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A B S T R A C T

Melting temperature (Tm) is a crucial physical property of solids and plays an important role in the character-
ization of materials. Therefore, the capacity to predict Tm is a relevant issue for solid state sciences. This
investigation aims i) to provide a theoretical basis for the link between catastrophe theory and thermodynamic
instability; ii) to estimate Tm through the notion of “degenerate critical temperature” (Td), related to (Pd,Vd,Td),
where KT → 0 and the Gibbs function shows a non-Morse behaviour; iii) to compare predictions of (Pm,Tm) with
observations for three crystalline pure substances that undergo congruent melting and exhibit different bonding
and stability ranges: NaCl (halite), SiO2,st (stishovite), and MgSiO3 (perovskite). The P-T locus of KT = 0 associ-
ated with melting is identified using the maximum values of Td and ΔH/ΔV at a given pressure. We observed an
average absolute discrepancy ranging between 0.2 % (halite) and 5.8 % (stishovite), and an agreement between
theoretical and experimental T(P)melting-points from better than 1 to approximately 14 %.

1. Introduction

The catastrophe theory (CT), originally introduced by Thom [1] in
the wake of Morse’s work [2] and then formally systematized by Arnol’d
[3], lends itself well to a variety of applications. In particular, to those in
which a system becomes unstable upon an external perturbation, as
summarized in the reference paper by Stewart [4] and in the successive
book by Poston and Stewart [5]. CT pivots around the notion of
“degenerate critical” points of a function, Φ(x;p): Rn × Rm→R, which
describes the behavior of a system and depends on n-variables of state
(x), and m-control parameters (p). A critical point (xc) of Φ is charac-
terized by

∇Φ(xc; p)= 0. (1)

If

det

[(
∂2Φ

∂xi∂xj

)

xc ; p

]

∕= 0, (2)

Φ is called non-degenerate at xc (even termed “Morse function”),
fulfils the Morse lemma, and by a change of variable, that is, yi= yi(x; p),
can be cast in the proximity of xc as

Φ(x; p) − Φ(xc; p)= −
∑l

j=1
y2j (x; p) +

∑n

k=l+1
y2k(x; p). (3)

Conversely, Φ is defined as degenerate critical at xd (even called “non-
Morse”) if

∇Φ(xd; p)= 0 (4)

and

det

[(
∂2Φ

∂xi∂xj

)

xd ; p

]

= 0. (5)

In this case, the state variables can be split into two sets: x’ = (x’1,…, x’l)
and x’’ = (x’’l+1,…, x’’n), such that

det

[(
∂2Φ

∂x’
i∂x’

j

)

xd ; p

]

∕= 0. (6)

Φ is expressed around (xd; p) by the linear combination of a Morse-
type function and a non-Morse-type term (NM) using x”:

Φ=
∑l

j=1
±xʹ2

j (x
ʹ́ ; p) + NM(xʹ́ ; p). (7)

* Corresponding author.
E-mail address: alessandro.pavese@unito.it (A. Pavese).

Contents lists available at ScienceDirect

Calphad

journal homepage: www.elsevier.com/locate/calphad

https://doi.org/10.1016/j.calphad.2024.102761
Received 18 June 2024; Received in revised form 20 October 2024; Accepted 20 October 2024

CALPHAD: Computer Coupling of Phase Diagrams and Thermochemistry 87 (2024) 102761 

Available online 4 November 2024 
0364-5916/© 2024 Elsevier Ltd. All rights are reserved, including those for text and data mining, AI training, and similar technologies. 

mailto:alessandro.pavese@unito.it
www.sciencedirect.com/science/journal/03645916
https://www.elsevier.com/locate/calphad
https://doi.org/10.1016/j.calphad.2024.102761
https://doi.org/10.1016/j.calphad.2024.102761
https://doi.org/10.1016/j.calphad.2024.102761


NM, in turn, is classified according to the scheme of the “catastrophe
types” by Arnol’d [3]. Φ abruptly changes its behavior as a function of
even small variations in the control parameters, thus causing the
instability of the system. From this perspective, CT can indicate changes
of state and phase transitions. Merli and Pavese [6] resorted to CT to
predict instability that induces a transformation in crystals, exploiting
an analysis of the degenerate critical points of the electron density. The
same authors [7] investigated the relationship between melting and
thermo-elastic anomalies involving the isothermal bulk modulus (KT),
which tends to vanish at given P-T values, using an approach that relies
on classic thermodynamics and also considers the possibility of relating
such a traditional strategy to CT.

The melting temperature (Tm) of crystals is integral to a wide range
of scientific, technological, and industrial applications, impacting fields
as diverse as materials science, chemistry, geology, physics, and energy.
Notwithstanding that predicting Tm is an important issue, it is difficult to
model this change of state, as reported by de With [8] and Ghar-
akhanyan et al. [9]. Melting itself is an extremely complex phenomenon
that takes place through a combination of factors, from surface (if
dominant, then it is said “thermodynamic” melting) to bulk (in which
case, “mechanical melting”), and involving defects that can either affect
Tm or provide the very mechanism underlying the change of state. The
review by de With [8] provides an exhaustive description of the state of
the art; here, we mention a few of the more than 700 references cited
therein. From a strictly thermodynamic point of view, melting requires a
comparison between solid and liquid phases. Graeme et al. [10]
formulated a two-state model that relied on the Gibbs energies of the
solid and liquid phases to calculate Tm and its related Clapeyron slope.
Techniques that resort to molecular dynamics have been proposed to
predict the melting temperature [11], including the Z-method [12,13],
two-phase method [14], and coexistence method [15]. Chakravarty and
Lynden-Bell [16] combined the Landau theory with molecular dynamics
and the Monte Carlo technique, while Trachenko [17] proposed a
two-phase theory for melting, starting from the Clausius-Clapeyron
equation and using a key representation of the energy of the liquid.
However, the general difficulty in formulating a Gibbs energy model for
liquids led scientists to consider one-phase approaches, which are ori-
ented towards correlating the trend of particular observables with the
occurrence of “critical” conditions that trigger instability in a solid
phase. The collapse of the crystal structure was associated by Lindemann
[18] and Gilvarry [19] with the average atomic oscillations becoming so
large as to cause the superposition of one atom with another; this
microscopic description, reformulated through the criterion of Guinea
et al. [20], is consistent with the thermodynamic laws, as pointed out by
Stacey and Irvine [21], and is suitable for atomistic modelling (see, for
instance, Zhang et al. [22], about atomic motion in Cu-film melting).
Herzfeld and Goeppert Mayer [23], Born [24], Ida [25], Boyer [26],
Owens [27] and Digilov and Abramovich [28] underlined the relation-
ship between thermoelastic (“lattice”) instability and melting, focusing
on the anomalies in the trend of observables such as volume thermal
expansion, compressibility and/or shear modulus (elastic constants).

