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Non-linear heat transfer beyond Fourier’s Law: analytical and numerical
investigations

by Carmelo Filippo MUNAFÓ

Recent advances in modern engineering technology have highlighted the limitations
of classical models traditionally applied in various fields, such as Fourier’s law for
heat conduction, Fick’s law for diffusion, and Newton’s law for viscous flow. These
models, while widely accepted, may no longer be adequate for describing certain
phenomena, especially in light of the technological progress in micro- and nano-
scale devices. At low temperatures, and for processes with very short time scales,
deviations from classical laws become increasingly evident. For instance, heat con-
duction in heterogeneous materials—such as rocks, layered structures, foams, and
3D-printed samples—can be better described using models that go beyond Fourier’s
law.

The necessity of explaining these phenomena has led to the development of alter-
native models, a process that began in the mid-20th century and continues to evolve
today. Numerous experimental studies have revealed considerable discrepancies
between classical laws and observed results. One notable issue with classical the-
ories is that they lead to parabolic-type partial differential equations, which imply
that perturbations propagate at infinite velocity—a result that contradicts both ex-
perimental evidence and theoretical expectations, as perturbations should propagate
at finite speeds. This inconsistency can be addressed by considering the relaxation
times of fluxes (such as thermal, diffusion, and momentum fluxes), often referred to
as dissipative fluxes. However, the evolution equations for such fluxes are incom-
patible with classical thermodynamic theories, as they may lead to negative entropy
production under certain conditions. To resolve this, the field of Extended Thermo-
dynamics provides a thermodynamically consistent framework for these extended
models. This dissertation focuses on heat conduction models that extend beyond
Fourier’s law, specifically non-Fourier heat conduction models. The primary aim is
to explore generalizations of Fourier’s law by introducing temperature-dependent
material parameters, such as thermal conductivity and relaxation time. These as-
sumptions are crucial for accurately modeling phenomena at low temperatures or
for small-scale systems, where thermal conductivity is known to vary with tempera-
ture. The physical and mathematical foundations of these extended heat conduction
models—such as the Cattaneo and Guyer-Krumhansl models—are discussed within
the framework of non-equilibrium thermodynamics, providing a powerful basis for
non-linear extensions. The study of these non-linear effects is driven by the rapid
advancement of technology, which increasingly demands a description of fast and
high-frequency processes where such effects become significant. As a result, the de-
sign of future micro- and nano-scale devices poses considerable challenges. Under-
standing heat transport at these scales and proposing modified versions of classical
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equations—consistent with the second law of thermodynamics—is crucial for facili-
tating the design of these devices.

The deviation from Fourier’s law is also evident at low temperatures and in
micro/nano-devices, where phenomena such as second sound behavior emerge.
Under these extreme conditions, both thermal conductivity and relaxation time be-
come temperature-dependent, necessitating their inclusion in the Maxwell-Cattaneo-
Vernotte model. The effects of these nonlinearities are explored through numerical
solutions of one- and two-dimensional heat pulse experiments, using a staggered
field finite difference method.

Furthermore, deviations from Fourier’s law are also observed in inhomogeneous
materials, such as rocks and metal foams. The Fourier hierarchy derived from the
Guyer-Krumhansl equation provides a physical interpretation of these observed phe-
nomena. Initially, we investigate the impact of nonlinear thermal conductivity and
relaxation time by solving the one-dimensional Guyer-Krumhansl equation. We
then focus on the implications of whirling heat current density, solving the two-
dimensional Guyer-Krumhansl equation with space- and time-dependent heat pulse
boundary conditions, again using a staggered scheme. Special emphasis is placed
on the transient evolution, which reveals unique local temperature reduction effects
due to heat current vorticity. These effects are only observable during the transient
phase, where the evolving heat current vorticity induces a local temperature de-
crease relative to the initial state. The numerical resolution of this problem intro-
duces additional challenges, particularly regarding boundary conditions, for which
we propose a specific extrapolation method. Additionally, using Helmholtz decom-
position, we establish an analogy with the linearized acoustics of Newtonian fluids,
illustrating how the heat flux density mirrors the role of the velocity field. Our so-
lutions also uncover an unexpected temperature behavior induced by the whirling
heat flux density: under certain conditions, the temperature can locally decrease for
a short period when the curl of the heat flux density dominates the heat conduction
process.

Finally, we explore potential applications of non-Fourier-type equations, rang-
ing from biological tissue modeling to laser welding processes. In particular, we
present a hyperbolic heat transport model for homogeneously perfused biological
tissue irradiated by a laser beam. This non-Fourier-like bioheat equation is solved
analytically using the Laplace transform method. Subsequently, we present numer-
ical results obtained from a welding laser process on a metal plate, modeled using
Fourier’s law. Special attention is given to possible future extensions of this model
by incorporating relaxation times and temperature-dependent material parameters.

In this work, we apply the same modeling framework to heat propagation phe-
nomena at both low and room temperatures, covering artificial and natural test sam-
ples, as well as biological tissues.

Keywords: Non-equilibrium Thermodynamics, Extended Thermodynamics, heat
pulse experiments, heat conduction, heat transfer, Cattaneo equation, Guyer-Krumhansl
equation, whirling heat flux density, vortices
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Chapter 1

Introduction

Experimentally, many years ago it was discovered that the classical laws, such as
Fourier’s law for heat conduction, Fick law for diffusion and Newton law for vis-
cous flow could be wrong certain circumstances. This is mainly due to the advent
of technological development in the field of micro/nano-devices, in fact the char-
acteristic time and duration of processes at low temperature become increasingly
shorter. It is thus important to explain phenomena which go beyond classical laws.
However, it is known that after the introduction of these classical relations in the
balance laws, one arrives at the partial differential equations of parabolic type, that
implies that the perturbations are propagated with infinite velocity. This behaviour
is sometimes not in agreement with experimental tests, it seems strange even from
a theoretical point of view, because the effects of perturbations should propagate at
finite velocity, not only from the relativistic frame, but also in the non-relativistic
point of view. This could be avoided taking into account the relaxation times of
the respective fluxes, e.g. thermal flux, diffusion flux, moment flux, usually known
as dissipative fluxes. However, in classical thermodynamics (Classical Irreversible
thermodynamics and Rational thermodynamics) the evolution equations necessary
for such dissipative fluxes, are not compatible with these theories, because these
leads, in some circumstances, a negative entropy production.

For some researchers it is unexpected that the thermodynamics can be used as
a framework to extend the classical equations. Since, historically, the classical ther-
modynamics has allowed the temperature of a gas to be calculated or the pressure
to be predicted etc, but not to understand nanoscale phenomena, or low tempera-
ture phenomena in which different laws are required. In addition, the second law
should be universal and general. How is it possible to incorporate the new equations
that extend the classical constitutive laws? The question is whether, from a practical
point of view, such relaxation times exist for dissipative fluxes. In many systems it
has been found that dissipative fluxes are characterized by not negligible relaxation
times, for example thermal and electrical conductors at low temperature, supercon-
ductors and so on. So in real situations, these systems are out of local equilibrium,
how can they be incorporated into classical theories?

As a result, new theories of the non-equilibrium were needed, including Ratio-
nal Extended Thermodynamics, Extended Irreversible Thermodynamics, Thermo-
dynamics with Internal Variables, GENERIC (GEneral Non equilibrium Equation
of Reversible Irreversible Coupling) and many others. For this reason, a thorough
understanding of these new theories, whether linear or not, may be important not
only from a theoretical point of view but also for practical and application purposes.
These theories introduce as new independent variables the dissipative fluxes and
aim to obtain for them evolution equations compatible with the second law of ther-
modynamics. However, the main quantity is a generalized non-equilibrium entropy,
dependent both classical variables and dissipative fluxes.
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In this dissertation we will focus on heat conduction problems beyond the Fourier’s
law. In particular, the aim is to investigate generalization of Fourier’s law by intro-
ducing material parameters that are not constant but depend on temperature. As
numerous experiments show (see the next section), there are considerable discrep-
ancies with classical laws. However, these effects have been studied, because of
the rapid technological development has made it is necessary to describe fast and
high-frequency processes in which such effects emerge. These latter make the de-
sign phase of future micro/nano devices very difficult, for this reason to understand
the transport of heat at these scales and propose modified versions of the classical
equations (compatible with the second law of thermodynamics) is a central point to
facilitate its design.

Several theories have been developed in the context of irreversible thermody-
namics. A brief historical summary of the possible engineering applications oppor-
tunities of these phenomena are presented.

1.1 Historical summary

Most of the heat conduction engineering problems, in agreement with the classical
hermodynamics are based on the well known Fourier’s law, which states that the
heat flux q(x, t) is proportional to the temperature gradient ∇T(x, t).

q = −λ(T)∇T

wherein the coefficient λ(T) represents the thermal conductivity for an isotropic
material, that in general, is non-constant but can depend on the temperature. This
model is applied for calculations in engineering practice.

As is commonly known this law has limits, so it is inevitable to find the correct
extension and determine the possibilities of practical implementations. In fact this
constitutive relation for the heat flux leads together to energy balance law

ρc ∂tT +∇ · q = ρr

where the quantities c and ρ are the specific heat capacity and the mass density of
the rigid conductor, respectively; r(x, t) represents the specific internal heat source,
to the classical form of the heat equation,

ρc ∂tT +∇ · (λ∇T) = ρr (1.1)

which has been successfully used to model the temperature in materials for over
many years. But this equation leads to an infinite speed of heat propagation, which
means that any initial heat pulse is felt instantly (for any little time instant t > 0) at
any point in the whole medium. This behaviour is known as the ’Paradox of Heat
Conduction’, and contradicts the so called ’strong principle of causality’ , i.e. that
information cannot travel faster than a finite speed, in classical physics, while in
relativistic field, the information cannot travel faster than light speed.

During the 20th century, several experiments have shown that there are heat con-
duction phenomena which are unexplainable with Fourier’s law and require gener-
alized equations to be predicted and described. In the literature several generaliza-
tions of Fourier’s law have been suggested such as the Maxwell-Cattaneo-Vernotte
equation (MCV) [1–3], Dual-Phase-Lag (DPL), Guyer-Krumhansl (GK) [4–6], Jeffrey
(JF) [7], Green-Naghdi (GN) [8]. This study began with the theoretical predictions of
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Onsager, Tisza and Landau. While the first, he discussed the likely microstructural
reasons for deviation from Fourier’s law [9], as happens for example with heteroge-
neous materials; Tisza and Landau predicted a heat conduction behaviour in helium
II, where the temperature shows a dissipation but also wave propagation, which
cannot be explained by Fourier’s law [10, 11]. This phenomenon is known as sec-
ond sound and has been observed under extreme conditions (low temperatures or
ideal materials). The first experimental results, which led to the detection of the sec-
ond sound, were carried out in superfluid helium II by Peshkov nel 1944 [12], which
applies heat pulse excitation (see Figure 1.1).

(a)

(b)

FIGURE 1.1: Top panel (a): A simplified schematic picture about
Peshkov’s experiment [12–15]. In a glass tube (G), heat pulse sig-
nals are generated by the heater (H), and temperature is measured by
the thermometer (T). A and B denote tubes with adjustable positions,
which ensured better observability of the temperature waves. Bottom
panel (b): A screenshot from Alfred Leitner’s video. A 1963 film by
Alfred Leitner demonstrating the wave-like propagation of temper-
ature of liquid helium II when cooled below the lambda point (the
superfluid state). Heat is conducted at 20 m/s in a totally different

way from traditional heat conduction. 1

This non-Fourier type behavior has been investigated in several experiments, in
particular, from 1970s, after the discovery of the second sound in low-temperature
solids [16–21] and subsequently several predictions of similar phenomena were car-
ried out for heterogeneous materials at room temperature [22–24]. Other researchers

1Source of the picture: https://www.youtube.com/watch?v=NjPFfT2EyxQ

https://www.youtube.com/watch?v=NjPFfT2EyxQ
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have analyzed the relaxational phenomena in granular and biological media, but
unfortunately these measurements have not been confirmed because the related ex-
perimental results have proved to be contradictory and unclear [25–28].

Several questions arise about the propagation speed of the second sound : its
modelling requires, for example, the Maxwell-Cattaneo-Vernotte equation [1–3], the
first - hyperbolic - extension of the Fourier law

τ(T)
∂q
∂t

+ q = −λ(T)∇T,

where τ is the relaxation time of the heat flux that in general together the thermal
conductivity can depend on the temperature, when these non linearities are intro-
duced appear futher terms into the evolution equation, see [29]. This model includes
a relaxation mechanism to adapt the heat flux gradually (i.e. the presence of time
derivative term represents the memory effect), to a change in temperature gradi-
ent. This is an extension of classical diffusion theory and can lead to a hyperbolic
diffusion equation, that is, a wave with finite velocity. The predicted characteristic
wave speed is v =

√
α/τ in which α = λ/(ρ c) is thermal diffusivity. Their ratio

characterizes the observed wave and therefore thermophysical properties.
However, as many authors have highlighted [13–15], the propagation velocity is

highly non-linear. Therefore, the material and thermal parameters must depend on
temperature, such as thermal conductivity, specific heat capacity, relaxation time and
mass density (here we are assuming it is constant, since we study the propagation of
heat in a rigid conductor). This explains the aim of this thesis, which is to study the
effects on heat propagation caused by the introduction of such non-linearity. In par-
ticular, we want to understand the induced effects by assuming thermal conductiv-
ity and relaxation time not constant but temperature-dependent through particular
laws. Determining what are the qualitative and quantitative changes in the observed
temperature distribution, in one or two spatial dimensions.

On the other hand, the inclusion of such nonlinear behaviour in heat conduction
models is only possible with a well-established and consolidated thermodynamic
framework, since the coefficients are not independent of each other [29, 30]. The
onsagerian relationships connect them, for example the temperature dependence of
thermal conductivity influences the other parameters, you will see in the demon-
strations of the compatibility of non-Fourier heat conduction models in the various
thermodynamic theories [29, 30]. It was found that the temperature dependence of
relaxation time necessarily implies the temperature dependence of mass density [29,
30]. This means that the physical phenomenon requires a complete thermomechan-
ical framework, or the inclusion of mechanical effects. This leads to ballistic propa-
gation, i.e. an elastic wave that carries heat. From a continuum point of view, it is
induced by thermal expansion [31, 32] and always propagated at the speed of sound
[33]. In addition, beyond the temperature dependence of parameters (both thermal
and mechanical), an explicit coupling between the thermal field and the mechanical
field could occur [34]. In the present thesis, mechanical effects are neglected and will
be the aim of future work.

Subsequently, Guyer and Krumhansl derived from the microscopic point of view,
through linearization of the Boltzmann equation [4–6], a more general heat conduc-
tion equation than Cattaneo’s. This equation, in addition to including memory ef-
fects, takes into account non-local effects, so much so that the non-local general-
ization of Cattaneo is defined. It is expressed by the following partial differential



1.1. Historical summary 5

equation

τ(T)
∂q
∂t

+ q = −λ(T)∇T + η1(T)∆q + η2(T)∇(∇ · q)

where η1, η2 represent the phenomenological coefficients in isotropic media and in
general can be a function of temperature. Also, here, we observe when η1, η2 go
to zero, the GK equation returns to the MCV form. Under a particular condition
known as resonance condition ( l2/τ = α this in the one-dimensional case, with l2 =
η1 + η2), the solution of the Fourier equation is recovered [35], and no deviation
occurs. However, when this condition is not satisfy (i.e. the ratio of l2/τ differs
from thermal diffusivity α), the two conduction channels differ from each other, the
Fourier resonance ceases, and the deviation becomes observable. This reflects the
existence of different time and space scales of constituents.

(a) (b)

(c)

FIGURE 1.2: A typical solution for Fourier, MCV and GK equations
respectively.

This equation can describe the second sound, in fact, it has significantly helped
experimental research to determine the optimal frequency for making visible this
wave phenomenon of heat propagation even in solids [5, 6]. Unfortunately, such a
condition for ballistic propagation, known as window condition, does not exist. In
fact, as reflected by the thesis of Ph.D of McNelly [33], it is difficult to observe the
ballistic propagation experimentally. Despite these difficulties, there are remarkable
observations that are based on pure crystals [36], mostly NaF, LiF or solid He. Ballis-
tic propagation has been demonstrated in sodium fluoride crystals, NaF, by Jackson,
Walker and McNelly [20, 21, 33] (see the Figure 1.3). In addition, Kovacs and Van
[37], using the internal variable framework, quantitatively reproduced two sets of
experiments modelling ballistic propagation, together with the second sound.
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FIGURE 1.3: McNelly experiments on Naf: Ballistic heat propagation

However, it seemed that non-Fourier heat conduction theories could explain
non-classical behaviour only under particular conditions: the materials studied were
"perfect" or "ideal" (for NaF experiments, for example) and at low-temperature. These
situations in the engineering field appear very rarely. Note that every real mate-
rial, not "ideal", in a certain sense, is heterogeneous, for example due to the pres-
ence of porosity, composition of the material and inclusions created artificially. So
it differs strongly from the materials mentioned above. Although in the literature,
there are some famous experiments on such materials at room temperature, as those
performed by Mitra et al. [38] and Kaminski [39], such data could not be repro-
duced by anyone else and therefore widely criticized [25, 40, 41]. Given the non-
reproducibility, we can say that the second sound was not observed unambiguously
in macroscopic samples at room temperature. More recently, in this direction, an
experimental and theoretical study was conducted to detect non-Fourier thermal
conduction in heterogeneous macroscopic samples at room temperature [42]. Such
experiments were conducted at the Department of Energy Engineering of the Uni-
versity of Technology and Economics2 in Budapest have shown that the deviation
from heat conduction Fourier-type conduction can also be observed at room tem-
perature and on several heterogeneous samples. To carry out such experiments, as
usual in engineering practice, the heat-pulse experiment set-up was applied (see
Figure 1.4 and [43, 44]). However, these deviations are not as marked as the second
sound phenomenon, but their behavior can be detected, measured and cannot be
explained by Fourier’s law.

Contrary to what was expected, namely the wave-like deviation from the Fourier
law (similar to the second sound) modelled with the Maxwell-Cattaneo-Vernotte
equation; any ambient temperature experiments show such temperature waves and
in most cases, neither Fourier nor Cattaneo equations were able to fit/explain the re-
sults. When the MCV equation is not good, dual-phase-lag (DPL) models are usually
used. The DPL concept is based on a Taylor expansion of Fourier’s law. However,
DPL models violate fundamental physical principles for various reasons [45–48].
Despite its popularity, especially in the biological literature, the DPL model cannot
become the standard equation in engineering practice to replace Fourier’s law, this
due to its numerous shortcomings. From a continuum point of view, the approach

2Finf here: http://irrev.energia.bme.hu/

http://irrev.energia.bme.hu/
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FIGURE 1.4: Setup of the heat-pulse experiment. The front face of
the specimen is excited by a heat pulse and rear-side temperature is

measured.

recently used by Kovacs is based on the use of the Guyer-Krumhansl equation. Ini-
tially this equation was derived based on kinetic theory with detailed microscopic
modeling of phonons or heat carriers (quasiparticle describing a quantum of vibra-
tion in a rigid crystal lattice) and applied to low temperature problems. However,
this kinetic approach is limited by the heat conduction mechanisms described in
phonons, so it is not possible to apply this approach to more general questions (as
phenomena at room temperature).

However, by virtue of the flexibility of the coefficients, which is a feature of the
continuum approach of the GK equation, these are found experimentally without
any hypothesis on the particular mechanism of heat transfer, unlike the kinetic ap-
proach. Thus, without using the hydrodynamics of phonons, it has been possible to
successfully explain and model several experiments at room temperature in which
no waves are detected, as shown in Figure 1.5, where the Fourier fit deviates strongly
from the measured data, while the Guyer-Krumhansl fit follows the measured data
very well.

This type of non-Fourier thermal conduction, as shown in [42], from measur-
ing thermal pulses on various artificial and natural heterogeneous materials, such
as foams, rocks or other porous materials is common for heterogeneous materials.
Apparently, this is not a wave-like phenomenon but a diffusive phenomenon with
multiple conduction channels. In particular, the mechanism that seems to accumu-
late, the two kinetic and continuum approaches, is presumably the presence of sev-
eral "heat conduction channels". In hydrodynamic phonon transport, the two re-
laxation terms (resistive and normal collisions) represent two different propagation
mechanisms for the phonon within spatially homogeneous samples. In the artificial
sample, aluminium and polystyrene (in case of the capacitor, see [42]), aluminium
and air (in case of a metallic foam, see [42]) are the two conduction channels. In the
case of natural samples, such as rock samples (see [42]) there are no simple explana-
tions due to the lack of "components" and the heat conduction coefficients are very
different.

The Guyer-Krumhansl heat equation has many important practical applications,
although it has a more complex structure than Fourier’s law. It is an excellent can-
didate to replace Fourier’s law in engineering problems because of its modeling ca-
pabilities which can include a wide range of phenomena, from low temperature to
room temperature problems. For this reason, its mathematical properties must be
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FIGURE 1.5: Result of a heat-pulse experiment: measured and fitted
rear-side temperature of carbon foam samples. The measurement and
fitting procedure have been performed by Anna Fehér and Róbert

Kovács [22, 23, 42]. This phenomenon is called over-diffusive.

studied and understood. Recently, these properties have been the subject of inten-
sive studies [49–53], both analytical and numerical.

For this reason, in this thesis we propose to continue these studies, focusing on
the induced nonlinear effects not only in the equation of MCV but also for GK, be-
cause it has a very strong background and is of key importance in engineering ap-
plications.

Unfortunately, there is no general physical picture of the phenomenon that causes
this deviation from the Fourier law at room temperature. For example, rocks are
exceptional materials because of the different porosities, the distribution of micro-
cracks, the variable composition, cracks and discontinuities can strongly modify the
heat conduction, since there are several parallel mechanisms of heat transfer, for ex-
ample, heat conduction in bulk material and convective heat transfer between bulk
material and inclusions. The detailed modelling of experimental results is there-
fore not possible due to our limited knowledge, but only in particular situations. In
Budapest, a research group 3 deals with the derivation and application of an effec-
tive thermal model with the technique of measuring the heat-pulse in various types
of materials,includingd 3D printed samples. In this direction, a possible next step
is to transfer such knowledge into engineering applications. It was found that the
thermal properties depend not only on the material but also on its internal struc-
ture. Modern technologies make it possible to produce objects with a well-designed
internal structure (for example, 3D printing) for specific tasks. Since these metamate-
rials are also layered structures, the transfer of experiences and conclusions reached
in non-Fourier behaviour can contribute to such research. This means that if you
identify relationships between the internal structure and thermal properties, you
can develop a higher level thermal design methodology. At the same time, neither
physical explanations nor modelling techniques or computational methods are fully
developed, so further theoretical investigations are also needed.

3Finf here: http://irrev.energia.bme.hu/

http://irrev.energia.bme.hu/
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1.2 An overview of the dissertation

The structure of the dissertation is as follows:

Chapter 1 provides a brief introduction to non-linear and non-Fourier thermal
models, highlighting the motivation such extensions are needed.

Chapter 2 provides the historical background and derives Fourier’s law along
with its generalizations within various thermodynamic frameworks.

Chapter 3 introduces the Fourier equation, presents some classical analytical re-
sults, and discusses numerical solutions of the heat pulse experiment. Special atten-
tion is given to the temperature dependence of thermal conductivity.

Chapter 4 explores the Maxwell-Cattaneo-Vernotte evolution equation for heat
flux, which modifies Fourier’s law by incorporating thermal relaxation time as a key
parameter. This chapter also includes numerical solutions, and we propose an alter-
native extension of the Cattaneo equation, inspired by analogies with linear optics.

Chapter 5 focuses on the effects of nonlinear thermal conductivity and relax-
ation time by solving the one-dimensional Guyer-Krumhansl equation. We then
examine the implications of heat current vorticity by solving the two-dimensional
Guyer-Krumhansl equation under space- and time-dependent heat pulse boundary
conditions using a staggered numerical scheme. Particular emphasis is placed on the
transient evolution, where local temperature reduction effects are linked to the pres-
ence of whirling heat currents. Additionally, we investigate the role of slip boundary
conditions in the Guyer-Krumhansl model.

Chapter 6 explores potential applications of non-Fourier heat conduction equa-
tions, ranging from biological tissue modeling to laser welding processes.

Finally, the Conclusion chapter summarizes the key findings, offers a discussion,
and outlines future research directions.
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Chapter 2

Thermodynamic compatibility :
Second law

The heat conduction is based on the energy balance law and on the constitutive
equation, describing the material properties. Let us consider a rigid heat conductor
at rest w.r.t. a reference frame, where the mass density ρ is constant, the velocity
field is null (the material/substantial time derivative is equal to partial time deriva-
tive),the deformation in negligible(σ = 0, F = 0). Our starting point is the balance
of internal energy:

ρė +∇ · q − τ : L = ρr

Being L = ∇v = 0 and assuming negligible the source term, i.e. r = 0, we obtain

ρė +∇ · q = 0 (2.1)

where ρ is the mass density, q is the heat flux, e denotes the internal specific energy
and it can be expressed by e = c T, in case of constant specific heat c with T represents
the temperature. The overdot denotes the substantial or total time derivative, i.e.
d
dt =

∂
∂t + v · ∇, in this case it coincides with the partial derivative, indicated with ∂t

(because v = 0) and ∇· denotes the divergence operator.
This problem require a closure, i.e. is necessary to assign the costitutive equation

for the the heat flux. The classical costitutive equation is the Fourier’s law.
In classical irreversible thermodynamics (CIT) for heat conduction, the entropy

density s is the function of the internal energy only. The assumption of local equilib-
rium of thermal interaction leads to Fourier’s equation in the continuum case.

As mentioned in the introduction, several generalizations in order to reproduce
and explain experiments [10–21, 27, 28, 33, 37, 42] are necessary. In this case, the
generalization means the extension of the constitutive equation, this extension can
be done in the :

• time direction ,

• space direction.

The first one is called memory extension when the history of the material is con-
sidered, it is represented by extra time derivatives in the constitutive equation. The
second one is called non-local extension, where states are considered not only in a
spatial point but in its neighborhood, it is realized by extra space derivatives in the
constitutive equation.

The inertial, memory and non-local effects are best introduced by the extension
of the state space with new fields:

• dissipative fluxes,
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• internal variables.

or with the space derivatives of the state variables, i.e. its gradients (first order,
second order, . . . ).

There are several theories that extend the validity of Fourier’s law by additional
terms in the constitutive equation and that obtain generalizations of the Fourier’s
law. Some of them are consistent with thermodynamics workbench, others are not.

Non-equilibrium thermodynamics can characterize the deviation from local equi-
librium both in the entropy density and in the entropy flux by introducing dissipa-
tive fluxes, internal variables. However, one needs to derive an evolution equation
for them.

This led to the possibility of deriving the evolution equations for non-Fourier
heat flux, considering the evolution equations for thermomechanical variables as
well as the evolution equations for the fluxes of these thermomechanical variables.
Since for the latter they are not required to be assigned by means of a constitutive
equation, but being considered as unknowns on a par with the thermomechanical
variables, they must be added to the space of the states and equations of evolution
must be assigned.

In particular these new theoretical frameworks extend the classical thermody-
namic state space with these additional fields, as Rational Extended Thermody-
namics (RET) [54–57], Extended Irreversible Thermodynamics (EIT) [58–60], Non-
Equilibrium Thermodynamics with Internal Variables (NET-IV) [61–65] and GENERIC
[66–70]. The relation of these theories to the previously mentioned requirements
(well-posedness and second law) and benchmarks (experimental, kinetic theory com-
patibility) are very different, and also, their applicability is not the same (see also
[71]). In particular RET, EIT, and NET-IV are constructive. RT is capable of checking
the second law compatibility of the suggested constitutive equations. RET, EIT, and
NET-IV pay attention to the compatibility with the microscopic world, i.e. kinetic
theory of gases, where RET is the most strictly compatible, NET-IV is the least com-
patible, and EIT is situated between them. In addition, another point on which there
are differences is the hyperbolic symmetrical structure of equations. In RET it is es-
sential and we exploit, in the method of construction, the thermodynamic potentials
to obtain equations of hyperbolic symmetric evolution. The EIT is open to the possi-
bility of hyperbolic equations but does not make them a postulate. On the contrary,
these approaches may be compatible under certain conditions.

The variety of the methods and aspects is wide. In general, we expect the com-
patibility with the second law of thermodynamics. the space-time evolution and the
micro-scale background. The second law is the most important tool in the thermo-
dynamic theories, to study the thermodynamic compatibity, to derive the constrains
on the constitutive equations and to obtain asymptotically stable equilibrium. It is
expressed by

Σs = ρṡ +∇ · Js − ρ
r
θ
≥ 0 (2.2)

where s, Js, Σs represents the specific entropy, the entropy flux and the entropy pro-
duction, respectively; ρ is the mass density, T the absolute temperature and r the
heat specific source. The operator ”∇ · ” represents the divergence.

In Rational Thermodynamics (RT), Coleman and Noll formulated the principle
of entropy as:

The constitutive equations, which characterize the material properties of continuous media,
must be assigned so that the second law of thermodynamics (2.2) is automatically satisfied

(a priori).
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The entropy principle, formulated by Coleman-Noll, can seem to be an arbitrary
assumption, in that it seems to restrict processes rather than provide limitations on
constitutive equations. But Muschik and Ehrentrant proved that:

For the classical solutions of equations governing the thermomechanical of a continuum, the
second law of thermomechanical (2.2) imposes restrictions only on the constitutive

equations and not on the thermodynamic processes.

However, Coleman and Noll, presented an rigorous method to investigate the
second law of thermodynamics, called Coleman-Noll procedure [72]. After, Liu de-
veloped an alternative method [73], based on Lagrange multiplier, which today is
known as the Liu method and which was extended by Cimmelli, Oliveri and Triani
who introduced as constraints beyond the balance equations their differential con-
sequences [74, 75], called Metodo delle estese. We observe that the Coleman-Noll and
Liu procedures, when to consider a non-local state space, i.e. it is considered a state
space that in addition to containing the thermomechanical variables also contains
their gradients, lead to incompatibility with the second law of thermodynamics, for
example for the Kortweg fluid. In the latter category of fluids, it must be assumed
that the classical entropy flow proposed by Coleman-Noll, q/T, contains an addi-
tional term K, of an exclusively mechanical and non-thermal nature, called extraflux,
as I. Muller had already guessed during his PhD,

Js =
q
T
+ K.

In this way the entropy flux becomes the sum of the classical Coleman-Noll part plus
a non-equilibrium contribution due to higher order flows.

Another method of analysis of (2.2), introduced under the Classical Irreversible
Thermodynamics (CIT) theroy, is a phenomenological method called Onsager proce-
dure, in which the production of entropy Σs is expressed as a bilinear form of gener-
alized forces and flows, i.e. sum of products between generalized forces and flows

Σs =
n

∑
α=1

Fα · Jα ≥ 0. (2.3)

In this chapter, we will present the derivation of Fourier’s law and its exten-
sions, Cattaneo and Guyer-Krumhansl, within the various thermodynamic theories:
CIT, RT, RET, EIT; focusing in particular on the derivation within the Extended Irre-
versible Thermodynamics theory, highlighting how phenomenological coefficients
are modified to include the presence of non-linear effects, i.e. non constant material
parameters. This last assumption becomes necessary because in engineering appli-
cations, for example thermal conductivity, specific heat capacity, relaxation time, are
temperature dependent and taking them constant becomes too strong an assump-
tion [13–15]

2.1 Classical Irreversible Thermodynamics (CIT)

This section is dedicated to the derivation of Fourier’s law in classical irreversible
thermodynamics (CIT).

The classical irreversible thermodynamics, developed by Onsager and Prigogine,
is based on the local equilibrium hypothesis. Outside equilibrium, it is assumed that
any system depends locally on the same set of variables as when it is in equilibrium.
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This leads to a formal thermodynamic structure identical to that of equilibrium:
the intensive parameters such as temperature, pressure and chemical potentials are
the Legendre transformations determine definite quantities while maintaining their
usual meaning, the thermodynamic potentials are derived and all equilibrium ther-
modynamic relationships retain their validity.

The Classical Irreversible Thermodynamics (CIT) is the oldest thermodynamic
theory, which dates back to the 40-50’s and is based on semi-empirical methods,
thus defined as they are not mathematical methods hypothetical-deductive, but phe-
nomenological methods that are based on experiments that were conducted in the
laboratory [76]. It is a macroscopic theory and uses the Onsager method to analyze
the second law of thermodynamics.

The fundamental assumption underlying the CIT is that of local equilibrium.
It postulates that the relations, local and instantaneous, between the thermal and
mechanical properties of a physical system are the same as those of a uniform system
in equilibrium, i.e. the system is globally out of equilibrium, it remains locally in
equilibrium. This assumption implies that

• all the variables defined in equilibrium thermodynamics remain significant,
in particular variables such as temperature and entropy are strictly defined at
equilibrium, the value of these variables varies from one subsystem to another.
So these quantities remain uniform but take different values from subsystem to
subsystem, the system under consideration is assumed to be mentally divided
into a series of subsystems large enough to be treated as thermodynamic sub-
systems macroscopic, but small enough that the equilibrium is very close to
being achieved;

• relationships between state variables to equilibrium remain valid outside of
equilibrium provided that they are declared locally at every instant of time.
Therefore, entropy outside of equilibrium will depend on the same state vari-
ables as equilibrium;

From this hypothesis it follows that entropy depends only on the state variables
and not on their gradients, therefore it is a local function, i.e. s = s(e, zα) and in
differential form is

ds =
(

∂s
∂e

)
zα

de +
(

∂s
∂zα

)
e,zβ

dzα with β ̸= α

Defining, as in equilibrium thermodynamics, the absolute temperature T (and other
quantities as, the pressure, and the chemical potential and so on)

1
T

=

(
∂s
∂e

)
zα

1
T

mα =

(
∂s

∂zα

)
e,zβ

(2.4)

one obtains from this definition the local form of the Gibbs relation

Tds = de + mαdzα (2.5)

Our objective is to explicitly calculate the entropy production of the system and
also the entropy flux, in order to obtain this relation, we compute the time derivative
of the Gibbs relation

Tṡ = ė + mα żα (2.6)
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by multiplying for the mass density ρ and replacing the energy balance law and the
other balance law for zα we obtain the following expression for the rate of change of
the entropy

ρṡ = − 1
T
∇ · q + ..... (2.7)

A comparison of this expression and the general balance equation of entropy
permits to determine the expression for the entropy flux, Js, and for the entropy
production, Σs.

Now, is possible to see the expression for the entropy production is a sum of
products of thermodynamic flux Jβ and thermodynamic force Fα. In terms of them
the rate of entropy production presents the bilinear structure

Σs =
N

∑
β=1

Fβ · Jβ (2.8)

therefore the production of entropy is expressed as products of generalized forces
and flows and this theory uses the Onsager method to analyze the second law of
thermodynamics, or to ensure that this entropy production is not negative.

A solution that leads to a production of non-negative entropy, is to assume that
the flows are a linear combination of forces, as formalized with the following theo-
rems

Theorem 1 (Onsager 1937).
Sufficient condition for the (2.3) to apply is that the generalized flows are linear combination
of the generalized forces

Jβ =
N

∑
α=1

LβαFα

where Lβα is a symmetric and positive definite matrix, called matrix of the phenomeno-
logical coefficients [9].

In addition, for isotropic materials, the following principle is used

Principle 1 (Curie principle).
Only forces and flows of the same tensor order are coupled.

This principle is empirical, but it has been discovered that it is a mathematical
consequence of isotropic bodies, and it states that they couple scalars with scalars,
vectors with vectors, rank tensors 2 with rank tensors 2, and so on... Therefore, in
the case of non-isotropic bodies this principle loses its validity.

In general the fluxes and forces are not necessarily scalar quantities: they repre-
sent vectorial and tensorial quantities. Also, it should be noted that each individual
flow and force has the property of vanishing at equilibrium. It should be stressed
that the identification of thermodynamic flows and forces is arbitrary, in fact one
could, for example, include the factor 1/T in flow instead of force and in the same
way, The definitions of flows and forces could be exchanged. However, these differ-
ent choices are not crucial and have no direct consequences on the interpretation of
the final results. This is a little the limit of such a theory.

Observation 1 (CRITICISMS OF CIT). The criticisms of this method were:

What is meant by generalized forces and flows? Is there a rigorous mathematical definition?
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To answer these questions Onsager made an analogy with the conservative mechanical forces,
which as we know are the gradient of a potential mathb f F = nablaU, if the gradient is
different from zero, then the particle subject to this field of force starts moving. So, you can
imagine, for example

zα = ρ ⇒ ∇(zα) = ∇ρ

zα = θ ⇒ ∇(zα) = ∇T

where ∇ρ and ∇T represent a mass density and temperature gradient, respectively. If the
temperature gradient is different from zero, i.e. ∇T ̸= 0, means that the state of the ther-
modynamic system is not homogeneous. However, there are hottest and coldest zones of the
system (less dense and denser areas), then the heat, according to the second principle of ther-
modynamics flows spontaneously from the hottest zones to the coldest ones (particles flow
from denser to less dense areas). Thus, the temperature gradient, ∇θ, is interpreted as a
thermodynamic force that ”pushes’ heat heat from hot to cold zones, similarly the density
gradient, ∇ρ, is interpreted as a thermodynamic force that ”pushes’ particles from denser
zones to less dense zones.

Onsager’s interpretation, by analogy with the conservative mechanical forces, is not a
strict definition of what is a thermodynamic force, of what is a thermodynamic flux, and this
problem has not yet been solved. Therefore a criticism already made by Truesdell in the ’50s
is the lack of rigorous mathematical foundations, The method proposed by Onsager is also the
opposite of what a rigorous mathematics must do. He said:

”I want a mathematical definition of generalized forces and fluxes”

He also highlighted that the theorem 1 only considers thermodynamic processes in which
the fluxes are linear combinations of forces. Consequently, all those processes where this
assumption is not valid are cut off, but there is also a production of non-negative entropy,
Σs ≥ 0. So a series of processes are left out, the number of which we do not even know.

However, even if the method of Onsager does not enjoy the mathematical rigor that in-
stead enjoy the methods of Colemann-Noll and Liu, it is not to be discarded but must be seen
as an additional possibility, to determine certain processes.

2.1.1 Fourier’s Law

This Section describes is shown the derivation of Fourier’s law for a rigid conductor,
by the Onsager method which ensures compatibility with the second law of ther-
modynamics. The Fourier’s law is a classical prototype of the constitutive equations
leading to a parabolic partial differential equation, its simple classical derivation in
Classical Irreversible Thermodynamics is based on the second law of thermodynam-
ics.

We begin by considering a non-local space of the state

Z =< e,∇e >

and in order to close (2.1), we need a costitutive relations for the heat flux, entropy
flux and specific entropy as

q = q(e,∇e)
Js = Js(e,∇e)
s = s(e)



2.1. Classical Irreversible Thermodynamics (CIT) 17

where, we observe in the classical local equilibrium situation the entropy depends
only on the internal energy e (not on ∇e), and from the Gibbs relation

T ds = de

its derivative respect to the internal energy is the reciprocal absolute temperature

ds(e)
de

=
1
T

.

Then the temperature depends on the internal energy and T : e → T(e) is the caloric
equation of state, generally e = cv T with cv = de

dT the specific heat capacity.
Taking into account these considerations, the entropy production became

Σs = ρṡ + div Js = ρ
ds
de

∂e
∂t

+
∂Js

∂e
· ∇e +

∂Js

∂∇e
: ∇2e

= −ds
de

div q +
∂Js

∂e
· ∇e +

∂Js

∂∇e
: ∇2e

but the heat flux q is not a indipendent variable, therefore a constitutive equation of
the form must be assigned q = q(e,∇e), from which

div q =
∂q
∂e

· ∇e +
∂q

∂∇e
: ∇2e

and substituting it, we have

Σs = −ds
de

∂q
∂e

· ∇e − ds
de

∂q
∂∇e

: ∇2e +
∂Js

∂e
· ∇e +

∂Js

∂∇e
: ∇2e

=

(
∂Js

∂e
− ds

de
∂q
∂e

)
· ∇e +

(
∂Js

∂∇e
− ds

de
∂q

∂∇e

)
: ∇2e

We assume that the entropy flux is

Js =
ds
de

q =
q
T

so its derivatives are

∂Js

∂e
=

d2s
de2 q +

ds
de

∂q
∂e

∂Js

∂∇e
=

ds
de

∂q
∂∇e

and substituting

Σs =

(
d2s
de2 q +

ds
de

∂q
∂e

− ds
de

∂q
∂e

)
· ∇e +

(
ds
de

∂q
∂∇e

− ds
de

∂q
∂∇e

)
: ∇2e =

d2s
de2 q · ∇e

Then

Σs =
d2s
de2 q · ∇e ≥ 0 (2.9)

the simplest solution of this inequality is linear, in fact using the Onsager procedure,
we identify the generalized fluxes and forces as in Table 2.1

Then the relation (2.9) may be interpreted as the product between a generalized
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Classical thermal

Forces
d2s
de2∇e

Fluxes q

TABLE 2.1: Thermodynamic ‘forces’ and ‘fluxes’.

force and flow, for the theorem 1 and for the Curie principle 1 for the isotropic ma-
terial, the generalized flux is expressed as a linear function of the generalized force,
as follow

q = l
d2s
de2∇e = l ∇

(
1
T

)
= − l

T2∇T = −λ(T)∇T

where l represents the phenomenological coefficient, it is expressed by

l = λ(T) T2

where λ(T) > 0 represent the thermal conductivity, that in general is a function on
the temperature. Then we obtained the Fourier’s law

q = −λ(T)∇T (2.10)

with the Onsager procedure in CIT which guarantees that the entropy inequality is
automatically satisfied.

Now we observe that the non-linearity is introduced through the phenomeno-
logical coefficient, because the fraction l/T2 describes the thermal conductivity. In
order to obtain the linear case, i.e. the thermal conductivity is considered constant,
we must assume that l(T) = λ0T2 or simply T becomes T0 in λ(T). While, if the
thermal conductivity is temperature dependent, for example let us suppose (in first
approximation) it is a linear function of temperature [19, 20, 33], as follows

λ(T) = λ0 + a(T − T0) (2.11)

where λ0 is the thermal conductivity at the initial or reference temperature, a is a
material coefficient and could be positive or negative according to the increase or
decrease in thermal conductivity in relation to the temperature rise (non-zero value
of coefficient a induces a non-linearity of thermal conductivity), is necessary the fol-
lowing constraint

l = [λ0 + a(T − T0)] T2.

in order to guarantee the compatibility with the linear relation (2.11).
Hence the Fourier’s nonlinear heat model can be written as

ρ
∂e
∂t

+∇ · q = 0,

q = −λ(T)∇T.

Replacing the Fourier law into the energy balance law, you get

ρ
∂e
∂t

+∇ · (−λ(T)∇T) = 0.

wherein the thermal conductivity λ is expressed by (2.11). However, substituting
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the caloric equation of state, T(e), we obtain the well-known parabolic partial differ-
ential heat equation

ρ cv
∂T
∂t

−∇ · (λ(T)∇T) = 0.

Remark 1. It is possible to obtain the same entropy production (2.9) with the following
straightforward calculation

Σs = ρṡ +∇ · Js =
1
T

ρ ė +∇ · Js = ∇ ·
(

Js −
q
T

)
+ q · ∇

(
1
T

)
≥ 0

and the entropy flux is fixed by eliminating the first term in the last inequality, that is

Js =
q
T

thus the entropy production simplifies to

Σs = q · ∇
(

1
T

)
≥ 0

obviously as in (2.9). In fact, from e = e(T) we have T = T(e) and

d2s
de2 =

d
de

(
ds
de

)
=

d
de

(
1
T

)
= − 1

T2
dT
de

from which

Σs =
d2s
de2 q · ∇e = − 1

T2
dT
de

q · ∇e = − 1
T2 q · ∇T = q · ∇

(
1
T

)

2.2 Rational Thermodynamics (RT)

The Rational Thermodynamics was born with the school of Truesdell (1984) [77]
and and has the starting point in the fundamental document of Coleman (1964) and
Noll (1974) [72], its main purpose was to provide a rigorous method for the deriva-
tion of constitutive equations, thus in high contrast with CIT. To close the system of
balance laws, constitutive equations are necessary. The idea of Coleman and Noll
was to consider the law of entropy as a criterion for selecting a priori the class of
constitutive equations that satisfy this inequality for any process. The limitation of
this idea, as we will see, consists in the postulation that the flux of entropy is in
the form of Clausius, that is the relationship between the flux of heat and temper-
ature. Müller noted with the help of kinetic considerations that this requirement is
too restrictive and proposed to extend the principle of entropy with a general flow
of entropy as constitutive quantity [78] as we shall see in the theory of extended
rational thermodynamics.

