. [CrossRef] [PubMed]
- 108. Wernike, K.; Beer, M. Schmallenberg Virus: To Vaccinate, or Not to Vaccinate? Vaccines 2020, 8, 287. [CrossRef]
- 109. Reusken, C.; van den Wijngaard, C.; van Beek, P.; Beer, M.; Bouwstra, R.; Godeke, G.J.; Isken, L.; van den Kerkhof, H.; van Pelt, W.; van der Poel, W.; et al. Lack of Evidence for Zoonotic Transmission of Schmallenberg Virus. *Emerg. Infect. Dis.* 2012, 18, 1746–1754. [CrossRef] [PubMed]
- 110. Mansfield, K.L.; Folly, A.J.; Hernández-Triana, L.M.; Sewgobind, S.; Johnson, N. Batai Orthobunyavirus: An Emerging Mosquito-Borne Virus in Europe. *Viruses* **2022**, *14*, 1868. [CrossRef] [PubMed]
- 111. Charles, J.A. Akabane Virus. Vet. Clin. N. Am. Food Anim. Pr. 1994, 10, 525-546. [CrossRef]
- 112. Brenner, J.; Rotenberg, D.; Jaakobi, S.; Stram, Y.; Guini-Rubinstein, M.; Menasherov, S.; Bernstein, M.; Yaakobovitch, Y.; David, D.; Perl, S. Analogie e Differenze Tra Malattia di Akabane e Altre Arbovirosi. *Vet. Ital.* **2016**, *52*, 353–362. [CrossRef]
- 113. Kirkland, P.D. Akabane Virus Infection the Virus. Rev. Sci. Tech. Off. Int. Epiz. 2015, 34, 403–410. [CrossRef]
- 114. Santos, R.I.; Bueno-Júnior, L.S.; Ruggiero, R.N.; Almeida, M.F.; Silva, M.L.; Paula, F.E.; Correa, V.M.A.; Arruda, E. Spread of Oropouche Virus into the Central Nervous System in Mouse. *Viruses* 2014, *6*, 3827–3836. [CrossRef] [PubMed]
- Turell, M.J.; Gozalo, A.S.; Guevara, C.; Schoeler, G.B.; Carbajal, F.; López-Sifuentes, V.M.; Watts, D.M. Lack of Evidence of Sylvatic Transmission of Dengue Viruses in the Amazon Rainforest Near Iquitos, Peru. *Vector-Borne Zoonotic Dis.* 2019, 19, 685–689. [CrossRef]
- 116. Alonso, L.E.; Romeo Aznar, V.; Solari, H.G. Why Is Aedes Aegypti Moving South in South America? *Mathematics* 2022, 10, 4510. [CrossRef]
- 117. Mulderij-Jansen, V.; Pundir, P.; Grillet, M.E.; Lakiang, T.; Gerstenbluth, I.; Duits, A.; Tami, A.; Bailey, A. Effectiveness of Aedes-Borne Infectious Disease Control in Latin America and the Caribbean Region: A Scoping Review. *PLoS ONE* 2022, 17, e0277038. [CrossRef] [PubMed]
- 118. Bardach, A.E.; García-Perdomo, H.A.; Alcaraz, A.; Tapia López, E.; Gándara, R.A.R.; Ruvinsky, S.; Ciapponi, A. Interventions for the Control of Aedes Aegypti in Latin America and the Caribbean: Systematic Review and Meta-Analysis. *Trop. Med. Int. Health* 2019, 24, 530–552. [CrossRef] [PubMed]
- Remoli, M.E.; Fiorentini, C.; Marchi, A.; Di Renzi, S.; Vonesch, N.; Peri, V.M.; Bastianini, L.; Rossi, S.; Bartoccini, G.; Kuttappasery, M.L.; et al. Seroprevalence Survey of Arboviruses in Workers from Tuscany, Italy. *Med. Del. Lav.* 2018, 109, 125–131. [CrossRef]
- 120. Mingione, M.; Branda, F.; Maruotti, A.; Ciccozzi, M.; Mazzoli, S. Monitoring the West Nile Virus Outbreaks in Italy Using Open Access Data. *Sci. Data* 2023, *10*, 777. [CrossRef]
- 121. Rossi, B.; Barreca, F.; Benvenuto, D.; Braccialarghe, N.; Campogiani, L.; Lodi, A.; Aguglia, C.; Cavasio, R.A.; Giacalone, M.L.; Kontogiannis, D.; et al. Human Arboviral Infections in Italy: Past, Current, and Future Challenges. *Viruses* 2023, 15, 368. [CrossRef]
- 122. World Health Organization. Global Vector Control Response 2017–2030; World Health Organization: Geneva, Switzerland, 2017.
- 123. European Centre for Disease Prevention and Control (ECDC). *ECDC One Health Framework*; European Centre for Disease Prevention and Control (ECDC): Stockholm, Sweden, 2024.
- 124. Ricco, M.; Peruzzi, S.; Balzarini, F. Epidemiology of West Nile Virus Infections in Humans, Italy, 2012–2020: A Summary of Available Evidences. *Trop. Med. Infect. Dis.* 2021, *6*, 61. [CrossRef] [PubMed]
- 125. Riccò, M.; Peruzzi, S.; Balzarini, F.; Zaniboni, A.; Ranzieri, S. Dengue Fever in Italy: The "Eternal Return" of an Emerging Arboviral Disease. *Trop. Med. Infect. Dis.* 2022, 7, 10. [CrossRef]
- 126. Riccò, M.; Peruzzi, S. Epidemiology of Toscana Virus in Italy (2018–2020), a Summary of Available Evidences. *Acta Biomed.* **2021**, 92, e2021230.
- 127. Ministero della Salute (DG Prevenzione Sanitataria). Piano Nazionale Di Sorveglianza e Risposta Alle Arbovirosi Trasmesse Da Zanzare Invasive (*Aedes* Sp.) Con Particolare Riferimento Ai Virus Chikungunya, Dengue e Zika-2018.

- 128. Italian Health Ministry. *Piano Nazionale di Prevenzione, Sorveglianza e Risposta alle Arbovirosi (PNA)* 2020–2025; Italian Health Ministry: Rome, Italy, 2019.
- 129. Riccò, M. Epidemiology of Tick-Borne Encephalitis in North-Eastern Italy (2017–2020): International Insights from National Notification Reports. *Acta Biomed.* 2021, 92, e2021229.
- Roberto Teixeira Nunes, M.; Carício Martins, L.; Guerreiro Rodrigues, S.; Oliveira Chiang, J.; do Socorro da Silva Azevedo, R.; Travassos da Rosa, A.P.; Fernando da Costa Vasconcelos, P. Oropouche Virus Isolation, Southeast Brazil. *Emerg. Infect. Dis.* 2005, 11, 1610–1613. [CrossRef]
- 131. Unidas, N.; Nations, U. Population Trends in Latin America and the Caribbean: Demographic Effects of the COVID-19 Pandemic. In *Latin America and the Caribbean Demographic Observatory* 2022; United Nations Publications: New York, NY, USA, 2022.
- 132. Esterhuizen, T.M.; Thabane, L. Con: Meta-Analysis: Some Key Limitations and Potential Solutions. *Nephrol. Dial. Transplant.* 2016, 31, 882–885. [CrossRef] [PubMed]
- 133. Dettori, J.R.; Norvell, D.C.; Chapman, J.R. Fixed-Effect vs Random-Effects Models for Meta-Analysis: 3 Points to Consider. *Glob. Spine J.* **2022**, *12*, 1624–1626. [CrossRef] [PubMed]

Disclaimer/Publisher's Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.