Based on the extant literature, we believe that the deep relationship
between i) CT and ii) fundamental thermodynamic inequalities, which
drive the transformations of a system, has hitherto been little explored
and used, and a definite theoretical framework, wherein catastrophe
theory and thermoelastic (lattice) instability meet, is still missing, to the
best of our knowledge. Therefore, the aim of the present work is to
demonstrate such a connection, and exploit it for the prediction of the
melting temperature of pure crystalline 3D-substances that melt
congruently. This was realized by seeking “degenerate critical pressure-
temperature” values, (P,T)d, that were associated with the notion of
“degenerate critical points” of a thermoelastic observable (in the present
case, isothermal bulk modulus: KT), which ceases to be a Morse function
at (P,T)d. It is possible to design such a transformation that leads to a
thermodynamic inequality violation, thus blocking a phase from exist-
ing as it is at (P,T)d, and beyond. The couple (P,T)d, in turn, is proposed

as to be an estimate of (P,T)m, under particular conditions that are
related to Td and to the change in enthalpy-over-volume (ΔH/ΔV)
occurring in the associated reaction. The present work shows the
connection between CT and thermodynamics, examines the topology of
the KT = 0 locus, and then focuses on case studies, for comparison with
experiments from the literature, resorting to three minerals that exhibit
different bonding types, crystal structures, and P-T ranges of stability:
halite (NaCl), stishovite (SiO2,st), and Mg-perovskite (MgSiO3). Halite
was modelled by quantum mechanics, accounting for thermal contri-
bution by the Debye model with the addition of anharmonic effects;
stishovite and Mg-perovskite were investigated using parametric and
semi-empirical models formulated to represent their P-V-T Equations of
State (EoSs). For each mineral, the calculated (P,T)d curves were
compared with the observed (P,T)m. With respect to Merli and Pavese
[7], the present study provides the original background to consolidate
and rationalize the use of KT as an indication for incipient melting in a
unifying theoretical framework. This was accomplished through: i) a
synergic approach that combines CT and thermodynamics; ii) the defi-
nite proof that KT = 0 is a condition of non-existence for a solid because
of the implication relating to a thermodynamic inequality violation,
independently of the order of expansion of the Gibbs potential; iii) the
employment of the KT = 0 P-T locus to locate univocally the curve
candidate to represent melting; iv) three case studies that cover not only
bonding types from ionic to ionic-covalent, but also provide totally
different approaches to determine the KT = 0 locus.

The present investigation can provide an added-value to the current
knowledge about modelling Tm, at least in two respects:

1) although KT = 0 provides a condition associated with the general
instability of systems (melting is a particular case that can be univ-
ocally identified among the transformations predicted) that has
already been proposed by a variety of Authors (see de With [8] for a
survey), a full theoretical justification, which conjugates physical
and “universal” mathematical aspects, is still lacking, to the best of
our knowledge;

2) catastrophe theory is a powerful instrument underused in research.
CT cannot provide a physical explanation of the collapse that is
forecast, yet it provides a very general scheme that, relying only on
mathematical features of the function describing a phenomenon, or a
physical property, signals an incipient transformation. In the light of
this, it can be noted that CT, even alone, points to the occurrence of
the conditions, which include melting, heralding a structure
collapse. The established general physical link between degenerate
critical points and thermodynamic inequality violation, explained in
the text that follows, has a “universal” character. Hence, such an
aspect might be considered in relation to varieties of phenomenol-
ogy, even other than melting, utilising CT and its comparative
simplicity of application, which reduces to the analysis of first/sec-
ond derivatives.

The present investigation is one of the few in which catastrophe
theory is employed to investigate the transformations of solids, resorting
to “mechanical” instability as a consolidated link to a physical condition
that in turn leads to the impossibility for a system to preserve itself
beyond a given (P,T)d.

2. Theoretical methods

2.1. Catastrophe theory and thermodynamics

We investigated the conditions that mark the transformation of a
crystal by combining CT and fundamental thermodynamic theorems.
Themethod of Callen (1960) [29] was adopted to describe a solid system
that becomes mechanically unstable starting from an equilibrium point
(P,V,T). The system was split into two subsystems, both of mass Mtot/2,
and their volume was changed by infinitesimal amounts ±δV. The
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pressure (P) and temperature (T) of the thermo-barostat are preserved so
that (P,V/2+δV,T) and (P,V/2-δV,T), with densities ofMtot/(V+2δV) and
Mtot/(V-2δV), respectively, are the thermodynamic coordinates of the
subsystems out of equilibrium. The subsystems undergo an internal
re-equilibration at a given (P,T), passing from (P,V/2+δV,T) + (P,V/2 −

δV,T) to (P,V/2,T) + (P,V/2,T), that is, δV → 0. Such a transformation,
which occurs spontaneously, is likened to an irreversible “real process”.
Please, note that the total system, which is composed of the two sub-
systems defined above, preserves its volume as V = (V/2+δV) +

(V/2-δV) upon equilibration with pressure and temperature of the
thermo-barostat. The Gibbs energy change taking place in the irrevers-
ible equilibration can be calculated as follows:

In (8), the first-degree homogeneity of the Helmholtz/Gibbs potentials
with respect to volume at a given density was exploited. P-V-T can be
likened to control parameters, whereas δV is treated as a state variable
describing the deviation from equilibrium and whose evolution is
associated with re-equilibration. An alternative route is possible using
the little employed but elegant notion of availability, which can
formalize how equilibration occurs between a system, forced out of
equilibrium, and its surroundings. Using the Taylor expansion of the two
terms between square brackets in the last member of (8), and replacing
2δV with Δ, for simplicity of notation, it is obtained:

ΔG(Δ; P,V,T)irrev = −
1
2

[
∑∞

n=1

1
n!

(
∂nF
∂Vn

)

T
×(1+ (− 1)n)×Δn

]

(9)

that can be readily recast into

ΔG(Δ; P,V,T)irrev = −

[
∑∞

n=1

1
2n!

(
∂2nF
∂V2n

)

T
×Δ2n

]

(10)

wherem! = m× (m − 1)… × 1. Eq. (10) shows that ΔGirrev is a function of
the off-equilibrium shift (Δ) only, and its derivatives at Δ = 0 are such
that
(

∂2n+1ΔGirrev

∂Δ2n+1

)

= 0 (11)

and
(

∂2nΔGirrev

∂Δ2n

)

= −

(
∂2nF
∂V2n

)

T
. (12)

ΔG(Δ; P,V,T)irrev is intrinsically “critical” at Δ = 0, that is, (P,V,T),
because of (11), and exhibits a behaviour around (0; P,V,T), which de-
pends only on the even derivatives of the Helmholtz energy.

Irreversible transformations fulfil for any Δ the well-established
thermodynamic inequality that follows

ΔG(Δ; P,V,T)irrev < 0. (13)

Writing ΔGirrev in terms of the expansion beneath:

ΔG(Δ; P,V,T)irrev =
∑∞

n=1
ΔG(Δ; P,V,T)2nirrev (14)

and dropping (Δ; P,V,T) for simplicity, yields:

ΔG2
irrev = −

1
2!