The key points on which this theory is based are briefly presented below

• Absolute temperature and entropy are assumed as primitive concepts and are
introduced a priori.

• The principle of local equilibrium is not valid, so it is assumed that the behav-
ior of a system at a certain time instant can depend not only on the values in
that time instant but also on all past history.



20 Chapter 2. Thermodynamic compatibility : Second law

• The mathematical formulation of the second law of thermodynamics, which
essentially serves as a restriction on the form of constitutive equations is a
crucial point. The starting point is the Clausius-Planck inequality, which states
that between two equilibrium states A and B

∆S ≥
∫ B

A

dQ
T

that becomes
d
dt

∫
Ω

ρs dV +
∫

∂Ω
Js · n dσ +

∫
Ω

ρr
T

dV ≥ 0

and in local form
ρṡ + div(Js) +

ρr
T

≥ 0

In particular, the entropy flux Js is taken by Coleman and Noll in the form
q/T which in the following years is known as the classical form of the flow of
entropy.

Introducing also the free energy of Helmholtz ψ = e − T s and replacing the
energy balance law, which leads to the elimination of the source term, we get
the following inequality

−ρ(ψ̇ + sṪ) + σ : L − 1
T
∇T · q ≥ 0 (2.12)

Such inequality (2.12) is known as the Clausius-Duhem inequality and for a
thermomechanical process to be admissible any solution of the balance laws
must satisfy such inequality. Originally they were looking for solutions of the
laws of equilibrium and only later it was verified if these were compatible
with the Clausius-Duhem inequality, but obviously this was not an effective
approach. In fact, with the advent of this theory, we passed to another point
of view, that is, we make the entropy inequality satisfied a priori, or assign the
constituent relations to close the system of balance laws that meet the restric-
tions given by the second law. In this approach the important problem which
follows is the choice of independent variables, field variables such as mass
density, velocity, temperature, ... as there are further variables, which appear
within the (2.12), internal energy, heat flow, stress tensor, entropy...) which are
expressed in terms of the former by constitutive equations.

• The principle of equipresence. This principle states that if a variable is present
in a constituent equation, will a priori be present in all constitutive equations
and the conditions for the presence or absence of such independent variables
in a constitutive relation results from the Clausius-Duhem inequality.

• The principle of local action. This principle states that the behaviour of a ma-
terial point should be influenced only by points close to it. In other words, the
values assumed by the constitutive relations at a given point do not take into
account what happens at distant points; consequently, in a first order theory,
In order to be able to calculate the number of orders, the spatial derivatives
shall be omitted.

• The principle of material indifference requires that the constituent equations
be independent from the observer. This principle implies, first of all, that the
constitutive equations should be objective, i.e. form-invariant under arbitrary



2.3. Rational Extended Thermodynamics (RET) 21

time-dependent rotations and translations of the reference frames as expressed
by the Euclidean transformation. This means that the form of the constitu-
tive relations is not influenced by the superposition of any arbitrary and rigid
movement of the body. Secondly, the constituent equations must be indepen-
dent of reference system, in particular of its angular velocity. Of course, before
examining the effect of a change in structure on a constituent equation, it is
necessary to specify how the basic variables such as temperature, Energy, en-
tropy, thermal flux, stress tensor... behave under such transformation and are
expected to be objective.

2.2.1 Fourier’s Law

This Section describes the derivation of Fourier’s law, by the Coleman-Noll method
to guarantee compatibility with the second law of thermodynamics.

Let us consider the Clausius-Duhem inequality (2.12) in the case of rigid conduc-
tor

−ρ(ψ̇ + sṪ)− 1
T
∇T · q ≥ 0 (2.13)

We define a generic constitutive function Ψ on the state space Z = {e,∇e}, i.e.
Ψ = Ψ(e,∇e) and after some calculation from (2.13), where we use e = c T, we get

ρ

(
∂Ψ
∂e

+
s
c

)
ė + ρ

∂Ψ
∂∇e

· ∇̇e +
1
T
∇T · q ≤ 0

then the thermodynamic restrictions are obtained

ė /∈ Zρ

(
∂Ψ
∂e

+
s
c

)
= 0

∇̇e /∈ Zρ
∂Ψ

∂∇e
= 0

∇T, q ∈ Z ⇒ 1
T
∇T · q ≤ 0

from which

∂Ψ
∂e

= − s
c

(2.14)

Ψ = Ψ(e) (2.15)
1
T
∇T · q ≤ 0 (2.16)

A possible solution of (2.16) is Fourier’s Law

q = −λ∇T

in fact −λ q · q ≤ 0 which is trivially satisfied. This implies that the Fourier’s Law is
thermodynamical compatible in RT.

2.3 Rational Extended Thermodynamics (RET)

The first approach to an extended thermodynamic theory was carried out in a classi-
cal context by Ingo Müller [79], this is based on the modification of the Gibbs equa-
tion which also incorporates the effects of dissipative fluxes. This point of view has
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been adopted over the years by several authors and was the starting point of the
Extended Irreversible Thermodynamics (EIT) [58, 59].

Muller also criticized in [78] the RT because he did not agree with having to
assign the entropy flux in the classical form of Coleman-Noll

JS =
q
T

and an additional term K, called entropy extraflux was added

JS =
q
T
+ K

Furthermore, Muller thought that a thermodynamic theory should be constructed in
agreement with the kinetic theory.

The introduction of dissipative fluxes as independent variables, in addition to
the usual thermodynamic state variables, has profound implications: first, it goes
beyond the local equilibrium hypothesis because dissipative fluxes play an essential
role in the characterization of a state of non-equilibrium; secondly, the range of ap-
plicability of this extended theory (Extended thermodynamics ET) becomes wider
than that of CIT and RT. In other words, the extended thermodynamic theory is
applicable to phenomena far from equilibrium such as micro/nano fluxes, second
sounds, shock waves, and so on.

This approach has been criticized by Ruggeri [80] because the entropy produc-
tion depends largely on the choice of the entropy flux, and there are several field
equations for a different entropy flux. Moreover, the differential system is not a pri-
ori in the form of balance laws. This implies, from a mathematical point of view,
that it is not possible to define weak solutions and therefore impossible to study, in
particular, shock waves. On the other hands this request, which involves assuming
hyperbolic systems, eliminates many physical processes.

Later, a new approach was proposed by Liu and Müller in the classical context
[81] and by Liu, Müller and Ruggeri in a relativistic framework [82], which gave rise
to the so-called Rational Extended Thermodynamics (RET). The main results were
summarized in [54, 56].

The RET theory is a phenomenological theory which aims to reduce the gap between the
macroscopic world (RT) and the microscopic world (kinetic theory)

Indeed, if one a gas is considered, two complementary approaches can be adopted
to describe its behaviour: the continuous and the kinetic approaches. The first, the
macroscopic approach, is to describe of a gas behaviour by means of a system of
macroscopic equations, for example fluid dynamics, which are closed when appro-
priate constitutive relations are assigned. This is the classical context of CIT and
RT, in which the Navier-Stokes-Fourier (NSF) theory has played a fundamental role.
This theory has its limits : the nature of the resulting system is parabolic, it implies
that signals are propagated at infinite speed. Furthermore, these classical macro-
scopic theories are intrinsically limited to a state of non-equilibrium characterized
by a small value of the Knudsen number Kn, which represents a measure of gas
rarefaction:

Kn =
mean free path of molecule

macroscopic characteristic length
. (2.17)

The second one, the microscopic approach, is based on kinetic theory where it is
postulated that the state of gas is described by a distribution function, whose evo-
lution is governed by the Boltzmann equation (2.18). Kinetic theory is applicable to
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a non-equilibrium state characterized by a large value of the Knudsen number Kn.
However, this approach presents considereble problems in the analytic resolution of
the Boltzmann equation, this is the reason because the RET’s aims is to reduce the
gap between these two approaches: macroscopic and microscopic,

The mathematical framework of RET consists of a hierarchy of balance laws that
it is the same hierarchical structure as that seen in the system of momentum equa-
tions in kinetic theory with truncation to a certain arbitrary order of moments. How-
ever, in the RET theory the closure of hierarchical system is achieved thorough the
universal principles of physics: principle of objectivity, entropy, causality and stabil-
ity.

In fact, this theory is based on the work published by a mathematician of New
York, Harnold Grad in 1949, On the kinetic theory of rarefied gases [83], which leads to
the

The stress tensor and heat flux are not necessarily constitutive equations, but they have
their balance law.

This has brought to an end the foundations of rational thermodynamics (RT) accord-
ing to which for for the stress tensor σ and for the heat flux were assigned consti-
tutive equations, that were in agreement with the second law of thermodynamics.
These were used to characterize the material and to close the system. Like this

There is obviously an exact set of equations that are satisfied by the thermodynamic
variables, i.e. all conservation laws (conservation of mass, momentum, energy) but these do
not form a determined system, because there are additional variables, namely stress σ and
heat flux q, for which a special form is assumed in terms of thermodynamic variables and

their gradients. In particular, there is no universal relation which gives stress and heat flux
in terms of thermodynamic variables and their gradients of all orders.

H. GRAD

2.3.1 Guidelines of RET : Boltzmann Equation and the Moments, closure

The theory of Rational Extended Thermodynamics is based on an infinite system of
hierarchical balance laws, which must be satisfied by the moments of the distribu-
tion function f . Since a system consists of infinite equations, they must be truncated
to a certain order N and the resulting system to be solved needs a ”closure’ which is
obtained by taking into account:

• the entropy principle,

• strong causuality principle,

• the principle of objectivity.

Strictly using the kinetic theory of a monoatomic gas, which is based on the assump-
tion that the condition of the gas is described by a distribution function:

f = f (x, ξ, t) = f (x1, x2, x3, ξ1, ξ2, ξ3, t)

which represents the probability of finding a gas particle, at instant t, in the point
x = (x1, x2, x3) with velocity ξ = (ξ1, ξ2, ξ3). However, with f (x, ξ, t)dξ we indicate
the number density of (monatomic) molecules at the point x and time t that have
velocities between ξ and ξ + dξ.
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In absence of external forces the time-evolution of the distribution function f is
governed by the Boltzmann equation:

∂ f
∂t

+ ξi
∂ f
∂xi

= Q( f ) ⇔ ∂t f + ξi∂i f = Q( f ) (2.18)

vector form
∂ f
∂t

+ ξ · ∇ f︸ ︷︷ ︸
d f
dt

material derivative

= Q( f ) (2.19)

where Q( f ) represents the collision operator, it describes the effect of collisions be-
tween molecules of gas.

As is well known, all macroscopic thermodynamic quantities are identified as
moments of the distribution function, obtained by averaging f on the space of the
velocities:

F =
∫

R3
m f dξ

Fi1i2i3...ik =
∫

R3
m ξi1 ξi2 ξi3 ...ξik f dξ con i1, i2, ...ik ∈ 1, 2, 3 ed k ∈ N+

where m is the mass of a molecule and dξ = dξ1dξ2dξ3.
In particular

0th moment F =
∫

R3
m f dξ

1th moment Fi1 =
∫

R3
mξi1 f dξ

2th moment Fi112 =
∫

R3
mξi1 ξi2 f dξ

3th moment Fi112i3 =
∫

R3
mξi1 ξi2 ξi3 f dξ

...
...

kth moment Fi112i3...ik =
∫

R3
mξi1 ξi2 ξi3 ...ξik f dξ

As mentioned above, the collisional operator Q( f ) has a very complicated’ expres-
sion, which makes it almost impossible to solve the Boltzmann equation analytically.
Determination of the distribution function f, after an integration on the space of ve-
locities, allows the resolution of the macroscopic quantity. A way to solve the Bolt-
mann equation is to approximate it as did Grad in [83] giving rise to a hierarchical
system that satisfies moments.
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In fact, it is easy to note that the moments of function satisfy a hierarchy of the
balance laws where the flux of one density becomes the density in the next one

∂tF + ∂kFk = P
↙

∂tFi1 + ∂kFki1 = Pi1

↙
∂tFi1i2 + ∂kFki1i2 = Pi1i2

↙
∂tFi1i2i3 + ∂kFki1i2i3 = Pi1i2i3

...
...

...
∂tFi1i2i3...ij + ∂kFki1i2i3...ij = Pi1i2i3...ij

...
...

...
...

...
...

(2.20)

where Pi1i2i3...ij represent the productions

Pi1i2...ij =
∫

R3
m Qξi1 ξi2 · · · ξij dξ.

Taking Pii = 0, we note that the first five equations are exactly the conservation
laws, and correspond to the conservation laws of mass, momentum and energy, re-
spectively.

However, if we define the following quantities

h0 = −kB

∫
R3

f log f dξ

hi = −kB

∫
R3

f log f ξidξ

with kB being the Boltzmann constant, it is possible to prove the famous H-theorem:

∂th0 + ∂ihi = Σ ⩾ 0. (2.21)

If we identify h0, hi and Σ as the entropy density, the entropy flux, and the entropy
production, respectively, the previous theorem represents the balance law of entropy.

A fundamental postulate of the RET is based on the idea that a hierarchical sys-
tem of balance laws (2.20) truncated but with tensorial density of some arbitrary
order N, is interpreted as a phenomenological system describing some thermome-
chanical system. On this basis the following postulate has been formulated
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Postulate 1. Each thermodynamic system must be described by a truncated hierarchical
system at tensor density of order N

∂tF + ∂kFk = P
∂tFi1 + ∂kFki1 = Pi1

∂tFi1i2 + ∂kFki1i2 = Pi1i2

∂tFi1i2i3 + ∂kFki1i2i3 = Pi1i2i3
...

...
...

∂tFi1i2i3...iN + ∂kFki1i2i3...iN = Pi1i2i3...iN

(2.22)

where
U = (F, Fi1 , Fi1i2 , Fi1i2i3 , ..., Fi1i2i3...iN )

is the field of tensor densities, while

P, Pi1 , Pi1i2 , Pi1i2i3 , ..., Pi1i2i3...iN

are the productions.

As can be seen, the truncate system (2.22) is not a closed system, since the last
flux and all productions do not satisfied balance laws. The idea of RET ([56]) is to
assign the local constitutive equations for all productions and for the last flux:

Fi1i2i3...iN iN+1 = Fi1i2i3...iN iN+1(F, Fj1 , Fj1 j2 , Fj1 j2 j3 , ..., Fj1 j2 j3...jN )

σi1i2i3...ik = σi1i2i3...ik(F, Fj1 , Fj1 j2 , Fj1 j2 j3 , ..., Fj1 j2 j3...jN ) ∀k = 0, 1...N
(2.23)

where if k = 0, then σi0 = σ.
Particular attention should be paid to the definition of the temperature of the

non-equilibrium. If the study is limited to non-equilibrium thermodynamics under
the local equilibrium hypothesis, there are no conceptual difficulties in the tempera-
ture of the non-equilibrium. In fact, CIT or RT do not have such difficulty. However,
beyond the local equilibrium hypothesis to study highly nonequilibrium phenom-
ena, we encounter an extremely difficult problem. The definition of an appropriate
non-equilibrium temperature has always been a great challenge. In the RET (and
also kinetic theory), the so-called kinetic temperature, which is defined by the ther-
mal mean of the kinetic energy of a molecule, the equilibrium temperature has been
adopted as the non-equilibrium temperature.

Observation 2. We observe that the choice of the number of equations of the hierarchical
system is arbitrary, that is the choice of the order N of the tensor density to which the system
is to be truncated apparently arbitrary. So N you can choose large at will, and since increase
in N leads to an increase in the number of equations, the physical interpretation of the various
tensor densities becomes very difficult. Therefore, the choice of N should be made so that there
is agreement with the experimental data.

2.3.2 Cattaneo equation compatibility

The RET approach, unlike the RT and CIT theories, allows to demonstrate that the
evolution equation for heat flux proposed by Cattaneo [1], Vernotte [2] and Maxwell
[3] is compatible with the second law of thermodynamics.
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Consider a hierarchical system truncated to tensor density of order 2, that is con-
taining 4 scalar equations

∂tF + ∂kFk = P (2.24)
∂tFi1 + ∂kFki1 = Pi1 (2.25)

Now consider a rigid conductor, so with out deformation, density is constant and
then the two equations of the system (2.24)-(2.25) cannot be interpreted as, respec-
tively, the conservation law of mass and the balance law of momentum. However,
since the equation (2.24) is scalar it is interpreted as the energy balance law, whereas
the equation (2.25) being vector is interpreted as the balance law of a vector field, the
heat flux Taking this into account, by identifying

F = ρ e
Fk = qk

Fki1 = Qki1

P = 0
Pi1 = (rq)i1

one gets

ρ ∂te + ∂kqk = 0
∂tqi1 + ∂kQki1 = (rq)i1

and in vector form

ρ ∂te +∇ · q = 0 (2.26)
∂tq +∇ · Q = rq (2.27)

For the system consisting of (2.26)-(2.27) to be closed, it is necessary to assign the
constitutive relations for the last flux and for all productions. Let as consider a local
state space

Z =< e, q >

where the clear difference with RT is observed, in fact it assumes the dissipative
fluxes are in the state space, in this case the heat flux, for which a constitutive equa-
tion is no longer necessary but, in agreement with the guidelines of the RET, being an
unknown field it also needs an evolution equation. Then the constitutive relations,
all defined in the same way (i.e. depend of all field variables), are

Q = Q(e, q)
rq = rq(e, q)
s = s(e, q)
Js = Js(e, q)

Introducing the entropy inequality

Σs = ρ ṡ + div Js ≥ 0
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wherein the entropy flux is expressed in the classical form Js = q/T, therefore the
inequality assumed the following form

Σs = ρ ṡ + div
q
T

= ρ ṡ +
1
T

div q − 1
T2 q · ∇T ≥ 0

and after the time derivative of entropy has been explained, replacing the energy
balance law (2.26) and balance law of heat flux (2.27), we get

Σs = ρ
∂s
∂e

ė + ρ
∂s
∂q

· q̇ +
1
T

div q − 1
T2 q · ∇T

=

(
∂s
∂e

− 1
T

)
div q + ρ

∂s
∂q

·
(
−div Q + rq

)
− 1

T2 q · ∇T ≥ 0

Moreover, substituting the divergence of Q = Q(e, q) the inequality becomes

Σs =

(
∂s
∂e

− 1
T

)
div q−

(
ρ

∂s
∂q

· ∂Q
∂e

)
·∇e−

(
ρ

∂s
∂q

· ∂Q
∂q

)
: ∇q+ ρ

∂s
∂q

· rq −
1

T2 q ·∇T ≥ 0

and assuming e = cv T with cv the specific heat capacity (assumed constant) we
obtain the final form of the entropy production

Σs =

(
∂s
∂e

− 1
T

)
div q−

(
ρ cv

∂s
∂q

· ∂Q
∂e

+
1

T2 q
)
·∇T−

(
ρ

∂s
∂q

· ∂Q
∂q

)
: ∇q+ ρ

∂s
∂q

· rq ≥ 0.

Therefore, the thermodynamic restrictions are:

div q /∈ Z ⇒ ∂s
∂e

− 1
T

= 0

∇T /∈ Z ⇒ ρ cv
∂s
∂q

· ∂Q
∂e

+
1

T2 q = 0

∇q /∈ Z ⇒ ρ
∂s
∂q

· ∂Q
∂q

= 0

rq ∈ Z ⇒ ρ
∂s
∂q

· rq ≥ 0

from which

∂s
∂e

=
1
T

(2.28)

ρ cv
∂s
∂q

· ∂Q
∂e

+
1

T2 q = 0 (2.29)

∂Q
∂q

= 0 (2.30)

ρ
∂s
∂q

· rq ≥ 0 (2.31)

A possible solution to the (2.30) is given

Q =
λ

τ
TI
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where λ and τ represent the thermal conductivity and the relaxation time of the heat
flux, respectively. Now assuming

s(e, q) = seq(e) + s̃(q)

by using the restriction (2.29) one has

0 = ρ cv
∂s
∂q

· ∂Q
∂e

+
1

T2 q =
ρ λ

τ

∂s̃
∂q

· I +
1

T2 q =
ρ λ

τ

∂s̃
∂q

+
1

T2 q

from which
∂s̃
∂q

= − τ

ρλT2 q (2.32)

after integrating

s̃(q) = − τ

2ρλT2 q · q.

Then the entropy assumes the following form

s(e, q) = seq(e)−
τ

2ρλT2 q · q

where
∂seq(e)

∂e
=

1
T

from (2.28). Finally, by replacing what was previously obtained in the reduced in-
equality (2.31) we have

− τ

2ρλT2 q · rq ≥ 0

if the source term as the following form

rq = −q
τ

(2.33)

the reduced inequality is trivially satisfied, in fact it results

1
2ρλT2 q · q ≥ 0

In conclusion, the second principle of thermodynamics is automatically satisfied if
the following constitutive equations are assigned

Q =
λ

τ
TI (2.34)

rq = −q
τ

(2.35)

s(e, q) = seq(e)−
τ

2ρλT2 q · q = seq(e)−
τc2

v
2ρλe2 |q|2 (2.36)

Js =
q
T

(2.37)

It can be observed that from the constitutive equations obtained (2.34)- (2.35),
which satisfy the second principle of thermodynamics,one obtains easily the MCV
equation, in fact replacing them in the system (2.26)-(2.27) and using the relation
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e = cvT you get

ρ cv
∂T
∂t

+ div q = 0

τ
∂q
∂t

+ q = −λ∇T

Observation 3. The following expression for temperature can be obtained

∂s
∂e

=
∂seq

∂e
+

τc2
v

ρλe3 |q|2 ⇔ 1
T

=
1

Teq
+

τc2
v

ρλe3 |q|2

which can be interpreted as non-equilibrium temperature, T, is composed by two contri-
butions, the first term related to the equilibrium temperature, Teq, the second addend rep-
resents a non-equilibrium term related to dissipative fluxes through the heat flux module
|q|2 = q · q. Let us observe that the latter term is different from zero when you are far from
equilibrium (q ̸= 0), while it is null at equilibrium (q = 0). In this case, the temperature is
defined as

1
T

=
∂seq

∂e
≡ 1

Teq
.

This observation allows the concept of temperature to be extended, which needs generaliza-
tion, i.e. the introduction of the concept of temperature of non-equilibrium. Similarly from
relation (2.36) the expression of non equilibrium entropy is obtained

s(e, q) = seq(e)−
τ

2ρλT2 q · q = seq(e)−
τc2

v
2ρλe2 |q|2.

The term of non-equilibrium is always positive, according to the principle of equilibrium
(q = 0).

2.4 Extended Irreversible Thermodynamics (EIT)

The Extended Irreversible Thermodynamics was born in Spain by Casas-Vasquez,
Jou and Lebon [58, 59, 84], with the aim of proposing a theory that goes beyond the
classical formulation of irreversible thermodynamics (CIT). This theory is achieved
by expanding the state space by introducing in addition to the classical variables,
new non-equilibrium variables such as dissipative fluxes appearing in the mass, mo-
mentum and energy balance equations. However, the next step is to determine the
evolution equations for these additional variables. Whereas the evolution equations
of classical variables are provided by balance laws, there are no general criteria for
the evolution equations of fluxes except for the restrictions imposed on them by the
second law of thermodynamics.

The independent character of dissipative fluxes is evident in high frequency phe-
nomena. In general, they are fast variables that decay to their local equilibrium val-
ues after a short time of relaxation. Many authors have studied the elimination of
these fast variables, we describe phenomena at frequencies comparable to the in-
verse of flow relaxation times, including these variables. Therefore, at such time
scales, it is natural to include the fast (dissipative flows) in the set of basic indepen-
dent variables. A simple way to obtain the evolution equations for flows from a
macroscopic point of view is to generalize the classical theories presented in the pre-
vious sections. Many authors have studied the elimination of these fast variables,
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being that we want to describe phenomena at frequencies comparable to the inverse
of the relaxation times of the fluxes, therefore, in such time scales, it is natural to
include these variables (dissipating fluxes) in the set of basic independent variables.
A simple way to obtain the equations of flux evolution from a macroscopic point of
view is to generalize the classical theories presented in the previous sections.

In particular, it is assumed the existence of a generalized entropy function which
depends on the dissipative fluxes and on the classical variables as well. A physical
interpretation of the different contributions to the generalized entropy is propose.
Once this expression is known, it is an easy matter to derive generalized constitutive
relations.

In this dissertation, we focus on the problem of heat transport in a rigid isotropic
body when only the heat flux is introduced as an additional variable.

2.4.1 Guidelines of EIT

As in CIT, the entropy and the Gibbs equation play a central role in EIT. The fun-
damental idea of EIT is to extend the concepts of entropy, the Gibbs equation, the
entropy flux and temperature of the non-equilibrium, adding terms that depend on
dissipative fluxes. Here, it is assumed that the entropy will not depend only on clas-
sical variables, such as specific internal energy e, but in addition on the heat flux q
and the flux of heat flux Q (a tensor of rank two),

s = s(e, q, Q) (2.38)

The following properties will be attributed to generalized entropy properties:

• It is an additive quantity

• It is a concave function of the set of variables

• Its production rate is locally positive.

The hypothesis of a generalized macroscopic entropy dependent on dissipative fluxes
was advanced in 1953 by Machlup and Onsager indirectly. During the 1960s a more
direct formulation applied to fluids was developed by Nettleton (1959) and Muller
(1967). In 1970s, new formulations were proposed independently by several authors
and have inspired many researches including Gyarmati, Jou, Garcia-Colin et al.

The differential form of the generalized entropy is written as follows:

ds =
∂s
∂e

de +
∂s
∂q

· dq +
∂s
∂Q

: dQ

In analogy with the classical theory, we define the non-equilibrium temperature θ by

1
θ
=

∂s
∂e

∣∣∣
q,Q

(2.39)

not to be confused with the local-equilibrium temperature

1
T

=
∂s
∂e

∣∣∣
q=0,Q=0

We note that in the CIT, one assumes the local-equilibrium hypothesis, where it is as-
sumed that, despite the fact that the system is globally out of equilibrium, it remains
locally in equilibrium. In other words, it is assumed that it may be decomposed in
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subsystems small enough to be almost homogeneous at the macroscopic scale, and
large enough, on the microscopic scale, to have many particles in such a way that
macroscopic quantities keep a well-defined meaning.

Within this framework, the problem of a generalization of temperature does not
even arise: it is assumed that the entropy and all the derived equations of state keep
locally the same meaning as in equilibrium, and that temperature coincides with that
indicated by a sufficiently small and fast thermometer. The problem of the meaning
of entropy and temperature arises when one goes beyond the local equilibrium, as
in this case, because genuinely non-equilibrium contributions must be taken into
account in the entropy and, consequently, in temperature.

This explains the motivation that we need to extend the concept of entropy, Gibbs
relation, temperature of non-equilibrium and entropy flux [85–87].

The inverse of non-equilibrium temperature can be expanded around the inverse
of the local-equilibrium temperature and written as

θ−1 = T−1 + α(e)q · q + β(e)Q : Q

where the coefficients α(e) and β(e) depend generally on e.
The remaining partial derivatives are

∂s
∂q

= −α1(e, q, Q),

∂s
∂Q

= −α2(e, q, Q),

in particular without losing generality it is assumed

α1(e, q, Q) = m(e)q,
α2(e, q, Q) = M(e)Q,

from which we obtain the generalized Gibbs equation

ds =
1
θ

de − m(e)q · dq − M(e)Q · dQ

Furthermore, we postulate the entropy flux Js as

Js =
q
θ
+ K (2.40)

where the classical term q/T is replaced with q/θ and an additional contribution
is present, for example in terms of Q · q. Then we compute the entropy production
Σs = ρṡ + ∇ · Js and requiring it to be is non-negative, we get the shape of the
evolution equations for the dissipative fluxes q, Q.

In the following we present the thermodynamic compatibility of MCV and GK
evolution equations.

2.4.2 Cattaneo equation compatibility

In order to obtain the Cattaneo evolution equation for the heat flux q, we assume
that the state space is spanned by variables (e, q),

Z =< e, q >
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the idea is to consider the heat flux q as a state variable, for which is necessary to
determine an evolution equation of the form

q̇ = f(e, q) (2.41)

and to close the system (2.1)-(2.41), we need a costitutive relations for the function f,
the entropy flux and specific entropy as

f = f(e, q)
Js = Js(e, q)
s = s(e, q)

In EIT we assume the following extended form for the specific entropy

s(e, q) = seq(e)−
m(e)

2
q · q, (2.42)

where seq is the classical specific entropy representing equilibrium entropy and m(e)
is a positive function, this guarantees that entropy is a concave function and maxi-
mum at the equilibrium (i.e. q = 0).

The resulting generalized Gibbs relation is expressed by

ds =
∂s
∂e

de +
∂s
∂q

· dq ⇐⇒ ds = θ−1de − m(e)q · dq

where the derivative of specific entropy w.t.r the internal energy and heat flux are,
respectively

ds
de

(e, q) =
1
T
− 1

2
dm(e)

de
q · q ≡ 1

θ
(2.43a)

ds
dq

(e, q) = −m(e)q (2.43b)

We compute the entropy production

Σs = ρṡ +∇ · Js = ρ
∂s
∂e

ė + ρ
∂s
∂q

· q̇ +∇ · Js

= −∂s
∂e
∇ · q + ρ

∂s
∂q

· f(e, q) +∇ · Js

= −1
θ
∇ · q − ρ m(e)q · f(e, q) +∇ · Js

= −ρ m(e)q · f(e, q)−∇ ·
(q

θ

)
+∇

(
1
θ

)
· q +∇ · Js

= −ρ m(e)q · f(e, q) +∇ ·
(

Js −
q
θ

)
+∇

(
1
θ

)
· q

Now we assume the classical form for the entropy flux, but we replace the equi-
librium temperature T with the non-equilibrium temperature θ

Js =
∂s
∂e

q =
q
θ
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this implies that the entropy flux contains an extra non-equilibrium term from the
definition of the non-equilibrium temperature (2.43a), i.e.

Js =
q
T
−
(

1
2

dm(e)
de

q · q
)

q

and one has

Σs =

[
∇
(

1
θ

)
− ρ m(e) f(e, q)

]
· q (2.44)

The simplest solution of this inequality is linear, in fact using the Onsager procedure,
we identify the generalized fluxes and forces as in Table 2.2.

Thermal
Forces q
Fluxes ∇

( 1
θ

)
− ρ m(e) f(e, q)

TABLE 2.2: Thermodynamic ‘forces’ and ‘fluxes’.

Then the relation (2.44) is the product between a generalized forces and fluxes,
for the theorem 1 and the Curie principle 1 (for the isotropic material), the gener-
alized fluxes are expressed as a linear function of the generalized forces (Onsager-
Casimir relation [9]), as follow

∇
(

1
θ

)
− ρ m(e) f(e, q) = l q

where l = l(e, q) is the phenomenological coefficient, with l ≥ 0. After some manip-
ulation is possible to determine

f(e, q) = − l(e, q)
ρ m(e, q)

q +
1

ρ m(e, q)
∇
(

1
θ

)
substituting into the evolution equation of the heat flux (2.41) we obtain

ρ m(e, q)
l(e, q)

q̇ + q = l(e, q)∇
(

1
θ

)
,

from which
ρ m(e, q)

l(e, q)
q̇ + q = − l(e, q)

θ2 ∇θ.

Identifying with

τ =
ρ m(e, q)

l(e, q)
, λ̃ =

l(e, q)
θ2

the relaxation time and the generalized thermal conductivity, respectively, the Maxwell-
Cattaneo-Vernotte evolution equation for the heat flux

τ∂tq + q = −λ̃∇θ (2.45)

is obtained. Here, we observe the temperature that appears in (2.45) is the non-
equilibrium temperature and if we expand the gradient of this temperature

∇
(

1
θ

)
= ∇

(
1
T

)
− 1

2
∇
(

dm(e)
de

q · q
)
− dm(e)

de
∇q · q
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from which

− 1
θ2 ∇θ = − 1

T2 ∇T − 1
2
∇
(

dm(e)
de

q · q
)
− dm(e)

de
∇q · q

moreover substituting in (2.45) the Cattaneo equation with additional terms, but in
which the local equilibrium temperature T appears

τ∂tq + q = −λ∇T − l(e, q)
2

∇
(

dm(e)
de

q · q
)
− l(e, q)

dm(e)
de

∇q · q. (2.46)

where

τ =
ρ m(e, q)

l(e, q)
, λ =

l(e, q)
T2

are the relaxation time and the thermal conductivity, respectively.

Remark 2. For small heat flux values, the contribution of order q · q in the absolute tem-
perature (non-equilibrium temperature) can be neglected, so that θ coincides with the local-
equilibrium temperature T. Then, one gets

τ∂tq + q = −λ∇T. (2.47)

Remark 3. If the function m(e, q) is constant, i.e. m(e, q) = m achieves

τ∂tq + q = −λ∇T (2.48)

where

τ =
ρ m

l(e, q)
, λ =

l(e, q)
T2

and the non-equilibrium temperature θ coincides with the local-equilibrium temperature T
and the entropy flux is in the classical form, i.e.

1
θ
≡ 1

T
, Js =

q
T

.

Alternative method

An alternative method to obtain the Cattaneo evolution equation is to extend the
state space by adding the heat flux q, extend the entropy but leave the entropy flux
in the classical form of Colemann-Noll Js = q/T.

Specifically assuming the state space is spanned by variables (e, q), [29, 30, 42],

Z =< e, q >

it is necessary to determine an evolution equation of the form (2.41). Let us introduce
the extended specific entropy as (2.42)

s(e, q) = seq(e)−
m(e)

2
q · q,

Taking into account the Gibbs relation

ds =
(

1
T
− 1

2
dm(e)

de
q · q

)
de − m(e)q · dq,
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the energy balance equation (2.1) and the expression for the entropy flux

Js = q/T

after some rearrangements the entropy production reads

Σs =

[
∇
(

1
T

)
− ρ m(e, q) f(e, q)−

(
1
2

dm(e)
de

∇ · q
)

q
]
· q.

Limiting the case to ∂em(e) = 0, hence m(e) = m is a positive constant, one
obtains

σs =

[
−ρ m ∂tq +∇

(
1
T

)]
· q ≥ 0.

Following Onsager’s procedure [9], a relation between the thermodynamic fluxes
and forces is provided

−ρ m
∂q
∂t

+∇
(

1
T

)
= lq,

where the phenomenological coefficients m and l are positive functions. The follow-
ing identifications

τ =
ρ m

l
, λ =

1
lT2 (2.49)

lead to the nonlinear MCV heat equation

τ(T)
∂q
∂t

+ q = −λ(T)∇T.

Now suppose that thermal conductivity is expressed by (2.11) and the relaxation
time is also linearly related to the temperature, as follows

τ(T) = τ0 + b(T − T0) (2.50)

wherein τ0 is the relaxation time at the initial or reference temperature, b is the coef-
ficient that assumes positive or negative values in relation to the increase or decrease
of the relaxation time caused by the temperature change. A non-zero value of the
parameter b generates the non-linearity of the relaxation time. After taking into ac-
count the identifications (2.49), in order to get these linear expressions for λ and τ,
(2.11) and (2.50), the following constraints arise, [29, 30]:

l(T) =
1

[λ0 + a(T − T0)] T2 , ρm =
τ0 + b(T − T0)

[λ0 + a(T − T0)] T2 .

Since m is a constant, it is necessary to consider a temperature-dependent mass den-
sity, ρ = ρ(T), that refers to the presence of mechanical effects. Therefore, while it
would contradict our basic assumption of dealing with rigid material, we still find it
necessary to study that particular subsystem without mechanics but with the inclu-
sion of the nonlinear term, ρ = ρ(T).

When dm(e)
de ̸= 0, i.e we consider the case in which the quantity m is a function

depending on the internal energy (i.e. on the temperature) and the following consti-
tutive relation is obtained

−ρm(e) ∂tq − 1
2

dm(e)
de

(∇ · q)q −∇
(

1
T

)
= lq (2.51)
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under the previous identification, one has

τ(T)∂tq +

(
I +

1
2cvl

dm(T)
dT

∇ · q
)

q = −λ(T)∇T (2.52)

where I stands for the identity tensor and cv = de
dT .

2.4.3 Guyer-Krumhansl equation compatibility

In the case of rigid conductor the following system yields

ρ∂te +∇ · q = 0
∂tq +∇ · Q = rq

where Q represents the flux of the heat flux and rq is the source term. To close
this system we must assign the constitutive relations for the last flux and for all
productions, let us consider the non-local state

Z =< e, q,∇e,∇q > .

The constitutive relations to be determined are:

Q = Q(e, q,∇e,∇q)
rq = rq(e, q,∇e,∇q)
s = s(e, q,∇e,∇q)

Js = Js(e, q,∇e,∇q)

In particular, we assume that the heat flux is written

Js =
q
θ
+ K

moreover let us observe that without involving the extra-flux of entropy K, as we
will see it will not be possible to reproduce GK heat equation. Now let’s calculate
the entropy production

Σs = ρṡ +∇ · Js = ρṡ +∇ ·
(q

θ
+ K

)
= ρ

∂s
∂e

ė + ρ
∂s
∂q

· q̇ + ρ
∂s

∂∇e
· ∇̇e + ρ

∂s
∂∇q

: ∇̇q +
1
θ
∇ · q − 1

θ2 q · ∇θ +∇ · K

= ρ

(
∂s
∂e

− 1
θ

)
ė +

∂s
∂∇e

· ∇̇e +
∂s

∂∇q
: ∇̇q −

(
∂K
∂e

− ρ
∂s
∂q

· ∂Q
∂e

− 1
ρcvθ2 q

)
· ∇e

+

(
∂K
∂q

− ρ
∂s
∂q

· ∂Q
∂q

)
: ∇q +

(
∂K

∂∇e
− ρ

∂s
∂q

· ∂Q
∂∇e

)
: ∇2e(

∂K
∂∇q

− ρ
∂s
∂q

· ∂Q
∂∇q

)
: ∇2q +

∂s
∂q

· rq
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The entropy production in components assumes the following form

Σs = ρ

(
∂s
∂e

− 1
θ

)
ė +

∂s
e,j

ė,j +
∂s

∂qi,j
q̇i,j −

(
∂Kj

∂e
− ρ

∂s
∂qi

∂Qij

∂e
− 1

ρcvθ2 qj

)
e,j+

+

(
∂Kj

∂qm
− ρ

∂s
∂qi

∂Qij

∂qm

)
qm,l +

(
∂Kj

∂e,m
− ρ

∂s
∂qi

∂Qij

∂e,m

)
e,ml

+

(
∂Kj

∂qm,l
− ρ

∂s
∂qi

∂Qij

∂qm,l

)
ql,mj +

∂s
∂qi,j

(rq)j

where the comma ,j indicated the partial spatial derivative respect to xj. Then the
constrains imposed from the second law are

ė /∈ Z ⇒ ∂s
∂e

=
1
θ

(2.54)

ė,j /∈ Z ⇒ ∂s
∂e,j

= 0j (2.55)

q̇i,j /∈ Z ⇒ ∂s
∂qi,j

= 0ij (2.56)

e,mj /∈ Z ⇒
∂K(j

∂e,m)
− ρ

∂s
∂qi

∂Qi(j

∂e,m)
= 0(jm) (2.57)

ql,mj /∈ Z ⇒
∂K( j
∂qm),l

− ρ
∂s
∂qi

∂Qi(j

∂qm),l
(2.58)

e,j, qm,j, (rq)j ∈ Z ⇒
(

∂Kj

∂e
− ρ

∂s
∂qi

∂Qij

∂e
− 1

ρcvθ2 qj

)
e,j +

(
∂Kj

∂qm
− ρ

∂s
∂qi

∂Qij

∂qm

)
qm,l

+
∂s

∂qi,j
(rq)j ≥ 0 (2.59)

From the relations (2.55)-(2.56) follows s = s(e, qj). Moreover from (2.57)-(2.58) it
obtains

Kj = ρ
∂s
∂qi

Qij + φj(e, qk)

φj = φj(e, qk)

A solution compatible with (2.59) is

Qij = −l2
[

1
2
(qi,j + qj,i) + 2qk,kδi,j

]
(rq)j = −

qj

τ
− λ

τ
θ,j
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see for details [86, 87]. In conclusion, we choose ϕj = 0 and in compact form we
have

Q = −l2 [(∇q)sym + 2∇ · qI] (2.60)

rq = − 1
τ

q − λ

τ
∇θ (2.61)

s(e, q) = seq(e)−
τ

2λθ2 q · q = seq(e)−
τρ2c2

v
λe2 |q|2 (2.62)

Js =
q
θ
− τ

2λθ2 q · Q (2.63)

Substituting the relations (2.60) and (2.61) in the balance law for the heat flux, we get

τ∂tq + q = −λ∇θ + l2 [∆q + 2∇(∇ · q)]

We note that the non-equilibrium temperature θ consists of two contributions :

1
θ
=

∂s
∂e

=
dseq(e)

de
− τρ2c2

v
λe3 |q|2 =

1
T
− τρ2c2

v
λe3 |q|2

one is related to the equilibrium temperature, the other one is related to the heat
flux |q|2 = q · q and represents the contribution of the non-equilibrium. However,
if this contribution is neglected, the classical definition of temperature is achieved
1/θ = 1/T and we obtain

τ∂tq + q = −λ∇T + l2
p [∆q + 2∇(∇ · q)] (2.64)

where l2
p is the the phonon mean-free path.

Starting from the linearized Boltzmann equation in the Callaway approximation,
Guyer and Krumhansl obtain the following evolution equation [4–6]

τR∂tq + q = −1
3

τRρcvc2
0∇T +

1
5

c2
0τN [∆q + 2∇(∇ · q)] (2.65)

Clearly, the expression (2.64) obtained above is the same as relation (2.65) obtained
by Guyer and Krumhansln [4–6] with the following identifications

τ = τR, λ =
1
3

τRρcvc2
0, l2

p =
1
5

c2
0τN

where the relaxation time of the heat flux is then identified as the relaxation time
of the resistive phonon collisions and the coefficient l2

p, associated to non-locality,
is related to the relaxation time of the normal phonon collisions, emphasizing the
interdependency of normal collisions and non-locality.

Note that the Guyer-Krumhansl equation is often used to study heat transport
in non-metallic solids. However, it should be noted, that, like the Fourier law, the
Guyer-Krumhansl equation predicts that signals propagate at infinite velocity be-
cause the corresponding temperature equation (T-representation) obtained by re-
moving the heat flux in the energy balance law is parabolic, as we will see in Chapter
5. In literature are present generalized Guyer-Krumhansel equations.
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2.4.4 Thermodynamical compatibility of hyperbolic generalization of Guyer-
Krumhansl

Our objective is first, to generalize the Guyer–Krumhansl’s equation by introduc-
ing the second-order tensor Q as a indipendent variable; secondly, circumvent the
problem of infinite velocity of propagation.

In the following, the state space is formed by

Z = {e, q, Q} = {e, q,
0
Q, Q}

where the second order tensor Q (assumed to be symmetric) is splitted into its devi-

atoric
0
Q and bulk part Q (the trace of Q), i.e. Q = QI +

0
Q. The evolution equations

are

ρ∂te +∇ · q = 0
∂tq +∇ · Q = rq

∂tQ +∇ · Φ = rQ

and it is possible to prove that the evolution equations for Q and
0
Q, compatible with

the second law, can be written as follows

ρ∂te +∇ · q = 0
∂tq +∇ · Q = rq

τ1∂tQ + Q = γ1∇ · q

τ1∂t
0
Q +

0
Q = γ2(∇q)0

sym

where (∇q)0
sym denotes the symmetric and traceless part of ∇q, for further details

see [58, 59, 84, 87, 88].
We observe that assuming the relaxation times τ1 and τ2 negligible we get the

Guyer-Krumhansel model (2.64)

τ∂tq + q = −λ∇T + γ1∆q +

(
γ0 +

1
3

γ2

)
∇(∇ · q)

Clearly, this expression is the same as (2.64) with the following identifications

τ = τR, γ1 =
5
3

l2
p γ2 = l2

p

However in this case it is easily derived by introducing extended constitutive equa-
tions for the specific entropy and the entropy flux of the form, respectively

s(e, q,
0
Q, Q) = seq(e)−

τ

2λθ2 q · q − τ1

4λθ2γ1
Q2 − τ2

4λθ2γ2

0
Q :

0
Q

Js =
q
T
− τ

2λθ2 Q q − τ

2λθ2 q ·
0
Q

the symbol : denotes the complete contraction of the corresponding tensors which

gives a scalar as result, and the symbol q ·
0
Q denotes the contraction of the last index
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of Q, giving a vector as result.
The reciprocal of absolute temperature is given by the derivative of entropy w.r.t.

internal energy (keeping constant the values of the other extensive variables) and it
is obtained

1
θ
=

∂s
∂e

=
dseq(e)

de
− d

de

( τ

2λθ2

)
q · q − d

de

(
τ1

4λθ2γ1

)
Q2 − d

de

(
τ2

4λθ2γ2

)
0
Q :

0
Q

=
1
T
− d

de

( τ

2λθ2

)
q · q − d

de

(
τ1

4λθ2γ1

)
Q2 − d

de

(
τ2

4λθ2γ2

)
0
Q :

0
Q

this is in agreement with the experimental evidence that the local-equilibrium tem-
perature loses its validity in situations where the deviation from equilibrium is not
negligible, such as heat propagation in nanosystems.