(
KT

V

)

Δ2 (15)

ΔG4
irrev = −

1
4!

[
2
V3KT −

2
V2

(
∂KT

∂V

)

T
+
1
V

(
∂2KT

∂V2

)

T

]

Δ4 (16)

ΔG2n
irrev = −

1
2n!

1
V

[
∑2n− 2

l=0

Cl

V2n− 2− l ×

(
∂lKT

∂Vl

)

T

]

Δ2n. (17)

The nth-order volume derivative of the isothermal bulk modulus (in
thermodynamic coordinates V-T) can be expressed as follows:

Kn =

(
∂nK
∂Vn

)

T
(18)

assuming that

K0=

(
∂0KT

∂V0

)

T
= KT . (19)

It follows that

dKn =

(
∂Kn

∂V

)

T
dV +

(
∂Kn

∂T

)

V
dT . (20)

If the thermodynamic coordinates P-T are introduced in place of V-T
to express the differentials, then Eq. (20) becomes

dKn =

(
∂Kn

∂V

)

T
×

[(
∂V
∂P

)

T
dP+

(
∂V
∂T

)

P
dT
]

+

(
∂Kn

∂T

)

V
dT, (21)

and setting isothermal conditions, that is dT = 0, we obtain
(

∂Kn

∂P

)

T
= −

(
∂Kn

∂V

)

T
×

V
KT

, (22)

which can be rearranged into
(

∂Kn

∂V

)

T
= −

KT

V

(
∂Kn

∂P

)

T
. (23)

In the case of KT = 0, occurring at (Pd,Vd,Td) = (P,V,T)d, Δ
G(Δ; Pd,Vd,Td)irrev becomes “degenerate critical”, such as to engender a
catastrophe behaviour of “cuspoid” type, as labelled with Am≥4 in
Ref. [30], because of (15). Moreover, Eq. (23) in combination with Eq.
(17) yields

ΔG(Δ; Pd,Vd,Td)irrev =0, (24)

which implies a violation of thermodynamic inequality (13) at any order

ΔG(δV; P,V,T)irrev =2×G(P,V /2,T) −
[

G
(

P,
V
2
+ δV,T

)

+G
(

P,
V
2
− δV,T

)]

=G(P,V,T) −
[

G
(

P,
V
2
+ δV,T

)

+G
(

P,
V
2
− δV,T

)]

= = F(V,T)+P×V −

[

F
(
V
2
+ δV,T

)

+P×
(
V
2
+ δV

)

+ F
(
V
2
− δV,T

)

+P×
(
V
2
− δV

)]

= F(V,T) − F
(
V
2
+ δV,T

)

− F
(
V
2
− δV,T

)

= F(V,T) − F
[
1
2
×(V+2δV),T

]

− F
[
1
2
×(V − 2δV),T

]

= F(V,T) −
1
2
[F(V+2δV,T)+ F(V − 2δV,T)]

(8)
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in Δ. Moreover, Eq. (24) indicates that (Pd,Vd,Td) and (Pd,Vd/2+δV,Td)
+ (Pd,Vd/2-δV,Td) have the same G-energy, which conflicts with the fact
that the former is a point of equilibrium where the system can remain
indefinitely, whereas the latter is an off-equilibrium, such that re-
equilibration occurs spontaneously. This proves the impossibility of a
system to undergo irreversible equilibration to (P,V,T)d from an off-
equilibrium point, as expressed by the shift in the fundamental ther-
modynamic V-coordinate. In the light of this, non-Morse conditions and
thermodynamic inequality violations are strictly related to one another
at KT → 0, which indicates that a system cannot exist as it is and
therefore needs a transformation into a more stable unknown new
phase. Moreover, choosing a (P,T) point in the stability region of the
crystal, i.e. P= Pd+ ΔP and T= Td+ ΔT (ΔT< 0; limT→TdTd − T = 0+),
and taking Eq. (24) into account, ΔGirrev can be written in terms of a
generalized factorization (see the analogy with Landau expansion; Tol-
édano and Tolédano [31]), as follows:

ΔG(Δ; P,V,T)irrev =
[
A(Td − T)β

+B|Pd − P|α
]
× f(Δ; P,V,T) (25)

where A, B, β and α > 0; f is a function such that f(P,V,T; Δ) < 0 for
ΔGirrev to satisfy (13) at (P,V,T)∕= (P,V,T)d. The change in entropy due to
irreversible transformation is determined by

ΔS(Δ; P,V,T)irrev = −
∂ΔG(Δ; P,V,T)irrev

∂T . (26)

In Eq. (26), the following possibilities occur:

0< β < 1 giving lim
(P,T)→(P,T)d

ΔS(Δ; P,V,T)irrev = − ∞,

β=1 giving lim
(P,T)→(P,T)d

ΔS(Δ; P,V,T)irrev = f
(
Δ; Vd,Td,Pd

)
< 0,

β>1 giving lim
(P,T)→(P,T)d

ΔS(Δ; P,V,T)irrev =0

Using the first law of thermodynamics for an infinitesimal re-
equilibration of type (P,V/2+δV,T) + (P,V/2 − δV,T) → (P,V/2,T) +

(P,V/2,T), yields:

δQ=U(V,T) −
[

U
(
V
2
+ δV,T

)

+U
(
V
2
− δV,T

)]

+PδV − PδV=0. (27)

Therefore, taking dSirrev > δQ/T into account, for an irreversible
transformation like that in (27), it holds that

ΔS(Δ; P,V,T)irrev > 0. (28)

This condition contrasts with the fact that the change in entropy
determined using Eq. (25) implies

lim
(P,T)→(P,T)d

ΔS(Δ; P,V,T)irrev ≤ 0 29)

2.2. P-T melting curve

The locus of P-T such that KT = 0, that is, (P,T)d, is provided by the
following curve:

Φ(Pd,Td;KT =0)=0 . (30)

Eq. (30) can be reconsidered in the frame of the P-V-T equation of
state associated with a crystal, in combination with the constraint KT =
0:

P= EoS(V,T) (31)

(
∂P
∂V

)

T
=0 (32)

The equations above yield the 1D-manifolds announcing instability,
including the one associated with the estimate of the P-T melting curve.

Two (P,T)d points, infinitesimally close to one another and belonging

to Φ, are such that

δΦ=

(
∂Φ
∂P

)

T
δP+

(
∂Φ
∂T

)

P
δT=ΦPδP+ΦTδT=0 (33)

because of (30).
Therefore, from (33) it ensues

−
ΦT

ΦP
= Φʹ =

δP
δT

. (34)

Using Eq. (34), Φ can be linked to a physical quantity via the Cla-
peyron equation, that is,

− Φʹ =
ΔS
ΔV

(35)

where ΔS and ΔV are the differences in molar entropy and volume,
respectively, between the phases at equilibrium along the trans-
formation curve. The condition Φʹ ∕= 0, owing to Eq. (34), implies that
the implicit function of P-T given by Eq. (30) is invertible, such that the
degenerate pressure and temperature values are related to one another
in terms of

Td =T(Pd)

and

Pd =P(Td).