Remark 4. If we disregard the two relaxation times for the second order tensor Q, i.e.
τ1, τ2 → 0 we get the Guyer-Krumhansl model (2.64).

2.5 Non-Equilibrium Thermodynamic with Internal Variables
(NET-IV)

The classical theory of irreversible processes (CIT or TIP), as already mentioned in
Section 2.1, is not sufficient for such a description of phenomena far from equilib-
rium, since the basic hypothesis on which it is based is the local thermodynamic
equilibrium. According to the classical formulation, thermodynamic quantities and
equations of state are valid in local equilibrium, even if the total system is not in
equilibrium. Therefore, the principle of local equilibrium suggests a localization.

The introduction of additional fields, the internal variables [65, 89–94], can be
considered as a universal tool for modelling macroscopic theories since they allow
a quantitative characterization of the deviation from the local equilibrium, and can
express: microstructural effects, heterogeneity of the material, delay in heat conduc-
tion and so on.

These variables are based on a minimum number of assumptions, in particular
no hypothesis is made in advance about the physical mechanism of the modelled
phenomenon and thus it can be developed in a universal form; furthermore, the
evolution equations for internal variables are not governed by a balance law but are
determined by thermodynamic constraints (macroscopic principles). This means
that the internal variables must be such that entropy is a concave function, and that
it increases in any isolated part of the material.

Among the various versions of non-equilibrium thermodynamics, the thermo-
dynamic with internal variables (NET-IV) [65, 89, 90, 92, 94] represents the direct
extension of the CIT or TIP theory beyond the local equilibrium.

2.5.1 Guidelines of NET-IV

The starting point of NET-IV is the introduction of an additional field variable with
arbitrary tensor order. The tensor order of the internal variable can usually be de-
duced from the properties of the phenomenon to be analyzed. The use of an in-
ternal variable suggests that the influence of an internal structure on the dynamic
behaviour of a material will be taken into account, in our case it concerns thermal
dissipative effects.
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The main question is: how to construct or derive the evolution equation for an
internal variable? What should this internal variable satisfy? There are two answers
to these questions [65], namely two basic methods for constructing or deriving the
evolution equations of internal variables. Both methods are based on fundamental
principles.

The first method generates evolution equations by exploiting entropy inequality.
This approach uses only thermodynamic laws and the corresponding variables are
called internal state variables. This approach has the advantage of working with
familiar thermodynamic concepts such as thermodynamic forces and entropy, but
does not consider inertial effects. Internal state variables are generally introduced
in the case of dissipative processes and must satisfy only the second law of ther-
modynamics and not necessarily have a balance law. Internal variables add extra
dimensions to the space of thermodynamic states.

The second method constructs the evolution equations from a variational Hamil-
tonian principle and therefore inertial effects are inevitable. In this mechanical ap-
proach the corresponding variables are called internal degree of freedom and the
dissipation is then taken into account by means of potentials. This theoretical frame-
work has the advantage of working with familiar mechanical concepts such as force
and energy.

Here we will use an example to present the first approach in brief lines.

Constructive example

Let us consider a heat conducting rigid material with the description of its mi-
crostructure by means of a scalar internal variable, ξ. The thermodynamic state
of material points is characterized by the internal energy density e and an internal
variable ξ. The balance of internal energy in this simple case without internal heat
sources reads

ρė +∇ · q = 0

The entropy s depends on the thermodynamic state, i.e., on internal energy and an
internal variable, s = s(e, ξ). Its balance can be represented in the following form:

Σs = ρṡ +∇ · Js ≥ 0

The Gibbs relation reads
de = Tds − A dξ

from which in agreement with classical thermodynamic rules, the partial derivative
of the entropy w.r.t. internal energy is the reciprocal of temperature

∂s
∂e

=
1
T

In addition, the term A represents the ξ−affinity and for it we choose the following
expression

A = −T
∂s
∂ξ

On the other hand, the second law requires a non-negative entropy production and
in order to compute the entropy production is necessary to define entropy flux. Here
assuming the classical form for the entropy flux

Js =
q
T

(2.68)
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we arrive at the following entropy production

Σs = ρṡ +∇ · Js

= ρ
∂s
∂e

ė + ρ
∂s
∂ξ

ξ̇ +∇ ·
(q

T

)
= − 1

T
∇ · q − ρ

T
A ξ̇ +

1
T
∇ · q + q · ∇

(
1
T

)
= − ρ

T
A ξ̇ + q · ∇

(
1
T

)
where undetermined functions are the heat flux and the evolution equation for the
internal variable.

Since the internal variable is a scalar quantity and the heat flux is a vectorial
one, both terms of Σs should be independently non-negative in isotropic materials.
Therefore, the Fourier law of heat conduction

q = l11∇
(

1
T

)
= − l11

T2∇T

and the evolution equation for the internal variable

ξ̇ = −l22
ρ

T
A

are obtained. The phenomenological coefficients l11 and l22 must be non-negative
due to the second law. Finally, since the entropy must be a concave function, it is
assumed that it has the following form

s(e, ξ) = seq(e)−
m
2

ξ2

with m ≥ 0. Then quantity A/T = −mξ and the evolution equation for the internal
variable reads as

ξ̇ = l22m ξ

We will use this approach to derive the equation of Fourier, Cattaneo and Guyer-
Krumhansl and other generalizations, by introducing an internal vector variable and
determining for it an evolution equation which allows us to eliminate the internal
variable and obtain a general equation for the heat flux that under certain assump-
tions on phenomenological coefficients reproduces the Guyer-Krumhansl equation,
the Cattaneo equation and of course Fourier’s law.

2.5.2 Entropy production and thermodynamic compatibility

Let the state space be spanned by variables (e, ξ), where ξ represents an vectorial
internal variable [42, 63]. Thus the following form it is postulated for the specific
entropy

s(e, ξ) = seq(e)−
m(e)

2
ξ · ξ,

where seq is the classical specific entropy describing the equilibrium entropy and
m(e) a positive function, this ensures that the entropy is maximum at equilibrium
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(i.e. the internal variable vanishes, ξ = 0). Taking into account the Gibbs relation

ds =
∂s
∂e

de +
∂s
∂ξ

· dξ ⇐⇒ de = Tds + mTξ · dξ,

the energy balance equation (2.1) and the expression for the entropy flux Js = B · q,
where B is the Nyiri current multiplier [42], after some rearrangements, according
to the hypothesis ∂em(e) = 0, i.e m(e) = m with m positive constant, the entropy
production, becomes in components

Σs = ∂i
(

Bij
)

qj + ∂iqj

(
Bij −

1
T

δij

)
− ρm ξi ξ̇i ≥ 0.

where ∂i is the compact form of the partial derivative with respect to the i-th space
variable, xi. Following Onsager’s procedure [9] the following relations between the
thermodynamic fluxes and forces are obtained for an isotropic continuum

qj = l11∂i
(

Bij
)
− l12 ξ j,

ρm ξ̇ j = l21∂i
(

Bij
)
− l22 ξ j,

Bij −
1
T

δij = k1∂iqj + k2∂jqi + k3∂kqkδij,

(2.69)

wherein l11, l12, l21, l22, k1, k2, k3 are the scalar phenomenological coefficients, and δij is
the Kronecker symbol. Furthermore, the non-negative entropy production requires
the following constrains

l11 ≥ 0, l12 ≥ 0, l21 ≥ 0, l22 ≥ 0, k1 ≥ 0, k2 ≥ 0, k3 ≥ 0, l11l22 −
1
4
(l12l21)

2 . (2.70)

Let us rewrite the relations (2.69) in one spatial dimension and one gets

q = l11
∂B
∂x

− l12 ξ,

ρm ξ̇ = l21
∂B
∂x

− l22 ξ,

B − 1
T

= (k1 + k2 + k3)
∂q
∂x

,

(2.71)

After some calculations it is achieved

ρm
l22

∂q
∂t

+ q =
ρm
l22

∂

∂t

(
l11

∂B
∂x

)
+ (l11l22 − l12l12)

∂B
∂x

Guyer-Krumhansl equation

The GK equation is obtained by setting l11 = 0, l22 = l2, l21 = 1, k1 + k2 + k3 = l1
and using the constrains (2.70) the relation (l12 + l21)

2 ≤ 0 is satisfied if and only if
l12 = −l21. By removing the current multiplier B and after some calculations one
gets

ρm
l2

∂q
∂t

+ q =
1
l2

∂

∂x

(
1
T
+ l1

∂q
∂x

)
(2.72)

Here, it is possible to consider two different cases. Let’s discuss these cases sepa-
rately:



2.5. Non-Equilibrium Thermodynamic with Internal Variables (NET-IV) 45

Case I : l1 is constant
In this case the equation (2.72) becomes

ρm
l2

∂q
∂t

+ q = − 1
l2T2

∂T
∂x

+
l1
l2

∂2q
∂x2

and with the following identifications

τ =
ρm
l2

, λ =
1

l2T2 , η2 =
l1
l2

(2.73)

the GK equation

τ(T)
∂q
∂t

+ q = −λ(T)
∂T
∂x

+ η2 ∂2q
∂x2 (2.74)

is obtained.

Let us suppose that the thermal conductivity and the relaxation time are ex-
pressed by relations (2.11) and (2.50). Taking into account the identifications
(2.73), to obtain the linear expressions for λ and τ, (2.11) and (2.50) respectively,
the following constraints arise

l2(T) =
1

[λ0 + a(T − T0)] T2 , (2.75a)

ρm =
τ0 + b(T − T0)

[λ0 + a(T − T0)] T2 , (2.75b)

η2(T) = l1 [λ0 + a(T − T0)] T2. (2.75c)

Let us observe that the relations (2.75a) and (2.75b) are the same restrictions
obtained for the MCV equation, and since m is a constant, it is necessary to
consider a temperature-dependent mass density, ρ = ρ(T), which refers to the
presence of mechanical effects. Therefore, being in contradict with our basic
assumption of treating a rigid material, we still find it necessary to study a
particular subsystem without mechanical contribution but with the inclusion
of the nonlinear term, ρ = ρ(T).

Case II : l1 = l1(T) is a function of temperature (see [53])
In this situation the equation (2.72) becomes

ρm
l2

∂q
∂t

+ q =

[
− 1

l2T2 +
1
l2

dl1(T)
dT

∂q
∂x

]
∂T
∂x

+
l1(T)

l2
∂2q
∂x2

and using the identifications (2.73) the GK equation with the presence of the
new term is recovered [51]

τ(T)
∂q
∂t

+ q =

[
−λ(T) +

1
l2(T)

dl1(T)
dT

∂q
∂x

]
∂T
∂x

+ l2(T)
∂2q
∂x2 (2.76)

Let us suppose that the thermal conductivity and relaxation time are expressed
by (2.11) and (2.50), and that also the mean-free path l2(T) is a linear function
of temperature

η2(T) = η0 + c(T − T0) (2.77)

where η0 denotes the mean-free path at the initial or reference temperature,
and c is a suitable coefficient depending on the material to be examined. After
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taking into account the identifications (2.73), to obtain these linear expressions
for λ, τ and l2, (2.11), (2.50) and (5.12), the following constraints arise, [51]

l2(T) =
1

[λ0 + a(T − T0)] T2 ,

ρm =
τ0 + b(T − T0)

[λ0 + a(T − T0)] T2 ,

l1(T) =
η0 + c(T − T0)

[λ0 + a(T − T0)] T2 .

(2.78)

The first and second relations identify the same restrictions as the MCV model,
and since being m a constant, it is necessary to consider a temperature-dependent
mass density, ρ = ρ(T), which relates to the presence of mechanical effects.
Again, in order not to contradict our assumption of rigid body, it is necessary
to study a subsystem without mechanics but with the involvement of nonlin-
ear relation terms of the type, ρ = ρ(T).

Maxwell-Cattaneo-Vernotte equation

The MCV equation is obtained setting l11 = 0, l22 = l2, l21 = 1, k1 + k2 + k3 = l1 = 0
and using the constrains (2.70) the relation (l12 + l21)

2 ≤ 0 is satisfied if and only if
l12 = −l21. By eliminating the current multiplier B and after some calculations we
obtain

ρm
l2

∂q
∂t

+ q =
1
l2

∂

∂x

(
1
T

)
where the phenomenological coefficients m and l = l2 are positive functions. The
following identifications

τ =
ρm
l

, λ =
1

lT2

lead to the nonlinear MCV heat equation and the internal variable is identified by
heat flux ξ = −q. After calculation similar to EIT case, it is possible to extend this
derivation in three dimension and obtain

τ(T)
∂q
∂t

+ q = −λ(T)∇T

see Section 2.4.2.

Fourier equation

The Fourier’s law is obtained setting l11 = 0, l22 = l2, l21 = 1, k1 + k2 + k3 = l1 = 0
and m = 0. By eliminating the current multiplier B and after some calculations we
obtain

q =
1
l2

∂

∂x

(
1
T

)
= − 1

l2T2
∂T
∂x

where the phenomenological coefficients l = l2 is positive function. The following
identifications

λ =
1

lT2
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lead to the nonlinear Fourier’s law. After some computations is possible to extend
this derivation in three dimension and obtain

q = −λ(T)∇T.
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Chapter 3

Fourier heat conduction

In this chapter we will present the classic constitutive relation for heat flux, i.e. the
Fourier’s law. By highlighting how the latter leads to an infinite speed of propaga-
tion, we focus on the causality problem.

In addition, numerical results of the heat pulse application in which the thermal
conductivity is considered to be linearly dependent on temperature, will be pre-
sented.

3.1 Brief historical background

The well known model for heat conduction in isotropic rigid solids is Fourier’s law,
which linearly relates the temperature gradient ∇T to the heat flux q according to

q = −λ(T)∇T (3.1)

where λ(T) is the thermal conductivity, generally depending on temperature. In
CIT, see Section 2.1, the thermodynamic compatibility of the Fourier law is proof
and we obtain λ = l/T2, with l > 0 phenomenological coefficient. The coefficient l
is scalar for isotropic media and became a second order tensor for anisotropic media.

By substituting (3.1) in the energy balance equation (2.1), one obtains a parabolic
differential equation for the temperature (T-representation) given by

ρc ∂tT +∇ · (λ(T)∇T) = S (3.2)

where c = de
dT represents the isochoric specific heat capacity and S = ρ r is the volu-

metric heat source. Dividing for ρ c, the equation (3.2) can be rewrite as

∂tT − ν∇T · ∇T − α∆T =
1

ρ c
S (3.3)

where α is the thermal diffusivity and the term ν representing a non constant value
of thermal conductivity, expressed as the following ratios

α =
λ(T)

ρ c
, ν =

λ′(T)
ρ c

whit λ′(T) indicates the first derivative of the function λ(T) with respect to temper-
ature.

The equation (3.3) is called heat equation. In the case of constant thermal con-
ductivity, i.e. λ(T) ≡ λ0 and zero heat source (i.e. S = 0), one gets

∂tT − α∆T = 0.
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Note that it is possible to write the same equation in the q-representation, as

∂tq +
ν

λ(T)
(∇ · q)q + α∇(∇ · q) = 0,

when λ is constant one has
∂tq + α∇(∇ · q) = 0

and note that the temperature boundary conditions are completely excluded. Both
forms represent the same system

T - representation ∂tT − α∆T − ν∇T · ∇T =
1

ρ c
S

q - representation ∂tq +
ν

λ(T)
(∇ · q)q + α∇(∇ · q) = − ν

λ(T)
S q − α∇S

or for constant thermal conductivity and zero heat source

T - representation ∂tT − α∆T = 0
q - representation ∂tq + α∇(∇ · q) = 0.

The most convenient form should be chosen according to the situation, for exam-
ple when it is time-dependent boundary heat flux, the q-representation may be
more convenient for the analytical solutions, the temperature evolution can be re-
constructed using the balance law of energy.

Therefore, if we consider the T-representation with λ constant and S = 0, and if
we assign the following initial condition

T(x, 0) = T0(x)

it is possible to prove that the solution is expressed by the relation

T(x, t) =
1

(4παt)3/2

∫
R3

T0(y) · exp
(
− (x − y)2

4αt

)
dy (3.4)

As we can observe the temperature T(x, t) is different from zero in any spatial
position x ∈ R3 and for a very short time instant t > 0. This means that if initially
a temperature perturbation T0(x) is different from zero in the compact set Ω ⊂ R3,
i.e. it is localized, at any time instant (∀, t > 0) this perturbation is perceived to
be very distant, i.e it propagates instantaneously throughout space. It is possible
to understand that the physical phenomenon propagates at a speed higher than the
speed of light. This has led to different interpretations, such as that of Fichera who
argued: not being able to have a zero-precision temperature measuring instrument
available, it is true that the latter is different from the initial temperature at very long
distances, but this variation is zero as it cannot be measured experimentally.

In particular, Onsager in 1931 noted that Fourier’s model contradicts the princi-
ple of microscopic reversibility, but this contradiction

‘. . . is removed when we recognize that [Fourier’s law] is only an approximate description
of the process of conduction, neglecting the time needed for acceleration of the heat flow’.

In other words, Fourier’s law has the unphysical property that it lacks inertial ef-
fects: if a sudden temperature perturbation is applied at one point in the solid, it
will be instantly and anywhere in distant locations. Moreover, Fourier’s model is
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not adequate for describing heat transport at very high frequencies and short wave-
lengths. Such situations are met when the phenomena are very fast or very steep (as
ultrasound propagation, light scattering in gases, neutron scattering in liquids, heat
propagation at low temperatures, shock waves, etc.) or when the relaxation times of
the fluxes are very long (as in polymer solutions, suspensions, superfluids or super-
conductors). Historically, Cattaneo was the first to introduce inertia effects in heat
equation. To eliminate the anomalia of infinite speed propagation, he proposed in
1948, [1], a damped version of Fourier’s law by introducing a heat–flux relaxation
term, as as discussed in detail in the Chapter 4.

However, the Fourier’s law shows a good concordance with experiments for
more practical eingenering problems.

FIGURE 3.1: A typical solution for Fourier equation

3.1.1 Causality problem

The questions that many researchers been asking themselves over the years are:
What do we do with Fourier’s law, which leads to a parabolic equation? What do we do
with the Navier-Stokes equations, which are parabolic? Should we exclude these systems,
which are classical equations still used today in various applications?

One approach is to incorporate these systems of parabolic nature by reformu-
lating the weak causality principle. Although parabolic theories do not respect the
strong causality principle, one can demand that they satisfy a more refined (weak)
causality principle which does not require hyperbolicity but focuses instead on the
estimates of solutions.

The parabolic theories, in the context of RET, are paradoxical because, accord-
ing to the cause and effect principle, cause and effect cannot occur simultaneously.
For example, if we consider the classical heat diffusion equation (3.3), in which the
heat flux is assigned according to Fourier’s law, we observe that this equation is
parabolic. This means that if we initially heat only a compact set D, since the heat
propagates at an infinite speed v = +∞, all the points outside of D are immediately
heated in an infinitesimally small time. This shows that the effect occurs simultane-
ously with the cause that generated it, rather than later. This is, in simple terms, the
absurdity referred to by I. Müller in RET.

Some researchers such as I. Müller and T. Ruggeri [54–56, 80] dealth with the
concept of causality, coming to the conclusion that systems leading to a finite prop-
agation speed of solutions are hyperbolic, whose prototype is the d’Alembert wave
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equation (for electromagnetic waves in a vacuum):

∂ttu = c2 ∆u

where c corresponds to the speed of light in a vacuum. In this case, the propagation
speed is finite, and to calculate it, we consider the characteristic equation associated
with the PDE, which is obtained simply by setting

∂ttu = λ2 ∆u = 1

from which
λ2 = c2 ⇔ λ = ±c

Based on this, the idea is that since this equation is the typical one which allows
wave propagation at a finite speed, it should require that all phenomenological sys-
tems have the same nature, i.e., hyperbolic. This explains why, the strong causality
principle is required in RET. This means that the constitutive equations must be as-
signed in such a way that the system is symmetric. A symmetric system implies that
it is also hyperbolic, which ensures that solutions propagate at finite speeds.

Therefore, there must necessarily be a way to reconcile these theories with the
principles of thermodynamics. Indeed, the way to do this could be to formulate a
new causality principle, the weak causality principle. The formulation of this last
principle is reached after showing some illustrative examples of what will be the
mathematical formalization of the principle.

Is the Fourier heory of heat conduction paradoxical?

Fichera raised the question of the paradox of Fourier’s theory of heat conduction.
He gave a negative answer after dealing with the problem mathematically, consid-
ering something that no one had considered before. In particular, it is true that the
temperature, which he denoted by T, is different from 0 even at infinite distances.
But to consider a temperature different from zero, it means that it can be measured,
and therefore, one must consider that Fourier’s law is derived under the assump-
tion that ∃, ε ∈ (0, 1) such that the components of ∇T are of order ε, and quantities
of order ε2 or higher are negligible.

He considered the following Cauchy problem:

∂tT = α∆T ∀ (x, y, z) ∈ R3 ∀ t > 0

T(x, y, z, 0) =

{
f (x, y, z) if (x, y, z) ∈ R0 ⊂ R3

0 if (x, y, z) /∈ R0

Since the heat equation holds throughout the entire space, i.e., in R3, boundary con-
ditions need not to be specified. Furthermore, it is assumed that the initial conditions
have compact support, meaning that at the initial time, the temperature is non-zero
only in a compact region R0 and is zero outside it.

The solution to this equation is well-known and is given by (3.4), i.e.

T(x, y, z, t) =
1

(4πα)
3
2

∫
R0

f (ξ, η, γ)e−
(x−ξ)2+(y−η)2+(z−γ)2

4αt
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and one can observe that the temperature is always non-zero.

T(x, y, z, t) > 0 ∀(x, y, z) ∈ R3 ∀t > 0

Thus, for every arbitrarily small time t, the temperature T is different from zero even
at points (x, y, z) which are an infinite distance from R0. This means that in an in-
finitesimally small time, the heat, which was initially confined to R0, has propagated
to an infinite distance from R0, i.e., throughout the entire space R3. Therefore, the
heat has traveled an infinite distance in an arbitrarily small time, and the only way
this can happen is if the speed at which the heat propagates is infinite. However,
this contradicts the theory of relativity and the strong causality principle. Moreover
Fichera proved that:
∃C0, a compact set with C0 ⊇ R0, where the solution T is of order ε, and outside of this, in
R3 \ C0, it is of order ε2.

Thus, in the experimental approximation where quantities of order ε2 or higher
are negligible (∇T2,∇T3,∇T4, . . . ), stating that the temperature is of order ε within
a compact set C0 containing the initial compact set R0, and outside of it, in R3 \C0, is
of order ε2 and therefore negligible, it means saying that the temperature is different
from zero only in a compact set. Therefore, with this idea, the heat equation is no
longer paradoxical, since the solution is experimentally non-zero only within the
compact set C0, and thus propagates at a finite speed.

In order to formalize this, let us consider the previous Cauchy problem in one
spatial dimension, in [95] states

∂tT = α ∂xxT x ∈ R+ (3.5)

T(x, 0) =

{
1 if x = 0
0 if x ̸= 0

(3.6)

where the initial condition that the only initially heated point is x = 0, and is at
a temperature of 1. In this case, the compact set R0 reduces to a single point. The
solution to this Cauchy problem is the following:

T(x, t) =
1

2
√

παt
exp

(
− x2

4αt

)
and let us note that:

T(x, t) > 0 ∀t > 0 ∀x ∈ R+

thus, if we consider a point x̃ ∈ R+ sufficiently far from x = 0, one has:

T(x̃, t) > 0 ∀t > 0

this means that the heat propagated from point x = 0 to point x = x̃ in an arbitrarily
small time interval, which means that the heat propagated at an infinite speed, v =
+∞. Having a propagation speed of ∞ leads to two problems:

• Theoretical problem: The solution does not align with the principle of cause
and effect, as in this case, the cause and the effect occur simultaneously.

• Experimental problem: The solution does not correspond to real-world expe-
rience. For instance, if we imagine holding one end of an aluminum rod with
one hand while heating the other end with a lighter, we would expect to feel
the heat on our fingers immediately if the heat propagation speed was infinite.
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In reality, however, we do not feel anything initially; only after a certain time
you notice an increase in temperature with our fingers.

Therefore, the idea is to choose, from a physical point of view, a precision level ε
for x, t, and T, which means to fix a precision ε for all measurable quantities. If these
quantities are of order ε2, ε3, etc., these are considered negligible because our mea-
suring instruments cannot detect them, as they are below the sensitivity threshold
of the instrument.

Thus

Saying that the temperature T(x, t) is ̸= 0 at every point x and at every time instant t,
means that one must be able to measure it, i.e.

T(x, t) =
1√

4παt
exp

(
x2

4αt

)
≥ ε

Let’s perform an estimate

1√
4παt

exp
(

x2

4αt

)
≥ ε ⇔ exp

(
x2

4αt

)
≥ 2ε

√
παt ⇔ exp

(
x2

4αt

)
≥

√
4παtε2

taking the logarithm of both sides, we obtain

− x2

4αt
≥ ln

(√
4παtε2

)
⇔ x2 ≤ −4αt ln

(√
4παtε2

)
but x ∈ R+ thus x ≥ 0 and we have

0 ≤ x2 ≤ −4αt ln
(√

4παtϵ2
)

⇔ 0 ≤ −4αt ln
(√

4παtϵ2
)

from which

ln
(√

4παtε2
)
≤ 0 ⇔

√
4παtε2 ≤ 1 ⇔ t ≤ 1

4παε2

Then taking into account the inequality x2 ≤ −4αt ln
(√

4παtε2
)

substituting what
has been obtained, one has:

x2 ≤ − 4α

4παε2 ln
(√

4παtε2
)

⇔ x2 ≤ − 1
πε2 ln

(√
4παtε2

)
If δ is the distance from point x = 0 to x = x̃ where the temperature is not heated for
a time interval t < ε, we have

δ2 ≤ − 1
πϵ2 ln

(√
4παtε2

)
and if δ ≥ ε, it means that the points at a distance δ from the origin (x = 0), which is
non-negligible, i.e., δ ≥ ε, are reached instantly by heat. In other words, this implies
an infinite propagation speed

ε2 ≤ δ2 ≤ − 1
πϵ2 ln

(√
4πDtε2

)
⇔ ε2 ≤ − 1

πε2 ln
(√

4παtε2
)
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from which

−2πε4 ≥ ln
(√

4παε3
)

⇔ exp (−2πε4) ≥ 4παε3 ⇔ 4πα ≤ 1
ε3 exp (−2πε4)

Thus, the necessary and sufficient condition for having an infinite propagation speed
is

4πα ≤ 1
ε3 exp (−2πε4) (3.7)

This condition depends on the thermal diffusivity of the material α and therefore on
the thermal conductivity of the material λ; it also depends on the precision degree ε.
However, let us observe that the smaller precision degree ε (i.e., the larger 1/ε3), the
more likely it is that the condition (3.7) will be satisfied, thus making it more likely
that Fourier’s theory will lose validity as ε → 0.

However, for ε = 0, the right-hand side of (3.7) becomes +∞, so from this re-
lation, we have 4πα ≤ +∞, which is always satisfied. This states that if the error
is zero, we would have an infinite heat propagation speed. But, as Fichera rightly
observed, this is a physically unattainable case, since ε = 0 corresponds to measure-
ments without errors.

Hence, we have seen that the propagation speed value depends on two factors:

• The order of magnitude of the physical parameters involved in the system, i.e.
α = λ

ρc ,

• The degree of accuracy of the measurements, i.e. ε.

In conclusion, it is true that the heat equation, which is a parabolic equation,
implies an infinite propagation speed. However, its measured value would be fi-
nite whenever the experimental precision (accuracy) is sufficiently low, so that the
temperature is non-zero only within a limited (compact) interval.

For example, consider a crystal of NaF (sodium fluoride) at the critical tempera-
ture of T = 15.6, K, which is the temperature at which heat propagation occurs in a
wave-like manner (the second sound). In this case, 4πα = 2.5 · 105.

Then

• If ε = 0.01, the propagation speed is infinite, as the condition (3.7) is satisfied.

• If ε = 0.05, the condition (3.7) is not satisfied, yielding a finite propagation
speed, even with Fourier’s law.

This simple example illustrates that we cannot label parabolic theories as para-
doxical. Depending on the approximation order ε used to measure observable quan-
tities, one may not have an infinite propagation speed.

Based on what we have seen, we aim to formalize the new principle of causality,
the weak causality principle, which will replace the very restrictive strong causality
principle.

To this end, consider a thermomechanical system described by:

ρ ẇ + div Φ(z) = ρz (3.8)

where w ∈ W ⊆ Ek represent the set of field variables and z ∈ Z ⊆ Em all the
thermomechanical variables, with W ⊆ Z and k ≤ m. Here, Z is the state space, W
is the solution space, and Ek and Em are Euclidean spaces.
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In the context of extended thermodynamics, constitutive relations for fluxes and
productions must be assigned in the form

Φ(z) = Φ̃(z)
σ(z) = σ̃(z)

and if the system (3.8) is:

• hyperbolic, the components of w propagate through space with finite speeds,

• parabolic, the components of w propagate through space with infinite speeds.

Definition 1. A system (3.8) is said to be kinematically admissible if the propagation
speeds of the components of w are all contained within the set CI . Here, CI is the admissible
speed set:

CI = {space of admissible velocity } =

{
R+ Galileian Relativity
[0, c] Einstein Relativity

The system (3.8), once built, cannot ignore the structure of spacetime, which is
why we say that it must be kinematically admissible. Obviously, such kinematic
admissibility must depend on the structure of spacetime.

Once the experimental error ε i on each component wi of w is known, it is pos-
sible to determine the vector ε ∈ W, whose components represent the minimum
detectable value of wi with the measurement instruments available to us.

Definition 2. Let us consider the Cauchy problem

ρ ẇ + div Φ(z) = ρz su E3 (3.9a)
w(x, 0) = w0(x) con x ∈ X0 (3.9b)

where X0 is a compact subset of E3, so w0(x) is a function with compact support, meaning
it is non-zero only within a compact set (X0) and zero outside.

We say that the solution of the Cauchy problem (3.9) w : E3 × [0, tmax] → W is non-
negligible up to the experimental error ε if

∃X ⊆ E3, X ̸= ∅, ∃U ⊆ [0, tmax], U ̸= ∅, t.c. |wi(x, t)| ≥ ε i ∀i = 1...k

i.e., each component wi of w satisfies the relation |wi(x, t)| ≥ ε i.

Definition 3. A solution of the Cauchy problem (3.9) is said to be causally admissible up
to the experimental error ε if X is compact, with X0 ⊆ X, meaning w ̸= 0 in a compact
set X, but not throughout the entire space E3.

This definition states that if the solution w is initially different from zero in a
compact X0, it immediately propagates, but is still different from 0 in a compact X
containing the initial compact, X ⊇ X0. Then the random admissibility corresponds
to require that the propagation rates are finite in a suitable approximation, since X is
compact and does not coincide with all space E3, therefore the set where the solution
is nothing is not all space.

Now, we can finally state the weak casuality principle.
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Principle 2 (Weak casuality principle). The constitutive equation

Φ(z) = Φ̃(z)
σ(z) = σ̃(z)

must be assigned in such a way that

• the solutions of the Cauchy problem (3.9) are kinematically admissible,

• if a solution of the Cauchy problem (3.9) is non-negligible up to the experimental
error ε, then it must also be causally admissible up to that experimental error ε.

Then this makes it concluded that a solution w of (3.9) can be ̸= 0 in the whole
space E3, but experimentally is ̸= 0 only in a compact, not in the all whole space.
While the strong causality principle was:

Principle 3 (Strong causality principle). The constituent equations:

Φ(z) = Φ̃(z)
Bσ(z) = σ̃(z)

must be assigned so that the (3.8) is symmetric ⇒ hyperbolic.

3.1.2 Existence, uniqueness and maximum principle

When considering a problem of physical nature one of the first properties that you
need to verify is the number of solutions that its admits once the initial and boundary
conditions are assigned. In the case of Fourier heat conduction, the solution to the
following problem is unique, as can be see in the 3 theorem.

∂tT − α∆T =
1

ρ c
S, ∀x ∈ Ω ∀t > 0 (3.10a)

T(x, 0) = T0(x), ∀x ∈ Ω (3.10b)

with

Dirichlet T(x, t) = f (x), ∀x ∈ ∂Ω (3.11a)
Neumann ∂n̂T(x, t) = g(x), ∀x ∈ ∂Ω (3.11b)
Mixed T(x, t) = f (x) ∀x ∈ ∂ΩD

∂n̂T(x, t) = g(x), ∀x ∈ ∂ΩN (3.11c)

wherein ∂ΩD ∪ ∂ΩN = ∂Ω and ∂ΩD ∩ ∂ΩN = ∅.
Often determining the analytical solution of the problem under consideration

turns out is extremely complicated, therefore it becomes necessary to extract infor-
mation concerning the solution from the analysis of the differential equation to the
partial derivatives and the conditions (initial and edge) which must be met. Among
these, a very important property concerns the principle of maximum and minimum,
that is the values which the solution can assume and in which region of the domain
it can take.

In the case of constant material parameters there are several methods to obtain
exact solutions, and according to each problem one can choose which resolution
method is the most efficient, including: the Laplace transform, the similarity vari-
ables, the separation of variables, Duhamel’s method. However we are interested in
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solving non-linear heat propagation problems where the thermal conductivity is a
function of temperature, where numerical methods will be used, including the one
we will focus on is the numerical method of shifted fields (will be presented in detail
in the chapter 4)

Theorem 2. The problem (3.10) with Dirichlet, Neumann or mixed boundary conditions,
(3.11), admit a unique solution.

Proof. It is assumed, absurdly, that there are u, v two different solutions of (3.10)-
(3.11), i.e. u(x, t) ̸= v(x, t), then the function w := u − v is solution of the following
problem

∂tw − α∆w = 0, ∀x ∈ Ω ∀t > 0
w(x, 0) = 0, ∀x ∈ Ω
w(x, t) = 0 ∀x ∈ ∂Ω ∀t > 0

here the Dirichlet boundary conditions are choosen, but without losing generality it
is possible to proceed similarly in the other two cases.

Now we consider the following function

E(t) :=
1
2

∫
Ω

w(x, t)2 dx

and computing the time derivative

Ė(t) =
d
dt

(
1
2

∫
Ω

w(x, t)2 dx
)
=

1
2

d
dt

(∫
Ω

w(x, t)2 dx
)
=

1
2

∫
Ω

2 w(x, t) ∂tw(x, t)dx

= α
∫

Ω
w(x, t)∆w(x, t)dx = α

∫
Ω

w∇ · ∇w dx = α
∫

Ω
w ∂xi(∂xi w)dx

= α
∫

Ω

[
∂xi(w ∂xi w)− (∂xi w)2] dx = α

∫
Ω

∂xi(w ∂xi w)dx − α
∫

Ω
(∂xi w)2 dx

= α
∫

∂Ω
w ∂xi wn̂i dx − α

∫
Ω

∂xi w ∂xi w dx = α
∫

∂Ω
w ∂n̂w dx − α

∫
Ω
∇w · ∇w dx

= α
∫

∂Ω
w ∂n̂w dx − α

∫
Ω
||∇w||2 dx

the first integral is zero from the Dirichlet boundary conditions (but is zero also for
the Neumann or mixed boundary conditions), then

Ė(t) = −α
∫

Ω
||∇w||2 dx.

Therefore the function E(t) is always positive by definition, but initially is zero and
has a negative derivative (it is decreasing),

Ė(t) = −α
∫

Ω
||∇w||2 dx ≤ 0 E(0) =

1
2

∫
Ω

w(x, 0)dx = 0

and it must necessarily be zero

E(t) = 0 ⇔ w(x, t) = 0 ∀ x ∈ Ω ∀ t > 0

from which
u(x, t) = v(x, t) ∀ x ∈ Ω ∀ t > 0
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this is absurd for the hypothesis, then implies the solution is unique.

Theorem 3. Let u(x, t) a solution of the following problem

∂tT − α∆T =
1

ρ c
S, ∀x ∈ Ω ∀t > 0

T(x, 0) = T0(x), ∀x ∈ Ω

then u(x, t) assumes its maximum and minimum values always on ∂Ω or for t = 0.

Proof. See [96].

3.2 L-F and NL-F in 1D

Let us consider the nonlinear Fourier’s equation

q = −λ(T)∇T

from the thermodynamic compatibility, see Section 2.1.1-2.2.1, we have the following
identification

λ(T) =
l

T2 (3.12)

where l is the phenomenological coefficient. It is easy to see that the expression of
thermal conductivity (2.11) is compatible with the linear constrain of the second law
if the following relation

l = (λ0 + a(T − T0)))T3

holds. Finally, the following system forms the NL-F heat equation

ρ c ∂tT +∇ · q = 0, (3.13a)
q = −λ(T)∇T. (3.13b)

3.2.1 Numerical framework

The equations (3.13) contain coefficients with different orders of magnitude. Being
from numerical point of view, it is pronouncedly unfavorable. Thus some dimen-
sionless parameters are introduced

x̂ =
x
L

, t̂ =
α0t
L2 , α0 =

λ(T0)

ρc
, λ(T0) = λ0 + aT0, T̂ =

T − T0

Tend − T0
,

where L is the length of the rigid and isotropic conductor, ρ0 is the value of the mass
density corresponding to the temperature T0, T0 and Tend represent the initial and the
equilibrium temperature corresponding to adiabatic boundaries, respectively, i.e.

Tend = T0 +
1

ρcL

∫ tp

t0

q0(t) dt, q̄0 =
1
tp

∫ tp

t0

q0(t) dt, q̂ =
q
q̄0

,

where tp is the length of the pulse that acts on the boundary as a heat pulse. This
setting corresponds to the so-called flash or heat pulse experiment [43, 97]. It is
a common and widely used methodology for measuring the thermal material pa-
rameters in low or room temperature situations and observing its non-Fourier type
behavior. Moreover, t0 is the initial time instant which is considered to be 0 and q̃0
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is the integral average of the heat pulse q0(t). In order to simplify the notations, the
hat is omitted in the following and only dimensionless parameters are used.

Now, in 1D, the dimensionless system of equations reads

τp1 ∂tT + ∂xq = 0, (3.14a)
q = −(τp1 + τp2 T)∂xT, (3.14b)

with

τp1 =
α0tp

L2 , τp2 =
a(Tend − T0)tp

ρcL2 .

Let us remark that when a = 0 (τp2 = 0), the non-linearity disappears and the
following

τp1 ∂tT + ∂xq = 0, (3.15a)
q = −τp1 ∂xT, (3.15b)

is obtained.

Difference equations and stability analysis

Here we present a numerical method developed for the nonlinear one-dimension
model (3.14). Let us discretize the spatial domain Ω = [0, 1] with spatial steps ∆x
and the time interval [0, tmax] with step ∆t, the following discrete space and time
values are obtained

xj = x0 + j∆x j = 0, 1, 2, ..., N

tn = n∆t n = 0, 1, 2, ..., J.

We use the staggered field FDM and define the heat flux is on both boundaries and
the temperature is shifted by half space step ∆x/2 (i.e. it is computed in the internal
nodes [29, 98])

T(xj+1/2, tn) ≈ Tn
j+1/2

q(xj, tn) ≈ qn
j .

Therefore the difference equations are

τp1

Tn+1
j+1/2 − Tn

j+1/2

∆t
+

qn
j+1 − qn

j

∆x
= 0, (3.16a)

qn
j = −(τp1 + τp2 Tn

j ) ·
Tn

j+1/2 − Tn
j−1/2

∆x
. (3.16b)

where an explicit forward finite difference approximation are used for the time and
spatial derivatives

∂T
∂t

≈
Tn+1

i+1/2,j+1/2 − Tn
i+1/2,j+1/2

∆t
,

∂q
∂x

≈
qn

j+1 − qn
j

∆x
,

∂T
∂x

≈
Tn

j+1/2 − Tn
j−1/2

∆x
.
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where n denotes the time steps and j stands for the spatial steps.
Since a finite difference scheme can lead to instability, a stability analysis is rec-

ommended in order to investigate the region of the appropriate values of ∆x and ∆t
for the given scheme.

It is important to emphasize that the conventional analysis using the von Neu-
mann method is not directly applicable since the stability conditions depend on tem-
perature, at least in the case under consideration. Weickert et al. [99] proposes a
stability analysis method for nonlinear diffusion equations, and illustrates partic-
ular examples of image processing [100, 101]. In order to use this approach, the
difference equations must be reformulated in order to obtain a mapping between
the temperature values at two different times: Tn → Tn+1. That mapping is repre-
sented by a tridiagonal matrix Q with elements Qij, and must satisfies the following
criteria:

• continuity in the T-dependence,

• symmetry, Qij = Qji,

• unit row sum, ∑i Qij = 1,

• non-negativity, Qij > 0,

• positive diagonal elements, Qii > 0,

• irreducibility, i.e., for any T ≥ 0, λ(T) > 0.

The corresponding tridiagonal matrix has the elements [β; 1 − 2β; β] in a row
with

β = ∆t∆x2(τp1 + τp2 Tn
j )/τp1 > 0,

any other element is zero. Hence the non-negativity and positive diagonality re-
quirements are equivalent and reads as

1 > 2 max
j

β,

that is, the maximum value of the temperature field shall be estimated. In the simu-
lation of a heat pulse experiments using Fourier’s law, it is simple as the equilibrium
dimensionless temperature is 1 and cannot be higher. It restricts the maximum time
step:

∆t <
∆x2τp1

2(τp1 + τp2)
.

Alternatively, one could assume or estimate apriori the maximum temperature,
Z = max(j,n) Tn

j = 1, and applying a linear stability analysis following von Neu-
mann’s method [102] and Jury conditions [103]. In short, it starts with assuming a
solution in a plane wave form

Tn
j = u0 ξnei k j∆x (3.17)

with i the imaginary unit, k the wave number, and ξ the growth factor representing
the amplitude wave and must be bounded from above for stability. The stability
condition is |ξ| ≤ 1 i.e., the amplitude of the wave remains bounded.

p(ξ) = a2ξ2 + a1ξ + a0 = 0, (3.18)



62 Chapter 3. Fourier heat conduction

where the coefficients are

a2 = 1 (3.19a)

a1 =
4∆t(τp1 + τp2 Z)

(∆x)2 τp1

− 1, (3.19b)

a0 = 0. (3.19c)
(3.19d)

Theorem 4. The numerical scheme is stable if the following condition is satisfied

∆t ≤
(∆x)2 τp1

2(τp1 + τp2 Z)

Proof. Applying the Jury criterion restrict the roots of p(ξ) and keep them inside the
unit circle on the complex plane, we obtain

C1: p(ξ = 1) ≥ 0 ⇔ a2 + a1 + a0 ≥ 0 i.e.

4∆t(τp1 + τp2 Z)

(∆x)2 τp1

≥ 0

which is trivially satisfied.

C2: p(ξ = −1) ≥ 0 ⇔ a2 − a1 + a0 ≥ 0 i.e.

2 −
4∆t(τp1 + τp2 Z)

(∆x)2 τp1

≥ 0

that is satisfied if

∆t ≤
(∆x)2 τp1

2(τp1 + τp2 Z)

is true.

C3: |a0| ≤ 1 which is trivially satisfied.

Then under the following condition the roots of the characteristic polynimial are in
modulus less that 1,

∆t <
(∆x)2 τp1

2(τp1 + τp2 Z)
. (3.20)

This allows the linear stability analysis to be applied if the upper temperature
bound can be estimates. Since it is not proved for other non-linearities such as ther-
mal radiation, it is safe to state that it is true only if the nonlinearity occurs due to
the temperature dependence in the thermal conductivity. In the case of Z = 1 we
have

∆t <
(∆x)2 τp1

2(τp1 + τp2)
. (3.21)

Let us remark that in linear case, i.e. for τp2 = 0, the inequality (3.20) reduces to
the condition

∆t <
(∆x)2

2
(3.22)
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that is the classical stability condition.
Furthermore, when we consider the extension of the Fourier law, as we will see

later in Chapter 4, the correction related to the relaxation time also appears in the
stability condition. We note here that this is the consequence of the temperature
dependence of mass density.

3.2.2 Numerical results

In this section, the solutions of NL-F heat equation are introduced and the effects
of non-linear terms are investigated. Here, only the rear side (x̂ = 1 ) temperature
histories are presented because, in the heat pulse experiments, this is measured and
used for evaluation.

Regarding the NL-F equation, see Figure 3.3, the parameter τp2 influences the
slope at the point where temperature begins to increase. It is worth observing that
the point corresponding to T̂ = 0.5 is significantly shifted to the left to increase
τp2 . It is important because the conventional evaluation formula for the Fourier heat
equation, which offers the thermal diffusivity as an outcome of the measurement,
uses the time instant related to T̂ = 0.5. Here we emphasize that negative coefficient
for the temperature dependence is also physically admissible and possible in several
practical cases. However, care should be taken that the thermal conductivity must
remain positive, restricted by the second law. Thus we are also test solutions for
negative τp2 , see Fig. 3.3. It affects the slope oppositely.

FIGURE 3.2: Comparison the rear side temperature history in linear
and nonlinear case, using τp1 = 0.1 and τp2 = {0, 0.05}.
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(a) (b)

FIGURE 3.3: The rear side temperature history when: increasing the
nonlinear parameter τp2 ∈ {0, 0.01, 0.05, 0.1} in (a) and decreasing
τp2 ∈ {0,−0.005,−0.01,−0.014} in (b). The other parameter is τp1 =

0.1.
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Chapter 4

Maxwell-Cattaneo-Vernotte heat
conduction

In this chapter, we present the solutions to the hyperbolic Cattaneo model, focus-
ing on the phenomenon of second sound heat conduction, where both the relaxation
time and thermal conductivity exhibit non-linear behavior. Our principal aim is to
investigate how these non-linearities influence the time evolution of temperature,
particularly during a heat pulse experiment. This analysis will be conducted in both
one-dimensional and two-dimensional spatial domains, allowing for a comprehen-
sive understanding of the dynamics in various settings.

By examining these models, we seek to uncover the extent to which non-linear
effects alter the thermal behavior predicted by classical linear theories, and to what
degree these corrections are necessary for accurately describing real-world phenom-
ena. The results of this investigation will not only provide insights into the fun-
damental aspects of heat conduction but also offer potential applications in fields
where precise thermal management is crucial, such as in microelectronics, materials
science, and high-temperature processes.

Finally we compare the non-linear Maxwell-Cattaneo-Vernotte model with an-
other possible formulation.

4.1 Brief historical background

In 1948, the Italian mathematician Carlo Cattaneo solved the problem of infinite heat
propagation velocity proposing a new equation [1]. He introduced the concept of
characteristic thermal relaxation time τ, which he defined as "the time needed for a
volume element to establish steady heat conduction when a temperature gradient is
applied", in other words it represents the time required to achieve thermodynamic
stability.

The equation proposed by Cattaneo is now widely known in literature as the
Maxwell-Cattaneo-Vernotte (MCV) equation. In honor of the French mathematician
Pierre Vernotte, who derived the same equation almost simultaneously with Catta-
neo [2] and the British physicist Maxwell who had derived a similar law within the
kinetic theory of gas [3]. This equation is

q + τ ∂tq = −λ∇T (4.1)

where the additional term introduced by Cattaneo, i.e. τ ∂tq, is referred to as ther-
mal inertia and accounts for memory effects in the system. This term captures the
idea that heat flux does not instantaneously respond to changes in the temperature
gradient, but instead requires a finite relaxation time τ, which depends, of course,
on the material properties. Its value has been determined experimentally for a wide
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range of materials. For most metals, τ, is estremely small, typically on the order of
picoseconds (ps = 10−12s). However, in other materials, as biological tissues, τ can
be much larger, reaching up to 100 seconds.

However, by incorporating the energy balance laws from (2.1), the resulting sys-
tem of equations, comprising (2.1) and (4.1), is known as the Maxwell-Cattaneo-
Vernotte (MCV) system

ρc ∂tT +∇ · q = ρr (4.2a)
τ ∂tq + q = −λ∇T. (4.2b)

This system addresses the shortcomings of classical Fourier’s law, particularly the
issue of infinite heat propagation, by introducing finite propagation speeds for ther-
mal signals through the relaxation time τ.

FIGURE 4.1: A typical solution for Cattaneo equation

Remark 5. Let us observe that Cattaneo, taking an idea of Vernotte, hypothesized that the
thermal flux depended not only on the value of the temperature gradient but also on the
gradient of the time derivative of temperature, i.e.

q = −λ∇T + τ λ∇(∂tT) = −λ∇T + τ λ∇Ṫ. (4.3)

This relation can be rewritten as

q = −λ

(
1 + τ

∂

∂t

)
∇T (4.4)

and for "small" values of τ it is possible to show that the inverse operator turns out to be(
1 + τ

∂

∂t

)−1

≃ 1 + τ
∂

∂t

and then you get (
1 + τ

∂

∂t

)
q = −λ∇T (4.5)

which is obviously equivalent to the equation (4.1).
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4.1.1 Characteristic velocity

As mentioned before, the Cattaneo equation for heat flux leads to a hyperbolic sys-
tem, which implies that heat propagates with a finite velocity. In this section, we
will demonstrate that the system (4.2) is indeed hyperbolic, and we will determine
the corresponding propagation velocity.

To find the characteristic velocity of the system (4.2) in three dimensions, let us
consider a general system of the following form:

∂tF0(U) + ∂xi F
i(U) = F(U). (4.6)

The most compact form of the system is to use the relativistic notation: x0 = t and
∂α = ∂/∂xα with α = 0, 1, 2, 3 from which we have

∂αFα(U) = F(U). (4.7)

In our case, for the system (4.2) we have

F0 =


ρcT
τqx
τqy
τqz

 , F1 =


qx
λT
0
0

 , F2 =


qy
0

λT
0

 , F3 =


qz
0
0

λT

 ,

U =


T
qx
qy
qz

 , F =


ρr
−qx
−qy
−qz


(4.8)

The system (4.7) is a particular case of the following quasi-linear system

A0(U)∂tU + Ai(U)∂xi U = F(U) ⇔ Aα(U)∂αU = F(U). (4.9)

With the positions

A0(U) =


ρc 0 0 0
0 τ(T) 0 0
0 0 τ(T) 0
0 0 0 τ(T)

 , A1(U) =


0 1 0 0

λ(T) 0 0 0
0 0 0 0
0 0 0 0

 ,

A2(U) =


0 0 1 0
0 0 0 0

λ(T) 0 0 0
0 0 0 0

 , A4(U) =


0 0 1 0
0 0 0 0
0 0 0 0

λ(T) 0 0 0

 ,

(4.10)

In the linear case one gets

A0(U) =


ρc 0 0 0
0 τ0 0 0
0 0 τ0 0
0 0 0 τ0

 , A1(U) =


0 1 0 0

λ0 0 0 0
0 0 0 0
0 0 0 0

 ,

A2(U) =


0 0 1 0
0 0 0 0

λ0 0 0 0
0 0 0 0

 , A4(U) =


0 0 1 0
0 0 0 0
0 0 0 0

λ0 0 0 0

 ,

(4.11)
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Recalling the following definition of hyperbolic system we will determine the char-
acteristic velocity.

Definition 4. A system in the form (4.9) is hyperbolic (in t-direction) if the following
conditions are satisfied

H1: det (A0) ̸= 0

H2: The eigenvalues of the matrix A−1
0 (A1n1 + A2n2 + A3n3) = A−1

0 (Aini) are reals, for
all unit vectors n̂ = (n1, n2, n3).

In our case the condition H1 is easily satisfied since

det (A0) = ρcτ(T)3 ̸= 0 (4.12)

being ρ > 0, c > 0 and λ(T), τ(T) > 0, ∀ T > 0. To verify the condition H2 it is
necessary to determine the eigenvalues of matrix A−1

0 (Aini), thus considering the
following eigenvalues problem det (A−1

0 (Aini)− vI) = 0, after using Binet rule, it is
equivalent to

det (Aini − vA0) = 0 ∀ n̂ = (ni) with |n̂| = 1 (4.13)

from which ∣∣∣∣∣∣∣∣
−ρcv n1 n2 n3

λ(T) n1 −τ(T) v 0 0
λ(T) n2 0 −τ(T) v 0
λ(T) n3 0 0 −τ(T) v

∣∣∣∣∣∣∣∣ ; (4.14)

the characteristic polynomial is

v2 [ρcτ(T)v2 − λ(T)] = 0 (4.15)

and the eigenvalues are easily obtained

v1,2 = 0 (4.16a)

v(T)3,4 = ±

√
λ(T)

ρcτ(T)
. (4.16b)

The coefficients ρ > 0, c > 0 and λ(T), τ(T) > 0, ∀ T > 0 are real, then it remains
shown that the system is hyperbolic and the characteristic velocity is given by the
relation (4.16b).

As can be seen below the relation (4.16b) has the dimensions of a velocity

[v] =

[√
λ

ρcτ

]
=

[λ]

[ρ][c][τ]
=

√√√√ W
mK

Kg
m3 · J

KgK · s
=

m
s

(4.17)

Then, we can conclude that v(T) represents the propagation velocity of the thermal
waves in a medium, commonly referred to as the velocity of second sound. As
seen from its expression, this velocity is finite. It is called "second sound" because it
is distinct from the ordinary speed of sound in the medium. Experimental results,
for example for liquid helium II, have shown that the rate of heat propagation is
typically an order of magnitude lower than the speed of sound in the same medium
[12–15].
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It is also important to note that as τ → 0 the propagation velocity tends towards
infinity, i.e. v → +∞. In this case, the Cattaneo equation (4.1) reduces to the classical
Fourier equation (3.1), which implies instantaneous heat propagation. This demon-
strates that the model proposed by Cattaneo is consistent, as it naturally recovers
the Fourier law in the appropriate limit.

Remark 6. Similarly in the linear case, using the matrices (4.11), the system is still hyper-
bolic with the following expressions of the characteristic speeds

v3,4 = ±
√

λ0

ρcτ0
. (4.18)

4.1.2 Particular case: constant material parameters

In the case where the material parameters are assumed to be constant, it is possible
to derive a single equation for the temperature T, known as the T-representation.
Specifically, by taking the divergence of equation (4.2b) and differentiating equation
(4.2a) with respect to time, we can, after some calculations, arrive at the following
result

τ ∂ttT + ∂tT − α∆T =
1
ρc

(S + τ ∂tS) (4.19)

where α = λ/(ρc) is the thermal diffusivity and S = ρr.
Note that by dividing by τ and assuming the source term is zero (r ≡ 0,) we

get the equation known as telegraph equation which describes the wave damped
propagation

∂ttT +
1
τ

∂tT − v2∆T = 0 (4.20)

where we identify

v =

√
α

τ
=

√
λ

ρcτ
.

It is possible to obtain the same equation for the heat flux q by eliminating the tem-
perature T, which is called q-representation. In fact, by calculating the gradient of
equation (4.2a) and the time derivative of the equation (4.2b), after some algebraic
manipulation, we obtain

∂ttq +
1
τ

∂tq − v2∆q = −v2∇S, (4.21)

This approach transforms the original system into a representation that depends
solely on the heat flux, removing the explicit dependence on temperature. The tem-
perature distribution can be recovered using the internal energy balance law (2.1)
through time integration. Therefore, the two possible representations are:

• T-representation : where the system is expressed in terms of temperature, and
the heat flux is derived from it.

T - representation ∂ttT +
1
τ

∂tT − v2∆T =
1
ρc

(S + τ ∂tS) .
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• q-representation: where the system is expressed in terms of the heat flux, and
the temperature distribution is recovered later from the energy balance law.

q - representation ∂ttq +
1
τ

∂tq − v2∆q = −v2∇S.

We observe the source terms in this T- and q-representations appera differently; their
time derivative do not directly contribute to the evolution when comparing equation
(4.21) with (4.19). However, it is possible to see that T and q must satisfy the same
partial differential equation (PDE), when S = 0, which is the telegraph equation.
This implies that, in the absence of a source term, both temperature and heat flux
evolve according to the same governing equation

T - representation ∂ttT +
1
τ

∂tT − v2∆T = 0

q - representation ∂ttq +
1
τ

∂tq − v2∆q = 0.

Firstly note that when λ = λ(T) and τ = τ(T), it is impossible to obtain the T-
representation and one must solve as system (4.2) without eliminating any of the
field variables. For short time t << τ, the term ∂t is negligible and thus (with S = 0)

∂ttT − v2∆T = 0

the wave equation is a valid equation; while for long times t >> τ the term ∂tt
becomes negligible and thus (with S = 0)

∂tT − v2∆T = 0

holds.
Note also that in this model (4.19), an initial condition must be introduced on

the time derivative of temperature, i.e. Tt(x, 0) (called initial thermal velocity). This
condition is completely absent in the Fourier model, but it becomes necessary here
in order to solve the model analytically or numerically. This presents a practical
difficulty, which lies in the way of making, arbitrary distributions of ∂tu(x, 0) in a
laboratory setting.

If we consider the one-dimension case and the following change of variables

t̄ =
1

2τ
t x̄ =

√
ρc

4τλ
x

the equation (4.19) is written in the following form

∂t̄t̄T + 2∂t̄T − ∂x̄x̄T = 0

and the following initial conditions are assigned

T(x̄, t̄ = 0) = f (x̄)
∂t̄T(x̄, t̄ = 0) = g(x̄)
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where f and g are two arbitrary functions defined on the space interval [0, a]. Then
the solution is

T(x̄, t̄) =
e−τ

2

[
f (x̄ + τ̄) + f (x̄ − t̄) +

∫ x̄+t̄

x̄−t̄
F(ξ, x̄, t̄)dξ

]
(4.22)

where

F(ξ, x̄, t̄) = [g(ξ) + f (ξ)]ψ((ξ − x̄)2 − t̄2) + 2t̄ f (ξ)ψ′((ξ − x̄)2 − t̄2)

with ψ(2w) = J0(
√

2w) being J0 the Bessel function of 0-order.
This solution (4.22) expresses the simultaneous existence, along the x̄ axis, of

two waves whose fronts initially coincide with the extremes of the interval [0, a] and
proceed in opposite direction at a velocity equal to 1 (in the original variables this
correspond to a velocity v =

√
λ/(ρcτ)). However, these waves are without a rear

front, after the wave front passes, the phenomenon loses its wave-like nature and
becomes into a diffusive behavior. Therefore, heat propagation exhibits two charac-
teristic: one diffusive and the other wave-like. This behavior is different from the
classical case only in an initial phase, which corresponds to the short period during
which the wave front passes, after which the heat propagation becomes similar to
that described by the classical wave equation.

This behavior can be observed more clearly by comparing the asymptotic aspects
of the Cattaneo solution (4.22) with the Fourier solution (3.4). For a fixed value of
x̄ ≥ a and a sufficiently large value of t̄ (specifically t̄ > x̄), in the expression (4.22)
both f (x̄ + t̄) and f (x̄ − t̄) vanish, and the limits of the integral, i.e. x̄ − t̄ and x̄ + t̄,
can be replaced by 0 and a, respectively. Thus, it results in

T(x̄, t̄) ≈ e−τ

2

∫ a

0
F(ξ, x̄, t̄)dξ

For t̄ → +∞ the quantity (ξ − x̄)2 is negligible compared to t̄2, so

ψ((ξ − x̄)2 − t̄2) ≈ ψ(−t̄2) = J0(it̄) ≈
et̄

√
2π t̄

ψ′((ξ − x̄)2 − t̄2) ≈ ψ′(−t̄2) =
dJ0(it̄)
d(−t̄2)

≈ −et̄

2
√

2π t̄3/2

where we used the asymptotic expression of J0(it̄). Therefore, The function F be-
comes

F(ξ, x̄, t̄) ≈ [g(ξ) + f (ξ)] · et̄
√

2πt̄
− 2t̄ f (ξ) · et̄

2
√

2π t̄3/2

= [g(ξ) + 2 f (ξ)] · et̄
√

2π t̄

The asymptotic expression of the solution T(x̄, t̄) is written in the form

T(x̄, t̄) ≈ 1

2
√

2πt̄

∫ a

0
[g(ξ) + 2 f (ξ)]dξ. (4.23)

If a similar asymptotic analysis of the classical solution is performed (3.4) (rewrite in
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one dimension), remembering in mind that (x−ξ)2

4αt → 0 for t → +∞, and expressing
it in variables x̄, t̄, we get

T(x̄, t̄) ≈ 1√
2π t̄

∫ a

0
f (ξ)dξ. (4.24)

Thus, comparing the asymptotic expressions of the two solutions, (4.23) and (4.24),
it can be seen that they do not differ, except by the coefficient of the function 1/t̄.

Remark 7. If we indicated with qF and qMCV the Fourier and the Maxwell-Cattaneo-
Vernotte heat flux, respectively, we have that the expression of qF is given by (3.1), i.e.

qF = −λ∇T (4.25)

while the expression of qMCV must be calculated after solving the hyperbolic equation for T,
i.e. (4.20). Assuming that the initial heat flux is q0, we get

τ0 ∂tqMCV + qMCV = −λ∇T (4.26a)
qMCV(x, 0) = qMCV(0) = q0 (4.26b)

from which it is noted that the temperature expression T(x, t) represents a system of ordinary
differential equations that has as solution

qMCV = q0 e−t/τ − λ

τ

∫ t

0
e−

t−s
τ ∇T(x, s)ds. (4.27)

Assuming the initial heat flux is zero, i.e. q0 = 0, the following expression arises

qMCV = −λ

τ

∫ t

0
e−

t−s
τ ∇T(x, s)ds (4.28)

from this equation, it is evident that the Cattaneo heat flux qMCV depends on the whole
time history (complete history) of the temperature gradient up to the current time instant.
This contrasts with the Fourier heat flux (4.25) where no such memory effect exists, the heat
flux depends only on the value of the temperature gradient at the time instant considered.
However, if the temperature remains constant, in the case of Fourier the flux becomes zer,
since the temperature gradient is zero

qF = 0;

while for Cattaneo’s equation, it necessary a certain time (related to τ) for the heat flux to
diminish to negligible levels, i.e. zero. In this case, the heat flux decays according to

qMCV = q0 e−t/τ, (4.29)

(See Figure 4.2, where the heat flux is shown for different values of the relaxation time, in the
latter case).

This highlights the fact that, unlike in Fourier’s law, Cattaneo’s model retains a "mem-
ory" of the initial conditions for a finite period before the flux becomes negligible.

4.1.3 MCV equation is frame-invariant?

An important question concerns the invariance of the Cattaneo equation with re-
spect to changes in the reference frame. Galilean covariance implies that both the
balance laws and constitutive relations should be independent of the reference frame.
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FIGURE 4.2: Heat flux (4.29) at the variation of relaxation time.

This raises the question: is the Cattaneo model, which well overcames the problem
of the infinite propagation speed inherent in the Fourier equation, invariant under
changes in the reference frame?

To answer this question, a further proposed model by Christov will be presented
in brief lines [104, 105], without going to far in details, as this topic lies beyond the
scope of this thesis.

Consider a heat transfer problem in a moving medium. In this context Christov
[104] demonstrated that the model proposed by Cattaneo is not invariant under the
Galilean transformations, i.e. the from of the equations and their solutions change
with the variation of reference frame. Therefore, a more comprehensive formulation
is required to ensure frame-invariant behavior.

The first modification introduced by Christov is the substitution, in the energy
balance law, of the partial time derivative with the material derivative obtaining

ρc (∂tT + ν · ∇T) +∇ · q = S. (4.30)

The second concerns the substitution, in the relation proposed by Cattaneo, of the
partial time derivative of the heat flux, with the upper convected time derivative dtq,
obtaining

τ (∂tq + ν · ∇q − q · ∇ν + (∇ · ν)q) + q = −λ∇T. (4.31)

The system of equations (4.30)- (4.31) is called Christov-Cattaneo model

ρc (∂tT + ν · ∇T) +∇ · q = S (4.32a)
τ (∂tq + ν · ∇q − q · ∇ν + (∇ · ν)q) + q = −λ∇T (4.32b)

namely

ρc DtT +∇ · q = S (4.33a)
τ dtqt + q = −λ∇T (4.33b)

For simplicity, one-dimensional case without any source term is considered (similar
results can be demonstrated in three dimensions and with a source term), obtaining

ρc (∂tT + ν∂xT) + ∂xq = S (4.34a)
τ (∂tq + ν∂xq) + q = −λ∂xT (4.34b)
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from which it is possible, as usual, to derive a single equation for the temperature
(T-representation), achieving

τ∂ttT + (1 + τ∂xv)∂tT + τv2∂xxT + [v + τ(∂tv + 2v∂xv)]∂xT + 2τv∂txT = α∂xxT
(4.35)

called Cattaneo-Christov equation. Now we introduce the following change of vari-
ables, which corresponds to a reference frame in motion at velocity V:

x′ = x − Vt,
t′ = t,
v′ = v − V

(4.36)

from ϑ(x′, t′) = T(x, t) and using ∂t = ∂t′ − V∂x′ , ∂x = ∂x′ we get

∂tT = ∂t′ϑ − V∂x′ϑ,

∂ttT = ∂t′t′ϑ − 2V∂t′x′ϑ + V2∂x′x′ϑ,
v′ = v − V
∂xT = ∂x′ϑ

∂xxT = ∂x′x′ϑ

∂txT = ∂t′x′ϑ − V∂x′x′ϑ

∂tv = ∂t′v′ − V∂x′v′,
∂xv = ∂x′v′

(4.37)

After substitution we obtain the same equation but in new variables

τ∂t′t′ϑ+(1+ τ∂x′v′)∂t′ϑ+ τ(v′)2∂x′x′ϑ+[v′+ τ(∂t′v′+ 2v′∂x′v′)]∂x′ϑ+ 2τv′∂t′x′ϑ = α∂x′x′ϑ.
(4.38)

This leads to the conclusion that the Christov’s equation is invariant before Galilean
transformations. However, in this dissertation, we will assume that the medium is
not in motion, i.e. v = 0, and in this case the Christov’s equation reduces to the form
of the Cattaneo equation.

A more general objective time derivative is proposed by Morro [106]

τ

(
∂tq + ν · ∇q − µ − 1

2
(∇ν −∇νT)q + γ(∇ · ν)q

)
+ q = −λ∇T. (4.39)

in which µ and γ are two parameters, with this generalization not exist the T-representation
but the model remain hyperbolic.

The following definitions are useful

Definition 5. (Material derivative)
The material or total derivative of the function f (x, t), assuming that the medium moves
with a certain velocity ν(x, t) is defined as follows

Dt f = ∂t f + ν · ∇ f (4.40)

This material derivative represents the change of a given quantity f (x, t) in a
given point x0 which is due to two processes: the first is the change of this point,
represented by the partial derivative with respect to time; the second one is due to
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the transport that this point undergoes, described by the second term in which the
velocity of the medium appears.

Definition 6. (Upper convected time derivative)
The upper convected time derivative of the vector density function A(x, t), assuming that
the medium moves with a certain velocity ν(x, t) is defined as follows

dtA = ∂tA + ν · ∇A − A · ∇ν + (∇ · ν)A (4.41)

Definition 7. (Vector density)
A mechanical quantity A, which is measured in two reference frames x and x′ is a vector
density, if it satisfies ∫

D
Adx =

∫
D′

Adx′ (4.42)

It can be verified that the heat flux q is a vector density, but this is obvious since
the heat flux through a surface is invariant with respect to the chosen parametriza-
tion of the latter.

4.2 L-MCV and NL-MCV in 1D

We now focus on the study of effects induced by non-linearity. To explore this, let us
revisit the thermodynamic derivation of the Cattaneo equation presented in Section
2.4.2. Notably, under the following identifications

τ =
ρ m

l
, λ =

1
lT2

the nonlinear MCV heat equation (NL-MCV) is obtained

τ(T) ∂tq + q = −λ(T)∇T. (4.43)

Now, suppose that thermal conductivity and the relaxation time are temperature-
dependent. This scenario is relevant, for example, in modelling of second sound
in superfluid helium [107, 108] where the temperature dependence of thermal con-
ductivity plays a significant role in low-temperature regime (from near 0 K to 2.2 K).
This leads to a non constant propagation speed of second sound, as illustrated in
Figure 4.3

FIGURE 4.3: The temperature dependence of the propagation speed
of second sound in He II, [13, 109]

This could also serve as an additional constraint on what temperature dependen-
cies are physically admissible and how connect λ(T) and τ(T). Moreover, Figure 4.4
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provides further examples with various NaF crystals, illustrating how sensitive ther-
mal conductivity and second sound are to sample purity [33].

FIGURE 4.4: The thermal conductivity of NaF crystal.Temperature
and purity dependence of the NaF crystals. The purity is decreas-

ing from A to E, [21]

We assume here that the thermal conductivity and the relaxation time are ex-
pressed by (2.11) and (2.50) respectively, i.e.

λ(T) = λ0 + a(T − T0)

τ(T) = τ0 + b(T − T0)

wherein λ0 and τ0 are the thermal conductivity and the relaxation time at the initial
or reference temperature, a and b are the coefficients that can take positive or nega-
tive values depending on whether the thermal conductivity and relaxation time in-
crease or decrease due to changes in temperature. Non-zero values of these parame-
ters, i.e. a and b, introduce nonlinearity into the thermal conductivity and relaxation
time. By considering the identifications made in (2.49), the following constraints
emerge to obtain these linear expressions for λ and τ, (2.11) and (2.50), the following
constraints arise, [29, 30]:

l(T) =
1

[λ0 + a(T − T0)] T2 , ρm =
τ0 + b(T − T0)

[λ0 + a(T − T0)] T2 .

Since m(e) ≡ m is a constant, it is necessary to consider a temperature-dependent
mass density, ρ = ρ(T), which accounts for the presence of mechanical effects. While
this contradicts our basic assumption of dealing with a rigid material, it remains
necessary to study the subsystem without mechanical effects but with the inclusion
of the nonlinear term, ρ = ρ(T). Alternatively, one could consider dm(e)

de ̸= 0 which
would introduce a new term into the Cattaneo equation, as seen in equation (2.52)
in Section 2.4.2. We will leave out of investigation equation (2.52). However, we
have fixed our attention on the fact that it is not trivial to implement nonlinear terms
in constitutive equations and how these may have influenced other parameters. In
particular, we want to focus on the characteristics of temperature evolution and the
properties of the solution method with respect to its stability and dispersion error.
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Then the nonlinear model to be implemented in one and two spatial dimensions
is given by the following system:

ρcv∂tT +∇ · q = 0 (4.44a)
[τ0 + b(T − T0)]∂tq + q = −[λ0 + a(T − T0)]∇T. (4.44b)

Application to heat pulse experiment

In the heat pulse experiment, at initial time, the temperature distribution is uniform
and the sample is in thermal equilibrium with the external environment. A thin
black coating is applied to the front side of the sample to guarantee uniform bound-
ary conditions and to eliminate the transparency of the sample [42]. On the rear
side, a silver coating is applied, and a thermocouple attached to this side measures
the effective temperature. Regarding the boundary conditions, in agreement with
the experimental setup, is applied to the left side of the sample, while the opposite
side of the domain is treated as adiabatic. The sketch of the experiment is illustrated
in Figure 4.5

FIGURE 4.5: Sketch of the heat-pulse experiment. The front face of
the specimen is excited by a heat pulse and rear-side temperature is

measured with a termocouple.

In the first approximation, we consider the sample as one-dimensional, because
if the heat pulse applied to the left side is uniform or homogeneous in space, we can
simplify the problem by considering only the direction of heat pulse propagation
(see figure 4.6). Under this assumption, the equations (4.44) reduce to the following
form

ρcv∂tT + ∂xq = 0 (4.45a)
[τ0 + b(T − T0)]∂tq + q = −[λ0 + a(T − T0)] ∂xT. (4.45b)

Next, we will extend this analysis to a more realistic scenario by considering two
dimensions. In this case, we will observe that when a homogeneous heat pulse
(in space) is applied, the results match those obtained in the one-dimensional case.
However, we will also study the effect of a non-uniform (spatially non-homogeneous)
heat pulse, as discussed in Section 4.3.

For this reason, first we consider the one-dimension case and assign the follow-
ing initial

T(x, t0) = T0, q(x, t0) = 0,
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FIGURE 4.6: ]
Setup of the heat-pulse experiment where we put in evidence that the front face of

the specimen is excited by a homogeneous heat pulse.

and boundary conditions (which apply only to the heat flux)

q(0, t) = q0(t) =


qmax

2

[
1 − cos

(
2πt
tp

)]
if 0 < t ≤ tp,

0 if t > tp.

q(L, t) = 0,

wherein t0 is the initial time, qmax represents the pulse amplitude and tp denotes the
duration of the pulse, which should be much shorter than the characteristic time
scale of the experiment.

This setup corresponds to the laser flash or heat pulse experiment [43, 97], which
is a common and widely applied method for measuring the thermal diffusivity of a
material and observing its non-Fourier heat conduction behavior.

4.2.1 Numerical framework

The equations (4.45) contain coefficients of several orders of magnitude. From a
numerical point of view, this is highly unfavorable, then is convenient to introduce
some dimensionless variables, as follow

x̂ =
x
L

, t̂ =
α0t
L2 , T̂ =

T − T0

Tend − T0
, q̂ =

q
q̃0

α0 =
λ(T0)

ρc
,

where L is the length of the rigid and isotropic conductor, T0 and Tend are the initial
and the equilibrium temperature corresponding to adiabatic boundaries, i.e.,

Tend = T0 +
1

ρcL

∫ tp

t0

q0(t) dt, q̃0 =
1
tp

∫ tp

t0

q0(t) dt =
qmax

2
,

where tp is the length of the pulse that acts on the boundary as a heat pulse. More-
over, t0 is the initial time instant which is considered to be 0 and q̃0 is the integral
average of the heat pulse q0(t).

Now, the dimensionless form of the system of equations (4.45) reads

τp1 ∂t̂T̂ + ∂x̂ q̂ = 0, (4.46a)

(τq1 + τq2 T̂)∂t̂q̂ + q̂ = −(τp1 + τp2 T̂)∂x̂T̂, (4.46b)
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where the dimensionless parameters are

τp1 =
α0tp

L2 , τp2 =
a(Tend − T0)tp

ρcL2 , τq1 =
α0(τ0 + b T0)

L2 , τq2 =
α0b(Tend − T0)

L2 .

(4.47)
The dimensionless form of the boundary conditions namely, heat pulse, becomes

q̂(0, t̂) = q̂0(t̂) =

 1 − cos
(

2π t̂
τd

)
if 0 < t̂ ≤ τd,

0 if t̂ > τd.
,

q̂(1, t̂) = 0.

(4.48)

In order to simplify the notations the hat is omitted in the following.

Characteristic velocity

The characteristic velocity, from the relation (4.16), can be expressed as follows

v(T) =

√
λ(T)

ρcτ(T)
=

√
λ0 + a(T − T0)

ρc [τ0 + b(T − T0)]
(4.49)

introducing the dimensionless quantities (i.e v̂ = v/v0) and using the positions (4.47)
the expression (4.49) rewrites

v̂(T̂) =
1
v0

·

√
λ(T̂)

ρcτ(T̂)
=

1
v0

·
√

λ0 + a(Tend − T0)T̂
ρc
[
τ0 + b(Tend − T0)T̂

] = 1
v0

·

√√√√√ λ0 +
ρcL2

tp
τp2 T̂

ρc
(

τ0 +
L2

α0
τq2 T̂

)
=

1
v0

·

√
τp1 + τp2 T̂
τq1 + τq2 T̂

· α0

tp
=

√
τp1 + τp2 T̂
τq1 + τq2 T̂

where is possible to identify

v0 =

√
α0

tp
. (4.50)

Furthermore the expression of characteristic velocity in a dimensionless form be-
comes

v̂(T̂) =

√
τp1 + τp2 T̂
τq1 + τq2 T̂

. (4.51)

Remark 8. Similarly in the linear case, the relation (4.51), can be expressed as follow

v̂ =

√
τp1

τq1

it is trivial to find this expression by (4.51) when τp2 = τq2 = 0.

Difference equations

Here we present a numerical method developed for the nonlinear one-dimension
model (4.46). Let us discretize the spatial domain Ω = [0, 1] with spatial steps ∆x
and the time interval [0, tmax] with step ∆t, the following discrete space and time
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values are obtained

xj = x0 + j∆x j = 0, 1, 2, ..., N

tn = n∆t n = 0, 1, 2, ..., J.

This method has been developed for linear heat equations and validated using an
analytical solution for the Guyer-Krumhansl equation in [49]. The basic principle re-
mains the same: a staggered spatial field is used to distinguish ‘surface’ and ‘volume
average’ quantities. In heat pulse experiments when the heat flux is defined on both
boundaries, the temperature is shifted by half space step ∆x/2 (i.e. it is computed in
the internal nodes [29, 98])

T(xj+1/2, tn) ≈ Tn
j+1/2

q(xj, tn) ≈ qn
j .

as shown in Fig. 4.7. As a consequence, there is no need to define boundaries for the
temperature field. In time, only an explicit forward differencing scheme is used.

Therefore the difference equations are

τp1(τq1 + τq2 Tn
j+1/2)

τq1

·
Tn+1

j+1/2 − Tn
j+1/2

∆t
+

qn
j+1 − qn

j

∆x
= 0, (4.52a)

(τq1 + τq2 Tn
j ) ·

qn+1
j − qn

j

∆t
+ qn

j + (τp1 + τp2 Tn
j ) ·

Tn
j+1/2 − Tn

j−1/2

∆x
= 0. (4.52b)

where a explicit forward finite difference approximation are used for the time and
spatial derivatives

∂T
∂t

≈
Tn+1

i+1/2,j+1/2 − Tn
i+1/2,j+1/2

∆t
,

∂q
∂t

≈
qn+1

i+1/2,j − qn
i+1/2,j

∆t
,

∂q
∂x

≈
qn

j+1 − qn
j

∆x
,

∂T
∂x

≈
Tn

j+1/2 − Tn
j−1/2

∆x
.

where n denotes the time steps and j stands for the spatial steps.

FIGURE 4.7: Concept of the spatial discretization [98]). The filled
squares represent the temperature, and the filled triangles, which are
oriented differently, are vector components. Empty symbols denote

boundary conditions.
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By virtue of the evolution equation of the heat flux component q, (4.52b), the
quantity Tn

j in the non linear terms is replaced by the following average:

Tn
j 7−→

Tn
j−1/2 + Tn

j+1/2

2
,

as shown in Fig. 4.7.

4.2.2 Stability analysis, Dissipation and Dispersion Errors

Since finite difference schemes can lead to instability, it is essential to perform a
stability analysis to determine the appropriate ranges for ∆x and ∆t in a given nu-
merical scheme.

In this particular case, the challenge arises from the fact that the heat flux can-
not be easily eliminated, as the relaxation time depends on temperature, leading to
a complicate partial differential equation (PDE) that would be impractical to dis-
cretize. Additionally, the correct treatment of boundary conditions requires both the
temperature and the heat flux to be retained. Therefore, eliminating any variables is
not an appropriate approach.

Before proceeding with the stability analysis presented above in the Chapter 3,
we can directly estimate the stability criterion for the NL-MCV equation. In the case
of Fourier heat equation, we have seen that the correction factor τp1 /(τp1 + τp2) ap-
pears in the stability condition, which reduces the maximum permissible time step
in the numerical algorithm (see Section 3.2.1). Similarly, due to the non-linearity in
the relaxation time in addition to the thermal conductivity, we expect a comparable
correction factor, τq1 /(τq1 + τq2), to emerge in the stability condition of the NL-MCV
equation.

Using the results of the linear case [98], which is

∆t <
∆x2

4
,

we expect that

∆t <
∆x2

4
τp1

τp1 + τp2 max(j,n) Tn
j

(4.53)

will appear without the relaxation time as it does not appear even in the linear case.
However, with the estimation for temperature max(j,n) Tn

j = 1, it could be too op-
timistic as the MCV model is a damped wave equation. It is safe to say that the
max(j,n) Tn

j ≈ 3 for real parameters which could occur in experiments. This approxi-
mation means that the maximum temperature in the simulation is three times higher
compared to the equilibrium. Note that this maximum depends strongly on τq1 and
higher temperature values may occur.

Since we do not intend to use only a single variable (T or q), the stability analysis
present above regard is not applicable as far as mapping is concerned. Instead, let
us assume again that the estimation about the max(j,n) Tn

j = 3 can be made as a first
step. Then, to study the stability of the numerical scheme (4.52) the Von-Neumann
procedure is used. Let us suppose that the solutions of the difference equations are
in the following form [102]:

un
j = u0 ξnei k j∆x (4.54)
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with u ∈ {T, q}, i is the imaginary unit, k the wave number, and ξ is the growth factor
representing the amplitude wave and must be bounded from above for stability.

By substituting equation (4.54) into the finite difference equations in (4.52), a
system of linear algebraic equations is achieved

M ·
(

T0
q0

)
wherein the coefficient matrix is:

M =


τp1

∆t

(
1 +

τq2

τq1

Z
)
(ξ − 1)

1
∆x
(
ei k∆x − 1

)
τp1 + τp2 Z

∆x
(
1 − e−i k∆x) 1 +

τq1 + τq2 Z
∆t

(ξ − 1)

 ,

with Z = max
j,n

Tn
j .

The characteristic equation for ξ (det M = 0) can be expressed as

p(ξ) = a2ξ2 + a1ξ + a0 = 0, (4.55)

where the coefficients are

a2 =
τp1(τq1 + τq2 Z)2

τq1 (∆t)2 , (4.56a)

a1 = −2
τp1(τq1 + τq2 Z)2

τq1 (∆t)2 +
τp1(τq1 + τq2 Z)

∆t
, (4.56b)

a0 =
τp1(τq1 + τq2 Z)2

τq1 (∆t)2 −
τp1(τq1 + τq2 Z)

∆t
−

2(τp1 + τp2 Z)
(∆x)2 [cos (k∆x)− 1]

=
τp1(τq1 + τq2 Z)2

τq1 (∆t)2 −
τp1(τq1 + τq2 Z)

∆t
+

4(τp1 + τp2 Z)
(∆x)2 S2. (4.56c)

with S = sin (k∆x/2).

Theorem 5. The numerical scheme is stable if the following conditions are satisfied

1. ∆t < 2(τq1 + τq2 Z),

2. ∆t <
(∆x)2

4
·

τq1 + τq2 Z
τq1

·
τp1

τp1 + τp2 Z
.

Proof. Applying the Jury criteria we have the following three conditions

C1 p(ξ = 1) ≥ 0 ⇔ a2 + a1 + a0 ≥ 0 i.e.

4(τp1 + τp2 Z)
(∆x)2 S2 ≥ 0

which is trivially satisfied.

C2 p(ξ = −1) ≥ 0 ⇔ a2 − a1 + a0 ≥ 0 i.e.

4
τp1(τq1 + τq2 Z)2

τq1 (∆t)2 − 2
τp1(τq1 + τq2 Z)

∆t
+ 4

(τp1 + τp2 Z)
(∆x)2 S2
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that is satisfied if ∆t ≤ 2(τq1 + τq2 Z) is true.

C3 |a0| ≤ a2 which is satisfied if

∆t <
(∆x)2

4
·

τq1 + τq2 Z
τq1

·
τp1

τp1 + τp2 Z

where the last criterion is the strongest. It consists in the temperature-dependent
thermal conductivity correction as expected. However, it may be higher than the real
upper bound, that is, it is proposed to use also the other correction for the relaxation
time:

∆t <
∆x2

4
τp1

· τp1 + τp2 max
j,n

Tn
j ·

τq1

τq1 + τq2 max
j,n

Tn
j

. (4.57)

For further information, see [29].

Let us remark that in linear case (i.e. when τq2 = 0, τp2), the inequality (4.57)
reduces to the condition (4.53). Additionally, a correction factor related to the relax-
ation time appears in the stability condition, which results from temperature depen-
dence of the mass density.

Remark 9. It is important to note that the numerical method described above was originally
developed for linear heat equations. However, since a nonlinearity appears in the right hand
side of the resulting finite difference equations (4.52), one could assume a priori the maximum
temperature and apply a linear stability analysis by following von Neumann’s method [102]
and Jury’s criterion [103]. Let us admit that is strongly based on the initial assumption
of maximum temperature. To partially overcoming this difficult, a practical first step could
be to perform a linear simulation and observe the maximum value reached in the resulting
temperature field. This value can be use as a reasonable estimate, as the practically relevant
nonlinearities do not significantly increase the temperature but rather distort the time history
more notably.

In this way, the method allows for an estimate of stability while accounting for
nonlinear effects in the system.

4.2.3 Numerical results

In this section, we present the solutions of nonlinear MCV heat equation and inves-
tigate the effects of non-linear terms. We focus solely on the temperature histories
at rear side (x̂ = 1 ) of the sample, as these are the value measured and used for
evaluation in heat pulse experiment, as previously explained.

Investigating the effects of the parameter τp2 in solutions of the MCV equation,
it is observed that: this parameter influences the slope at the point when the tem-
perature starts to increase. It is worth observing that the point corresponding to
T̂ = 0.5 is significantly shifted to the left for increasing of τp2 . Using τp1 = 0.1 and
τq1 = 0.08 the wave signal dominates the solution and is further shifted to the left,
affecting only the slope of the wave front. However, as can be seen, the MCV so-
lution becomes more dispersive for larger τp2 . This dispersive behavior also occur
when τq2 is increased (see Fig. 4.9 ). Apparently, these parameters act against each
other, τq2 shifts the wave signal to the right. In both situations, the solution remains
stable, and the dispersive error can be minimized by increasing the resolution of the
numerical discretization. Despite the simplicity of the scheme, it is able to solve the
non-linear heat equation of MCV. Dispersive errors are present only when one of the
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(a) (b)

FIGURE 4.8: Comparison the rear side temperature history in linear
and nonlinear case, using τp1 = 0.1, τq1 = 0.08, τp2 = {0, 0.03} and

τq2 = {0, 0.01}.

(a) (b)

FIGURE 4.9: The rear side temperature history when increasing the
nonlinear parameter : τq2 ∈ {0, 0.001, 0.002, 0.003, 0.004} with τp2 = 0
in (a) and τp2 ∈ {0, 0.001, 0.002, 0.005, 0.01} with τq2 = 0 in (b). The

other parameters are: τp1 = 0.1, τq1 = 0.08.

temperature dependent begins to dominate. Note that Figure 4.9 shows a different
case where both parameters, τp2 and τq2 are much larger than before and the numeri-
cal solutions become free of artificial oscillations, even using the same discretization.
It is because these parameters influence the solution in opposite ways.

However, in Figure 4.11 it is possible to observe better the propagation of the
heat pulse, initially generated at x̂ = 0. The pulse moves in the direction x̂, gradually
damping until it reaches the opposing wall x̂ = 1, where it is then reflected. This
process of reflection continues until the thermal pulse is completely damped out.

4.3 L-MCV and NL-MCV in 2D

Let us now move on to the more realistic situation, considering two spatial dimen-
sions. According to this hypotesis, in a rectangular domain Ω = [0, L1]× [0, L2] with
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FIGURE 4.10: The rear side temperature history, using the MCV heat
equation, using τp1 = 0.1, τp2 = 0.03, τq1 = 0.08 and τq2 = 0.01.

(a) (b)

FIGURE 4.11: The contour plot of the temperature distribution, in (b)
the zoom in the time interval [0, 0.8].

lengths of L1 and L2, the equations (4.44) become

ρc ∂tT + ∂xqx + ∂yqy = 0, (4.58a)
τ(T)∂tqx + qx = −λ(T)∂xT, (4.58b)
τ(T)∂tqy + qy = −λ(T)∂yT, (4.58c)

where c is the specific heat, e = c T, and qx, qy are the components of the heat flux
q = (qx, qy). The material parameters, density ρ, and specific heat capacity c, are
assumed to be constant.

Initially, in a heat pulse experiment, it is required that the temperature distribu-
tion be homogeneous and that the sample be in thermal equilibrium with its envi-
ronment. So, both heat flux fields are zero at the initial time instant. For boundary
conditions, the heat pulse excites the lower side of the sample in the y-axis direction,
the other sides of the domain are considered adiabatic. Let us show that if we con-
sider a heat pulse uniform in space (homogeneous) we get the solutions obtained in
1D, however we investigate the case where the heat pulse is not homogeneous, as
shown in Figure 4.12.
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FIGURE 4.12: Setup of the heat-pulse experiment where we put in
evidence that the front face of the specimen is excited by a non-

homogeneous heat pulse.