Moreover, the P-T regions that are.

(i) located where Eq. (30) provides differentiable manifolds (i.e., P-T
ranges, where Φ is continuous and Φ’∕=0);

(ii) disjointed from each other (i.e. exhibiting discontinuities be-
tween each other),

allow the determination of different Td= T(Pd) curves, each of which
refers to a given type of “criticality”, announcing the need of a highly
probable readjustment of the system.

Eq. (35) can be recast as follows

− Φʹ × Td =
ΔH
ΔV

(36)

where ΔH is the enthalpy change during the transformation at Td and is
related to the exchanged heat ΔQ.

All this suggests that among the criticalities pointed out by a van-
ishing KT there is the melting transition of state, too. In such case,
melting is the transformation accompanied by the largest values of Td (at
a given pressure) and ΔH/ΔV in crystals undergoing congruent fusion,
as shown in Ref. [32]. Moreover, ΔV=Vliquid-Vsolid is commonly positive
(and ΔH/ΔV likewise), with ΔV/Vsolid values in the range of 4–20 % [8],
save for a few exceptions such as Si, Ge, Bi, and H2O [8,33,34]. In the
case of ΔV < 0, the conditions stated above are preserved by taking the
absolute value of ΔH/ΔV.

Therefore, the locus defined in Eq. (30) and associated with the
largest (absolute) values of Eq. (36), and Td (for a given pressure) locate
the chosen curve as the likeliest candidate to represent the congruent
melting of a crystalline substance.

2.3. About the nature of KT(Pd,Td) = 0

It is important to provide a more solid classification of the nature of
the phenomenon associated with a vanishing KT. An infinitesimal
change of the Gibbs energy of an irreversible transformation [35,36] can
be written as
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dGirrev =VdP − SdT +
∑

j=1,N
μjdnj − TdSirrev

= VdP − SdT +
∑

j=1,N
μjdnj − Ddε + 1

2
D2dε2 − 1

6
D3dε3 (37)

where dSirrev is the part of entropy related to an irreversible trans-
formation and therefore >0; dε provides a measure of the degree of
progress of the transformation; the coefficients “D” represent the Taylor
expansion of TdSirrev and must fulfil the condition of production of en-
tropy in addition to δQ/T in an irreversible process. In the case of a pure
substance (closed and unreactive system) undergoing an isobaric-
isothermal irreversible transformation towards equilibration, then

dGirrev = − Ddε + 1
2
D2dε2 − 1

6
D3dε3 < 0 (38)

If D = 0 equilibrium is achieved, which can be “stable” (D2>) or
“unstable” (D2 < 0). D2 = 0 corresponds to the “limit of stability”, and
when also D3 = 0, this becomes a “critical point”. Adopting such a clas-
sification and terminology for the case (dε = δV), KT= 0 is referred to as
a critical (P,T)-point. Please note that the appearance of “instability”, in
terms of “limit of stability” and “unstable equilibrium”, is related to a
condition involving one phase only, and indicating an incipient trans-
formation. In the light of this, it is important to distinguish such a sit-
uation from that of a “phase transition” tout-court, which takes place by
overcoming a potential barrier through thermal fluctuations.

2.4. Melting phenomenology

A question is whether

lim
(P,T)→(P,T)d

KT =0 (39)

invariably provides an estimate of Tm via Td. As discussed above, a
vanishing KT is related to both an incipient catastrophe and thermody-
namic violation, thus showing that the system is expected to undergo a
fluctuation given that it cannot preserve itself as it is. The changes in
volume, pressure, and temperature along the solid-melt equilibrium
curve can be written in terms of

δV=

[(
∂V
∂T

)

P
δT+

(
∂V
∂P

)

T
δP
]

(40)

and therefrom

δV
δT

=

[(
∂V
∂T

)

P
+

(
∂V
∂P

)

T

δP
δT

]

. (41)

Following Boyer [26], the left-hand-side of the above relationship is

negligible with respect to that of the right-hand side. Therefore, Eq. (41)
can be rewritten as follows:

δP
δT

=KTα (42)

where α is the bulk thermal expansion coefficient. Boyer [26], on the
basis of a thorough analysis of the extant literature and using both ob-
servations and results from modelling, claimed that melting ought to be
related to the occurrence of thermoelastic instability, which, in turn, is
connected to a divergence of the volume thermal expansion, that is,

lim
T→Tm

α=∞. (43)

Fig. 1. Crystal structures of the minerals used as case studies, described
through coordination polyhedra. (a) NaCl (halite) structure; yellow = sixfold
NaCl6 polyhedra. (b) SiO2,st (stishovite) stucture; blue = sixfold SiO6 polyhedra.
(c) MgSiO3 (Mg-Perovskite) structure; orange = twelvefold MgO12 polyhedra;
blue = sixfold SiO6 polyhedra.

Table 1
Coefficients of equ.(45) for NaCl are set out, with their 95 % confidence ranges,
where V(Bohr3; crystallographic cell volume) and T(K). The parameters used to
calculate equ.(47) according to the models by Wang et al. [48] and Aizawa and
Yoneda [49] are reported, for stishovite and perovskite (for both the third order
Birch EoS is employed for the static pressure; the crystallographic cell volume in
Å3 is used), respectively. Please, note that the Debye temperature is referred to
by Refs. [48,49] using ΘD/θ, in place of TD as here; TD0 = Debye temperature at
room conditions. $ From O.L. Anderson, Thermoelastic properties of MgSiO3
perovskite using the Debye approach, Am. Mineral. 83 23–35 (1998).

NaCl SiO2,st MgSiO3

p00 3.024 (2.49, 3.558) V0(Å3) 46.55 V0(Å3) 162.3
p10 1.180 (− 2.082, 4.441) KT0(GPa) 294 KT0(GPa) 261
p01 − 1.300 (− 5.314, 2.713) K’ 4.85 K’ 4
p20 1.681 (− 5.019, 8.381) TD0(K) 1130 TD0(K) 1076$

p11 3.570 (− 12.19, 19.33) γ0 1.66 γ0 1.43
p02 2.197 (− 6.331, 10.72) A 1 q 2.1
p30 − 1.023 (− 6.218, 4.172) B 2.9
p21 − 4.133 (− 21.55, 13.28)    
p12 − 4.642 (− 21.95, 12.67)    
p03 − 1.183 (− 5.385, 3.019)    
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Dating back to the 30s, the same conclusion was reached by Herzfeld
and Goeppert Mayer [24] who, on the basis of an elementary Debye-like
model and available experimental data, maintained that the compress-
ibility of a crystal at its melting point tends to infinity, as well as thermal
expansion (see Eq. (30) in the aforementioned study). In a review by
Drebushchak [37] the current theories underlying thermal expansion
are discussed in the light of experimental data. The cited Author men-
tions and considers explicitly the “anomalous” behaviour at high tem-
perature of α that tends to diverge in proximity of melting. Such a trend
may be differently motivated and modelled, but its recognition is shared
by those authors, who deal with the metric change in solids upon
heating. Most of the substances analysed are crystalline solids and for
such materials Eqs. (42) and (43) can be combined, so that Eq. (39) is
expected to be reasonably useable as a signal, indicating the physical
onset of the conditions leading to melting. Notwithstanding this, i) to the
best of our knowledge, no theoretical absolute motivation exists to claim
the validity of Eq. (43) as a constraint for any solid at its congruent
melting point; ii) KT → 0 holds even in relation to transformations other
than melting, and involves lower Td and smaller ΔH/ΔV. In fact, the

vanishing of the isothermal bulk modulus as a limit condition associated
with a solid-to-solid transformation was precisely measured; for
instance, Angel et al. [38] and McConnell et al. [39] used the Landau
expansion as a function of the order parameter, in terms of a customary
approach, to treat group-subgroup and incommensurate transitions,
respectively.