Hence, we assign the following initial conditions

T(x, y, 0) = T0,
qx(x, y, 0) = 0,
qy(x, y, 0) = 0.

Then, on three of its edges the heat flux is identical to zero

qx(0, y, t) = 0,
qx(L1, y, t) = 0,
qy(x, L2, t) = 0

on the other side, a homogeneous heat flux is applied

qy(x, 0, t) = q0
y(t) =


qmax

2

[
1 − cos

(
2πt
tp

)]
if 0 < t ≤ tp,

0 if t > tp.

or not homogeneous in space

qy(x, 0, t) = q0
y(t) =



qmax

4

[
1 − cos

(
2πt
tp

)]
·
[

1 − cos
(

2πx
wx

)]
if 0 < t ≤ tp,

and
L1−wx

2 ≤ x ≤ L1+wx
2

0 if t > tp,

where tp is the duration of the pulse, qmax is its amplitude, wx is its spatial width.
On the other hand, the heat flux is identically zero.

Dimensionless form

The system (4.58) may contain coefficients with several orders of magnitude differ-
ence, this is unfavorable from a numerical point of view. Thus it is convenient to
introduce dimensionless variables (as in the one dimensional case)

x̂ =
x
L1

, ŷ =
y
L2

, t̂ =
α0t

L1L2
, q̂x =

qx

q̃0
, q̂y =

qy

q̃0
, T̂ =

T − T0

Tend − T0
,
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where

α0 =
λ(T0)

ρ0cv
, Tend = T0 +

tpq̃0

ρcvL2

with

q̃0 =
qmax

2tp
for spatially homogeneous boundary heat flux, or

q̃0 =
qmax

4tp
for spatially hon-homogeneous boundary heat flux.

and thus, the dimensionless parameters are

τ
qx
p1 =

α0tp

L1L2
= τp1 , τ

qy
p1 =

α0tp

(L2)2 , τ
qx
p2 =

a(Tend − T0)tp

ρ0cvL1L2
,

τ
qy
p2 =

a(Tend − T0)tp

ρ0cv(L2)2 , τq1 =
α0τ0

L1L2
, τq2 =

α0 b(Tend − T0)

L1L2
, τp1 =

α0tp

L1L2
.

Under these assumptions, the two-dimensional version of the dimensionless sys-
tem of equations becomes:

τd

(
1 +

τq2

τq1

T̂
)

∂t̂T̂ +
L2

L1
∂x̂ q̂x + ∂ŷq̂y = 0, (4.59a)

(τq1 + τq2 T̂) ∂t̂q̂x = −q̂x −
(
τ

qx
p1 + τ

qx
p2 T̂
)

∂x̂T̂, (4.59b)

(τq1 + τq2 T̂) ∂t̂q̂y = −q̂y −
(

τ
qy
p1 + τ

qy
p2 T̂
)

∂ŷT̂, (4.59c)

Furthermore, the dimensionless initial data are given:

T̂(x̂, ŷ, 0) = 0, (4.60a)
q̂x(x̂, ŷ, 0) = 0, (4.60b)
q̂y(x̂, ŷ, 0) = 0, (4.60c)

and the dimensionless form of boundary conditions for heat flux with the heat pulse
with tp duration read:

q̂x(0, ŷ, t̂) = 0, (4.61a)
q̂x(1, ŷ, t̂) = 0, (4.61b)
q̂y(x̂, 1, t̂) = 0. (4.61c)

Additionally, the heat pulse in the homogeneous case is

q̂y(x̂, 0, t̂) =

 1 − cos
(

2π t̂
τd

)
if 0 < t̂ ≤ τd,

0 if t̂ > τd.
, (4.62)

and in the non-homogeneous situation it reads

q̂y(x, 0, t) =


[

1 − cos
(

2π t̂
τd

)]
· [1 − cos (2πx̂)] if 0 < t̂ ≤ τd, and 0 ≤ x̂ ≤ 1

0 if t̂ > τd.
(4.63)
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Remark 10. If we choose τq2 = τ
qx
p2 = τ

qy
p2 = 0, it yields the linear case:

τp1 ∂t̂T̂ +
L2

L1
∂x̂ q̂x + ∂ŷq̂y = 0, (4.64a)

τq1 ∂t̂q̂x = −q̂x − τ
qx
p1 ∂x̂T̂, (4.64b)

τq1 ∂t̂q̂y = −q̂y − τ
qy
p1 ∂ŷT̂. (4.64c)

From now on, the ‘hat’ is omitted in order to simplify the notation.
As in [110, 111], we apply a numerical scheme to solve the system (4.59) with a

staggered field discretization for spatial derivatives in which the specific extensive
quantities are calculated at the center of the cells. At the same time, the boundary-
related fluxes are computed on the cell boundary, as we can see in the next section.

As a result, the spatial positions of the temperature values are shifted by a half
space step from the positions of the q values (see Fig.4.13).

4.3.1 Numerical framework

Here we present a numerical method developed for the nonlinear two-dimensions
model (4.59). In this case, it is not possible to obtain the T-representation, and the
numerical study is more difficult compared to the linear case, i.e. where τ and λ
are constant. Therefore, the MCV system (4.59) must be solved by simultaneously
solving both the energy balance law and the evolution equation for the heat flux.
For this purpose, using a staggered field discretization is much more advantageous,
and its schematic is possible to see in Figure 4.13.

Let us discretize the spatial domain Ω = [0, L1]× [0, L2] with spatial steps ∆x, ∆y
and the time interval [0, tmax] with time step ∆t, the following discrete space and
time values are obtained

xj = x0 + j∆x j = 0, 1, 2, ..., N (4.65a)

yi = y0 + i∆y i = 0, 1, 2, ..., M (4.65b)
tn = n∆t n = 0, 1, 2, ..., J. (4.65c)

An explicit forward finite difference method is used for the time derivatives

∂T
∂t

≈
Tn+1

i+1/2,j+1/2 − Tn
i+1/2,j+1/2

∆t
,

∂qx

∂t
≈

(qx)
n+1
i+1/2,j − (qx)n

i+1/2,j

∆t
,

∂qy

∂t
≈

(qy)
n+1
i,j+1/2 − (qy)i,j+1/2

∆t
,
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and for the spatial derivatives

∂qx

∂x
≈

(qx)n
i+1/2,j+1 − (qx)n

i+1/2,j

∆x
= Dx(qx),

∂qy

∂y
≈

(qy)n
i+1,j+1/2 − (qy)n

i,j+1/2

∆y
= Dy(qy),

∂T
∂x

≈
Tn

i+1/2,j+1/2 − Tn
i+1/2,j−1/2

∆x
= Dx(T),

∂T
∂y

≈
Tn

i+1/2,j+1/2 − Tn
i− 1

2 ,j+1/2

∆y
= Dy(T).

In addition, for nonlinear terms, the following identifications are given(
τq1 + τq2 T

)
≈
(

τq1 + τq2 Tn
i+1/2,j+1/2

)
= An

i+1/2,j+1/2(
τ

qx
p1 + τ

qx
p2 T
)
≈
(

τ
qx
p1 + τ

qx
p2 Tn

i+1/2,j

)
= (Bx)

n
i+1/2,j(

τ
qy
p1 + τ

qy
p2 T
)
≈
(

τ
qy
p1 + τ

qy
p2 Tn

i,j+1/2

)
= (By)

n
i,j+1/2

As a result, the difference equations consist of an explicit forward differencing scheme

An
i+1/2,j+1/2 ·

τp1

τq1

Tn+1
i+1/2,j+1/2 − Tn

i+1/2,j+1/2

∆t
+

L2

L1
Dx(qx) +Dy = 0, (4.66a)

An
i+1/2,j ·

(qx)
n+1
i+1/2,j − (qx)n

i+1/2,j

∆t
= −(qx)

n
i+1/2,j − (Bx)

n
i+1/2,j · Dx(T), (4.66b)

An
i,j+1/2 ·

(qy)
n+1
i,j+1/2 − (qy)i,j+1/2

∆t
= −(qy)

n
i,j+1/2 − (Bx)

n
i,j+1/2 · Dy(T), (4.66c)

FIGURE 4.13: Representation of the finite difference numerical
scheme. The filled squares represent the temperature, and the filled
triangles, which are oriented differently, are vector components.

Empty symbols denote boundary conditions.
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Accordingly, the discrete values of temperature are shifted in x and y directions

T(xj+1/2, yi+1/2, tn) ≈ Tn
i+1/2,j+1/2

and the heat flux components are only shifted in the direction corresponding to their
Cartesian index, i.e. qy in the x direction while qx in the y direction (see Fig. 4.13):

qx(xj+1/2, yi, tn) ≈ (qx)
n
i,j+1/2

qy(xj, yi+1/2, tn) ≈ (qy)
n
i+1/2,j

Hence, the temperature is computed at the internal nodes [29, 98]. The two compo-
nents of heat flux, qx and qy, are shifted by half space step ∆x/2 and ∆y/2, respec-
tively, as it is shown in Figure 4.13. Furthermore, no boundary conditions will be
prescribed as may be expressed explicitly stated, as a function of the above quanti-
ties.

By virtue of the evolution equation of the heat flux component qx, (4.66b), the
term Tn

i+1/2,j+1/2 is replaced by the following average

Tn
i+1/2,j 7−→

Tn
i+1/2,j−1/2 + Tn

i+1/2,j+1/2

2
,

as shown in Fig. 4.14(a).
By equation (4.66c), the term Tn

i+1/2,j+1/2 is replaced by the following average

Tn
i,j+1/2 7−→

Tn
i−1/2,j+1/2 + Tn

i+1/2,j+1/2

2
,

as shown in Fig. 4.14(b).

(a) (b)

FIGURE 4.14: Concept of the discretization for the first component of
heat flux, qx, in (a), and for the second one, qy, in (b).

4.3.2 Stability analysis, Dissipation and Dispersion Errors

Since a finite difference scheme can lead to instability, a stability analysis is recom-
mended to investigate the region of the appropriate values of ∆x, ∆y and ∆t for the
given scheme. In order to study the stability of the assigned numerical scheme (4.66)
the Von-Neumann procedure is used, then let us suppose that the solutions of the
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difference equations are in the following form [102]:

un
l,j = u0 ξnei kx j∆xei ky l∆y (4.67)

with u ∈ {T, qx, qy}, i is the imaginary unit, kx and ky the wave numbers, and ξ
is the growth factor representing the amplitude wave and must be bounded from
above for stability. Substituting the equation (4.67) into the difference equations, the
system of linear algebraic equations is achieved:

M ·

 T0
qx(0)
qy(0)

 = 0

wherein the coefficient matrix is

M =



τd

∆t

(
1 +

τq2

τq1

Z
)
(ξ − 1)

1
L̂∆x

(
ei kx∆x − 1

) 1
∆y
(
ei ky∆y − 1

)
τ

qx
p1 + τ

qx
p2 Z

∆x
(
1 − e−i kx∆x) 1 +

τq1 + τq2 Z
∆t

(ξ − 1) 0

τ
qy
p1 + τ

qy
p2Z

∆y
(
1 − e−i ky∆y) 0 1 +

τq1 + τq2 Z
∆t

(ξ − 1)


,

with Z = max
i,j,n

Tn
ij and L̂ =

L2

L1
. The characteristic equation for ξ (det M = 0) can be

expressed as
p(ξ) = a3ξ3 + a2ξ2 + a1ξ + a0 = 0, (4.68)

in which the coefficients are

a3 =
τd(τq1 + τq2 Z)3

τq1 (∆t)3 , (4.69a)

a2 = −3
τd(τq1 + τq2 Z)3

τq1 (∆t)3 + 2
τd(τq1 + τq2 Z)2

τq1 (∆t)2 , (4.69b)

a1 = 3
τd(τq1 + τq2 Z)3

τq1 (∆t)3 − 4
τd(τq1 + τq2 Z)2

τq1 (∆t)2 +
τq1 + τq2 Z

∆t

(
τd

τq1

− Γ
)

, (4.69c)

a0 = −
τd(τq1 + τq2 Z)3

τq1 (∆t)3 + 2
τd(τq1 + τq2 Z)2

τq1 (∆t)2 −
τq1 + τq2 Z

∆t

(
τd

τq1

− Γ
)
− Γ, (4.69d)

Γ =
τ

qy
p1 + τ

qy
p2 Z

(∆y)2

[
cos (ky∆y)− 1

]
+

τ
qx
p1 + τ

qx
p2 Z

L̂ (∆x)2 [cos (kx∆x)− 1] (4.69e)

= −2S2
2

τ
qy
p1 + τ

qy
p2 Z

(∆y)2 − 2S2
1

τ
qx
p1 + τ

qx
p2 Z

L̂ (∆x)2 ≤ 0,

with S1 = sin (kx∆x/2), S2 = sin (ky∆y/2).

Theorem 6. The numerical scheme (4.66) is stable if the following conditions are satisfied

1. if Γ ≤ − τd

4τq1

then 0 < ∆t < −
τd(τq1 + τq2 Z)

2τq1 Γ
,



92 Chapter 4. Maxwell-Cattaneo-Vernotte heat conduction

2. if − τd

4τq1

< Γ < 0 then 0 < ∆t < 2(τq1 + τq2 Z).

Proof. In order to prove this result, we apply the Jury criterion [103]. In fact, we have
that the roots of the characteristic equation (4.68) are in module all less than 1 (this
guarantees that the numerical scheme is stable) if the following four conditions are
satisfied

C1 p(1) ≥ 0, which is trivially verified since Γ ≤ 0;

C2 (−1)3 p(−1) > 0 ⇔ p(−1) < 0, if the restriction

τq1 Γ(∆t)3 + 2(τq1 + τq2 Z)(τd − τq1 Γ)(∆t)2 − 8τd(τq1 + τq2 Z)2∆t+ 8τd(τq1 + τq2 Z)3 > 0

holds;

C3 |a3| > |a0|, which is satisfied if the inequality

0 < ã0 < 2a3,

with

ã0 = 2
τd(τq1 + τq2 Z)2

τq1 (∆t)2 −
τq1 + τq2 Z

∆t

(
τd

τq1

− Γ
)
− Γ

is guaranteed;

|b2| < |b0|, wherein:

b2 =

∣∣∣∣a0 a1
a3 a2

∣∣∣∣ , b0 =

∣∣∣∣a0 a3
a3 a0

∣∣∣∣ .

This inequality can be rearranged into the form

|a0a2 − a1a3| < |a2
0 − a2

3|

which is fulfilled if the condition −a2
0 − a2

3 < a0a2 − a1a3 < a2
0 + a2

3 holds.

s After some calculations, the constraints 1. and 2. are obtained from the above re-
strictions.

In order to perform numerical solutions, since the first condition of the theorem
includes the term Γ, without losing its generality, after introducing its minimum
value, min(Γ), obtained with positions S1 = S2 = 1,

min(Γ) = −2

(
τ

qy
p1 + τ

qy
p2 Z

(∆y)2 +
τ

qx
p1 + τ

qx
p2 Z

L̂(∆x)2

)
, (4.70)

we impose the following strongest constraint for the time step ∆t

∆t < −
τd(τq1 + τq2 Z)
2τq1 min(Γ)

≤ −
τd(τq1 + τq2 Z)

2τq1 Γ
(4.71)

To proceed further, after substituting the value of min(Γ), expressed by (4.70), in
the relation (4.71), after simple calculations the final form of the previous inequality
reads

∆t <
τd

4
·

τq1 + τq2 Z
τq1

· L̂(∆x)2(∆y)2

L̂(∆x)2
(

τ
qy
p1 + τ

qy
p2 Z
)
+ (∆y)2

(
τ

qx
p1 + τ

qx
p2 Z
) (4.72)
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Remark 11. It can be easily recognized that if

τ
qy
p1 = τ

qy
p1 = 0, τ

qx
p1 = τp1 , τ

qx
p2 = τp2 , L̂ = 1, ∆x = ∆y;

then

∆t <
(∆x)2

4
·

τq1 + τq2 Z
τq1

· τd

τp1 + τp2 Z
. (4.73)

and the one-dimensional constrain (4.57) for the stability of the NL-MCV scheme is recov-
ered, [29].

Remark 12. It is important to note that the numerical method described above is initially
developed for linear heat equations. Since a nonlinearity appears in the right hand side of
the resulting finite difference equations (4.66), requires a different approach. An a priori as-
sumption of the maximum temperature can be made, allowing for a linear stability analysis
using von Neumann’s method [102] and Jury criterion [103]. In the A, we also explore the
stability of this scheme in a one-dimensional context. Admit that is based largely on the
initial assumption of the maximum temperature. To overcome this difficult, an initial esti-
mate can be obtained through a linear simulation, which provides an approximate maximum
temperature. This estimate is useful because, in practice, the relevant nonlinearities do not
significantly increase the temperature but rather distort its temporal evolution.

4.3.3 Numerical Results

In this Section, we present some numerical solutions of the nonlinear CV heat equa-
tion and discuss the effects of nonlinear terms. Consider a domain with L1 = L2 =
7.9 · 10−3 m. In detail, let us choose the current set of material parameters, such as
the mass density ρ = 2866 kg/m3, the specific heat capacity c = 1.81 J/(kg K), the
thermal conductivity λT = 150001 W/(m K), and the relaxation time τ = 3.8 · 10−6

s. From these parameters, the following dimensionless quantities are obtained:

τd = 0.4659, τq1 = 0.1770, τq2 = 0.01, τ
qx
p1 = 0.4659,

τ
qy
p1 = 0.4659, τ

qx
p2 = 0.03; τ

qy
p2 = 0.02, L̂ = 1.

Numerical integrations are carried out using the scheme (4.66) with spatial spa-
tial and time steps ∆x = ∆y = 0.02 and ∆t = 10−5 respectively, where the complete
time interval is tmax = 2.6 s . The initial conditions are give by (4.60) with the initial
temperature T0 = 13 K. As regards the boundary conditions these are chosen in such
a way that only one side of the square domain is non-adiabatic. In addition, these
conditions are expressed by relations (4.61)-(4.62) in the case of spatially homoge-
neous heat pulse or by (4.61)-(4.63) in the spatially non-homogeneous case. In both
cases, numerical results are obtained using the pulse duration is tp = 1.0 · 10−5 s and
the maximum heat flux qmax = 1.0 · 104 W/m2.
The temperature distribution values were represented by a color scale ranging from
yellow (maximum value) to blue (minimum value).
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(a) (b)

(c) (d)

(e) (f)

FIGURE 4.15: Temperature distribution of the sample, for different
time instants, using the boundary conditions homogeneous in space.
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(a) (b)

(c) (d)

(e) (f)

FIGURE 4.16: Temperature distribution of the specimen, for different
time instants, using the boundary conditions non-homogeneous in

space.
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Figures 4.15 and 4.16 illustrate the temperature distribution at various points
within the domain at different time instants.

It can be observed that the heat pulse applied to the edge leads to the same value
at each point along the non-adiabatic edge. If it has a higher intensity at the center,
it shows a gradual decrease towards the boundary propagating in the y direction.
A damping follows this until it reaches the opposite side, which, being adiabatic,
provides a reflection of the thermal pulse. This decrease continues until the pulse
reaches the opposite, adiabatic side, where it is reflected. These reflections persist
until the thermal disturbance is fully damped and the system reaches equilibrium,
which, in the dimensionless case, equals to 1 (see Figures 4.17(a) and 4.17(b)).

Comparing the linear problem (4.64) with the nonlinear one (4.59), it can be de-
duced that the presence of nonlinearities in thermal conductivity and relaxation
time, i.e. (2.11) and (2.50), introduces a delay in the propagation of the thermal
signal.

The effects of nonlinear terms have been examined in greater detail. Specifically,
the parameters τq2 and τ

qy
p2 , appear to influence the signal in opposing ways. In par-

ticular, their increase affects the slope when the temperature increases, implying a
signal significantly shifted to the right or left. In fact, it is observed that increasing
the value of the parameter τq2 , the wave signal is shifted to the right, this occurs
independently of the type of boundary conditions assigned (either in the homoge-
neous case (see Fig.4.18(a)) or in the non-homogeneous case (see Fig. 4.18(b)). An
opposite behavior is observed if the value of the parameter τ

qy
p2 is increased, as it is

emphasized in the Figures 4.19(a) and 4.19(b). It is worth pointing out the absence of
variations in the signal that changes another nonlinear parameter, τ

qx
p2 , (see Figures

4.20(a) and 4.20(b)). However, in both situations, the solution remains stable, and the
dispersive error can be reduced by increasing the resolution of the discretization.

Numerical stability, dissipative and dispersive errors are analyzed in detail in
the A.

(a) (b)

FIGURE 4.17: Comparison between linear and nonlinear solution,
with (a) boundary conditions homogeneous in space, (b) boundary

conditions non-homogeneous in space.

In this study, we investigated both linear and nonlinear versions of the two-
dimensional MCV equation. We examined the linear temperature dependence of
thermal conductivity and relaxation time, simplifying the problem by neglecting me-
chanical effects at this stage of research. We employed a staggered numerical scheme
for discretization, demonstrating its stability and convergence properties. Although
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(a) (b)

FIGURE 4.18: The temperature history when increasing the non-
linear parameter τq2 ∈ {0, 0.01, 0.02, 0.03, 0.04, 0.05} in (a) homoge-
neous boundary conditions and (b) non-homogeneous boundary con-
ditions). Other parameters are: τd = 0.4659, τq1 = 0.1770, τ

qx
p1 =

0.4659, τ
qx
p2 = 0.3, τ

qy
p1 = 0.4659, τ

qy
p2 = 0.2 and L̂ = 1.

(a) (b)

FIGURE 4.19: The temperature history for increasing the nonlin-
ear parameter τ

qy
p2 ∈ {0, 0.01, 0.05, 0.1, 0.2, 0.3} in (a) homogeneous

boundary conditions and (b) non-homogeneous boundary condi-
tions). Other parameters are: τd = 0.4659, τq1 = 0.1770, τq2 =

0.01, τ
qx
p1 = 0.4659, τ

qx
p2 = 0.3, τ

qy
p1 = 0.4659 and L̂ = 1.

the approach of estimating the stability limit by reducing the nonlinear problem to
a linear one lacks mathematical rigor for providing a precise a priori estimate of the
maximum temperature value, it proved useful for running efficient simulations.

Our analysis of temperature histories, which could be measured in heat pulse
experiments, revealed that varying temperature-dependent material parameters can
significantly alter the measurable temperature history. These parameters influence
the steepness of the wave-front, which can serve as an immediate indicator of non-
linearity from an experimental perspective. However, their effects can be contra-
dictory, complicating the task of uniquely determining the exact non-linearity from
measurements.
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(a) (b)

FIGURE 4.20: The temperature history when increasing the nonlin-
ear parameter τ

qx
p2 ∈ {0, 0.01, 0.05, 0.1, 0.2, 0.3} in (a) homogeneous

boundary conditions and (b) non-homogeneous boundary condi-
tions). Other parameters are: τd = 0.4659, τq1 = 0.1770, τq2 =

0.01, τ
qx
p1 = 0.4659, τ

qy
p1 = 0.4659, τ

qy
p2 = 0.2 and L̂ = 1.

Interestingly, in two-dimensional scenarios with spatially non-homogeneous bound-
ary conditions, we observed a notable delay in the second rear-side reflection com-
pared to the linear case, accompanied by more pronounced oscillations. These oscil-
lations are genuine and not artifacts, as confirmed by analyzing the dispersion prop-
erties of the scheme. Such characteristics may be valuable for future experimental
investigations.

On the other hand, since the real heat transfer situations are associated with
complex geometries, in future researches the analysis of nonlinear heat conduction,
could be extended to situations with irregular domains. More complex geometries
can also be solved by other numerical methods such as the finite element or finite
volume method [112].

4.4 NL-CE-MCV in 1D

In the previous sections (4.2 and 4.3), we explored the impact of nonlinear terms
arising from the temperature-dependence of thermal conductivity and relaxation
time. These terms are particularly relevant when studying systems subjected to short
thermal pulses with significant temperature perturbations.

In this section, we introduce an alternative nonlinear formulation of the Catta-
neo equation for thermal transport, termed the Nonlinear Conjugate Extension of the
Maxwell-Cattaneo-Vernotte equation (NL-CE-MCV). We compare the effects of this for-
mulation with those of the traditional nonlinear Cattaneo-type equations on thermal
pulse propagation. Notable differences in the velocities and magnitudes of pertur-
bation peaks between these formulations could be experimentally discerned.

The usual form of the NL-MCV equation (4.43) has been discussed in Section
4.2, with references to works such as [53, 64, 113–119]. Another formulation is to
consider as independent variable the thermodynamic conjugate of the heat flux [120,
121]. This leads to the following equation:

λ(T) T2 ∂t

(
τ(T)

λ(T) T2 q
)
+ q = −λ(T)∇T, (4.74)
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presented in detail below. This nonlinear generalization of the MCV equation (4.74)
is derived using a conservation-dissipation framework within the extended thermo-
dynamics. As discussed in [120], in the high-frequency limit, this equation approx-
imates a nonlinear wave equation for the heat flux, analogous to the equations for
electromagnetic waves in nonlinear optics.

We will employ the same mathematical methods previously used to explore and
compare the implications of both equations, (4.43) and (4.74). Our goal is to pro-
pose experimental strategies to determine which of these generalizations aligns bet-
ter with observational data. Theoretical considerations support both formulations,
making experimental validation crucial for deciding which approach is preferable.

4.4.1 One-dimensional formulation of nonlinear conjugate extension of
the Cattaneo

Here, as in [29, 30], we neglect the small deformations arising from thermal ex-
pansion effects and consider the specimens as rigid conductors without lateral heat
losses to the environment. In future research such simplifications should be avoided
in terms of a more detailed comparison with experiments. The system composed by
the balance law of the internal energy (2.1) for the rigid body and the new evolution
equation for the heat flux proposed in [120, 121] is

ρc ∂tT +∇ · q = 0 (4.75a)

∂t

(
τ(T)

λ(T) T2 q
)
+

1
λ(T) T2 q = − 1

T2∇T. (4.75b)

Note that when τ(T)/λ(T)T2 is constant, equation (4.74) reduces to (4.43). Refer the
reader to [120, 121] for the theoretical bases of (4.74), since our aim is the mathemat-
ical analysis of the consequences of (4.74) rather than the theoretical reflection on its
foundations.

As we did in [29, 30], it is assumed which the specific heat capacity c is constant
(a simplification valid for many materials at room temperature but which should be
removed in future analyses of lower temperature situations, and which we take here
to compare with the results obtained in [30] with respect to the nonlinear equation
(4.1)), while the functions λ(T), τ(T) are expressed by the relations (2.11) and (2.50).

In fact, we are using this linear approximation as an illustration to explore the
effects that may follow from temperature-dependent thermal conductivity and re-
laxation time. A detailed quantitative analysis would depend on the material and
temperature interval to be considered. In fact, the approximations (2.11) and (2.50)
should be valid for relatively narrow intervals of temperature, let us say between
two given reference temperatures T1 and T0, with a being a = (λ1 − λ0)/(T1 − T0)
and b = (τ1 − τ0)/(T1 − T0), with τ1 and λ1 the values of τ and λ at T1 respectively.
At room temperature or higher, if T1 > T0 is usually λ1 < λ0. We stress that the
resulting thermal conductivity and relaxation time must remain positive at the end;
hence their values are limited in this sense.

Let us remark that here it is assumed that the parameters λ and τ depend only on
T; however, since in the Maxwell-Cattaneo models q is also an independent variable,
the independent variables are actually T and q, and situations could be imagined
were λ and τ both depend on T and on q [59]. Indeed, using maximum-entropy
arguments it may be seen that λ and τ also depend in q, but in a less sensitive way
than on T [59].
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The system (4.75) in one-dimensional domain Ω = [0, L] with length L becomes

ρc ∂tT + ∂xq = 0, (4.76a)

∂t

(
τ(T)

λ(T) T2 q
)
+

1
λ(T) T2 q = − 1

T2 ∂xT. (4.76b)

Let us suppose to apply this model in the heat pulse experiment as in Section 4.2,
then at initial time, a homogeneous temperature distribution is considered and the
sample is in thermal equilibrium with the external environment,

T(x, 0) = T0, q(x, 0) = 0.

and boundary conditions (these latter only for heat flux),

q(0, t) = q0(t) =


qmax

2

[
1 − cos

(
2πt
tp

)]
if t0 < t ≤ tp,

0 if t > tp.

q(L, t) = 0,

wherein t0 = 0 is the initial time, qmax represents the pulse amplitude and tp its
duration, which must be much shorter than the characteristic time scale of the ex-
periment.

Remark 13. We observe, that is possible to rewrite the system (4.76) as

ρc ∂tT + ∂xq = 0, (4.77a)

∂tw +
1

λ(T) T2 q = − 1
T2 ∂xT, (4.77b)

q =
λ(T) T2

τ(T)
w. (4.77c)

Remark 14. Let us observe that according to the single relaxation approximation of the
Boltzmann transport equation, [122], the relaxation time and the thermal conductivity sat-
isfy

λ(T) =
1
3

ρ c v2
gτ(T)

where vg is the group velocity of the heat carriers. Then, in the case of ρc and vg independent
of T, a and b should fulfill the following equality,

a
b
=

λ0

τ0
=

1
3

ρ v2
g

this provides that the ratio
λ(T)
τ(T)

=
λ0

τ0
is constant.

The system (4.77) may contain coefficients with several orders of magnitude.
Thus, let us introduce the following dimensionless variables,

x̂ =
x
L

, t̂ =
α0t
L2 , q̂ =

q
q̃0

, T̂ =
T − T0

Tend − T0
, ŵ =

LT0

τ0
w,
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where

α0 =
λ(T0)

ρc
, Tend = T0 +

tpq̃0

ρ0cvL
, q̃0 =

qmax

2
,

the dimensionless parameters related to material properties of the system read

τp1 =
α0tp

L2 = τd, τp2 =
a(Tend − T0)tp

ρcL2 =
aq̃0t2

p

ρ2c2L2 , a0 =
ρcLT0

q̃0tp
,

τq1 =
α0τ0

L2 , τq2 =
α0 b(Tend − T0)

L2 =
α0 b q̃0 tp λ(0)

L2 ,

(4.78)

Under these assumptions, the dimensionless version of the one-dimensional system
of equations (4.77) is the following

τp1 ∂t̂T̂ + ∂x̂ q̂ = 0, (4.79a)

τq1 ∂t̂ŵ +
τq1

τq1 + τq2 T̂
· ŵ +

1
a0 + 2T̂ + 1

a0
T̂2

· ∂x̂T̂ = 0, (4.79b)

q̂ − τq1

(
a0 + 2T̂ +

1
a0

T̂2
)
·

τd + τp2 T̂
τq1 + τq2 T̂

· ŵ = 0. (4.79c)

Furthermore, the dimensionless initial data are given:

T̂(x̂, 0) = 0, q̂(x̂, 0) = 0,

and the dimensionless form of the boundary conditions namely, heat pulse, becomes

q̂(0, t̂) = q̂0(t̂) =

 1 − cos
(

2π t̂
τd

)
if 0 < t̂ ≤ τd,

0 if t̂ > τd.
,

q̂(1, t̂) = 0.

Characteristic velocity

In orider to determine the characteristic velocity, we rewrite the system (4.76) in the
quasi-linear compact form (4.9), i.e.

A0(U)∂tU + Ai(U)∂xi U = F(U) ⇔ Aα(U)∂αU = F(U).

with

A0(U) =

[
ρc 0
0 β(T)

]
, A1(U) =

[
0 1
1

T2 0

]
,

F(U) =

 0

−
(

1
λ(T)T2 +

dβ(T)
dt

)
q

 , U =

[
T
q

]
,

where β(T) =
τ(T)

λ(T)T2 . In the linear case one gets

A0(U) =

[
ρc 0
0 τ0

]
, A1(U) =

[
0 1

λ0 0

]
, F(U) =

[
0
−q

]
. (4.80)
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From the definition of hyperbolic system 4, we observe that the condition H1 is
trivially satisfied

det (A0) =
ρcτ(T)
λ(T)T2 ̸= 0, (4.81)

being ρ > 0, c > 0 and λ(T), τ(T) > 0, ∀ T > 0. To verify the condition H2 you
need to determine the eigenvalues of the matrix A−1

0 A1, thus considering the follow-
ing eigenvalues problem det (A−1

0 A1 − vI) = 0. The eigenvalues can be obtained
straightforwardly from this equation

v(T)1,2 = ±

√
λ(T)

ρcτ(T)
. (4.82)

The coefficients ρ > 0, c > 0 and λ(T), τ(T) > 0, ∀ T > 0 are real, then it remains
shown that the system is hyperbolic and the characteristic velocity is given by the
relation (4.82).

Similarly in the linear case, the system is still hyperbolic with the following ex-
pressions of the characteristic speeds

v1,2 = ±
√

λ0

ρcτ0
. (4.83)

The characteristic velocity, from the relation (4.82), can be expressed as follows

v(T) =

√
λ(T)

ρcτ(T)
=

√
λ0 + a(T − T0)

ρc [τ0 + b(T − T0)]
, (4.84)

introducing the dimensionless quantities (i.e v̂ = v/v0) and using the positions (4.78)
the expression (4.84) beomes

v̂(T̂) =
1
v0

·

√
λ(T̂)

ρcτ(T̂)
=

1
v0

·

√
λ0 + a(Tend − T0)T̂

ρc [τ0 + b(Tend − T0)T̂]

=
1
v0

·

√√√√√ λ0 +
ρcL2

tp
τp2 T̂

ρc
(

τ0 +
L2

α0
τq2 T̂

) =
1
v0

·

√
τd + τp2 T̂
τq1 + τq2 T̂

· α0

tp

=

√
τd + τp2 T̂
τq1 + τq2 T̂

,

where it is identified
v0 =

√
α0

tp
. (4.85)

Furthermore the expression of characteristic velocity in a dimensionless form is given
as

v̂(T̂) =

√
τd + τp2 T̂
τq1 + τq2 T̂

. (4.86)

and in the linear case assume the following form

v̂ =

√
τd

τq1

, (4.87)
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which can be found from the (4.86) by putting τp2 = τq2 = 0.

4.4.2 Numerical framework

Here we present a numerical method (explicit finite difference method (FDM) devel-
oped for the nonlinear one-dimension model (4.46).

Let us discretize the spatial domain Ω = [0, 1] with space steps ∆x and the time
interval [0, tmax] with step ∆t, the following discrete values of space e time are ob-
tained

xj = x0 + j∆x j = 0, 1, 2, ..., N

tn = n∆t n = 0, 1, 2, ..., J.

Using the same method described in Sections 4.2.1 results the solution is approxi-
mated as

T(xj+1/2, tn) ≈ Tn
j+1/2

q(xj, tn) ≈ qn
j

w(xj, tn) ≈ wn
j .

as shown in Figure 4.21. As a consequence, it is not necessary to define boundaries
for the temperature field. Over time, only an explicit forward differencing scheme is
used.

Therefore the difference equations are

τd
Tn+1

i+1/2 − Tn
i+1/2

∆t
+

qn
i+1 − qn

i

∆x
= 0, (4.88a)

τq1

wn+1
i − wn

i
∆t

+
τq1

τq1 + τq2 Tn
i
· wn

i +
1

a0 + 2 Tn
i +

1
a0

(
Tn

i

)2
·

Tn
i+1/2 − Tn

i−1/2

∆x
= 0,

(4.88b)

qn+1
i − τq1

(
a0 + 2 Tn

i +
1
a0

(Tn
i )

2
)
·

τd + τp2 Tn
i

τq1 + τq2 Tn
i
· wn

i = 0, (4.88c)

where a explicit forward finite difference approximations are used for the time and
spatial derivatives of the field variables(

∂T
∂t

)n+1

i+1/2
≈

Tn+1
i+1/2 − Tn

i+1/2

∆t
,(

∂w
∂t

)n+1

i
≈

wn+1
i − wn

i
∆t

,(
∂q
∂x

)n

i
≈

qn
i+1 − qn

i

∆x
= Dx(q),(

∂T
∂x

)n

i+1/2
≈

Tn
i+1/2 − Tn

i−1/2

∆x
= Dx(T),

let us observe, that we have used a forward finite difference for the time derivatives
and the spatial derivatives of the heat flux, while a backward finite difference for the
spatial derivatives of the temperature is considered.
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Now, for simplicity of notation we omitted the symbol “ ˆ " and after some rear-
rangement, we have

Tn+1
i+1/2 = Tn

i+1/2 − C0
(
qn

i+1 − qn
i
)

, (4.89a)

wn+1
i = (1 − C1)wn

i − C2
(
Tn

i+1/2 − Tn
i−1/2

)
, (4.89b)

qn+1
i = C3 wn+1

i , (4.89c)

wherein

C0 =
∆t

τd · ∆x
, A(Tn

i ) =
τq

τq1 + τq2 Tn
i

,

C1 =
A(Tn

i ) · ∆t
τq1

, B(Tn
i ) = a0 + 2 Tn

i +
1
a0

(Tn
i )

2 ,

C2 =
∆t

τq1 · B(Tn
i ) · ∆x

, C(Tn
i ) =

τd + τp2 Tn
i

τq1 + τq2 Tn
i

,

C3 = τd · B(Tn
i ) · C(Tn

i ),

in this approximations the term Tn
i , which appears in the non-linear terms of the

evolution equation of the heat flux component q and the new field variable w, (4.89b)
and (4.89c), is replaced by the following average

Tn
i 7−→

Tn
i−1/2 + Tn

i+1/2

2
, (4.90)

as shown in the Fig. 4.21.

FIGURE 4.21: Concept of the spatial discretization [98]. The filled
squares represent the temperature T, and the filled triangles repre-
sents the heat flux q and the new field variable w. Empty symbols

denote boundary conditions.

4.4.3 Numerical results

In this Section the results of propagation and reflection of heat pulses according to
the nonlinear generalization (4.74) of the MCV equation (4.74) obtained in [59] are
treated. We have plotted them in Figure 4.22 and these are compared with the corre-
sponding results of the linear MCV equation and its nonlinear formulation (4.1).

Figure 4.22 shows the evolution of T at the rear surface of the system, i.e. at
x = L, after the pulse has been sent from x = 0 at t = 0, but for two different ranges
of the interval of time, from 0 to 0.8 and from 0 to 2, respectively. Thus, Figure 4.22(a)
is focused on comparison of the behaviour predicted by the models (4.1) and (4.74)
at the first peak, while Figure 4.22(b) also shows the second peak, produced at a time
after the first peak.

The two main features which deserve to be commented on are:
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a) In the nonlinear generalization (4.74) the peak of the pulse signals arrives be-
fore than the peaks described the MCV equation and by its nonlinear formula-
tion (4.1), which are found to arrive approximately at the same time (note that
the time position of the peaks of L-MCV and of NL-MCV (4.1) is practically
the same, whereas that of the peak described by NL-CE-MCV (4.74) comes
slightly earlier). The latter peak reaches t = 0.3 whereas the other two peaks
arrive at t = 0.35; thus, the relative difference in arrival time is of the order
of 0.05/0.35 ≡ 14%, which should be observable. In contrast, the linear de-
cay of the signal after the peaks decayed is approximately the same in three
equations.

b) The height of the peak in NL-CE-MCV (4.74) is higher than the corresponding
to the MCV equation but lower than the peak in the NL-MCV (4.1) equation.
More or less, the height of the peaks is 2.5618 in MCV, 2.9105 in NL-CE-MCV
(4.74) and 3.1432 in NL-MCV (4.1). Thus, in principle the difference of heights
in peaks is non-negligible and should be observable in a sufficiently detailed
experiment.

c) Figure 4.22(b) represents the same as in Figure 4.22(a) but in a longer interval on
time, in such a way that one sees a second peak is seen corresponding to the
arrival of the reflected signal. Whereas the arrival time of this second peak
is the same for MCV and NL-MC V(4.1), it arrives before for NL-CE-MCV
(4.74), consistently with the anticipation already noted in the first peak. Thus,
a salient feature if that the peak in NL-CE-MCV (4.74) goes faster.

d) For our results some particular values were assigned to the dimensionless pa-
rameters, namely τd = 0.1, τq1 = 0.08, τp2 = 0.01, τq2 = 0.02, a0 = 60. Other
vàlues could be used, depending on the situation that is being explored. For

instance, by τd =
a0tp

L2 (see (4.47)) in the case where the material considered was

silicon at room temperature we have a0 = 0.8cm2/s, so that the value td = 0.1
could correspond, for instance, to τp = 1s and L = 2, 83cm. Analogously, since

τq1 =
a0τ0

L2 , the value τq1 = 0.08 could correspond to τ0 = 0.08s. Also, since

a0 =
ρcLT0

q0tp
, and since for Si at room temperature ρc is 1, 65 × 106 J/m3K, the

value a0 = 60 for T0 = 300K, L = 2, 83cm and tp = 1s, would correspond to
q0 = 2.31 × 105W/m2. Thus, the dimensionless values used in the calculations
are closely related to the physical parameters used in the experiment, concern-
ing the duration of the pulse tp, the length of the system L, and the physical
proerties of the material.

Model Peak temperature Velocity
MCV 2.5618 1.1180

NL-MCV(4.1) 3.1432 1.0933
NL-MCV(4.74) 2.9105 1.0950

TABLE 4.1: Height of the peaks in Fig 4.22 for linear MCV and non-
linear NL-MCV (4.1) and NL-CE-MCV (4.74) models and their corre-

sponding propagation velocities.
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(a) (b)

FIGURE 4.22: Comparison from NL-MCV (4.1) and NL-CE-MCV
(4.74), with τd = 0.1, τq1 = 0.08, a0 = 60, τp2 = 0.001, τq2 = 0.002,
defined in expressions (4.47), for two different ranges of the time in-
terval, from 0 to 0.8 in (a) and from 0 to 2 in (b). The longer time
interval considered in (b) allows one to see a second peak of temper-
ature, corresponding to the arrival of the perturbation reflected at the

border.
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(a)

(b) (c)

FIGURE 4.23: Comparison of the form of the temperature peak for
different values of τp2 and τq2 , for NL-CE-MCV (4.74), defined in
expressions (4.47). The blue and orange curve family corresponds
to the τp2 < τq2 and τp2 > τq2 , respectively, while the black curve
represents the linear case. The other values of the parameters are:

τd = 0.1, τq1 = 0.08, a0 = 60.

The next research in this field should be a wider analysis of different physical
situations for concrete materials and values of L and tp, with the aim to a detailed
comparison with experimental results ([53, 64]). Up to now, these results have been
interpreted by the linear version of the MCV equation. One should try to interpret
them in terms of the nonlinear versions MCV(4.1) and MCV(4.74) to see which one
describes better the results.

Another interesting topic would be to compare MCV(4.1) and MCV(4.74) in con-
nection to soliton propagation of thermal pulses along wires and nanowires. In [123],
these were made by keeping the linear form of MCV but taking nonlinear terms for
the heat exchange between wire and the environment. It might be interesting to
combine these terms with a non-linear version of MVC. Indeed, as noted in [123],
the propagation of thermal solitons would allow to transmit bits of information, so
that the speed and duration of the solitons would be relevant in the connection be-
tween thermal energy and information transmission and processing.



108 Chapter 4. Maxwell-Cattaneo-Vernotte heat conduction

(a)

(b)

FIGURE 4.24: Comparison of the form of the temperature peak for dif-
ferent values of τp2 and τq2 , for NL-MCV(4.1), defined in expressions
(4.47). The blue and orange curve family corresponds to the τp2 < τq2
and τp2 > τq2 , respectively, while the black curve represents the linear

case. The other values of the parameters are: τd = 0.1, τq1 = 0.08.
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Chapter 5

Guyer-Krumansl heat conduction

In this chapter, we first explore the effects of nonlinear thermal conductivity and
relaxation time by solving the one-dimensional Guyer-Krumhansl equation. Next
we focus on the consequences of the existence of the whirling heat current density
by solving the two-dimensional Guyer-Krumhansl equation with a space and time-
dependent heat pulse boundary conditions, using a staggered scheme.

We place the emphasis on the transient evolution that highlights particular tem-
perature decrease effects occurring locally due to the heat current vorticity in agree-
ment with the results of [124]. This phenomenon is evident only during the transient
phase, the time evolution of the heat current vorticity causes a local temperature de-
crease compared to the initial state. Such observations remain hidden in the paper of
Beardo et al. [125], as their study applied the GK equation to a stationary problem.
Numerical resolution, poses further challenges to the boundary condition for which
we propose a particular extrapolation method. Furthermore, using the Helmholtz
decomposition, we show an analogy with the linearized acoustics of Newtonian flu-
ids, which reveals how the heat flux density plays the role of the velocity field. The
solutions obtained also reveal an unexpected temperature evolution influenced by
the whirling heat flux density, namely, the temperature can locally be decreased for
a short time when the curl of the heat flux density dominates the heat conduction
process. Additionally, longitudinal and transversal modes are also discussed, high-
lighting the role of the rotational part of the heat flux field and providing further
insights into the structure of the Guyer-Krumhansl equation.

Furthermore, this chapter delves into the impact of boundary conditions on heat
flux behavior in thin nanowires and sets the stage for a deeper exploration of these
topics. Particularly focusing on how boundary conditions affect heat flux in nanowires
and the role of non-local effects in the heat conduction process. This analysis is
conducted using a theoretical model that emphasizes non-local effects, i.e. the GK
model. We also assess these results in the context of the second law of thermody-
namics.

5.1 Brief historical background

In 1966, Guyer and Krumnhansl published an article [4, 5], in which the solution of
the linearized Boltzmann equation for phonons is determined. The authors discov-
ered that the heat flux does not follow the Cattaneo equation but instead adheres to
what is now referred to as its non-local generalization. This finding highlighted that
the traditional models, which assume a purely local relationship between heat flux
and temperature gradients, are inadequate for capturing heat transport behaviors
in certain regimes, especially at micro and nanoscales. The Guyer-Krumhansl equa-
tion introduces additional terms that account for spatial non-locality, reflecting how
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phonon scattering and other microstructural effects influence the heat conduction
process.

τ∂tq + q = −λ∇T + l2 [∆q + 2∇(∇ · q)] (5.1)

where l represents the mean free path of phonon. As noted in 2.4.3-2.5.2 to prove
thermodynamic compatibility for such heat flux evolution equation, we need non-
local constitutive equations. This is suggested by the presence of the additional term
in comparison to MCV equation, i.e. l2 [∆q + 2∇(∇ · q)]. This term introduces non-
locality, as it depends not only on the value of the heat flux q at a given point but also
on the values of the heat flux in the surrounding neighborhood, owing to the spatial
derivatives (∆q and ∇(∇ · q)) present. However, it is important to note that the
GK equation (5.1), combined with the energy balance law (2.1), forms a parabolic
system, so the hyperbolic properties of the MCV system is lost. This involves the
violation of the strong causality principle, and it goes out of the guidelines of the
RET.

Several heat conduction models and approaches have been developed and tested
over the past decades, such as the Cattaneo [1], Guyer-Krumhansl (GK) [4, 5], two-
temperature [126–128], and Jeffreys equations [7]. From an engineering perspective,
however, the GK and Jeffreys equations are often considered promising alternatives
to the classical Fourier law [24]. The GK equation is particularly noteworthy, as it not
only includes Fourier’s law as a special case but also models the phenomenon of sec-
ond sound (similar to the Cattaneo equation) and provides an effective description
for heterogeneous materials [24], using a continuous approach. Therefore, the con-
tinuum background of the GK equation has high potential for increasingly advanced
practical applications, which includes foam-based heat exchangers and thermal stor-
age technologies [129–131]. So the Guyer-Krumhansl equation has a special role. In
addition to its various applications in the fiekd of nanotechnology, cryotechnology
and also in the case of heterogeneous materials modelling, it poses further mathe-
matical challenges compared to the Fourier or Cattaneo equations. This gives the
GK equation a special role in modern heat conduction models.

Beyond its applications in nanotechnology, cryotechnology, and heterogeneous
material modeling, the GK equation poses additional mathematical challenges com-
pared to the simpler Fourier and Cattaneo equations. Notably, the GK equation is the
first heat conduction model to account for the curl of the heat flux density within its
evolution equation, as will be discussed in Section 5.3. This makes the GK equation
(5.1) significantly more complicate, particularly in two or three spatial dimensions.

Originating from the phonon hydrodynamics [6, 55, 57], the GK model behaves
as a special type of fluid model, which allows for the inclusion of heat flux curl.
This is especially relevant for phenomena such as second sound in superfluids [132–
134], but it also shows how similar effects can manifest in the temperature history of
solids.

However, in the last years, its continuum background offers more flexibility but
keeps the structure of the GK equation (kinetic or phononic). While the classical GK
equation is derived from phonon hydrodynamics, the continuum approach allows
greater flexibility, as the model is no longer constrained by the specifics of phonon
behavior. In this context, the only restrictions on the parameters stem from the sec-
ond law of thermodynamics. As a result, the GK equation can effectively describe
heterogeneous materials [24] while still accommodating coefficients derived from
phonon hydrodynamics.

Regarding the hydrodynamic properties of phonon, we can refer to the recent
work by Shang et al. [135] in which they also conduct a similar survey to ours,
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but slightly modify the GK equation based on particular phonon hydrodynamic
assumptions which are characteristic at nanoscale for two-dimensional materials.
Because the phonon hydrodynamics strictly restrict the applicable parameters, the
effects of the whirling heat current density remain hidden, however, the flexibility
given by the current continuum approach allows for further insights.

The most flexible Guyer–Krumhansl equation, in continuum background, pre-
sented in Sections 2.4.3-2.5.2, is

τ∂tq + q = −λ∇T + η1∆q + η2∇ (∇ · q) (5.2)

where η1 and η2 are the phenomenological coefficients. Let us observe when η1, η2
goes to zero, the GK equation (5.1) returns to the MCV form (4.1). The balance of
internal energy 2.1, the Guyer–Krumhansl equation together with the (thermostatic
caloric) equation of state

e = cT,

forming a closed system of equations,

ρc ∂tT +∇ · q = ρr (5.3a)
τ ∂tq + q = −λ∇T + η1∆q + η2∇ (∇ · q) . (5.3b)

which, with appropriate initial and boundary conditions, can be solved.

FIGURE 5.1: A typical solution for Guyer-Krumhansl equation

The coefficients η1 and η2 are linearly independent and are restricted by the sec-
ond law of thermodynamics. Therefore, these are positive semidefinite and free from
the restrictions given by the phonon hydrodynamic background, i.e. η1 is not iden-
tical to the square of the mean free path, and the ratio of η2 over η1 is not necessarily
equal to 2 either. The current continuum context provides a notably more flexible
adjustment for the coefficients, either by means of an experiment such as [24] or in-
heriting the phonon hydrodynamic approach [55, 57]. Furthermore, we also wish
to draw attention to the coefficients whose functional relations become apparent. It
is clear that if λ = λ(T) holds (i.e. a linear or exponential one), then l11 = l11(T)
can be immediately given and that T-dependence is inherited in all the other coeffi-
cients. The different parameters can optionally adjust the necessary T-dependence.
Additionally, if such nonlinearities are required, must be the starting point in order
to take into account the further contributions correctly, as we seen in Section 2.5.2.
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5.1.1 Longitudinal and transversal heat propagation

Via the vector Laplacian identity

∆q = ∇ (∇ · q)−∇×∇× q

we can express the second-order spatial derivative of the heat flux vector q in the
Guyer-Krumhansl equation (5.2) can be given as

τ∂tq + q = −λ∇T + (η1 + η2)∇ (∇ · q)− η1∇×∇× q, (5.4)

therefore, theoretically, in a GK-type heat conductor transversal heat propagation
can also be observed. This shows that the heat flux evolution is influenced by both
the divergence (representing compressive effects) and the curl (representing rota-
tional effects) of the heat flux. These non-local terms reflect how heat flow at one
point depends on the behavior of the heat flux in the surrounding region, which is a
key feature of the Guyer-Krumhansl model.

Via the Helmholtz decomposition, the heat current density can be uniquely – up
to a space-independent but arbitrary time-dependent vector function – given as a
sum of irrotational (i.e. curl-free, q∗) and solenoidal (i.e. divergence-free, q◦) vector
fields, i.e.

q = q∗ + q◦

with

∇ · q = ∇ · q∗

∇× q = ∇× q◦.

Curl-free and divergence-free components of the vector field are usually referred to
as longitudinal and transversal components, respectively. Since ∇T is curl-free, the
governing equations of a GK-type heat conductor can be reformulated as

ρc∂tT = −∇ · q∗, (5.5a)
τ∂tq∗ + q∗ = −λ∇T + (η1 + η2)∆q∗, (5.5b)
τ∂tq◦ + q◦ = η1∆q◦, (5.5c)

which decomposition reveals the time evolutions of the longitudinal and transversal
components of heat current density. Here, the evolution of q◦ is decoupled from evo-
lutions of q∗ and T, thus q◦ can only be introduced through a spatially-dependent
boundary condition or by a particular initial condition. An inhomogeneous temper-
ature field alone cannot induce non-zero q◦. Since the boundary conditions on heat
current density define same q itself, it is inevitable to introduce disturbances in both
parts of q, but the single separation of these ar the boundary can be complicated.

Later on, η1 + η2 is referred to as the longitudinal GK coefficient and on η1 as
the transversal GK coefficient. Based on our previous one dimensional studies of
the GK equation [23], the longitudinal GK coefficient (denoted usually in one spatial
dimension with κ2) has to be positive semi-definite, hence the seemingly indefinite
η2 parameter is constraint by

η2 ≥ −η1.

Remark 15. Let us refer here on the governing equations of linearized acoustics of New-
tonian fluids, which reads – via applying Helmholtz decomposition on the velocity field v
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∂rρ = −ρ̄∇ · v∗, (5.6a)

ρ̄∂tv∗ = −ā2
s∇ρ +

(
η̄Vol +

4
3

η̄Sh

)
∆v∗, (5.6b)

ρ̄∂tv◦ = η̄Sh∆v◦ (5.6c)

with density difference ρ measured from density ρ̄ of the unperturbed state, isentropic speed
of sound ās, volume and shear viscosities η̄Vol and η̄Sh, respectively (cf. equations (3.100)
and (3.109) in [136]). Via the curl of velocity, the vorticity ω = ∇ × v = ∇ × v◦ is
defined, hence the relation 5.6c can also be written as ω instead of v◦. Therefore, Helmholtz
decomposition highlights that in the linear approximation of acoustics the evolution of ω is
decoupled by ρ and v∗, hence resulting that the sound is a transversal wave [cf. 5.6a and
5.6b] and vorticity cannot be introduced through the acoustic fields ρ and v∗ (nor through
the pressure field). We are dealing with something very similar in the case of GK equations
5.5a, 5.5b and 5.5c.

An additional interesting property is related to the Fourier resonance condition,
i.e. the temperature history given by the GK equation is identical with the Fourier’s
one. Namely, replacing the gradient of 5.5a into the partial time derivative of 5.5b
and taking advantage of the commutation of ∇ and ∂t, one gets

τ ∂t

(
∂tq∗ − η1 + η2

τ
∆q∗

)
+ (∂tq∗ − α∆q∗) = 0,

which is the sum of a Fourier heat conduction equation and the partial time deriva-
tive of a slight modification of the Fourier heat conduction equation. If the additional
time scale becomes to that identical given by the thermal diffusivity, i.e.

η1 + η2

τ
= α ≡ λ

ρc
, (5.7)

Fourier resonance occurs. The resonance condition 5.7 is the same as obtained in
the one-dimensional case [23], where is possible to write the T-representation of the
GK equation. In the general three dimensional case the T-representation of the GK
model is

τ ∂t

(
∂tT +

η1 + η2

τ
∆T
)
+ (∂tT + α∆T) =

1
ρ c

(τ∂tS − (η1 + η2)∆S) (5.8)

in which is possible to see various contributions of the heat source S appear. Con-
sidering S = 0 one get

τ ∂t

(
∂tT +

η1 + η2

τ
∆T
)
+ (∂tT + α∆T) = 0 (5.9)

in which a kind of time derivative of the Fourier equation and the Fourier equation
itself. So the Fourier resonance condition is

α =
η1 + η2

τ

under this condition the solution of GK equation is qualitatively equal to that of
Fourier. However, in the three-dimensional setting, Fourier resonance appears only
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in the longitudinal direction, the transversal contribution may distort this behaviour.
In addition

•
(η1 + η2) /τ

λ/(ρc)
< 1, Fourier resonance condition;

•
(η1 + η2) /τ

λ/(ρc)
< 1, over-diffusive solutions are obtained;

•
(η1 + η2) /τ

λ/(ρc)
< 1, attenuated wave-like propagation of the temperature field is

observable.

From an engineering perspective, Fourier resonance is a natural and desirable re-
quirement, as the GK equation includes the Fourier equation as a special case. This
characteristic is highly advantageous in practical applications because it allows the
GK equation to replicate the simpler Fourier solution under specific conditions,
achieved through the appropriate alignment of its coefficients. Crucially, this can
be done without any modifications to the underlying model, making it both versa-
tile and efficient for situations where classical Fourier heat conduction is sufficient,
while still being capable of handling more complex scenarios when necessary.

When we consider the constant coefficient (and only in this case) is possible to
eliminate the heat flux q or the temperature from the equation (5.3), and we obtain

T - representation τ ∂t

(
∂tT +

η1 + η2

τ
∆T
)
+ (∂tT + α∆T) =

1
ρ c

(τ∂tS − (η1 + η2)∆S)

q - representation τ ∂t

(
∂tq − η1 + η2

τ
∆q
)
+ (∂tq − α∆q) = −α∆S,

We observe the source terms in this T-(q-)representation apperas differently, how-
ever when S = 0 we obtain

T - representation τ ∂t

(
∂tT +

η1 + η2

τ
∆T
)
+ (∂tT + α∆T) = 0

q - representation τ ∂t

(
∂tq − η1 + η2

τ
∆q
)
+ (∂tq − α∆q) = 0.

5.2 L-GK and NL-GK in 1D

The Guyer-Krumhansl model is promising and could be the standard model for fu-
ture engineering practice. However, its practical application depends on a thorough
investigation and deep understanding of its mathematical properties, particularly
the study of nonlinear effects arising from non-constant material parameters. For
this reason, we investigate the effects of non-constant material parameters, such as
thermal conductivity and relaxation time. Given the practical importance of ac-
counting for these nonlinearities, understanding their impact is essential for ad-
dressing real-world heat transfer problems effectively. This deeper insight will en-
able more accurate modeling of complex scenarios where material properties are not
constant, ensuring the GK model’s successful implementation in engineering solu-
tions.
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In the Section 2.5.2 we obtain, after some calculations, the following evolution
equation for the heat flux in one dimension

ρm
l22

∂q
∂t

+ q =
ρm
l22

∂

∂t

(
l11

∂B
∂x

)
+ (l11l22 − l12l12)

∂B
∂x

The GK equation is obtained setting l11 = 0, l22 = l2, l21 = 1, k1 + k2 + k3 = l1
and using the constrains (2.75) the relation (l12 + l21)

2 ≤ 0 is satisfied if and only if
l12 = −l21. By eliminating the current multiplier B and after some computation the
equation (2.72)

ρm
l2

∂q
∂t

+ q =
1
l2

∂

∂x

(
1
T
+ l1

∂q
∂x

)
is obtained. Here, it is possible to consider two different cases, as it has been see in
Section 2.5.2. Here we summarize the following cases:

Case I : l1 is constant

τ(T)∂tq + q = −λ(T)∂xT + η2∂xxq (5.10)

with the following identifications

τ =
ρm
l2

, λ =
1

l2T2 , η2 =
l1
l2

.

if thermal conductivity and relaxation time are assumed to be expressed as
functions of temperature, i.e. (2.11) and (2.50), the following constraints arise

l2(T) =
1

[λ0 + a(T − T0)] T2 ,

ρm =
τ0 + b(T − T0)

[λ0 + a(T − T0)] T2 ,

η2(T) = l1 [λ0 + a(T − T0)] T2.

Case II : l1 = l1(T) is a function of temperature (see [53])

In this situation the evolution equation for the heat flux is

τ ∂tq + q =

[
−λ(T) +

1
l2(T)

dl1(T)
dT

∂xq
]

∂xT + η2(T)∂xxq (5.11)

which contains the GK equation but appear the presence of a new term, as in
[51].

Assuming thermal conductivity and relaxation time are expressed as a func-
tions of temperature, i.e. (2.11) and (2.50), and also the coefficient η2(T) is
assumed to be a linear function of temperature

η2(T) = η0 + c̃(T − T0) (5.12)

wherein η0 denotes this coefficient at the initial time, and c̃ is a suitable coeffi-
cient depending on the material under examination; the following constraints
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arise,

l2(T) =
1

[λ0 + a(T − T0)] T2 ,

ρm =
τ0 + b(T − T0)

[λ0 + a(T − T0)] T2 ,

l1(T) =
η0 + c̃(T − T0)

[λ0 + a(T − T0)] T2 .

(5.13)

5.2.1 Formulation of nonlinear GK model : heat pulse application

Let us consider the set of equations (2.1) and (2.76) in the one-dimensional domain
Ω = [0, L] with length L. The one dimensional case, in the heat pulse experiment,
is a good approximation when the thickness of the samples is smaller and the front
face is heated homogeneously by the heat pulse. In addition, the small deformation
is neglected here and the samples are assumed to be rigid conductors. Under these
assumptions, the balance law of the internal energy and the evolution equation for
the heat flux read in the form

ρc ∂tT + ∂xq = 0, (5.14a)

τ(T) ∂tq + q =

[
−λ(T) +

1
l2(T)

dl1(T)
dT

∂xq
]

∂xT + η2(T) ∂xxq, (5.14b)

wherein η is the phenomenological coefficient (characteristic length) with η2 = η2
1 +

η2
2 . The material parameters and specific heat capacity c are assumed to be constant,

while the functions λ(T), τ(T) are expressed by the equations (2.11), (2.50).
Here we examine both the cases where the parameter η2 is constant and it de-

pends on temperature : as seen earlier in Section 2.5.2, assuming constant the phe-
nomenological coefficient l1. This induces a well-defined non-linearity on the pa-
rameter η2(T), which could be appropriately modified by introducing an suitable
function for l1(T), but this as noted in [51] leads to the presence of an additional
term in the GK equation.

The same I.C. and B.C. as in heat pulse experiments are used, explained in the
Chapter 4.2

T(x, 0) = T0, q(x, 0) = 0,

and
q(1, t) = 0,

q(0, t) = q0(t) =


qmax

2

[
1 − cos

(
2πt
tp

)]
if t0 < t ≤ tp,

0 if t > tp.

Approximation with constant coefficient η2(T)

As is usual to proceed, since (5.14) may contain coefficients of different order of
magnitude, dimensionless variables are introduced

x̂ =
x
L

, t̂ =
α0t
L2 , q̂ =

q
q̃0

, T̂ =
T − T0

Tend − T0
, (5.15)
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where

α0 =
λ(T0)

ρ0c
, Tend = T0 +

tpq̃0

ρ0cL
, q̃0 =

qmax

2
.

The dimensionless version of (5.14) reads

τp1

(
1 +

τq2

τq1

T̂
)

∂T̂ T̂ + ∂x̂ q̂ = 0, (5.16a)

(τq1 + τq2 T̂)∂t̂q̂ + q̂ = −
(
τp1 + τp2 T̂

)
∂x̂T̂ + τc∂x̂x̂ q̂, (5.16b)

where the dimensionless parameters are

τp1 =
α0tp

L2 = τd, τp2 =
a(Tend − T0)tp

ρ0cL2 , τc =
η2

L2

τq1 =
α0τ0

L2 , τq2 =
α0 b(Tend − T0)

L2 ,

(5.17)

Furthermore, the dimensionless initial and boundary conditions are, respectively

T̂(x̂, 0) = 0, q̂(x̂, 0) = 0, (5.18)

and
q̂(1, t̂) = 0,

q̂(0, t̂) =

 1 − cos
(

2π t̂
τd

)
if 0 < t̂ ≤ τd,

0 if t̂ > τd.
,

(5.19)

Remark 16. If we choose a = b = 0 (i.e. τq2 = τp2 = 0), the linear case is recovered

τp1

∂T̂
∂t̂

+
∂q̂
∂x̂

= 0,

τq1

∂q̂
∂t̂

+ q̂ = −τd
∂T̂
∂x̂

+ τc
∂q̂
∂x̂2 .

Non-linearity induced by η2(T)

Using the same set of dimensionless variables (5.15), if the non-linearity induced by
η2(T) is recognized, from the system (5.14) the following one-dimensional model is
achieved

τp1

(
1 +

τq2

τq1

T̂
)

∂t̂T̂ + ∂x̂ q̂ = 0, (5.20a)

(τq1 + τq2 T̂) ∂t̂q̂ + q̂ = −
(
τp1 + τp2 T̂

)
∂x̂T̂ +

(
τc0 + 2τc1 T̂ + τc2 T̂2) · (τd + τp2 T̂

)
∂x̂x̂q,

(5.20b)

with the same dimensionless initial and boundary conditions, (5.18) and (5.19) re-
spectively. Furthermore, the dimensionless parameters are the same as in (5.17) with
additional identifications

τc0 =
ρ0c l1T0

tp
, τc1 = τc0(Tend − T0), τc2 = τc0(Tend − T0)

2.
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General non-linearity for η2(T)

The study of the non-linearity of η2(T), is very important, for this reason it is neces-
sary to study the case in which it is possible to assign for it a temperature-dependent
function that is not induced by the assumption of λ(T) and τ(T). For instance, here
suppose that η(T)2 is expressed by (5.12).

As seen in Section (2.5.2) this assumption implies the presence of a new term
in the GK equation. Under the same set of dimensionless variables (5.15) from the
system (5.14) where we now consider η2(T) as (5.12), we get the following dimen-
sionless version

τp1

(
1 +

τq2

τq1

T̂
)

∂t̂T̂ + ∂x̂ q̂ = 0, (5.21a)

(τq1 + τq2 T̂) ∂t̂q̂ + q̂ = −
(
τd + τp2 T̂

)
∂x̂T̂ +

(
τl1 + τl2 T̂

)
∂x̂x̂ q̂+(

τp2 − 2
τl1 + τl2 T̂
τT1 + τT2 T̂

− τp2

τl1 + τl2 T̂
τp1 + τp2 T̂

)
∂ĉq̂ ∂x̂T̂, (5.21b)

with the same dimensionless initial and boundary conditions, (5.18) and (5.19) re-
spectively. The dimensionless parameters are similar to the previous cases, (5.17),
with the addition of the following identifications

τl1 =
η0

L2 , τl2 =
c̃(Tend − T0)

L2 , τT1 =
ρ0cLT0

tp q0
, τT2 =

ρ0cL(Tend − T0)

tp q0
.

In the sequel the ’hat’ is omitted in all cases to simplify the notation.
Now we present some numerical results in these three different scenarios, first a

brief summary of the numerical method used to solve the nonlinear systems (5.16),
(5.20) and (5.21) is discussed and then the results obtained are shown.

5.2.2 Numerical framework

Let us discretize the spatial domain Ω = [0, 1] with spatial step ∆x and the time
interval [0, tmax] with step ∆t, the following discrete space and time values are ob-
tained

xj = x0 + j∆x j = 0, 1, 2, ..., N

tn = t0 + n∆t n = 0, 1, 2, ..., J.

The discrete values of temperature are shifted in x direction, then the temperature is
computed in the internal nodes [29, 98], while the heat flux is computed in the nodes
(see Fig. 5.2), as

T(xj+1/2, tn) ≈ Tn
j+1/2,

q(xj, tn) ≈ qn
j ,

Furthermore, no boundary conditions for temperature will be prescribed as can be
expressed explicitly, as a function of the above quantities.
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An explicit forward finite difference method is used for the first order time and
spatial derivatives, centered finite difference for second order spatial derivatives

∂T
∂t

≈
Tn+1

j+1/2 − Tn
j+1/2

∆t
,

∂q
∂t

≈
qn+1

j − qn
j

∆t
,

∂q
∂x

≃
qn

j+1 − qn
j

∆x
= Dx(q),

∂2q
∂x2 ≃

qn
j+1 − 2 qn

j + qn
j−1

∆x2 = Dxx(q),

∂T
∂x

≃
Tn

j+1/2 − Tn
j−1/2

∆x
= Dx(T).

In addition, for nonlinear terms, the following identifications are given(
τq1 + τq2 T

)
≈
(

τq1 + τq2 Tn
j

)
= A(

τp1 + τp2 T
)
≈
(

τd + τp2 Tn
j

)
= B,(

τc0 + 2τc1 T + τc2 T2) ≈ (τc0 + 2τc1 Tn
j + τc2(T

n
j )

2
)
= C,

(τl1 + τl2 T) ≈
(

τl1 + τl2 Tn
j

)
= L,

(τT1 + τT2 T) ≈
(

τT1 + τT2 Tn
j

)
= T ,(

τp2 − 2
τl1 + τl2 T̂
τT1 + τT2 T̂

− τp2

τl1 + τl2 T̂
τp1 + τp2 T̂

)
≈
(

τp2 − 2
L
T − τp2

L
B

)
= M.

(5.22)

in this approximations the term Tn
j is replaced by the following average

Tn
j 7−→

Tn
j−1/2 + Tn

j+1/2

2
,

as shown in the Fig. 5.2.

FIGURE 5.2: Concept of the spatial discretization : The filled squares
represent the temperature T, and the filled triangles represents the

heat flux q. Empty symbols denote boundary conditions.
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As a result, the difference equations consist of an explicit forward differencing
scheme

A τd

τq1

Tn+1
j+1/2 − Tn

j+1/2

∆t
+Dx(q) = 0, (5.23a)

A
qn+1

j − qn
j

∆t
+ qn

j + BDx(T)− ξ1 · Dxx(q)− ξ2 · Dx(q) · Dx(T) = 0. (5.23b)

wherein

ξ1 =


τc for (5.16)
C · B for (5.20)
T for (5.21)

and ξ2 =


0 for (5.16)
0 for (5.20)
M for (5.21)

5.2.3 Numerical results

As mentioned before, the GK equation represents a nonlocal generalization of the
Cattaneo equation, therefore we are interested in investigating the contribution of
the nonlocal term on the behavior of the thermal wave and especially what effects it
implies when it is as temperature-dependent.

Approximation with constant coefficient η2(T)

For this purpose we initially place, the coefficient of the nonlocal term (∂xxq) con-
stant, i.e. η2 constant (i.e. τc constant). It is observed that in the absence of this term,
i.e τc = 0, there is a wave-like trend, typical of Cattaneo model, because the system
is hyperbolic. For values of τc ∈ [0, 0.03] the temperature behavior is similar to that
obtained using by MCV relation (τc = 0), but increasing the value of τc, this wave
effect tends to disappear, since the parabolic character of the system prevails, (see
Figure 5.3).

(a) (b)

FIGURE 5.3: The rear side temperature history, using the GK heat
equation when we change value of the coefficient τc of the non-local
term. The parameters used are: τd = 0.1, τp2 = 0.03, τq1 = 0.08, τq2 =

0.01.

In particular, it can be observed that as the value of τc increases, the thermal pulse
generated at the input propagates forward and does not return to the point where it
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was measured (see Figure 5.3, where the second blue wave tends to dampen more
quickly as τc grows).

Once we understand that the effect of this parameter τc, contributes as a mea-
sure of how far the model deviates from the hyperbolic regime; we aim to inves-
tigate interested the consequences of assuming non-constant thermal conductivity
and relaxation time. For this reason, in Figure (5.4) τq2 = 0 to focus solely on the
contribution of non-linearity in thermal conductivity. It is observed that as the non-
linearity parameter, τp2 , increases, the temperature profile shifts to the left. A similar
behavior was observed in the Cattaneo model in one spatial dimension, with almost
analogous observations in the two-dimensional case, as seen in Chapter 4.2.

In other words, as the thermal conductivity increases, it is expected that the ma-
terial conducts heat more efficiently, causing the heat propagation to advance and
reach higher peaks. This study was conducted for different values of the parameter
τc, as shown in Figure 5.4, for τc = 0 the same behavior observed in [29] is recovered.

(a) (b)

(c) (d)

FIGURE 5.4: The rear side temperature history, using the equation
(5.16b) when we increasing the non-linear term present in the thermal
conductivity, τp2 : 0, 0.001, 0.03, 0.05, 0.07 and we put to zero the other
non linear term τq2 = 0. The other parameters are τd = 0.1, τq1 =

0.08.

Similar considerations can be carried out regarding the effects caused by assum-
ing a non-constant relaxation time. To fully understand the implications of treating
the relaxation time as a function of temperature, in Figure 5.5 placing τp2 = 0. It is
observed that as the value of the parameter causing the non-linearity, τq2 , increases,
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the temperature profile shifts to the right. This behavior highlights that as the relax-
ation time increases, the heat flux q responds to temperature changes with a greater
delay, meaning the temperature gradient is not formed instantaneously. The results
for τc = 0 are again consistent with those presented in [29].

(a) (b)

(c) (d)

FIGURE 5.5: The rear side temperature history, using the equation
(5.16b) when we increasing the non-linear term present in the relax-
ation time, τq2 : 0, 0.001, 0.002, 0.003, 0.004 and we put to zero the other
non linear term τp2 = 0. The other parameters are τd = 0.1, τq1 =

0.08.

Non-linearity induced by η2(T)

The second step in the study of the nonlocal term is to consider the non-linearity
induced by thermal conductivity, (see Section 5.2.1). We observe that as this non-
linearity increases, caused by the increase of the coefficient of the nonlocal term, i.e.
mean((τc)n

i ), that corresponds to increase of the coefficients τcm with m ∈ {0, 1, 2},
the temperature peak tends to decrease and the heat conduction occurs more slowly,
in Figure 5.6 we note the transition of the temporal evolution of the temperature
from blue to yellow.
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FIGURE 5.6: We choose the parameters τcm with m ∈ {0, 1, 2} such
that the mean of the nonlinear term τc ≡

(
τc0 + 2τc1 T̂ + τc2 T̂2) ·(

τd + τp2 T̂
)

is: (a) mean((τc)n
i ) = 0.0718, (b) mean((τc)n

i ) = 0.1045
and (c) mean((τc)n

i ) = 0.2555. In particular we choose in : (a)
τc0 = 0.1, τc1 = 0.13, τc2 = 0.22; (b) τc0 = 0.15, τc1 = 0.2, τc2 = 0.3;

and (c) τc0 = 0.4, τc1 = 0.4, τc2 = 0.7.

In this case, attention is drawn to the consequences of non-constant thermal con-
ductivity and relaxation time. It is observed that basically, their effect are almost
similar to those observed in the previous case, (see figure 5.7-5.8).
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(a) (b)

(c)

FIGURE 5.7: The rear side temperature history, using the equation
(5.20b) when we increasing the non-linear term present in the relax-
ation time, τp2 : 0.001, 0.03, 0.05, 0.07 and we put to zero the other non-
linear term τp2 = 0, this is because we want to study only the effect of
the nonlinear term present in the relaxation time. The other parame-

ters are τd = 0.1, τq1 = 0.08.
Furthermore, we choose the parameters τcm with m ∈ {0, 1, 2} such
that the mean of the nonlinear term τc ≡

(
τc0 + 2τc1 T̂ + τc2 T̂2) ·(

τd + τp2 T̂
)

is: (a) mean((τc)n
i ) = 0.0718, (b) mean((τc)n

i ) = 0.1045
and (c) mean((τc)n

i ) = 0.2555. In particular we assume in : (a)
τc0 = 0.1, τc1 = 0.13, τc2 = 0.22; (b) τc0 = 0.15, τc1 = 0.2, τc2 = 0.3;

and (c) τc0 = 0.4, τc1 = 0.4, τc2 = 0.7.
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(a) (b)

(c)

FIGURE 5.8: The rear side temperature history, using the equation
(5.20b) when we increasing the nonlinear term present in the thermal
conductivity, τq2 : 0.001, 0.002, 0.003, 0.004 and we put to zero the other
nonlinear term τq2 = 0, this is because we want to study only the
effect of the nonlinear term present in thermal conductivity. The other

parameters are τd = 0.1, τq1 = 0.08.
Furthermore, we choose the parameters τcm with m ∈ {0, 1, 2} such
that the mean of the nonlinear term τc ≡

(
τc0 + 2τc1 T̂ + τc2 T̂2) ·(

τd + τp2 T̂
)

is: (a) mean((τc)n
i ) = 0.0718, (b) mean((τc)n

i ) = 0.1045
and (c) mean((τc)n

i ) = 0.2555. In particular we assume in : (a)
τc0 = 0.1, τc1 = 0.13, τc2 = 0.22; (b) τc0 = 0.15, τc1 = 0.2, τc2 = 0.3;

and (c) τc0 = 0.4, τc1 = 0.4, τc2 = 0.7.
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General non-linearity for η2(T)

Finally, the third scenario involves considering a non-linearity for the coefficient of
the nonlocal term which does not fit into the previously treated cases. In this case,
the parameter η2(T) is assumed to be a function of temperature. The effect of this
type of non-linearity, represented by the parameters τTm with m ∈ 1, 2, leads to a
delay in thermal propagation as these parameters increase. This behavior can be
clearly observed in Figure 5.9.

Additionally, as the parameter regulating the non-linearity of the thermal con-
ductivity, τp2 , increases, the initial results align with those observed in [29]. How-
ever, if the value of this parameter continues to increase, wave propagation reap-
pears. This suggests that incorporating non-linear contributions in both the thermal
conductivity and the coefficient of the nonlocal term introduces a hyperbolic nature
to the model, as seen in Figure 5.10.

On the other hand, the analysis of the non-linearity effect in the relaxation time,
or the increase in value of the parameter τq2 with τp2 = 0, does not significantly differ
from the results observed in the previous cases.

FIGURE 5.9: We choose the following parameters for τTm with m ∈
{1, 2} : τT1 = 1.4, τT2 = 1.2 for orange line and τT1 = 0.2, τT2 = 0.1 for

blue line.

Finally, two non-linear cases of the GK equation are studied: the phenomenolog-
ical coefficient l1 is constant, a well defined non-linearity on the parameter η2(T) is
induced; it is temperature dependent l1(T). The latter situation, observed by Kovács
in [51] leads to the presence of an additional term in the GK equation. However, for
both the heat equations of MCV and GK, it found that the introduction of the simpler
non-linearity, which is a consequence of the linear dependence of relaxation time and
thermal conductivity on the temperature, induces a temperature-dependent mass
density, ρ = ρ(T). Here, such mechanical effects induced by ρ(T) have been ne-
glected, but in the future these will be included as thermal expansion to describe a
more realistic situation.

The analysis of the nonlocal term reveals that, whether in the constant case, with
non-linearity induced by thermal conductivity, or in the presence of a more gen-
eral non-linearity, the effects of varying relaxation time and thermal conductivity
are comparable to those observed in the Maxwell-Cattaneo model in one or two
spatial dimensions (see Chapters 4.2 and 4.3). Specifically, as thermal conductivity
increases, heat propagation is advanced and achieves higher peaks. Conversely, an
increase in relaxation time results in delayed thermal propagation.
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(a) (b)

FIGURE 5.10: The rear side temperature history, using the equation
(5.21b) when we increasing the non-linear term present in the ther-
mal conductivity, τp2 : 0.001, 0.03, 0.05, 0.07, 0.3, 0.5, 0.7 and we put to
zero the other non linear term τq2 = 0, this is because we want to
study only the effect of the nonlinear term present in thermal con-
ductivity. The other parameters are τd = 0.1, τq1 = 0.08 and in (a)

τT1 = 0.4, τT2 = 0.2 in (b) τT1 = 1.4, τT2 = 1.2.

(a) (b)

FIGURE 5.11: The rear side temperature history, using the equation
(5.21b) when we increasing the non-linear term present in the thermal
conductivity, τq2 : 0.001, 0.002, 0.003, 0.004 and we put to zero the other
non linear term τp2 = 0, this is because we want to study only the
effect of the nonlinear term present in thermal conductivity. The other
parameters are τd = 0.1, τq1 = 0.08 and in (a) τT1 = 0.4, τT2 = 0.2 in

(b) τT1 = 1.4, τT2 = 1.2.

We can remarked that, in the constant case, the nonlocal term measures the devi-
ation from the hyperbolic model. However, when considering non-linearity induced
by thermal conductivity, it is noted that as thermal conductivity increases, the tem-
perature peak tends to decrease and thermal conduction proceeds more slowly.

In the more general case, where the nonlocal term is defined by a generic temperature-
dependent function, we observe that this type of non-linearity results in a delay in
thermal propagation as the non-linearity increases. Moreover, if the value of this pa-
rameter that characterizes the non-linearity is further increased, wave propagation



128 Chapter 5. Guyer-Krumansl heat conduction

can reappear. Thus, it appears that incorporating nonlinear contributions both in
thermal conductivity and in the coefficient of the nonlocal term introduces a hyper-
bolic nature to the model.

In conclusion we show the comparison between the linear and nonlinear results
of Fourier, MCV and GK models in Figure 5.12

(a) (b)

FIGURE 5.12: The rear side temperature history, using the Fourier,
MCV and GK model.

5.3 L-GK in 2D

Here, a staggered discretization approach we will apply to numerically solve a two-
dimensional setting that include time and space varying boundary condition of heat
flux. The discretization is facilitated by introducing a second-order tensory, Q as an
auxiliary quantity, and Q is also useful in the proper realization of boundary con-
ditions. The quantity Q is not independent of the given boundary condition for q ,
however, not all components of Q can be found immediately. In order to avoid arti-
ficial and unnecessary assumptions, we will propose using a quadratic Lagrangian
extrapolation based on the bulk points to update the unknown Q components on the
boundary. This approach has successfully reproduced the solutions of the Fourier
equation which apply the resonance condition (η̂1 = 0, i.e. with vanishing rotational
term).

However, when rotational terms dominate the heat flux density evolution, we
observe that the temperature can be significantly decreased, even falling below the
initial temperature. It is important to emphasize that this phenomenon does not
imply negative temperatures but occurs locally for a short period. This behavior is a
characteristic result of the whirling heat current density.

5.3.1 A staggered grid finite difference method demonstrated on the heat
pulse experiment in three spatial dimensions

Our aim to numerically model the heat pulse experiment in which a single short
pulse thermally excites the sample. Let us consider both the spatial and time depen-
dencies of the pulse. This setup provides an exceptional example for illustrating the
role of boundary conditions, particularly due to the presence of in-plane derivatives.
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In order to ease the discretization of the second-order derivative of q, it is advan-
tageous to introduce the gradient of heat current density as an auxiliary variable

Q := q ⊗∇,

hence, a system of first-order equations has to be solved. After this reformulation, it
obtained

τ ∂tq + q = −λ∇T + η1Q · ∇+ η2∇Tr Q (5.24)

for which it is crucial to properly discretize Q on the boundary.
You want to solve the GK equation in Cartesian coordinate system for a rect-

angular domain with the size of X × Y × Z. It is assumed that the heat pulse ex-
cites the entire Z direction uniformly, therefore we can reduce the problem to two-
dimensional in X and Y. Furthermore, let us consider the symmetry at y = 0, so that
−Y

2 ≤ y ≤ Y
2 , and thus we treat only the half of the rectangle. Consequently, the

boundary conditions are

qx(x = 0, y, t) =


QP,Z
τPYP

[
1 − cos

(
2π t

τP

)] [
1 + cos

(
2π

y
YP

)]
if 0 ≤ t ≤ τP

and 0 ≤ y ≤ YP
2 ≤ Y

2

0 otherwise

,

(5.25)

qx(t, x = X, y) = 0, (5.26)
qy(t, x, y = 0) = 0, (5.27)

qy(t, x, y = +
Y
2
) = 0. (5.28)

where QP,Z is the Z-length specific amount of heat introduced during the heat pulse,
measured in J

m . The initial condition describes the equilibrium state with homoge-
neous temperature distribution

T(x, y, t = 0) = T0,
q(x, y, t = 0) = 0,
Q(x, y, t = 0) = 0.

We want to transform the GK equation into a non-dimensional form, using the fol-
lowing characteristic scales. We choose X for the length scale and X2

α for the time
scale using the thermal diffusivity α := λ

ρc (this leads to the usual Fourier number).
Using these scales, the non-dimensional variables can be defined as follows

t̂ :=
t

X2

α

, x̂ :=
x
X

, ŷ :=
y
X

,

whose derivatives are give

∂t̂ =
X2

α
∂t, ∂x̂ = X ∂x, ∂ŷ = X ∂y.

The non-dimensional fields read

q̂i :=
qi

αQP,Z
X3RY

, Q̂ij =
Qij

αQP,Z
X2RY

, T̂ :=
T − T0

Tmax − T0
=

ρcX2RY (T − T0)

QP,Z
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in which i, j = x, y, RY = Y
X and Tmax is calculated by integration of 2.1 on the total

volume of the sample over time from the initial homogeneous temperature state T0
to the final homogeneous temperature state Tmax. Let us summarize the complete
system of non-dimensional equations,

∂t̂T̂ = −
(
∂x̂ q̂x + ∂ŷq̂y

)
, (5.29)

τ̂∂t̂q̂x + q̂x = −∂x̂T̂ + (η̂1 + η̂2) ∂x̂Q̂xx + η̂1∂ŷQ̂xy + η̂2∂x̂Q̂yy, (5.30)

τ̂∂t̂q̂y + q̂y = −∂ŷT̂ + (η̂1 + η̂2) ∂ŷQ̂yy + η̂1∂x̂Q̂yx + η̂2∂ŷQ̂xx, (5.31)

Q̂xx = ∂x̂ q̂x, (5.32)

Q̂xy = ∂ŷq̂x, (5.33)

Q̂yx = ∂x̂ q̂y, (5.34)

Q̂yy = ∂ŷq̂y (5.35)

wherein

τ̂ =
τ
X2

α

, η̂1 =
η1

X2 , η̂2 =
η2

X2 , (5.36)

and the non-dimensional heat pulse boundary conditions reads

q̂x(x̂ = 0, ŷ, t̂) =


RY

τ̂PRY,P

[
1 − cos

(
2π t̂

τ̂P

)] [
1 + cos

(
2π

ŷ
RY,P

)]
if 0 ≤ t̂ ≤ τ̂P

and 0 ≤ ŷ ≤ RY,P ≤ RY

0 otherwise

,

(5.37)

where RY,P = YP
X stands.

Spatial discretization is achieved by a staggered scheme [110], which is depicted
in Figure 5.13, and the structure of governing equations 5.29–5.35 restricts how each
field can be represented on the discrete lattice with directional equidistant grid points
with distance ∆x̂ and ∆ŷ, hence x̂m = m∆x̂, 1, m = 1, . . . , M, ŷn = n∆ŷ, n = 1, . . . , N,
where M = 1

∆x̂ and N = RY
2∆ŷ . The investigated time interval is also discretized

through equidistant time steps ∆t̂, i.e. t̂j = j∆t̂, j = 1, . . . , J. Therefore, the approxi-
mated value of a function f in the discrete time and space coordinates

(
t̂j, x̂m, ŷn

)
is

denoted by f j
m,n. The temperature, as a state variable characterizing homogeneously

one discrete cell, is placed in the center of the cell, while heat current density char-
acterizing fluxes through the boundaries of the cell, therefore, the corresponding
normal components of the heat current density are placed on the boundaries of the
cell in line with the discrete temperature values. Discretization of Q follows di-
rectly from the discrete values of heat current density and equations 5.32–5.35, con-
sequently, its diagonal elements are in the middle of the cell, but its off-diagonal
elements are placed in the corners of the cell. Since we apply q-boundaries, only
complete cells are used to discretize the entire spatial domain.

Furthermore, let us note that according to Figure 5.13, one needs to prescribe
Qxy and Qyx on the boundaries, in accordance with the q-boundaries. On each side,
one of these off-diagonal quantities can be determined analytically and represented
on the discrete lattice. For instance, for a given qx(x = 0, y, t), Qxy can be deter-
mined immediately, however, Qyx must be extrapolated from the bulk nodes. This
procedure holds for all four boundaries. For the extrapolation, the quadratic La-
grange polynomials is used to preserve the sign given by three bulk points next to
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FIGURE 5.13: Discretization of the 2D GK equation, showing the stag-
gered grid, and how Q points are allocated and extrapolated from the
bulk. Additionally, the lower left figure demonstrated the extrapola-

tion we use to determine the unknown off-diagonal elements.

each boundary. This extrapolation is schematically illustrated in Figure 5.13 for a
setting in which the mth value of Qyx is calculated based on the bulk point of m + 1,
m + 2, and m + 3. It is worth to emphasizing that any direct definition of the Q on
boundaries can significantly distort the physical content of the solution, and most
probably, a different problem is solved than expected in that case. With our method
using Lagrange polynomials, we can avoid the definition of any additional, unnec-
essary boundary conditions or the introduction of virtual nodes.