Digilov and Abramovich [28] related melting to thermal pressure,
achieving a critical value as large as KT= 0/(δT× e) in combination with
an isothermal bulk modulus KTm= KT=0/e (δT is the Anderson-Grüneisen
parameter). This model relies on a perfectly quasi-harmonic solid and
exploits the Debye model to calculate the thermal energy; such an
approximation is expected to lack precision in the proximity of a change
of state, where anharmonicity becomes relevant. Merli and Pavese [7]
performed quantum mechanics calculations complemented by lattice
dynamics to account for the thermal contribution, in the case of MgO
(periclase). The mentioned authors corrected their quasi-harmonic
model by introducing an anharmonic contribution, which significantly
improved the experimental-theoretical agreement by reducing the
overestimation of Tm, the latter predicted via KT = 0. A decrease in the
estimated Tm would have been achieved by setting KT = KT=0/e as a
critical value for the isothermal bulk modulus, meanwhile preserving
the quasi-harmonic model as a general framework for calculations.
Please note that lattice dynamics generally provides more precise results
than the Debye model, and in such respect an important difference oc-
curs between the works reported in Refs. [7,28].

2.5. Computing

Calculations to determine the P-T locus of KT = 0 were performed
using two approaches. For NaCl (halite), a quantum model was devel-
oped using the HF/DFT-CRYSTAL17 program [40] that implements the
strategy of the “Ab-initio Linear-Combination-of-Atomic-Orbitals” in
crystals to construct basis sets that are then employed in a mixed
Hartree-Fock/Density-Functional-Theory calculation scheme. The cor-
relation energy was accounted for by a combination of the SOGGA
functional (Second Order Generalized Gradient Approximation [41])
and PBE functional [41,42], using a hybridization rate of 20 %, which
enabled the satisfactory reproduction of halite structures under room
conditions (deviation within 0.1 %, in the case of the volume). The

accuracy of the integrals that are involved in the self-consistent-field
cycles were set at the following values: 10− 8 C overlap; 10− 8 C pene-
tration, 10− 8 exchange overlap; 10− 8 exchange pseudo-overlap (direct
space); 10− 16 exchange pseudo-overlap (reciprocal space); 10− 9 a.u. for
SCF-cycle convergence. Outer shell exponents for Na and Cl were opti-
mized by the “billy” utility [43]. The eigenvalue level shifting method
(1.0 Ha) was employed to prevent possible conducting-state solutions
and promote convergence. For sodium, the basis set Na_8–511(1d)
G_baranek_2013_NaTaO3 was used [44], whereas Cl was modelled by
Cl_86-311G_apra_1993 [45]. Minimization of enthalpy at 0 K was per-
formed at nominal static pressure Pst, thus determining the related
volume, V. The harmonic vibrational contribution to the Helmholtz
energy (F) was calculated using the Debye model, employing
Otero-de-la-Roza et al. [46] to determine TD (Debye temperature) by
means of V and the Poisson ratio from static simulations. An estimate of
the uncertainty affecting the thermal contribution to energy (Ethermal)
owing to the uncertainty on TD is obtained by means of the propagation
of errors. Using the Debye model yields

where σ≳1, CV is the constant volume specific heat capacity, and ΔTD
represents the uncertainty due to the approximation in estimating TD. In
the case of NaCl, a relative error of ~5 % was assumed, which reason-
ably propagates on P with the same magnitude. Using the Td = T(Pd)
curve discussed in the ensuing section to estimate Tm, the uncertainty
affecting P reflects on the calculated melting temperature in terms of an
average error of ~6 K, i.e. a relative error of ~0.4 %. Such a relative
error, on the one hand, is quasi-negligible, in view of the experimental
uncertainty on the measurements of Tm, and, on the other hand, it is of
the same magnitude as the discrepancy between observations and pre-
dictions, as it will be shown below.

The anharmonic contribution to F was accounted for by the Wu and
Wentzcovich [47] model, whose “c” parameter was determined to esti-
mate a TD value equal to that obtained from the experiments under
ambient conditions. In this work, F(V,T) was calculated at 300
volume-temperature points, which allowed the obtainment of the
Helmholtz function by interpolation using a polynomial in V-T up to the
third order. The actual pressure was calculated as − (∂F/∂V)T and
parametrized as a function of V and T in terms of

P =
∑j+k≤3

j,k=0
pjkTjVk. (45)

In the case of SiO2,st, the parametric model of Wang et al. [48] based on
the P-V-T Mie-Grüneisen equation of state fitted to X-ray powder
diffraction data was employed to determine the P-T locus of KT = 0. In
particular, the pressure is split into the following two contributions:

P(V,T)=P300 K + ΔPthermal(V,T) (46)

The first term of the right-hand side member was modelled using the
classic Birch equation, whereas ΔPthermal was accounted for by:

ΔPthermal(V,T)=
γ(V)
V

[Ethermal(V,T) − Ethermal(V,300K)] (47)

resorting to the Debye model for thermal energy and to the param-
eterization reported by the aforementioned authors to express the Grü-
neisen parameter.

In the case of MgSiO3 (perovskite), the P-V-T parameterization of
Aizawa and Yoneda [49], whose model is close to the one described
above, was used.

ΔEthermal
Ethermal

=
1

Ethermal

(
∂Ethermal

∂TD

)

×ΔTD =
1

Ethermal
× CV ×

(
T
TD

)

×ΔTD ≈
1

< CV > ×T
×CV ×

(
T
TD

)

×ΔTD =
CV

< CV >
×

ΔTD
TD

≈ σ ΔTD
TD

(44)
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The P-V-T surfaces produced for halite, stishovite, and perovskite
were analysed using MATLAB to locate the degenerate points given by
(

∂P
∂V

)

T
=0. (48)

The manifold provided by Eq. (30), which maximizes Eq. (36) and Td
for a given pressure, was selected to obtain the P-T melting curve.