For the time derivatives, we choose the simplest forward time stepping method,
the explicit Euler, which is eligible for our aim to investigate the solutions of the two-
dimensional GK equation. Summarizing the numerical scheme built in accordance
of Figure 5.13:
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T̂ j+1
m+1/2,n+1/2 = T̂ j

m+1/2,n+1/2 + ∆t̂

 (q̂x)
j
m,n+1/2 − (q̂x)

j
m+1,n+1/2

∆x̂
+

+
(q̂y)m + 1/2, nj − (q̂x)

j
m+1/2,n+1

∆ŷ

 , (5.38a)

(q̂x)
j+1
m,n+1/2 =

(
1 − ∆t̂

τ̂

)
(q̂x)

j
m,n+1/2 +

∆t̂
τ̂

 T̂ j
m−1/2,n+1/2 − T̂ j

m+1/2,n+1/2

∆x̂
+

+ (η̂1 + η̂2)
(Q̂xx)

j
m+1/2,n+1/2 − (Q̂xx)

j
m−1/2,n+1/2

∆x̂
+

+ η̂1
(Q̂xy)

j
m,n+1 − (Q̂xy)

j
m,n

∆ŷ
+

+η̂2
(Q̂yy)

j
m+1/2,n+1/2 − (Q̂yy)

j
m−1/2,n+1/2

∆x̂

 , (5.38b)

(q̂y)
j+1
m+1/2,n =

(
1 − ∆t̂

τ̂

)
(q̂y)

j
m+1/2,n +

∆t̂
τ̂

 T̂ j
m+1/2,n−1/2 − T̂ j

m+1/2,n+1/2

∆x̂
+

+ (η̂1 + η̂2)
(Q̂yy)

j
m+1/2,n+1/2 − (Q̂yy)

j
m+1/2,n−1/2

∆ŷ
+

η̂1
(Q̂xy)

j
m+1,n − (Q̂xy)

j
m,n

∆x̂
+

+η̂2
(Q̂xx)

j
m+1/2,n+1/2 − (Q̂xx)

j
m+1/2,n−1/2

∆ŷ

 , (5.38c)

(Q̂xx)
j
m+1/2,n+1/2 =

(q̂x)
j
m+1,n+1/2 − (q̂x)

j
m,n+1/2

∆x̂
, (5.38d)

(Q̂xy)
j
m,n =

(q̂x)
j
m,n+1/2 − (q̂x)

j
m,n−1/2

∆ŷ
, (5.38e)

Q̂yx)
j
m,n =

(q̂y)
j
m+1/2,n − (q̂y)

j
m−1/2,n

∆x̂
, (5.38f)

(Q̂yy)
j
m+1/2,n+1/2 =

(q̂y)
j
m+1/2,n+1 − (q̂y)

j
m+1/2n

∆ŷ
. (5.38g)

5.3.2 Numerical results

Here, let us start with the Fourier heat equation and present the plots that are used
to display the temperature and heat flux density history in time and space. We want
to point out that we have a different code for the Fourier equation in which we solve
only the Fourier equation and not the simplification of the GK equation, hence there
are no difficulties with the boundary conditions in this case, i.e Q is not used. Figure
5.14 represents the temperature histories at specified spatial points. The first column
shows the front face, and each column increases the spatial step by 1/4, and the last
one is related to the rear face of the sample. In addition, the first row indicates the
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top side, and the last one presents the temperature history on the symmetry axis. We
use the same plot concept for the GK equation as well.

FIGURE 5.14: 2D Fourier solution in space and time, also indicating
the corresponding boundary conditions.

Furthermore, it is insightful to check the vector plot for the heat flux field in
which we can observe the effect of space-dependent excitation and compare it im-
mediately with the corresponding temperature distribution, see Figure 5.15. Also,
Figure 5.15 shows that it is straightforward to reproduce the well-known 1D solu-
tions by applying a spatially homogeneous boundary condition. The curl of the heat
flux field is identically zero. For all the subsequent calculations, we assign RY,P = 0.4
with fixed spatial resolution (∆x̂ = ∆ŷ = 0.02), and τ̂P = 0.01.

FIGURE 5.15: 2D vector plot of the heat flux field for the Fourier
equation at t̂ = 0.1, using the same color bar for both figures. Left:
spatially inhomogeneous heat pulse boundary condition. Right: spa-

tially homogeneous heat pulse boundary condition.
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Demonstration of Fourier resonance First, let us start by showing that the GK
equation reproduces the Fourier solutions when η̂1 = 0, and η̂2 = τ̂ = 0.05, Figure
5.16 indicate the difference between the two temperature fields (Fourier and GK).
The observed errors are practically zero. This solution also supports our handling of
Q on the boundary and extrapolation method as it reproduces the Fourier solution
in a particular parameter setting. In this parameter setting, the ∇ × ∇ × q term
vanishes in the Eq. (5.4), thus the Laplacian of q remains.

FIGURE 5.16: The difference between the Fourier and GK tempera-
ture histories when η̂1 = 0, and η̂2 = τ̂ = 0.05.

Appreciable differences emerge when we keep τ̂ = 0.05, but η̂1 = η̂2 = 0.025, i.e.
despite that η̂1 + η̂2 = τ̂, the resonance condition is violated and the solution differs
significantly from the Fourier equation, see Figure 5.17 for details.

Let us turn our attention to the most interesting and intriguing solutions when
η̂1 ̸= 0, and thus the curl of the heat flux field becomes meaningful.

Vorticity-free solution The solution is called over-diffusive if η̂1 + η̂2 > τ̂. Let us
start with the case where we keep η̂1 = 0 to avoid the effects of the nonzero curl
of the heat flux field. It is worth comparing the characteristics of the temperature
history in the middle to the rear side. In the middle, the two distinct time scales are
visible in the opposite direction to the rear side (see Figure 5.18). In a heat pulse
experiment using heterogeneous materials, two distinct time scales are visible, and
that numerical solution reflects the size dependence of the observation [23]. This
effect may not be evident for thicker samples, and also depends on the material
properties.

Figure 5.19 shows the 2D vector plot of the heat flux in which the over-diffusive
behavior remains hidden; the temperature contours (isothermal lines) are slightly
distorted compared to the Fourier case. Furthermore, since η = 0, the curl of the
heat flux field should be zero, and this is reflected in Figure 5.19, too.

Solutions with strong vorticity Let us turn our attention to the reverse case in
which we keep η̂2 = 0, and now let us investigate the effects of the parameter η̂1,
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FIGURE 5.17: The difference between the Fourier and GK tempera-
ture histories when η̂1 = η̂2 = 0.025, and τ̂ = 0.05.

FIGURE 5.18: The GK temperature history when η̂1 = 0, η̂2 = 0.1,
and τ̂ = 0.05.

that is η̂1 = 0.075. Figure 5.20 illustrates the temperature history for the given spatial
points. Comparing it with the previous case, we can observe a significantly different
behavior. First, near the front face, the temperature decreases due to the significant
curl effects. Let us stress that this is not identical to achievement of a negative abso-
lute temperature. It should be noted that the apparent negative temperature is rel-
ative to the initial temperature on contrary to the observations of Zhukovsky [137].
However, the temperature field may exhibit unusual evolution in such a particular
parameter setting since the GK equation is based on a hydrodynamic analogy, and
the curl of the heat flux field may naturally appear. Here, we strengthened in partic-
ular this effect to make it easily observable. This is meaningful only in a two or three
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FIGURE 5.19: Left: 2D vector plot of the heat flux field when η̂1 = 0,
η̂2 = 0.1, and τ̂ = 0.05 at t̂ = 0.1. Right: the curl of the heat flux field

is practically zero in accordance with the parameter settings.

dimensional setting. This temperature-decreasing effect disappears soon and is not
observable for any other spatial domains. This is also depicted in Figure 5.21. Fur-
thermore, contrary to the previous situations, the curl of the heat flux field becomes
significantly larger (Figure 5.22).

FIGURE 5.20: The GK temperature history when η̂1 = 0.075, η̂2 = 0,
and τ̂ = 0.05.

Deviation from the phonon hydrodynamic ratio Let us recall that the ratio η̂2/η̂1 =
2 is fixed in a phonon hydrodynamic approach, but this does not necessarily hold
in a continuum framework. In order to make this difference evident, we provided
solutions with respect to η̂2/η̂1. Figure 5.23 shows the rear side temperature history
for three situations in which η̂2/η̂1 = {1.5, 2, 2.5} with fixed η̂1 = 0.05. This does
not highlight any remarkable property compared to the one-dimensional case, for
which only the effect of η̂1 + η̂2 is observable, and the increase of the over-diffusion
makes the temperature signal propagate faster.
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FIGURE 5.21: Left: 2D vector plot of the heat flux field when η̂1 =
0.075, η̂2 = 0, and τ̂ = 0.05 at t̂ = 0.1. Right: the contour plot of the
temperature field, highlighting the temperature-decrease effect next

to the heat pulse at t̂ = 0.01.

FIGURE 5.22: Left: the curl of the heat flux field when η̂1 = 0.075,
η̂2 = 0, and τ̂ = 0.05 right after the heat pulse at t̂ = 0.01. Right: the

curl vanishes with time and becomes practically zero (at t̂ = 1).

However, if you consider the front-side temperature history in the middle (Fig-
ure 5.24), then it makes more visible how the ratio of η̂2/η̂1 modifies the solution.
Decreasing η̂2/η̂1 amplifies the temperature-decrease effect near the heat pulse since
η̂1 – the rotational part – becomes more dominant.

How does the curl of heat current density behave on the boundary? Previously,
the auxiliary field Q was introduced to facilitate the discretization of the second-
order spatial derivatives and make it easier to realize the boundary conditions prop-
erly. Since the diagonal elements of Q are inside the spatial domain, they are not
directly related to the boundary conditions. However, the off-diagonals are not in-
dependent of the q-boundary. An extrapolation from the bulk has been introduced
to avoid defining of incompatible boundary data for the unknown off-diagonals, and
thus avoiding introducing any artificial distortion. Now let us depict the difference
between the Qxy and Qyx components in two cases. In fact, this difference is the only
component of the curl of the in-plane heat current density. In the first case, η̂1 = 0
is considered, hence, the rotational term is zero (η̂2 = τ̂ = 0.05). In the second case,
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FIGURE 5.23: The GK temperature history on the rear side (x̂ = 1,
ŷ = 0.25) when η̂1 = 0.05, τ̂ = 0.05, and η̂2 = {0.075, 0.1, 0.125},
demonstrating the deviation from the phonon hydrodynamic ratio

η̂2/η̂1 = 2.

FIGURE 5.24: The GK temperature history on the front side (x̂ = 0,
ŷ = 0.25) when η̂1 = 0.05, τ̂ = 0.05, and η̂2 = {0.1, 0.05, 0.025}.

η̂1 = η̂2 = 0.05, and major differences are expected. Figure 5.25 presents their differ-
ence, highlighting that η̂1 indeed introduces significant changes in the evolution of
off-diagonals of Q, especially near the boundaries, but also particularly affecting the
bulk behavior. Figure 5.26 illustates the time evolution in agreement with Eq. (5.5c),
which presents an exponential decay in time.
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FIGURE 5.25: Left: (q ×∇)z without the rotational term at t̂ = 0.1.
Right: − (q ×∇)z with the rotational term at t̂ = 0.1. The sign is
changed in order to have colors correctly emphasizing the differences

in magnitudes.

FIGURE 5.26: The time evolution of (q ×∇)z including the rotational
term on the front face, indicating that the vorticities are the strongest
at the heat pulse, and quickly attenuate after ŷ = 0.2. Furthermore,
shortly after the heat pulse, the exponential decay is apparent in

agreement with Eq.(5.5c).

5.4 Heat transfer at nano-scale and boundary conditions: GK
model

The heat transfer at nano-scale gives inspiration for several interesting research top-
ics; what is the correct model to describe it in agreement with the experimental
observations, or what is the best way of accounting for the interactions between
the heat carriers and the lateral walls, for example, are two compelling questions
that have been currently not satisfactorily answered. In this Section we principally
deepen into the influence of the boundary conditions on the heat-flux behavior in
the case of thin nano-wires. This analysis is performed here by employing a theoret-
ical model which principally emphasizes the role played by the non-local effects. All
the results carried out are analyzed in view of the second law of thermodynamics as
well.
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The last two decades have been the witnesses of an important surge in the search-
ing of enhanced theoretical models beyond the classical Fourier law for the descrip-
tion of the heat conduction in out-of-equilibrium systems [53, 59, 138–143]. Among
the several reasons which can be adduced to understand the above interest, the in-
cessant rise of nano-technologies may be certainly considered as the principal one.
Since nano-systems are usually employed in highly non-equilibrium situations, in
fact, it is well-known that at nano-scale the classical approach of the macroscopic
heat-transfer theory is no longer applicable, namely, it cannot be used to correctly de-
scribe and predict the thermo-mechanical behavior and properties of modern nano-
devices [144–147]. Because of the very compact sizes involved and the high perfor-
mances required, we note that at nano-scale there are very significant heat-transfer
and heat-dissipation problems that have to be tackled and possibly solved in order
to avoid the devices’ burnout.

The nano-scale heat-transfer analysis can be addressed by different approaches
[59, 148–151]; among them the macroscopic method based on the phonon hydrody-
namics [122, 147, 152, 153] is worth of being considered since it easily allows to gain
useful information about the physics of phonon motion [59]. Phonon hydrodynam-
ics is interesting because it not only depicts, in a clear and intuitive way, the heat-
conduction phenomenon, but also allows a refined mathematical analysis, especially
if one is wondering what is the correct way to model the boundary conditions (BCs)
[154]. For this purpose we note that the BCs, as well as the initial data (ID), have
to be not only assigned in such a way that the corresponding initial boundary value
problem (IBVP) is well posed, but they should also display clear physical meanings.

By looking at the phenomenon of nano-scale heat conduction as the final result
of the regular motion of suitable heat carriers through the crystal lattice [152, 155], in
several recent papers [154, 156, 157], for example) the authors proposed to assume
a non-vanishing value for the tangential component q∥ = q · t̂ of the local heat-
flux vector q(X, t) at the boundary ∂Ω of the medium, with t̂ being the unit tangent
vector to ∂Ω. Up to a second-order approximation (in space), for example, the above
assumption yields that a suitable way of assigning the BCs is

q∥ − Cℓ∇q∥ · n̂ + αℓ2 ∇
(
∇q∥ · n̂

)
· n̂ = 0 ∀X ∈ ∂Ω, ∀ t ≥ 0 (5.39)

wherein n̂ stands for the outward unit normal vector to ∂Ω.
Referring the readers to [152, 154, 156, 157] for comments about the physical

standing of Eq. (5.39), here we only observe that therein ℓ stands for the mean-free
path of the heat carriers; C and α, instead, are two (non-dimensional) parameters
which are principally related to the scatterings of the heat carriers at the lateral walls.
By means of the phonon-hydrodynamic approach it could be get idea from the Wu’s
slip model [158] of fluid-dynamics, for example, thus estimating those parameters
as

C =
2
3

[
3 − ν p3

ν
− 3

2

(
1 − p2

Kn

)]
(5.40a)

α =
1
4

[
p4 +

2
Kn2

(
1 − p2)] , p = min{Kn−1, 1} (5.40b)

wherein Kn is the so-called Knudsen number (i.e., the ratio between the mean-free
path ℓ and the characteristic length of the system at hand) and the parameter ν ∈
(0, 1] is the momentum accommodation coefficient meant as the portion of total heat
carriers that collide with the wall and that are reflected and spread by the lateral
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FIGURE 5.27: Thin nano-wire (i.e., the grey cylinder in figure) con-
nected with two other nano-devices (i.e., the blu cylinders in fig-
ure) which are always kept at the same (constant) temperature. The
thin nano-wire is initially perturbed by the application of an external
heat flux perpendicular it (i.e., the vertical arrows – orange in figure)
which generates a heat flux (i.e., the horizontal arrow – red in fig-
ure) longitudinally propagating throughout the nano-wire. The two
Cartesian coordinates which characterizes the problem are x (span-
ning along the longitudinal direction) and y (spanning along the
transversal direction). In figure the two characteristic sizes of the

nano-wire Lx and Ly have been also indicated.

walls.
For the investigation of the effective role played by the above BCs on the heat

transfer in a rigid nano-system Ω, in this thesis we merge the local balance of energy,
i.e.,

cv∂tθ +∇ · q = 0 ∀X ∈ Ω, ∀ t ≥ 0 (5.41)

with a heat flux beyond the heat conduction beyond the classical Fourier law, i.e.
GK. For the sake of clarity, in Eq. (5.41) θ = T − T0, wherein T0 and T stand for
the local-equilibrium (constant) and the non-equilibrium temperature values, re-
spectively. However the temperature T is related to the internal energy (per unit
volume) e by means of the relation de = cvdT, with cv being the specific heat at
constant volume.

In order to reduce to a simpler level the aforementioned analysis, but focus-
ing the attention on a situation that is worth to be considered at nano-scale, in this
Section we suppose that a homogeneous thin nano-wire, connected with two other
nano-cylindrical devices (both kept at the same constant temperature), is perturbed
from its initial equilibrium by the application of an external heat flux perpendicular
to it, as it is sketched in Fig. 5.27.

However, in the case of the system of Fig. 5.27, if the characteristic length of the
transversal section, Ly is much smaller than the longitudinal characteristic size, Lx,
we may investigate the particular situation in which the aforementioned external
perturbation generates a heat flux only propagating in the longitudinal direction
(which is characterized by the Cartesian coordinate x), namely, in the next we turn
attention only to the situation in which the local heat flux reduces to

q = [q (x, t) , 0, 0] (5.42)

Our aim is the determination of the unknown basic fields θ = θ (x, t) and q = q (x, t)
in the one-dimensional domain [0, Lx] (i.e., inside the nano-wire), provided that all
the variations of those fields along the y−direction are vanishingly small.
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5.4.1 L-GK in 1D with slip first/second order boundary conditions

A very usual starting point of the phonon-hydrodynamic approach is a consequence
of the results obtained by Guyer and Krumhansl in 1966 [5, 6] wherein the authors
formally solved the linearized Boltzmann equation for phonons 1 in terms of the
eigenvectors of the normal-process collision operator. The solution they found was
formally summarized therein by two macroscopic equations which relate the tem-
perature variations θ with the heat flux q. One of those equations (see Eq. (22b), or
equivalently Eq. (58), in [5, 6] is the usual thermal-energy balance law, namely, it is
practically Eq. (5.41) earlier introduced. The other one (see Eq. (57), or its particular
form (59), in [5, 6]) is a generalized phonon-thermal-conductivity equation which
reads as follows

τr∂tq + q + λ∇θ − ℓ2 (2∇∇ · q +∇2q
)
= 0 ∀X ∈ Ω, ∀ t ≥ 0 (5.43)

where λ is the thermal conductivity corresponding to the Ziman limit, τr represents
the relaxation time of resistive phonon scatterings (umklapp, mass-fluctuation, etc.)
wherein the quasi-momentum (or the wave number) is not conserved, and ℓ is the
mean-free path of phonons. The latter is related to the relaxation time of normal
phonon scatterings, i.e., the part of phonon-phonon collisions in which the quasi-
momentum (or the wave number) is conserved. The main focus of Eq. (5.43) is
certainly the emphasis given to the non-local effects.

Equations (5.41) and (5.43) can be used to examine the second-sound propagation
with damping, the Poiseuille flow in a phonon gas or other related problems [5, 6].
In particular here we consider the following IBVP

cv∂tθ + ∂xq = 0 ∀ x ∈ [0, Lx], ∀ t ≥ 0 (5.44a)

τr∂tq + q + λ∂xθ − 3ℓ2∂xxq = 0 ∀ x ∈ [0, Lx], ∀ t ≥ 0 (5.44b)

θ(x, 0) = 0 ∀ x ∈ [0, Lx] (5.44c)

q(x, 0) = q• sin
(

π
x
Lx

)
∀ x ∈ [0, Lx] (5.44d)

q(0, t) + Cℓ∂xq(0, t) + αℓ2∂xxq(0, t) = 0 ∀ t ≥ 0 (5.44e)
θ(0, t) = θ• ∀ t ≥ 0 (5.44f)

q(Lx, t)− Cℓ∂xq(Lx, t) + αℓ2∂xxq(Lx, t) = 0 ∀ t ≥ 0 (5.44g)
θ(Lx, t) = θ• ∀ t ≥ 0 (5.44h)

wherein the heat-flux amplitude q• accounts for the amount of energy which is ini-
tially supplied to the nano-wire by the external heat flux, and θ• turns out informa-
tion about the constant temperature value of the two nano-devices arranged at the
two ends of the thin nano-wire.

Dimensionless problem

In order to obtain very general results (i.e. results which are independent both of the
particular material, and of the thermodynamic conditions), it is convenient rewrite

1Phonons are elementary excitations which have a complete meaning only in the harmonic approx-
imation.
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Eqs. (5.44) in terms of non-dimensional quantities. Therefore, we introduce the
following dimensionless quantities

x =
x
Lx

, t =
t
τr

, ϑ =
θ

T0
, h =

(
Lx

λT0

)
q (5.45)

wherein, for the sake of simplicity, we also assume

τr =
ℓ

vp
(5.46a)

λ =
cvτr v2

p

3
(5.46b)

with vp being the average phonon-speed measured at T0, [122]. We incidentally
note that the identifications in Eqs. (5.46) imply that here the consequences of the
non-linear effects related to the temperature dependence of the different material
functions will be neglected.

Introducing Eqs. (5.45) and (5.46) into Eqs. (5.44) one may obtain

∂tϑ +
Kn2

3
∂xh = 0 ∀ x ∈ [0, 1], ∀ t ∈ R+ (5.47a)

∂th + h + ∂xϑ − 3Kn2∂xxh = 0 ∀ x ∈ [0, 1], ∀ t ∈ R+ (5.47b)

ϑ(x, 0) = 0 ∀ x ∈ [0, 1] (5.47c)
h(x, 0) = h• sin(πx) ∀ x ∈ [0, 1] (5.47d)

h(0, t) + C Kn ∂xh(0, t) + α Kn2 ∂xxh(0, t) = 0 ∀ t ∈ R+ (5.47e)
ϑ(0, t) = ϑ• ∀ t ∈ R+ (5.47f)

h(1, t)− C Kn ∂xh(1, t) + α Kn2 ∂xxh(1, t) = 0 ∀ t ∈ R+ (5.47g)
ϑ(1, t) = ϑ• ∀ t ∈ R+ (5.47h)

where h• =

(
Lx

λT0

)
q• and ϑ• =

θ•

T0
. Moreover, in Eqs. (5.47), as well as in the

following, the Knudsen number is expressed by the ratio Kn =
ℓ

Lx
.

Numerical results: Behavior of the dimensionless heat flux

Here we highlight some comments about the behavior of the non-dimensional heat
flux h (x, t) arising from the IBVP in Eqs. (5.47) once the parameters C and α have
been computed by means of the Wu’s model [158], i.e., by employing Eqs. (5.40).
We have solved this model with a staggered field FDM presented in Appendix B.
We have also set h• = 1 and ϑ• = 0, the latter values pointing out that both the left-
hand cylindrical nano-device, and the right-hand one in Figure 5.27 act as thermal
dissipators. However we note that those two values do not influence the qualitative
results plotted below.

Since the above behavior is principally influenced by the Knudsen number Kn
and the accommodation parameter ν, below we separately deepen into the role
played by them.
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• The influence of the Knudsen number Kn In Fig. 5.28 we plot the behavior
of the non-dimensional heat flux h versus x (i.e., the longitudinal axis in sub-
figures (a)–(d)) for different time instants t (i.e., t = 0.001 in (a), t = 0.01 in (b),
t = 0.1 in (c) and t = 1 in (d)).

For computational needs, in order to point out only the role played by the
Knudsen number on the behavior of the heat flux, in obtaining the results plot-
ted in Fig. 5.28 we set ν = 0.3 in Eqs. (5.40), we assume that portion of phonons
that is diffusively reflected by the walls is 30% of the phonons colliding at each
boundaries.

As it can be clearly seen from Fig. 5.28, in the case of the GK model the larger
Kn, the faster h tends to its plateau value, i.e., the value attained by h at the
boundary.

(a) (b)

(c) (d)

FIGURE 5.28: Behavior of the non-dimensional heat flux h (x, t) for
different values of the Knudsen numbers: theoretical results arising
from the numerical solution of the IBVP in Eqs. (5.47) with: h• = 1,
ϑ• = 0, and ν = 0.3. The two parameters C and α, instead, arise from

Eqs. (5.40).

• The influence of the accommodation parameter ν In Fig. 5.29 we plot the
behavior of the non-dimensional heat flux h versus x (i.e., the longitudinal axis
in sub-figures (a)–(e)) for different time instants t (i.e., t = 0.001 in (a) and (d),
t = 0.01 in (b) and (e), t = 0.1 in (c) and (f)).
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For computational needs, in order to point out only the role played by the ac-
commodation parameter on the behavior of the heat flux, in the results plotted
in Fig. 5.29 we set both Kn = 0.8, and Kn = 1.5, namely, we investigate the
regime of heat transfer both in the case of a moderate Kn, and in the case of a
large Kn.

As it can be clearly seen from Fig. 5.29, the larger ν, the smaller the plateau
value of h, both for a moderate value of Kn, and for a large value of it.

(a) (b) (c)

(d) (e) (f)

FIGURE 5.29: Behavior of the non-dimensional heat flux h (x, t) for
different values of the accommodation parameter: theoretical results
arising from the numerical solution of the IBVP in Eqs. (5.47) with:
h• = 1, ϑ• = 0, Kn = 0.8 (sub-figures (a)–(c)), and Kn = 1.5 (sub-
figures (d)–(e)). The two parameters C and α, instead, arise from Eqs.

(5.40).

5.4.2 Thermodynamic considerations

Besides a good fit of the theoretical predictions with the experimental evidences,
an important benchmark of a theoretical model is certainly its agreement with the
second law of thermodynamics: if the model satisfies it, in fact, then one is sure
that all the mathematical solutions of the field equations are in principle meaningful
from the physical point of view [159].

The second law of thermodynamics states that the specific-entropy production σs
has to be non-negative along any admissible thermodynamic process [53]. A theoret-
ical model is compatible with the second law if, and only if, the basic fields predicted
by it are such that the last term in left-hand side of the specific-entropy balance law,
i.e.,

∂ts +∇ · Js − σs = 0 ∀X ∈ Ω, ∀ t ≥ 0 (5.48)

where Js is the flux and σs represents the production of the specific entropy s, that is
never smaller than zero ∀X ∈ Ω and ∀ t ≥ 0.

Therefore, here we analyze the results of Secs. 5.1 in view of the second law.
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The GK model and the second law

The agreement between the GK model (based on Eqs. (5.41) and (5.43)) and the
second law of thermodynamics can be proved by different approaches [53].

In [59], for example, it has been shown that in the framework of Extended Irre-
versible Thermodynamics the compatibility of those equations with the second law
of thermodynamics, provided the following constitutive relations for the specific-
entropy flux and entropy production, respectively

JGK
s =

q
T
− ℓ2

λT2∇q · q ∀X ∈ Ω, ∀t ≥ 0 (5.49a)

σGK
s =

q · q
λT2 +

ℓ2

λT2

[
(∇q) · (∇q)T + 2 (∇ · q) (∇ · q)

]
∀X ∈ Ω, ∀t ≥ 0 (5.49b)

in the non-equilibrium temperature approximation [120] and when the relaxation
times of the higher-order fluxes are negligible small [59]. In the special case of the
problem described previous, Eqs. (5.49) reduce

JGK
s =

q
T

(
1 − ℓ2

λT
∂xq
)

∀ x ∈ [0, Lx], ∀ t ≥ 0 (5.50a)

σGK
s =

1
λ

[( q
T

)2
+ 3

(
ℓ

T
∂xq
)2
]

∀ x ∈ [0, Lx], ∀ t ≥ 0 (5.50b)

which finally become

jGK
s =

(
1 − Kn2 ∂xh

) ( h
1 + ϑ

)
∀ x ∈ [0, 1], ∀ t ∈ R+ (5.51a)

ΣGK
s =

h2 + 3 (Kn ∂xh)2

(1 + ϑ)2 ∀ x ∈ [0, 1], ∀ t ∈ R+ (5.51b)

if we further introduce the following non-dimensional quantities

js =
(

Lx

λ

)
Js Σs =

(
L2

x
λ

)
σs (5.52)

In terms of the above non-dimensional quantities, in the case of the GK model
the coupling of Eqs. (5.48) and (5.49) yields the profile of the (non-dimensional)
specific-entropy variation

∆π =
L2

x
τrλ

(s − s0) ∀ x ∈ [0, 1] , ∀ t ∈ R+ (5.53)

plotted in Fig. 5.30, with s0 being the equilibrium value of s, that is, its initial value.
From the analysis of Fig. 5.30 it can be inferred that in the case of the GK model

the entropy difference ∆π, in any x ∈ [0, 1], reachs its maximum value in an initial
very narrow time interval; afterward it only displays small variations. Whatever the
generic point of the thin nano-wire is, therefore, we may claim that the entropy tends
to its plateau value without displaying sensibly large variations.
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FIGURE 5.30: Behavior of the non-dimensional entropy difference
∆π (x, t) in Eq. (5.53) when the GK-model is employed, namely, when

Eqs. (5.51) hold.
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Chapter 6

Other Applications

This Chapter presents the possible applications of non-Fourier type equations in-
cluding description of heat transport in biological tissue and laser welding

Firstly, in Section 6.1, a hyperbolic heat transport model for a homogeneously
perfused biological tissue irradiated by a laser beam is discussed. The non-Fourier-
like bioheat equation thus obtained is solved analytically by using the Laplace trans-
form method., where the òaser heating is considered as internal heat source. The ex-
act solution found here can be used to study the evolution of the temperature within
the tissues during thermal therapy. However, the effect of the thermal relaxation
phenomena on the temperature profiles in the tissue during and after laser applica-
tion is investigated.

Subsequentely, in the Section 6.2 the numerical results obtained for a welding
laser process on a metal plate using the Fourier law is obtained. Particular attention
will be paid to possible future extensions of this model by introducing relaxation
times.

6.1 Heat transport in Biological tissue

The study of mathematical models for heat transport in living tissues is an interest-
ing topic for several researchers. The scrupulous description of the thermal inter-
action between vasculature and tissues is very important also connected with con-
stant improvements of medical technology. In general, all living systems do not
exhibit a uniform temperature in organs and blood. This non uniformity of the tem-
perature induces an energy transfer among organs, tissues and the perfused blood.
Heat transport in biological tissues, usually modeled with the bioheat equation, is not
simple to analyze since it involves thermal conduction in tissues, convection and
perfusion of blood, and metabolic heat generation. In fact, several authors have in-
troduced various mathematical models of bioheat transfer generalizing the classic
Pennes’s bioheat equation [160]. This equation describes the thermal behavior of
tissue by taking into account several terms influencing the heat transfer at the tis-
sue surface: the heat exchange between the tissue surface and the environment, the
conduction through the tissue, the energy transfer due to blood circulation in the
tissue, and the heat generation due to local metabolism. Pennes [160], investigating
the thermal behavior in forearm skin, proposed the equation

ρt ct ∂tT = k ∂xxT + ρb cb wb(T − Ta) + qmet, (6.1)

where ρt, ct, k, ρb and cb are the density, the specific heat, and the thermal conduc-
tivity of skin tissue, the density and specific heat of blood, respectively. Moreover,
the quantities wb, T and Ta are the blood perfusion rate, the skin tissue and arterial
blood temperatures, respectively, whereas qmet is the metabolic heat generated by the
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skin tissue. Since temperature variations in biological tissues depend on many phe-
nomena, various generalizations of this equation have been proposed. Among these
extensions, a relevant role is played by models of bioheat transfer where the living
tissues are assumed to be deformable porous media [161–166]. This approach im-
plies the necessity of introducing two energy equations for the tissue and the blood.
In such a framework, important effects such as the vascular geometry and size, the
blood flow and direction, the thermal diffusion and the local thermal nonequilib-
rium between the blood and peripheral tissues are included.

In the modelization of transport phenomena in porous media, it is possible to de-
scribe the living structure composed by a fluid phase (the blood) and a solid matrix
(the tissues). Because of the metabolism, a volumetric heat generation in the solid
part occurs. Recently, Xuan and Roetzel [167, 168], applied this approach to human
tissues, where the porous medium models the tissue cells and the interlinked voids
where arterial or venous blood flows.

By using the principle of local thermal nonequilibrium between the tissue and
the blood, the thermal energy exchange between the tissue and the blood in a given
volume element is formulated as follows [167]:

(1 − ϕ)ρtct∂tTt = ∇ · ((1 − ϕ)kt∇Tt) + hbt(Tb − Tt) + (1 − ϕ)qmet, (6.2a)
ϕρbcb∂tTb = ∇ · (ϕkb∇Tb)− hbt(Tb − Tt) + ϕρbcbvb · ∇Tb, (6.2b)

ϕ, Tt, tb, kt, kb, vb and hbt being the porosity of the tissue, the local arterial blood aver-
aged temperature, the local tissue averaged temperature, the tissue thermal conduc-
tivity tensor, the blood thermal conductivity tensor, the blood velocity vector and
the interstitial convective heat transfer coefficient, respectively. Moreover, the en-
ergy equations for both phases are coupled by the interstitial convective heat trans-
fer, representing the heat transfer to the tissue due to blood convection, i.e. the heat
exchange rate through the boundary surface between the blood phase and the solid
matrix due the local thermal nonequilibrium, [166].

Although the bioheat equation can be valid in several situations, a model that
considers a finite speed of propagation of thermal energy is crucial in surgical or
therapeutic procedures (such as radiofrequency heating, irradiation, . . . ) where
short heating times occur. In such cases, a non-Fourier type model should be con-
sidered by introducing a hyperbolic heat transfer equation by introducing a thermal
relaxation time τR of the tissue. The hyperbolicity guarantees a finite speed of heat
propagation [1–3], which is inversely proportional to τR. In many medical treat-
ments, the laser heating of biological tissues is widely used. Consequently, the de-
tails of the heat transfer and of the related thermo-mechanical properties of tissues
are essential from a medical viewpoint.

Since the thermomechanical response of the skin to various therapeutic tempera-
tures during laser irradiation is not completely known. It is important to investigate
the thermal behaviour of tissues during laser heating. Many mathematical models
of heat conduction in biological tissues irradiated with laser are described in the lit-
erature [169–173]. In most of these contributions, the temperature distribution in
the tissues were obtained by using the heat transfer equation proposed by Pennes.
Here, we focus on the analysis of a non-Fourier bioheat transfer model describing
the laser heating of skin tissue, the solutions will be found by means of the Laplace
transform.
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6.1.1 Formulation of heat transport model for blood perfused tissues

We consider a semi-infinite fragment of homogenous isotropic biological tissue. Let
us suppose that the whole tissue surface is influenced by the laser energy; thus,
we will solve the heat transfer equation in a one-dimensional setting, where the
unique spatial variable x follows the direction of the laser beam. Furthermore, since
blood vessels have small sizes, an acceptable approximation consists in assuming
the equality between the tissue and blood temperature in a given volume element,
i.e., Tt = Tb = T. Hence, the two equations (6.2) reduce to a single equation, say

[(1 − ϕ)ρt ct + ϕ ρb cb] ∂tT = ∇ · {[(1 − ϕ) kt + ϕ kb]∇T} − ϕ ρb cbvb · ∇T
+ (1 − ϕ)qmet. (6.3)

Let us remark that the second term on the right hand side in (6.3) expresses the
contribution to heat transfer due to blood perfusion. In the following, we suppose
that the latter corresponds to the perfusion source term that in Pennes equation (6.1)
was taken equal to ρbcbwb(T − Ta), being wb the flow rate of blood in the tissue
per unit volume. This term is derived under the assumptions that in equilibrium
conditions between the capillary tube and the tissue, locally the venous temperature
is equal to the tissue temperature. Moreover, the arterial temperature is considered
uniform throughout the tissue.

Our mathematical model turns out to be hyperbolic since we introduce a relax-
ation time τR for the tissue. In fact, if we substitute the Fourier’ law used in equation
(6.3) with the Cattaneo equation for heat flux q, i.e.

τR ∂tq + q = −[(1 − ϕ) kt + ϕ kb]∇T,

we obtain

[(1 − ϕ)ρt ct + ϕ ρb cb] ∂tT = −∇ · q − ϕ ρb cb wb(T − Ta) + (1 − ϕ)qmet,
τR ∂tq + q = −[(1 − ϕ) kt + ϕ kb]∇T.

and considering an additional term which is responsible for the effect of laser heat
source on skin tissue, the resulting hyperbolic bioheat transfer equation (6.3), in a
semi-infinite domain Ω = [0,+∞), reads

τR [(1 − ϕ)ρt ct + ϕ ρb cb] ∂ttT + [(1 − ϕ)ρt ct + ϕ ρb cb + τR ϕ ρb cb wb] ∂tT =

= [(1 − ϕ)kt + ϕ kb] ∂xxT + ϕ ρb cb wb(Ta − T) + (1 − ϕ)qmet

+ (1 − ϕ) [qlaser + τR ∂tqlaser] , (6.4)

Let us model the effect of laser as an internal heat source qlaser, and assign the fol-
lowing initial conditions

T(x, 0) = T0

∂tT(x, 0) = 0.

and boundary conditions

∂xT(0, t) = 0,
lim
x→∞

∂xT(x, t) = 0,
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where T0 is the initial temperature, i.e., the tissue temperature before heating. More-
over, let us suppose that, for the small values of the absorption coefficient of tissue
a, ([a] = m−1), the laser effect is described by the Beer-Lambert’s law [174]

qlaser = a I0 exp (−ax) H(tlaser − t),

representing the energy absorption of the laser irradiation. Here, I0 is the constant
irradiation intensity at the skin surface ([qlaser] = Wm−2), H(t) is the Heaviside func-
tion, tlaser is the instant the laser is removed, and x is the depth of the tissue.

6.1.2 Analytic solution

Here, we determine the analytic solution of the hyperbolic bioheat model 6.4 by
applying the Laplace transform. It is convenient to write the system in the dimen-
sionless form, choosing the following dimensionless variables

η = A t, ξ = B x, θ(ξ, η) = C (T − Ta), (6.5)

wherein A, B, C are suitably chosen, can be rewritten the equation (6.4) in the fol-
lowing form

∂ηηθ + ∂ηθ = ∂ξξθ − γθ + Γqmet + λ exp
(
−a

ξ

B

)
g(η), (6.6)

for the details see Appendix C.1. The dimensionless initial and boundary conditions
are expressed by:

θ(ξ, 0) = θ0,
∂ηθ(ξ, 0) = 0,

and

∂ξθ(0, η) = 0,
lim
ξ→∞

∂ξθ(ξ, η) = 0,

respectively, where

θ0 =
(1 + β̃ + Λ)2

T0(1 + β̃)
(T0 − Ta).

By taking Laplace transform with respect to t [175], and defining

θ̂(ξ, s) := L[θ(ξ, η)],
ĝ(s) := L[g(η)],

after multiplying the equation (6.6) by exp (−sη) and integrating in [0,+∞), one
gets:

∂ξξ θ̂(ξ, s)− (s2 + s + γ)θ̂(ξ, s) = −(1 + s)θ0 − sΓqmet − λ exp
(
−a

ξ

B

)
ĝ(s); (6.7)
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moreover, the Laplace transform of the boundary conditions yields:

∂ξ θ̂(0, s) = 0, (6.8)

lim
ξ→∞

θ̂(ξ, s) = 0. (6.9)

Solving the homogeneous equation associated of (6.7), and testing with a particular
solution θ̂part, one gets the general solution:

θ̂(ξ, s) = θ̂hom(ξ, s) + θ̂part(ξ, s), (6.10)

having the following explicit form:

θ̂(ξ, s) = c1 exp
(√

s2 + s + γ ξ

)
+ c2 exp

(
−
√

s2 + s + γ ξ

)
+

(1 + s) θ0 + sΓqmet

s2 + s + γ
− λĝ(s) B2

a2 − B2 (s2 + s + γ)
exp

(
− a

B
ξ
)

. (6.11)

Substituting the boundary conditions (6.8) in the derivative respect to ξ of the gen-
eral solution, the expression of the coefficients c1, c2 are determined

c1 = 0, c2 =
λ a ĝ(s) B

[a2 − B2(s2 + s + γ)]
√

s2 + s + γ
. (6.12)

Moreover, by substituting the relations (6.12) into equation (6.11), the function θ̂(ξ, s)
on the Laplace domain becomes:

θ̂(ξ, s) =
λaĝ(s)B

[a2 − B2 (s2 + s + γ)]
√

s2 + s + γ
+ exp

(
−
√

s2 + s + γ ξ

)
+

(1 + s) θ0 + sΓqmet

s2 + s + γ
− λĝ(s) B2

a2 − B2(s2 + s + γ)
exp

(
− a

B
ξ
)

. (6.13)

In order to get the wanted temperature, it is necessary to compute the inverse of the
Laplace transform

θ(ξ, η) = L−1 {θ̂(ξ, s)
}

;

this computation is not easy and involves different steps. For this reason we split the
calculation of each addend, and use the inverse Laplace tables [175], for the details
see Appendix C.2.

Finally, by introducing the inverse Laplace transform of all the addends, i.e.
(C.5)-(C.6)-(C.7)-(C.8) calculated in Appendix C.2, in the relation (6.13), the temper-
ature θ(ξ, η) reads

θ(ξ, η) = L−1

{
λ a ĝ(s) B

[a2 − B2 (s2 + s + γ)]
√

s2 + s + γ
exp

(
−
√

s2 + s + γ ξ

)}
+

+ L−1
{

1 + s
s2 + s + γ

θ0

}
+

+ L−1
{

s
s2 + s + γ

Γqmet

}
+ L−1

{
−λ ĝ(s) B2

a2 − B2 (s2 + s + γ)
exp

(
− a

B
ξ
)}

.
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Finally, coming back to the original physical variables, the following solution for
θ(x, y) is obtained

T(x, t) =
T0(1 + β̃)

(1 + β̃ + Λ)2
· θ(B x, A t) + Ta.

6.1.3 Results and discussion

We analyze the analytic solution obtained before, in order to discuss the distribution
of the temperature in a biological tissue as a function of the thermal relaxation time
τR, also considering different values for blood perfusion ωb. Thus, the effects of laser
irradiation time, laser intensity on the temperature distributions in the layered skin
during the laser beam can be described. During the action of the laser it is necessary
to control the growth of the temperature. In fact, too high temperatures could cause
undesirable and often irreversible damages to the surrounding tissues. A rise in
temperature during the laser session of course depends on the irradiation time, laser
intensity and type of the exposed tissue.

In Figure 6.1, is shown the non Fourier-type temperature evolution equation as
a function of relaxation time τR. Let us remark that τR plays an important role in
the temperature evolution, as expected, whereas the thermal delay time has a major
influence on the temperature distribution, i.e., as tR increases the tissue temperature
decreases more slowly. In particular, increasing the value of the relaxation time, the
action of laser provides higher values for the temperature, while once the laser action
is stopped (after 30 seconds), it is observed a decrease of temperature fluctuations.
The temperature profile, from a natural state around Tb = 370C, during the process
of irradiation increases until a maximum acceptable value is attained.
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(a) (b)

(c) (d)

FIGURE 6.1: ϕ = 0.3, wb = 0.03 s−1, I0 = 2.0 Wmm−2. (a) τR = 10s,
(b) τR = 20s, (c) Temperature distribution as a function of relaxation
times τR = 10s, τR = 20s, (d) The skin surface temperature over time

vs relaxation times.

In Figure 6.2, the effects of the rate of blood perfusion ωb under bioheat model
with a fixed relation time on the temperature variation are represented. Higher val-
ues of the rate of blood perfusion have the effect of increasing the convective heat
loss due to faster blood flow, this allows the skin to exhibit lower values of surface
temperature.
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(a) (b)

(c) (d)

FIGURE 6.2: ϕ = 0.3, I0 = 2.0 Wmm−2. Temperature profile over time
with: (a) τR = 10s, (b) τR = 20s, (c) τR = 30s, (d) τR = 40s.

Finally, Figure 6.3 clearly shows the influence of porosity on the evolution of the
skin surface temperature. Higher values of porosity determine smaller temperatures
variations. In Figure 6.4, the trend of the temperature is represented varying the
intensity of the laser.

(a) (b)

FIGURE 6.3: (a) Temperature profile over time vs porosity with τR =
20s, wb = 0.0003s−1, I0 = 2.0 Wmm−2, (b) Temperature profile over

time vs porosity with τR = 20s, wb = 0.03s−1, I0 = 2.0 · 106 Wm−2.