In Table 1 the parameters used for Eq. (43), in the case of NaCl, and
to implement the model of equ.(45), in the case of SiO2,st and MgSiO3,
are reported.

3. Results and discussion

The crystal structures of halite (NaCl; SG: Fm3m), stishovite (SiO2,st;
SG: P4/mnm), and perovskite (MgSiO3; SG: Pnma) are shown in Fig. 1a-
b-c. Relevant differences are appreciable in both the bonding and atomic
arrangements. In the case of NaCl (quasi-fully ionic bonding), sodium
and chlorine atoms alternately occupy sites located at the corners
(Fig. 1a), half edges, centre of each face, and centre of the cubic cell, so
that Na(Cl) assumes octahedral coordination. SiO2,st (ionic-covalent
bonding) is isostructural to rutile, with silicon in unusual octahedral
coordination (Fig. 1b) because of the high-pressure regime required to

Fig. 2. P-V isothermal curves for halite (a), stishovite (b) and perovskite (c);
the chosen isotherms of each mineral represent melting at comparatively low
(blue), medium (yellow) and high (red) pressure with respect to the stability
field resulting in experiments or observed in natural environments. The T values
are reported in Kelvin (K). Degenerate critical points are determined by the
location of the minima, where (∂P/∂V)T = 0. Calculations were carried out as
reported in “Computing”. Note that for halite a quantum mechanical modelling
was employed, whereas for stishovite and perovskite semi-empirical parame-
trizations of P-V-T EoS were used.

Fig. 3. Melting temperature (Tm estimated by Td) as a function of pressure. P-T
are determined as the loci of KT = 0 for halite (a), stishovite (b) and Mg-
perovskite (c). The solid lines represent the melting P-T curves from our esti-
mates. In (a), the square symbols correspond to the observations of Akella et al.
[50]; dashed-line/dot-dashed-line: Mie-Grüneisen/Birch EoS for determination
of the locus of KT = 0 corresponding to melting. In (b), diamonds are the
experimental data by Shen and Lazor [58] the circle shows a measurement of
Zhang et al. [59]; the squares refer to the modelling of Luo et al. [60]; triangles
from Belonoshko and Dubrovinsky [52]. In (c), the squares stand for observa-
tions by Shen and Lazor [58].
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stabilize such a phase. MgSiO3 (bonding types with different degrees of
ionic-covalent character) has Si dwelling in an octahedral site, and Mg
exhibits cuboctahedral coordination (Fig. 1c); it is a high-pressure phase
and a major constituent of the Earth’s lower mantle. Fig. 2a-b-c report,
as an example, three isothermal V-P curves that show how, for a given
temperature and focusing on a comparatively narrow V-range, the (P,V,
T)d points are determined through the constraint (∂P/∂V)T = 0, using P
= -(∂F/∂V)T in the case of halite and P = EoS(V,T) for the others. As
underlined by Ref. [7], an unphysical region occurs where an increase in
V is associated with an increase in P, that is, KT < 0 and therefore
dPlattice/dV + dPvib/dV > 0. The failure of the energy model points out
the impossibility to provide a physically sound representation beyond a
given limit in the P-T space, in keeping with the violation of a funda-
mental thermodynamic inequality. The V-intervals displayed refer to
those around the estimatedmelting volumes. The isotherms were chosen
to represent melting at comparatively low, medium, and high pressures
with respect to the stability field explored in the experiments or
observed in natural environments for the phases involved. Halite sta-
bility is notably dependent on humidity (critical value 76 %), with an
experimentally determined melting point at room pressure of ~1078 K
[50] and boiling point of ~1738 K [51]. Therefore, the V-P curves of
halite were chosen at 1080, 1500, and 1800 K. Experimental and
theoretical studies have been reported for the Tm-figures of stishovite
from ~2000 (at a minimum pressure of ~15 GPa [50]) up to ~8300 K
[52,53]. The V-P melting curves of stishovite are displayed at 2300,
3000, and 4000 K, for them to cover a thermal range comparable to that
of its natural occurrence. Based on the available experimental data and
theoretical studies [54], themelting temperature of Mg-perovskite in the
P-range referred to Earth’s interiors, is 2800–8000 K. Thus, reference
temperatures of 3000 K, 4500 K, and 6000 K were chosen in this study
for the isothermal V-P curves of Mg-perovskite. The P-T melting curves
estimated by the loci of KT = 0 and the largest ΔH/ΔV values are pre-
sented in Fig. 3a-b-c, along with the experimental observations or earlier
calculations.

In the case of NaCl, our predictions (solid line) were compared with
experimental measurements (squares) provided by Akella et al. [50], as
a function of pressure. The agreement between the theoretical results
and measurements was excellent, and the average absolute discrepancy,
that is,

< |ΔT%|> =
1
N
∑N

j=1

⃒
⃒
⃒T
(
Pj
)

m,Theo − T
(
Pj
)

m,Obs

⃒
⃒
⃒

(
T(Pj)m,Theo

+T(Pj)m,Obs
2

) × 100 (49)

was less than 0.2 %, with a maximum deviation among the addends
in (49) of 0.4 % (the average Clapeyron slope, <dP/dT>, was 0.019
versus 0.019 GPa/K, calculated and observed, respectively). The figure
of merit defined at (49) was chosen to account for the heterogeneous
nature of the involved data (in the case of stishovite, observations and
earlier calculations are concomitantly employed for a comparison with
our results) and the large estimates of the experimental uncertainties.
The ΔH/ΔV values for melting obtained using Eq. (36) range from 4.8 to
28.6 GPa, and they are the largest observed associated with KT → 0 (P-
range: room pressure-6.5 GPa; T-range: 1074–1830 K), to be compared
with ~2.7 GPa for the B1-B2 solid-solid phase transition by Li and
Jeanloz (1987) [55], over the P-T range 23–27 GPa and 300–670 K. At
room pressure, KT → 0 yields 1074, versus 1074 [50] and 1097 K [56] by
measurements, and 1153 K by the quasi-harmonic model [28]. The
degree of sensitivity of the melting curve to the P-V-T EoS model that is
used to treat data was tested. In particular, the generalized Birch EoS
(BM) by Belonoshko and Dubrovinsky [57] (dot-dashed line) and
Mie-Grünesen model (MG) using the P-function of Aizawa and Yoneda
[49] (dashed line) were fitted to the P-V-T data obtained by quantum
simulations. The two EoS models provide results close to each other,
though distinguishable, in the low pressure and high pressure ranges.
The former EoS yields a melting curve closer to the experimental

observations in the low compression regime (ΔV/V0 < 1 %) than the
latter, whereas the reverse takes place in the high compression regime
(ΔV/V0 > 2 %). This aspect can also justify the satisfactory behaviour of
the Mie-Grüneisen model in fitting P-V-T data and predicting Tm for
stishovite and perovskite, both high pressure phases, as it will be stated
below. Yet it must be stressed how such EoS models were developed
foremost for the high pressure-high temperature regime of a given
phase, which is assumed stable. In the light of this, the discrepancies of
BM versusMG, and of both models versus observations, can be explained
by the fact that these models are applied in this study beyond their
natural limits. All this suggests that, on the one hand, equations of state
are able to carry information referring to melting and, on the other hand,
care is to be paid in extrapolating a melting curve by EoS models.

In the case of SiO2,st, the measurements from Shen and Lazor [58]
and Zhang et al. [59], along with the theoretical results obtained by Luo
et al. [60] and Belonoshko and Dubrovinsky [52], were used as “ob-
servations” for a comparison with our calculations, relying on the
parametric model from Wang et al. [46]. < |ΔT%| > is 5.8 %, and the
largest absolute discrepancy among addends in (48) amounts to 13.8 %
(Clapeyron slope, dP/dT, is 0.018 versus 0.020 GPa/K, calculated and
observed, respectively). The ΔH/ΔV figures of melting are spread over
the interval 50–106 GPa, versus those of the stishovite-coesite equilib-
rium curve ranging in 3.8–5.8 GPa, by Ono et al. [61], whose mea-
surements were performed at 6–11 GPa and 1200–1800 K.

For MgSiO3, using the experimental data by Shen and Lazor [58], <
|ΔT%| > is 3.2 %, with a maximum absolute discrepancy of 6.2 %
(Clapeyron slope, dP/dT, is 0.023 versus 0.020 GPa/K, calculated and
observed, respectively). ΔH/ΔV is forecast to range between 53 and 93
GPa versus 45 and 79 GPa from measurements performed over an
experimental P-T range of 7–34 GPa and 2300–4050 K. A further com-
parison can be carried out between our Td(Pd) curve and that reported by
Belonoshko et al. [62] determined by ab-initio molecular dynamics,
complemented with semi-empirical potentials. Average agreements of
5.9 and 8.2 % were observed (using the discrepancy and absolute
discrepancy for the former and latter figure of merit, respectively) in the
interval of 25–90 GPa. The percentage deviation (Δ) between the pre-
sent results and those of the aforementioned authors increases linearly
with pressure, following a trend expressed by Δ = 0.3991 × P
(GPa)-17.08. This implies an agreement of approximately ±5 % up to
~60 GPa, and a progressively increasing positive divergence at higher
pressures.

The average discrepancy figures between Td (modelling) and Tm
(available experimental data; for stishovite, some theoretical data are
also included), that is,

< ΔT% >=
1
N
∑N

j=1

(
T
(
Pj
)

m,Theo − T
(
Pj
)

m,Obs

)

(
T(Pj)m,Theo

+T(Pj)m,Obs
2

) × 100 (50)

were − 0.13, − 3.6 and − 0.3% for NaCl, SiO2,st andMgSiO3, respectively.
In comparison with the < |ΔT%| > discussed above, < ΔT% > indicates
that, on the one hand, compensation occurs between underestimates and
overestimates and, on the other hand, the model relying on the locus of
KT = 0 leads to a slight underestimation of Tm. Note that the deviations
of the calculations from the experimental data do not seem to show any
systematic trend (SiO2,st and MgSiO3 exhibit an opposite behaviour with
pressure) but a slight overall prevalence for Td < Tm (Fig. 4a–c). We
believe that the excellent agreement in the case of NaCl (Fig. 4a) is due
to the fact that simulated data were employed to reconstruct the Td(Pd)
curve, thus reducing the degree of uncertainty associated with the use of
the experimental P-V-T EoSs, whose precision is high when the solid
phase is fully stable, as stated above. Moreover, in the case of stishovite
and perovskite, the actual complexity of measuring the melting curves
should be considered, as both phases are stable only in the high-pressure
regime.

M. Merli et al. Calphad 87 (2024) 102761 

8 



A further analysis of the phenomenology under investigation is sig-
nificant in the context of the Negative Thermal Expansion (NTE) systems
that are motivating an ever-increasing attention [63]. The model
developed by Liu et al. [64] for NTE can be explored for the present case.
The quoted authors claim that NTE is explainable in terms of the sta-
tistical occurrence of two phases separated by an equilibrium boundary
with Clapeyron slope dT/dP < 0. Following their approach, a
Vegard-like approximation can be used to model compressibility (strain
energy of incorporation of one phase into the other is set aside), i.e. β =

1/KT,

where fj is the probability to have the jth-phase (structure configuration),
and can be written as follows

fa =
e− ΔG/RT

1+ e− ΔG/RT =
1

eΔG/RT + 1

fb =
1

1+ e− ΔG/RT

(
∂fa
∂P

)

T
=

eΔG/RT

(eΔG/RT + 1)2
Va − Vb

RT

taking ΔG = Ga − Gb. The condition KT → 0+ that is associated with β →
+∞ was analysed. For a divergence of compressibility to be achieved in
Eq. (51), it is required that either βafa → +∞, or βb(1-fa) → +∞.
Assuming that βa and βb do not diverge both, the divergence of
compressibility looks like a phenomenon that can be related to the
elastic behaviour of one phase (a or b, stable or metastable, respectively),
rather than to the need of a statistical coexistence and interplay of stable
and metastable configurations, like the mechanism proposed to account
for NTE.

4. Conclusions

A vanishing isothermal bulk modulus KT at (P,V,T)d is univocally
associated with the occurrence of a degenerate critical point of the
ΔGirrev function, which represents the Gibbs energy change taking place
in an irreversible transformation from the off-equilibrium point (Pd,Vd/
2+δV,Td) + (Pd,Vd/2-δV,Td) to (P,V,T)d, at equilibrium. On the one
hand, such a condition is related to the approaching instability of the
system, as predicted by the catastrophe theory of Thom, and, on the
other hand, it is related to the violation of the thermodynamic inequality
for irreversible transformations that requires ΔGirrev < 0 and ΔSirrev > 0,
at any order of expansion with respect to a deviation from equilibrium
(±δV). This makes it impossible for the system to preserve a stable
equilibrium, at KT = 0 (“limit of stability”). Therefore, this is the
precondition to a transformation into a new phase. The study of the P-T
locus of KT= 0 allows the characterization of the transformation in terms
of Td and ΔH/ΔV, the latter via the Claperyron slope, thus providing a
way to locate among the possible manifolds the one that is the best
candidate for melting. Three case studies are discussed: halite (NaCl),
stishovite (SiO2,st), and perovskite (MgSiO3). Calculations were carried
out by quantum modelling for halite and through semi-empirical P-V-T
EoS parametric models for stishovite and perovskite. The agreement in
terms of the absolute deviation of the melting curves between the cal-
culations and observations ranges between 0.2 % (halite) and 5.8 %
(stishovite), and the largest discrepancy of the predicted Clapeyron
slope from the experimental dP/dT is within 14 %. The largest average
discrepancy, in absolute value, between the theoretical results and
experimental data (< ΔT% >) is − 3.6 %. The present comparison be-
tween the predictions and observations must be performed with due care
because of the comparatively small number of crystals whose P-T
melting curves were analysed in detail. Moreover, in the case of NaCl the
sensitivity of the predicted melting temperature curve to the EoS model
was considered, using the Birch versusMie-Grüneisen equations of state.
It was observed that they lead to discrepancies, in the low and high
pressure regimes. Although a vanishing isothermal bulk modulus does
not ultimately provide a theoretical constraint to melting, yet KT →
0 implies instability via catastrophe theory and thermodynamic

Fig. 4. Melting temperatures resulting by our modelling are compared with
available literature data (ΔT%) calculated as (Tm,Theo-Tm,Obs)/(Tm,Theo + Tm,

Obs) × 200 (i.e. the addends of (50)). Experimental data (Tm,Obs) as reported in
Fig. 3. Tm,Theo is estimated by Td. (a) halite, (b) stishovite and (c)
Mg-perovskite.

βV= −

(
∂V
∂P

)

T
= −

(
∂[Vafa + Vb(1 − fa)]

∂P

)

T
=

(
∂fa
∂P

)

T
(Vb − Va)+ fa(Vaβa − Vbβb)+Vbβb =

(
∂fa
∂P

)

T
(Vb − Va)+Vbβb(1 − fa) + Vaβafa (51)
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inequality violation. Moreover, limT→Tm α = ∞ is commonly recognized
to occur at approaching fusion, and implies KT → 0. Altogether, the
agreement between our modelling and observations is satisfactory. All
this makes us confident that KT = 0, at the highest temperature and
largest ΔH/ΔV, allows the determination of a Td that is a sound
approximation of the physical Tm. Yet, the mechanism for KT → 0 seems
to be less restrictive than that of NTE systems, insofar as the Vegard-like
model discussed in the text holds. It is worth stressing that the
comparative simplicity of application of the catastrophe theory, in
combination with its solid mathematical basis, makes it an effective
“universal” tool for the investigation of the stability of systems in the
frame of the one-phase approach, as substantiated by the thermody-
namic analysis of irreversible transformations involving solids in the P-
V-T space, and not restricted to melting only.
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M. Rérat, S. Casassa, J. Baima, S. Salustro, B. Kirtman, Quantum-mechanical

M. Merli et al. Calphad 87 (2024) 102761 

10 

http://refhub.elsevier.com/S0364-5916(24)00103-2/sref1
http://refhub.elsevier.com/S0364-5916(24)00103-2/sref1
http://refhub.elsevier.com/S0364-5916(24)00103-2/sref2
http://refhub.elsevier.com/S0364-5916(24)00103-2/sref3
https://doi.org/10.1016/0167-2789(81)90012-9
https://doi.org/10.1016/0167-2789(81)90012-9
http://refhub.elsevier.com/S0364-5916(24)00103-2/sref5
http://refhub.elsevier.com/S0364-5916(24)00103-2/sref5
https://doi.org/10.1107/S2053273317018381
https://doi.org/10.1016/j.calphad.2021.102259
https://doi.org/10.1016/j.calphad.2021.102259
https://doi.org/10.1021/acs.chemrev.3c00489
https://doi.org/10.1063/5.0207033
https://link.aps.org/doi/10.1103/PhysRevB.104.054120
https://doi.org/10.1103/PhysRevB.96.224202
https://link.aps.org/doi/10.1103/PhysRevB.73.012201
https://link.aps.org/doi/10.1103/PhysRevB.73.012201
https://link.aps.org/doi/10.1103/PhysRevLett.100.135701
https://link.aps.org/doi/10.1103/PhysRevLett.100.135701
http://refhub.elsevier.com/S0364-5916(24)00103-2/sref14
http://refhub.elsevier.com/S0364-5916(24)00103-2/sref14
http://refhub.elsevier.com/S0364-5916(24)00103-2/sref14
https://doi.org/10.1080/00268977800101791
https://doi.org/10.1080/00268977800101791
https://doi.org/10.1063/1.1316105
https://doi.org/10.1063/1.1316105
https://doi.org/10.1103/PhysRevE.109.034122
https://doi.org/10.1103/PhysRevE.109.034122
http://refhub.elsevier.com/S0364-5916(24)00103-2/sref18
http://refhub.elsevier.com/S0364-5916(24)00103-2/sref18
https://doi.org/10.1103/PhysRev.102.317
https://doi.org/10.1063/1.94549
https://doi.org/10.1071/PH770631
https://doi.org/10.1063/5.0197386
https://doi.org/10.1103/PhysRev.46.995
https://doi.org/10.1063/1.1750497
https://doi.org/10.1103/PhysRev.187.951
https://doi.org/10.1080/01411598508219144
https://doi.org/10.1080/01411594.2018.1432052
https://doi.org/10.1080/01411594.2018.1432052
https://doi.org/10.1063/1.5078722
http://refhub.elsevier.com/S0364-5916(24)00103-2/sref29
http://refhub.elsevier.com/S0364-5916(24)00103-2/sref30
http://refhub.elsevier.com/S0364-5916(24)00103-2/sref30
http://refhub.elsevier.com/S0364-5916(24)00103-2/sref31
http://refhub.elsevier.com/S0364-5916(24)00103-2/sref31
http://refhub.elsevier.com/S0364-5916(24)00103-2/sref32
http://refhub.elsevier.com/S0364-5916(24)00103-2/sref32
https://doi.org/10.1007/BF02756000
https://doi.org/10.1007/BF02756000
https://doi.org/10.1063/1.1677899
https://doi.org/10.1063/1.1677899
https://doi.org/10.1016/j.actamat.2020.08.008
https://doi.org/10.1088/1361-648X/ad4762
https://doi.org/10.1007/s10973-020-09370-y
https://doi.org/10.1007/s10973-020-09370-y
https://doi.org/10.1007/s00410-017-1349-x
https://doi.org/10.1007/s00410-017-1349-x
https://doi.org/10.1524/zkri.2000.215.11.669


condensed matter simulations with CRYSTAL, WIREs Comp. Mol. Sc. 1360 (2018),
https://doi.org/10.1002/wcms.1360, 2018.

[41] Y. Zhao, D.G. Truhlar, Construction of a generalized gradient approximation by
restoring the density-gradient expansion and enforcing a tight Lieb–Oxford bound,
J. Chem. Phys. 128 (2008) 184109, https://doi.org/10.1063/1.2912068.

[42] J.P. Perdew, K. Burke, Y. Wang, Generalized gradient approximation for the
exchange-correlation hole of a many-electron system, Phys. Rev. B 54 (1966)
16534–16537, https://doi.org/10.1103/physrevb.54.16533.

[43] M. Towler, CRYSTAL Resources Page, Theory of Condensed Matter, 2015.
http://www.tcm.phy.cam.ac.uk/~mdt26/crystal.html.

[44] G. Sophia, P. Baranek, C. Sarrazin, M. Rerat, R. Dovesi, First-principles study of the
mechanisms of the pressure-induced dielectric anomalies in ferroelectric
perovskites, Phase Transitions 81 (2013) 1069–1084.
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