In a future work we will consider a more realistic situation, in order to de-
velop a theoretical model including in the generalized bioheat equation (6.4) the
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FIGURE 6.4: Temperature distribution changing laser intensity with
τR = 20s, wb = 0.03s−1, ϕ = 0.3

non-linearity, as for example a temperature-dependent relaxation time and blood
perfusion.

6.2 An Inhomogeneous Model for Laser Welding of Indus-
trial Interest

In this Section, an innovative non-homogeneous dynamic model is presented, for the
recovery of temperature during the industrial laser welding process of Al-Si 5% al-
loy plates. It considers that, metallurgically, during welding, the alloy melts with the
presence of solid/liquid phases until total melting, and afterwards re-solidifies with
the reverse process. Further, a polynomial substitute thermal capacity of the alloy
has been chosen, based on experimental evidence, so that the volumetric solid-state
fraction is identifiable. Moreover, to the usual radiative/convective boundary condi-
tions, the contribution due to the positioning of the plates on the workbench is con-
sidered (endowing the model with Cauchy-Stefan-Boltzmann boundary conditions).
Having verified the well-posedness of the problem, a Galerkin-FEM approach has
been implemented to recover the temperature maps, obtained by modeling the laser
heat sources with formulations depending on the laser sliding speed. The results
achieved have shown good adherence to the experimental evidence, opening up in-
teresting future scenarios for technology transfer.

6.2.1 Introduction to the Problem

As is known, laser welding makes it possible to obtain thin, deep and very resis-
tant welds [176, 177]. This is because, unlike other welding, laser welding does not
add material to the sheet metal, and hardly produces obvious defects and residues.
High-frequency laser welding locally melts metallic elements, creating a very strong,
thin and deep weld [178–181]. Moving at a certain speed v, the laser beam is con-
veyed over a small section; ensuring welding precision, power concentration on a
limited surface without additional materials to the element to be welded (avoiding
unsightly residues that are often dangerous because they are harmful to the me-
chanical strength of the weld) [176, 182]. Although laser welding is a consolidated
technique, there remains a strong need to develop new and more complete physical-
mathematical models in the recovery of the absolute temperature distributions, T,
in materials that are subject to welding. This would identify any a priori thermal
problems both in the welding area and in its immediate vicinity. Furthermore, if
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T = T(x, t), with x ∈ Ω ⊂ R3, where Ω is the spatial domain and t represents
the time instant, it is easy to evaluate the elimination of thermal overload due to
welding, highlighting any mechanical anomalies of the welded products [183, 184].
In the past, many dynamic models have been studied to recover T(x, t) in metallic
products subjected to laser welding, starting from the following non-linear, non-
homogeneous parabolic heat equation [185]:

C(T(x, t))∂tT(x, t) = ∇ · [λ(T(x, t))∇T(x, t)] + Ql(x, t), (6.14)

where C(T(x, t)) is the volumetric specific heat, λ(T(x, t)) is the thermal conductiv-
ity, ∇T(x, t) is the temperature gradient; and Ql is the volumetric heat source due
to the laser [179, 185–188]; formulated in parabolic frontiers with suitable boundary
and initial conditions [185–191]. When the laser moves from an initial temperature
T0, T(x, t) raises for which the material, initially solid, begins to melt highlighting
the co-presence of solid-liquid (intermediate state) until the occurrence of the total
melting of the material [192]. The laser, as it moves, melts new areas of the material
while the previous ones, due to the reduction of T(x, t), re-solidify, passing from a
liquid to an intermediate state (co-presence of solid and liquid) until only the solid
phase is obtained. Further, many models lack the fact that they do not consider con-
vective terms, terms due to irradiation [188, 193] and terms due to practical purposes
(i.e., taking into account that the welding is done on a workbench) [191, 194].

Here, we present a non-homogeneous parabolic model for the dynamic temper-
ature recovery during the laser welding of two Al-Si 5% alloy plates that, usually,
compared to pure aluminum, offer high mechanical resistance when subjected to
welding, as evidenced by the industrial activity of IRIS s.r.l (a leading Italian com-
pany in the laser welding sector). Unlike pure Al (which melts at a specific value of
the temperature), the binary alloy melts and re-solidifies at a certain range of temper-
ature, in which the material forms a mushy zone, governing T(x, t) in the welding
area. The equation is written in terms of the substitute thermal capacity, C(T(x, t)),
of the binary alloy, here formulated as a polynomial [195]. This is chosen to take into
account only the presence of liquid, solid, or both depending on the temperature
of the material, obtaining a volumetric solid state fraction that is strictly dependent
on the volumetric latent heat. The equation was used to simulate a thin strip of 3D
laser welding of two Al-Si 5% alloy plates with perfectly smooth surfaces (to avoid
voids), made up of two portions of material belonging to each plate. For the parts of
the plates not affected by the welding, since the laser source is not present on them, a
classic Fourier model of heat transmission has been hypothesized. Neumann bound-
ary conditions have also been formulated to make the heat fluxes from the weld strip
(at a higher temperature) to the areas not subject to welding (at a lower temperature)
compatible. Further, to make the approach more realistic, boundary conditions due
to both contact with the air and contact with the workbench have been added for
the surfaces in question, finally achieving Cauchy-Stefan-Boltzmann boundary con-
ditions.

Once verified that the proposed model is well-posed (via hypothesis testing of
a well-known result of the recent literature [196]) and reinforced by the fact that it
does not allow the explicit recovery of T(x, t), an optimized Galerkin-FEM approach
(to reduce the computational load useful for any real-time applications) has been
implemented in the MatLab R2022 PDE Tool and tested for the resolution of the
problem by also selecting appropriate formulations of laser heat source, according
to known experimental evidence [197].
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6.2.2 Melting-Resolidification Process

As neglecting the overheating temperature phenomena of liquid metal (for which
convective phenomena lose their meaning), the equation describing the cooling and
following solidification process in metals is writable as [198]

C(T(x, t)) ∂tT(x, t) = ∇ · [λ(T(x, t))∇T(x, t)] + Ql(x, t) + Qm(x, t), (6.15)

where T(x, t) is assumed to be continuous, and Qm(x, t) is the capacity of volumet-
ric internal heat sources derived from the melting phase change process. During
the melting and re-solidification process, both solid and liquid volumetric fractions,
fS(T(x, t)) and fL(T(x, t)), respectively, such that

fS(T(x, t)) + fL(T(x, t)) = 1

(for the solid and liquid state, fS(T(x, t)) and fL(T(x, t)) are the constant values (1 or
0)), coexist in the material at the neighborhood of the points considered. Therefore,
an appropriate internal heat source, Qm(x, t), is formulate in terms of fS(T(x, t)) or
fL(T(x, t)). In particular, if Lv is the volumetric latent heat of fusion, the heat source
due to the solidification becomes [198]

Qm(x, t) = Lv ∂t fS(T(x, t) = −Lv ∂t fL(T(x, t) (6.16)

highlighting the experimental fact according to which Qm(x, t) takes non-zero values
only at the solidification stage [198–200].

Then, equation (6.15), exploiting (6.16), becomes

C(T(x, t)) ∂tT(x, t) = ∇ · [λ(T(x, t))∇T(x, t)] + Ql(x, t) + Lv∂t fS(T(x, t)),

that, exploiting

Lv ∂t fS(T(x, t)) =
d fS(T(x, t))

dT
∂tT(x, t),

becomes(
C(T(x, t))− Lv

d fS(T(x, t))
dT

)
︸ ︷︷ ︸

C(T(x,t))

∂tT(x, t) = ∇ · [λ(T(x, t))∇T(x, t)] + Ql(x, t), (6.17)

where C(T(x, t)), represents the substitute thermal capacity of an artificial mushy
zone sub-domain. Unlike pure metals where melting (and resolidification) occurs
at a particular temperature value, binary alloys (such as Al-Si 5% here considered)
melt and resolidify in a temperature range [TS, TL] (i.e., the temperature field across
the entire conventionally homogeneous melt domain) in which the material forms a
mushy zone. Therefore, it makes sense to write [198]:

fS = 1, T(x, t) < TS (solid state),
fS ∈ (0, 1), TS ≤ T(x, t) ≤ TL (mushy zone),
fS = 0, T(x, t) > TL (molten metal).

Recently, important results have been obtained, starting from the knowledge of fS
and then obtaining the behavior of C(T(x, t)) [198]. However, the reverse approach
is also feasible: a plausible trend of C(T(x, t)) can be assumed, from which fS can
be obtained [195]. Here, we consider the inverse approach, and we suppose that a
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good approximation for C(T(x, t)) is a polynomial one [195]:

C(T(x, t)) = a0 + a1T(x, t) + a2T2(x, t)+ (6.18a)

+ a3T3(x, t) + a4T4(x, t), T(x, t) ∈ [TS, TL], (6.18b)

whose coefficients ai, with i ∈ {0, 1, 2, 3, 4}, are selected in order that both C(T(x, t))
and its first derivative are continuous. For this reason, the following physical con-
straints are met:

C(TL) = C(TL) ≡ CL, (6.19a)
C(TS) = C(TS) ≡ CS, (6.19b)

dC(TL)

dT
=

dC(TS)

dT
= 0, (6.19c)

also satisfying ∫ TL

TS

C(T(x, t))dT = Cm∆T + Lv, (6.20)

where ∆T = TL − TS and Cm is the mushy zone volumetric specific heat (usually,
Cm = 1

2 (CS + CL)), but other formulations could be taken into account). We note that
conditions (6.19) and (6.20) allow construction of a bell-shaped trend for C(T(x, t))
[195].

Therefore, after calculations, the coefficients ai become

a0 =
(CL − CS)TLTS(TL + TS)

(∆T)3 +
30 T2

L, T2
S , Lv

(∆T)5 ,

a1 = −6(CL − CS)TLTS

(∆T)3 − 60 TL TS(TL + TS)Lv

(∆T)5 ,

a2 =
3(CL − CS)(TL + TS)

(∆T)3 +
30 (T2

L + 4 TL TS + T2
S)Lv

(∆T)5 ,

a3 = −2(CL − CS)

(∆T)3 +
60 (TL + TS) Lv

(∆T)5 ,

a4 =
30Lv

(∆T)5 ,

depending on Lv. Furthermore, from (6.17) and (6.18), we can write

C(T(x, t))− Lv
d fS(T(x, t))

dT
= a0 + a1T(x, t) + a2T2(x, t) + a3T3(x, t)+

+ a4T4(x, t), (6.21)

with T(x, t) ∈ [TS, TL]. But introducing the following definition of C(T(x, t))

C(T(x, t)) =


CS if T < TS,
Cm if TS ≤ T ≤ TL,
CL if T > TL,
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we obtain

Cm − Lv
d fS(T(x, t))

dT
= a0 + a1T(x, t) + a2T2(x, t) + a3T3(x, t)+

+ a4T4(x, t),

with T(x, t) ∈ [TS, TL]. From which we obtain

fs(T(x, t)) =
(Cm − a0)T(x, t)

Lv
− a1T2(x, t)

2Lv
− a2T3(x, t)

2Lv
−

− a3T4(x, t)
4Lv

− a4T5(x, t)
5Lv

+ K, (6.22)

where the constant of integration K is determined by imposing fs(TL) = 0. Finally,
(6.22) becomes

fS(T(x, t)) =
(a0 − Cm)[TL − T(x, t)]

Lv
+

a1[T2
L − T2(x, t)]

2Lv
+

a2[T3
L − T3(x, t)]

3Lv
+

+
a3[T4

L − T4(x, t)]
4Lv

+
a4[T5

L − T5(x, t)]
5Lv

. (6.23)

with T(x, t) ∈ [TS, TL]. Furthermore, (6.23) satisfies fS(TS) = 1 predicting the solidi-
fication kinetics of the casting.

6.2.3 Governing Equation

Material and geometries

The specimen consists of two Al-Si 5% alloy plates (without surface oxides which
drastically raise the melting temperature), P1 and P2, of equal size (100 mm× 40 mm×
4 mm) (dimensions suggested by IRIS s.r.l.), juxtaposed along the largest dimension,
such that the respective faces (perfectly smooth) adhere to favor welding. The ab-
sence of voids between the plates allows, on one hand, to simulate a better weld
quality and, on the other hand, avoids air between the parts to be welded. For our
purposes, we divide the domain Ω into three subdomains: Ω1 and Ω2 consisting of
the plates placed side by side net of the Ω portion subject to melting and then re-
solidifying (welding strip); Ω3 (100 mm × 2 mm × 4 mm) corresponding to the weld-
ing strip, such that Ωi = Pi \ Ω3 with i = 1, 2, in which the heat transfer is modeled
according to the melting/resolidification of the material in the interval of temper-
ature [TS, TL]. Figure 6.5 shows the partition of Ω into P1 and P2 while Figure 6.6
displays Ω1, Ω2 and Ω3; moreover, Table 6.1 and Table 6.2 highlight the geometry
of each Ωi. Finally, for implementation aims, we label the sixteen faces of ∂Ω by Fi

(i = 1, ..., 16), so that ∂Ω =

(
16⋃

i=1
Fi

)
\ (F2 ∪ F7) (see Figure 6.7), whose dimensions

are specified in Table 6.3.

Ωi length (mm) width (mm) tickness (mm)
Ω1 39 100 4
Ω2 39 100 4
Ω3 2 100 4

TABLE 6.1: Dimensions of Ω1, Ω2 and Ω3.
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FIGURE 6.5: Al-Si 5% specimen: Ω divided into P1 and P2.

FIGURE 6.6: Al-Si 5% specimen: Ω divided into Ω1, Ω2 and Ω3.

FIGURE 6.7: Al-Si 5% specimen: labels associated with each surface.

Ωi length (mm)
◦

Ωi length (mm)

Ω1 [0, 100]× [0, 39]× [0, 4]
◦
Ω1 (0, 100)× (0, 39)× (0, 4)

Ω2 [0, 100]× [41, 80]× [0, 4]
◦

Ω2 (0, 100)× (41, 80)× (0, 4)

Ω3 [0, 100]× [39, 41]× [0, 4]
◦

Ω3 (0, 100)× (39, 41)× (0, 4)

TABLE 6.2: Geometric characterizations of Ω1, Ω2 and Ω3.
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Label Dimensions Label Dimensions
F12 [0, 100]× {0} × [0, 4] F2 [0, 100]× {41} × [0, 4]
F7 [0, 100]× {39} × [0, 4] F1 [0, 100]× {80} × [0, 4]
F5 {0} × [41, 80]× [0, 4] F4 [0, 100]× [41, 80]× {4}
F3 {100} × [41, 80]× [0, 4] F6 [0, 100]× [41, 80]× {0}
F10 {0} × [39, 41]× [0, 4] F9 [0, 100]× [39, 41]× {4}
F8 {100} × [39, 41]× [0, 4] F11 [0, 100]× [39, 41]× {0}
F15 {0} × [0, 39]× [0, 4] F14 [0, 100]× [0, 39]× {4}
F13 {100} × [0, 39]× [0, 4] F16 [0, 100]× [0, 39]× {0}

TABLE 6.3: Geometric characterizations of ∂Ω1, ∂Ω2 and ∂Ω3.

Concerning both Ω1 and Ω2, since the laser beam does not pass over them, a
model exploiting (6.14) without a laser heat source is sufficient for recovering T(x, t).
Concerning Ω3, since the presence of the laser beam, we propose a model where the
equation considers the melting/re-solidification of the material in its melting range,
∆T, on which the replacement heat capacity of the alloy can be formulated according
to the known experimental evidence, and from which the volume fraction of the
solid state can be easily obtained.

Domains not belonging to the laser welding domain: model, initial and boundary
conditions

Starting from (6.14), with Ql(x, t) = 0 (absence of the laser), and considering thermal
conductivity λi independent on the temperature Ti(x, t) supposed to be continuous
(it makes sense because the thermal conductivity of the AlSi 5%, during the laser
welding, can be considered, in the first approximation, as a constant), we write

CS ∂tTi(x, t) = λi∇2Ti(x, t), ∀x ∈
◦
Ωi with i = 1, 2, ∀t > 0,

to which the following initial conditions can be associated:

Ti(x, 0) = T0 ∀x ∈ Ωi with i = 1, 2.

Moreover, since the sides of the surfaces are next to the air conduction heat flux
hair[Tair − Ti(x, t)], and radiation flux, ϵ σB[T4

air − T4
i (x, t)], occur, where hair is the

convection coefficient of air, ϵ is the emissivity and σB the Boltzmann constant. We
identify n̂ the outward unit normal vector to generical faces. Therefore, ∀x ∈ Fj,
j ∈ {1, 3, 4, 5, 12, 13, 14, 15} and ∀t > 0

λi ∂n̂Ti(x, t) = hair[Tair − Ti(x, t)] + ϵ σB[T4
air − T4

i (x, t)].

Furthermore, for the surfaces in contact with the workbench (faces F6 and F16), we
introduce the following boundary condition:

λi ∂n̂Ti(x, t) = hbench[Tbench − Ti(x, t)], ∀x ∈ F6 ∪ F16 ∀t > 0.

with hbench the convection coefficient of the workbench. Finally, it is necessary to
consider the heat flow coming from Ω3 toward both Ω1 and Ω2, at a certainly higher
temperature the reverse heat flow can be considered as negligible because it will
not noticeably modify the numerical solution. Considering this heat flow, negligible
means a software design "for the benefit of safety" because, strictly speaking, the
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miniscule heat dissipation that goes from the plates towards the welding.

λi ∂n̂Ti(x, t) = λ3 ∂n̂T3(x, t) ∀x ∈ F2 ∪ F7 ∀t > 0,

Therefore, the model for Ω1 and Ω2 can be compactly written as

CS ∂tTi(x, t) = λi ∇2Ti(x, t), ∀x ∈
◦
Ωi with i = 1, 2 ∀t > 0 (6.24a)

Ti(x, 0) = T0, ∀x ∈ Ωi with i = 1, 2 (6.24b)

λi ∂n̂Ti(x, t) = hair (Tair − Ti) + ϵ σB

(
T4

air − T4
i

)
, ∀x ∈ F4 ∪ F14 ∀t > 0, (6.24c)

λi ∂n̂Ti(x, t) = hair (Tair − Ti) + hbench (Tbench − Ti) , ∀x ∈ F6 ∪ F16 ∀t > 0,
(6.24d)

λi ∂n̂Ti(x, t) = hair (Tair − Ti) , ∀x ∈ F1 ∪ F3 ∪ F5 ∪ F12 ∪ F13 ∪ F15 ∀t > 0,
(6.24e)

λi ∂n̂Ti(x, t) = λ3∂n̂T3(x, t), ∀x ∈ F2 ∪ F7 ∀t > 0. (6.24f)

Laser welding domain: the model

When the laser beam flows on the plates, starting from T0, the temperature T(x, t)
increases, raising the melted material, obtaining the following phase transitions:

solid → solid + liquid︸ ︷︷ ︸
intermediate

→ liquid.

Furthermore, the laser beam, moving again, melts material further while the previ-
ously melted material, due to the lowering of T(x, t), re-solidifies as follows:

liquid → solid + liquid︸ ︷︷ ︸
intermediate

→ solid.

To model this process, we start from [198] in which melting and re-solidification
processes for a metallurgical problem have been considered at a temperature interval
∆T. Then, in our case, equation (6.17) is valid, to whose right-hand side we add
Q(v)

l (x, t), which models the volumetric moving laser heat source:

C(T3(x, t)) ∂tT3(x, t) = λ3 ∇2T3(x, t)) + Q(v)
l (x, t), ∀x ∈

◦
Ω3 ∀t > 0,

with the following initial condition

T3(x, 0) = T0 ∀x ∈ Ω3.

Concerning the boundary conditions, a first Robin condition concerns the heat flow,
which flows from Ω3 towards the workbench (face F11)

λ3 ∂n̂T3(x, t) = hbench[Tbench − T3(x, t)] ∀x ∈ F11 ∀t > 0.

Furthermore, the upper side (face F9), is in contact with the air; so, the following
Cauchy-Stefan-Boltzmann boundary condition makes sense:

λ3 ∂n̂T3(x, t) = hair[Tair −T3(x, t)]+ ϵ kB[T4
air −T4

3 (x, t)]+Q(s)
l (x, t) ∀x ∈ F9 ∀t > 0,
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in which the contribution due to irradiation is present (Q(s)
l (x, t), laser beam heat

source). Finally, lateral surfaces of Ω3 in contact with the internal lateral surfaces of
Ω1 and Ω2 are only affected by conduction flows; therefore,

λ3 ∂n̂T3(x, t) = λi ∂n̂Ti(x, t), ∀x ∈ F2 ∪ F7 ∀t > 0.

So, the model for Ω3 assumes the following compact form

C(T3(x, t)) ∂tT3(x, t) = λ3∇2T3(x, t) + Q(v)
l (x, t), ∀x ∈

◦
Ω3 ∀t > 0 (6.25a)

T3(x, 0) = T0, ∀x ∈ Ω3 (6.25b)

λ3 ∂n̂T3(x, t) = Q(s)
l (x, t)+ (6.25c)

+ hair (Tair − T3) + ϵ σB

(
T4

air − T4
3

)
, ∀x ∈ F9 ∀t > 0, (6.25d)

λ3 ∂n̂T3(x, t) = hair (Tair − T3) + hbench (Tbench − T3) , ∀x ∈ F11 ∀t > 0, (6.25e)

λ3 ∂n̂T3(x, t) = hair (Tair − T3) , ∀x ∈ F8 ∪ F10 ∀t > 0, (6.25f)
λ3∂n̂T3(x, t) = λi∂n̂Ti(x, t), ∀x ∈ F2 ∪ F7 ∀t > 0. (6.25g)

Full Model in the Domain

Finally, for Ω, the model is compactly written as:

µ ∂tT(x, t) = λ∇2T(x, t) + η Q(v)
l (x, t), ∀x ∈

◦
Ω ∀t > 0 (6.26a)

T(x, 0) = T0, ∀x ∈ Ω (6.26b)

λ∂∂n̂T(x, t) = ηQ(s)
l (x, t) + hair (Tair − T) + ϵ σB

(
T4

air − T4
)

, (6.26c)

∀x ∈ F4 ∪ F9 ∪ F14 ∀t > 0, (6.26d)

λ∂∂n̂T(x, t) = hair (Tair − T) + hbench (Tbench − T) , (6.26e)
∀x ∈ F6 ∪ F11 ∪ F16 ∀t > 0, (6.26f)

λ∂∂n̂T(x, t) = hair (Tair − T) , ∀x ∈ F1 ∪ F3 ∪ F5 ∪ F8 ∪ F10 ∪ F12 ∪ F13 ∪ F15 ∀t > 0,
(6.26g)

compactly assumes the form

µ ∂tT(x, t) = λ∇2T(x, t) + η Q(v)
l (x, t), ∀x ∈

◦
Ω ∀t > 0 (6.27a)

T(x, 0) = T0, ∀x ∈ Ω (6.27b)

λ∂∂n̂T(x, t) + hair (T − Tair) + βhbench (T − Tbench) + αϵ σB

(
T4 − T4

air

)
= (6.27c)

= ηQ(s)
l (x, t), ∀x ∈ ∂Ω ∀t > 0. (6.27d)

where

T(x, t)) =


T1(x, t)) if x ∈ Ω1,
T2(x, t)) if x ∈ Ω2,
T3(x, t)) if x ∈ Ω3,

µ =

{
CS if x ∈ Ω1 ∪ Ω2,
C(T) if x ∈ Ω3,
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λ =


λ1 if x ∈ Ω1,
λ2 if x ∈ Ω2,
λ3 if x ∈ Ω3,

η =

{
0 if x ∈ Ω1 ∪ Ω2,
1 if x ∈ Ω3,

α =

{
1 if x ∈ F6 ∪ F16 ∪ F11,
0 if x ∈ ∂Ω \ (F6 ∪ F16 ∪ F11),

β =

{
1 if x ∈ F4 ∪ F14 ∪ F9,
0 if x ∈ ∂Ω \ (F4 ∪ F14 ∪ F9).

The model simulates the welding process of 5% Al-Si alloy plates, which are widely
used in industry, without adding any extra material. This is critical as it eliminates
unwanted thickening and adheres to regulatory standards. Even if the collaboration
with IRIS s.r.l. required the use of 5% Al-Si alloy, the model can get results for other
materials, which, for their laser welding, do not require extra material.

Realistic Formulations for both Volumetric and Superficial Laser Heat Sources

To recover T(x, t), it is necessary to define precisely the shape of the “melting hole"
and the subsequent solidification scheme. Then, according to the final mechanical
properties of the welding, we should mathematically formalize both Q(v)

l (x, t) and

Q(s)
l (x, t).
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Classical Gaussian laser heat source
To model the moving heat source, as a first approach, we use the established volu-
metric and superficial Gaussian formulation [197]:

Q(v)
l (x, t) =

R f I0

rU
exp

(
− (x − x0)2 + (y − y0)2 + (z − z0)2

r2
U

)
,

Q(s)
l (x, t) = R f I0 exp

(
− (x − x0)2 + (y − y0)2

r2
U

)
,

displayed in Figure 6.8, where (x0, y0, z0) = (vt, y0, z0) are the coordinates of the
point where the laser beam starts, v denoting the laser speed, rU is the laser radius,
I0 is the laser intensity (which contributes to give the laser power) and R f is the
reflexivity. It basically just means that on the surface that it’s interacting with, they
define a heat flux proportional to a Gaussian distribution.

FIGURE 6.8: Representation of Gaussian laser heat source.

Conical laser heat source
As a term of comparison, we will also use the conical laser heat source (see Figure
6.9) deriving from a Gaussian heat distribution. This allowed the following formu-
lations to be used [197]:

Q(v)
l (x, t) =

R f I0

rU
exp

(
− (x − vt)2 + (y − y0)2 + (z − z0)2

r(z)2

)
,

Q(s)
l (x, t) = R f I0 exp

(
− (x − vt)2 + (y − y0)2

r2
U

)
,



168 Chapter 6. Other Applications

where r(z), representing the action radius of the laser on z, is formulable as

r(z) = rU − (rU − rL) ·
zU − z
zU − zL

,

in which rU and rL represent the radius on z = zU (upper) and z = zL (lower),
respectively.

FIGURE 6.9: Representation of the conical laser heat source.

Ellipsoid laser heat source
As a further term of comparison, we exploit this interesting formulation, depicted in
Figure 6.10, formulated as [201]

Q(v)
l (x, t) = R f

√
3P

abcπ
√

π
· exp

(
−
[
(x − vt)2

a2 +
(y − y0)2

b2 + d f rac(z − z0)
2c2
])

,

Q(s)
l (x, t) = R f

√
3P

abπ
√

π
· exp

(
−
[
(x − vt)2

a2 +
(y − y0)2

b2

])
,

where a, b, c are the length, the width, the depth respectively [201–203].

Remark 17. The solution T(x, t) of (6.26) is implicitly linked to I0 which, generating the
laser beam, represents the primary cause of distribution of T(x, t) in the plates.
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FIGURE 6.10: Representation of ellipsoidal laser heat source.

6.2.4 The Galerkin-FEM Approach

Some remarks on existence, uniqueness and regularity of the solution

We focus our attention on numerical techniques for solving (6.26) after verifying that
it is a well-posed one. Thus we recall the following

Theorem 7 (Miranville-Morosanu). Let Ω ⊂ Rn bounded domain, with a C2 boundary
∂Ω. For a finite time t̃ > 0, we consider the following nonlinear parabolic second-order PDE
boundary value problem [196]:

∂tT(x, t) = Φ(T(x, t))∇ · (K(T(x, t))∇T(x, t)) + Ψ(T(x, t))r(v)(x, t), in (0, t̃ ]× Ω,
(6.28a)

K(T(x, t))∂n̂T(x, t) + p1[T(x, t)− θ1] + p2[T(x, t)− θ2]+ (6.28b)

+ p3[T4(x, t)− θ4
3 ] = p4 r(s)(x, t), on (0, t̃ ]× ∂Ω, (6.28c)

T(x, 0) = T0(x) on Ω. (6.28d)

where Φ(T(x, t)) controls the speed of the diffusion process; K(T(x, t)) represent the mo-
bility attached to the solution T(x, t); r(v)(x, t) and r(s)(x, t) are distributed control and
boundary control, respectively. Furthermore, ∇ denotes the gradient, n̂ = n̂(x) is the out-

ward unit normal vector to Ω as a point x ∈ ∂Ω and
∂

∂n̂
denotes differentiation along n̂.

If the following conditions are satisfied:

1) p1, p2, p3, p4, are non-negative constants;

2) Φ(T(x, t)), is a positive and bounded real function of class C1((0, t̃ ]×Ω), with bounded
derivative;

3) K(T(x, t)) assumed to satisfy the following inequality

0 < Km ≤ K(T(x, t)) ≤ KM, ∀(x, t) ∈ (0, t̃ ]× Ω;

where Km, KM are constants;
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4) Ψ(T(x, t)), is a positive bounded real function;

5) r(v)(x, t) ∈ Lp((0, t̃ ]× Ω) with p ≥ 2;

6) r(s)(x, t) ∈ W
1− 1

2p ,2− 1
p

p ((0, t̃ ]× ∂Ω);

7) T0(x) ∈ W
2− 2

p
∞ (Ω), verifying

K(T0(x))
∂T0(x)

∂n̂
+ p1[T0(x)− θ1] + p2[T0(x)− θ2] + p3[T4

0 (x)− θ4
3 ] = p4 r(s)(x, 0);

then problem (6.28) is well-posed.

Proof of Theorem 1. For the proof of this theorem refer to [196].

Remark 18. It is worth noting that Theorem 7 requires that Φ(T(x, t)) is a positive real
function, bounded and, above all, of C1((0, t̃ ]× Ω) requiring the continuity of T(x, t).

Theorem 7 can be successfully applied in our laser welding process setting

Φ(T(x, t)) =
1

µ(T(x, t))
,

K(T(x, t)) = λ, Km ≤ K ≤ KM,

Ψ(T(x, t)) =
η

µ(T(x, t))
,

and

p1 = hair, p2 = βhbench, p3 = αϵσB, p4 = η,
θ1 = Tair, θ2 = Tbench, θ3 = Tair,

r(v)(x, t) = Q(v)
l (x, t), r(s)(x, t) = Q(s)

l (x, t).

Thus, the non-linear inhomogeneous parabolic model (6.27) is achieved. It is easy

to prove that Q(v)
l (x, t) ∈ Lp((0, t̃] × ∂Ω), Q(s)

l (x, t) ∈ W
1− 1

2p ,2− 1
p

p ((0, t̃] × ∂Ω). So,
Theorem 7 guarantees the well-posedness of solutions to the problem (6.27).

Galerkin-FEM basics

According to the Subsection 6.2.3, we rewrite both the equation and boundary con-
ditions of (6.26) as follows [112]:

R1 : µ
∂T(x, t)

∂t
− λ∇2T(x, t)− ηQ(v)

l (x, t) = 0,

R2 : λ
∂T(x, t)

∂n̂
− βhbench[Tbench − T(x, t)]− hair[Tair − T(x, t)]+

− αϵσB[T4
air − T4(x, t)]− ηQ(s)

l (x, t) = 0.

(6.29)

If w1 and w2 are two weight functions, from both (6.29), we can write∫
Ω

w1 R1 dΩ +
∫

∂Ω
w2 R2d(∂Ω) = 0, (6.30)
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The first integral in (6.30), becomes∫
Ω

w1 R1dΩ =
∫

Ω
w1 (µ∂tT(x, t))dΩ −

∫
Ω

w1 λ∇2T(x, t)dΩ −
∫

Ω
w1 ηQ(v)

l (x, t)dΩ.

(6.31)
Integrating by parts, the second integral of the right side in (6.31) becomes∫

Ω
w1 λ∇2T(x, t)dΩ =

∫
∂Ω

λ w1 ∂n̂T(x, t)d(∂Ω)−
∫

Ω
λ∇w1 · ∇T(x, t)dΩ. (6.32)

Therefore, the equation (6.31), by means of (6.32), is writable as∫
Ω

w1 R1dΩ =
∫

Ω
w1 µ∂tT(x, t)dΩ −

∫
∂Ω

λw1∂n̂T(x, t)d(∂Ω)+

+
∫

Ω
λ∇w1 · ∇T(x, t)dΩ −

∫
Ω

w1 ηQ(v)
l (x, t)dΩ = 0,

(6.33)

from which∫
∂Ω

λw1
∂T(x, t)

∂n̂
d(∂Ω) =

∫
Ω

w1

(
µ

∂T(x, t)
∂t

− ηQ(v)
l (x, t)

)
dΩ+

+
∫

Ω
λ∇w1 · ∇T(x, t)dΩ.

(6.34)

The second integral in (6.30), ∀i ∈ {1, 2, 3} and ∀j ∈ {1, 2, ..., 16}, becomes∫
∂Ω

w2R2d(∂Ω) =
∫

∂Ω
w2

{
λ

∂T(x, t)
∂n̂

− βhbench[Tbench − T(x, t)]+

− hair[Tair − T(x, t)]− αϵσB[T4
air − T4(x, t)]+

− ηQ(s)
l (x, t)

}
d(∂Ω) = 0,

(6.35)

from which∫
∂Ω

λw2
∂T(x, t)

∂n̂
d(∂Ω) =

∫
∂Ω

w2ηQ(s)
l (x, t)d(∂Ω)+

+
∫

∂Ω
w2βhbench[Tbench − T(x, t)]d(∂Ω)+

+
∫

∂Ω
w2hair[Tair − T(x, t)]d(∂Ω)+

+
∫

∂Ω
w2αϵσB[T4

air − T4(x, t)]d(∂Ω).

(6.36)

For w1 = w2 = w, both (6.34) and (6.36) have the same left side, so that, subtracting
side-by-side, we can write:∫

Ω
w
(

µ
∂T(x, t)

∂t
− ηQ(v)

l (x, t)
)

dΩ +
∫

Ω
λw∇w · ∇T(x, t)dΩ+

−
∫

∂Ω
wηQ(s)

l (x, t)d(∂Ω)−
∫

∂Ω
wβhbench[Tbench − T(x, t)]d(∂Ω)+

−
∫

∂Ω
whair[Tair − T(x, t)]d(∂Ω)−

∫
∂Ω

wαϵσB[T4
air − T4(x, t)]d(∂Ω) = 0.

(6.37)
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We discretize Ω into n nodes, on each of which the temperature is indicated with Tk
(k = 1, ..., n). If Nk are the shape functions, then

T =
n

∑
k=1

NkTk = N1T1 + N2T2 + ... + NnTn, (6.38)

T = [N]{T} =
n

∑
i=1

NiTi, T4 = [N]{T4},
∂T
∂t

= [N]{Ṫ},

∂T
∂x

= [Nx]{T},
∂T
∂y

= [Ny]{T},
∂T
∂z

= [Nz]{T}.
(6.39)

Assuming that the weight functions are equal to the shape functions, the following
makes sense

∂w
∂x

= [Nx],
∂w
∂y

= [Ny],
∂w
∂z

= [Nz], (6.40)

so that (6.37) becomes∫
Ω

µ([N]{T})[N]{Ṫ}dΩ +
∫

Ω
λ
(
[Nx][Nx] + [Ny][Ny] + [Nz][Nz]

)
{T}dΩ =

=
∫

Ω
[N]ηQ(v)

l (x, t)dΩ +
∫

∂Ω
[N]{T4}d(∂Ω) +

∫
∂Ω

ηQ(s)
l (x, t)d(∂Ω)+

+
∫

∂Ω
[N]βhbenchTbenchd(∂Ω) +

∫
∂Ω

[N]hairTaird(∂Ω)+

+
∫

∂Ω
[N]αϵσBT4

aird(∂Ω)−
∫

∂Ω
[N]βhbench[N]{T}d(∂Ω)+

−
∫

∂Ω
[N]hair[N]{T}d(∂Ω)−

∫
∂Ω

[N]αϵσB[N]{T4}d(∂Ω).

(6.41)

Therefore, indicating by

[Z] =
∫

Ω
µ[N]dΩ,

[Ỹ] =[K] + [Y],

[K] =
∫

Ω
λ
(
[Nx][Nx] + [Ny][Ny] + [Nz][Nz]

)
dΩ,

[Y] =
∫

∂Ω

(
βhbench[N][N] + hair[N][N]d(∂Ω)

)
,

[H] =
∫

∂Ω
αϵσB[N][N]d(∂Ω),

{F} =
∫

Ω
[N]ηQ(v)

l (x, t)dΩ +
∫

∂Ω
ηQ(s)

l (x, t)d(∂Ω) +
∫

∂Ω

(
βhbenchTbench[N]+

+hairTair[N] + αϵσBT4
air[N]

)
d(∂Ω).

(6.42)

(6.41) is writable as

[Z]{Ṫ}+ [K̃]{T}+ [H]{T4} = {F}, (6.43)

whose integrals are computed by the Crank-Nicholson procedure. The FEM ap-
proach, according to (6.43), has been numerically implemented on an Intel Core 2
CPU 1.45 GHz machine and MatLab R2022 PDE tool, testing them on different kinds
of laser sources as described in Subsection 6.2.3.
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6.2.5 Results of Computations

Here, the results obtained using the laser heat source as detailed above are presented
and discussed. The physical parameter of the alloy Al-Si 5%, kindly provided by
IRIS s.r.l., are listed in Table 6.4, and the laser physical parameters related to a typ-
ical welding process for alloy Al-Si 5% are listed in Table 6.5 (the laser intensity is
computed by I0 = P/πr2

U).

parameter value unit
CS 2.943 · 106 J/(m3K)
CL 3.07 · 106 J/(m3K)
λ 290 W/(m K)
Lv 990.6 · 106 J/(m3)
TS 850.15 K
TL 923.15 K
ϵ 0.8

TABLE 6.4: Physical parameters of Al-Si 5% alloy.

parameter significance value unit
v velocity 40 mm/s
P power 2400 W
rU radius 1.5 mm
R f reflexsivity 0.9
I0 intensity 340 W/mm2

TABLE 6.5: Laser parameters.

Furthermore, we set σB = 1.35 · 10−23 J/K, T0 = Tair = Tbench = 298K (typical envi-
ronmental temperature in welding forge [204, 205]); hair = 15 · 10−6W/(mm2K) and
hbench = 20hair (as experimentally suggested from metallurgical experiments [206,
207] to guarantee both the correct penetration without favoring the thermal degra-
dation of the alloy structure and is such that it produces significant effects even at
depth).

Galerkin-FEM procedure applied to (6.26), described above and implemented in
MatLab, optimizes a mesh with tetrahedral elements. To obtain reliable and super-
imposable results with experimental evidence, Ω has been discretized by a mesh
with 3500 finite elements (4522 nodes, 3924 edges), which thicken in the vicinity and
especially in correspondence of Ω3 (welding area) where the melting process takes
place (Figure 6.11(a)). Moreover, the mesh refinement at Ω3 has also been slightly
extended in Ω1 and Ω2 to perform the temperature reduction in passing from the
welding area to the remaining part of Ω. Furthermore, the quality of the mesh
was confirmed by computing the indices presented in Subsection 6.2.5 whose val-
ues obtained fall within the respective ranges of admissible values for good-quality
meshes.

The lasting of the considered welding process is 2.5s, as is the usual practice
for laser welding of plates of dimensions compatible with those fixed in this work
[208] (see Figure 6.11(b), where the red point represents the impact point of the laser
beam). Once the laser has melted the material. advancing further along the joining
line of the plates, the molten material re-solidifies, thanks to the significant drop in
temperature (blue area, see Figure 6.11(b)).
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(a) (b)

FIGURE 6.11: (a) Mesh creation: 3500 finite element (4522 nodes, 3924
edges); (b) Fusion zone and welding direction.

Mesh creation

We create the mesh (T = {Ek}) where Ek is the generic finite element and such that
Ek ∩ Ek′ = ∅, k ̸= k′, ∀k ̸= k′ (is either empty or consists of exactly one node or of one
edge), obtained with triangulation techniques to obtain tetrahedral finite elements.
We have discretized Ω in order that (Ω = ∪NT

k=1Ek), with NT = |T|. Moreover, the
size of the mesh h, h(Ek), is quantifiable as [112] h(Ek) = supx,y∈Ek

∥x − y∥ so that
h = maxEk∈T(Ek). Particularly, the volume of each Ek, indicated by Vk, is computable
as

Vk =
1
6

∣∣∣∣∣∣
x2 − x1 x3 − x1 x4 − x1
y2 − y1 y3 − y1 y4 − y1
z2 − z1 z3 − z1 z4 − z1

∣∣∣∣∣∣
where xi, yi, zi are the coordinates of the vertices Pi of Ek. Moreover, for each triangle
of Ek, the surface is

Sk = 0.5
∣∣∣∣x2 − x1 x3 − x1
y2 − y1 y3 − y1

∣∣∣∣ .

Therefore, a face of Ek is an ordered triad (allowing all possible combinations), while
the edges are considered, not as elements of the faces, but as separate entities and are
implicitly defined in terms of ordered pairs of vertices. To each Ek we associate the
sphere circumscribed at its vertices whose radius, Ck, and its center can be obtained
by solving the equation:

Ck =

∣∣∣∣∣∣∣∣
l2
1 − l2 l2

2 − l2
1 l2

3 − l2
1 l2

4 − l2
1

x1 − x x2 − x1 x3 − x1 x4 − x1
y1 − y y2 − y1 y3 − y1 y4 − y1
z1 − z z2 − z1 z3 − z1 z4 − z1

∣∣∣∣∣∣∣∣
where l2 = x2 + y2 + z2 and l2

i = x2
i + y2

i + z2
i (i = 1, ..., 4), or solving a system of

linear equation for achieving the center. As in two dimensions, there is a formula
that allows you to calculate the radius and that allows you to avoid calculating Ck:

rk = (24Vk)
−1((m + n + s)(m + n − s)(n + s − m)(m − n + s))0.5
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where m, n and s are the products of the lengths of two opposite edges. Finally, the
radius of the inscribed sphere can be evaluated as

γk = 3Vk(S1 + S2 + S3 + S4)
−1,

where Si is the surface of the triangle i of Ek. Since the simulations require rather long
execution times, we have previously evaluated the quality of the meshes obtained.
In particular, three well-established quality indices have been exploited: aspect ra-
tio, Jacobian ratio, maximum corner angle and skewness [112]. For each triangular
element, the aspect ratio values obtained, an index that guarantees good numerical
accuracy if all sides of an element are of equal length, they are all very close to 1.
In parallel, for each tetrahedron, the value obtained for the Jacobian ratio, which
quantifies whether each average node is positioned in the center with respect to two
adjacent nodes, are also very close to 1. The maximum angles between two sides
of each element were also evaluated, obtaining values much smaller than 2π rad;
this cautions us from possible degradation of performance. Finally, the asymme-
tries were also evaluated, which resulted to be very close to the zero value. These
obtained values highlight the excellent quality of the constructed meshes. Further-
more, the ToolBox uses automatic generation techniques of high quality meshes in
relation to the type of problem to be solved. Also, using the "MeshQuality" ToolBox
further controlled the quality of the mesh. Finally, during the simulation campaign,
we compared the results obtained with similar cases known in the literature.

Exploiting classical Gaussian laser heat source

As already specified, the duration of the welding process is equal to 2.5s, in accor-
dance with the executive practice of laser welding for plates whose dimensions are
compatible with those specified in this [208] paper. Figure 6.12 displays the welding
process implemented in MatLab; once the material has melted, the laser advances
along the joint line of the slabs, melting further material while the previously melted
material solidifies as the temperature drops drastically. Figures 6.13(a)-6.14(a), re-
lating to the final point of the weld, offers greater evidence of this phenomenon,
emphasizing that, already in the numerical simulation phase, (6.26) models the un-
derlying of the proposed approach. As highlighted in Figure 6.11(a), the mesh is
not capillary over Ω but only over Ω3 and its immediate vicinity because (6.26) does
not consider any delay times for the distribution of T(x, t) during the passage of the
laser beam. Therefore, considering this distribution throughout Ω instantaneous,
the cooling in both Ω1 and Ω2 is immediate, also considering that the thermal con-
duction between the plates and the workbench has also been taken into account.

Both Figures 6.15(a) and 6.15(b) depict this aspect because they show the distri-
bution of T(x, t) both in the initial point and in five different points of the welding
wire from which it can be seen that once the temperature peak has been reached, as
the laser beam advances, the cooling is locally evident. Furthermore, the final point
of the welding path is affected both by the presence of the laser beam and by the con-
duction of the other points where the welding has already taken place. In fact, the
peaks increase as the weld progresses toward the endpoint. However, we observe
that this remark does not affect the quality of the proposed model because, regard-
less of any delay times in the distribution of T(x, t), Ω3 remains the most thermally
stressed area where, after the laser welding process, checks the mechanical proper-
ties. In confirmation of the above, the thermal cycles were obtained transversally to
the welding line (in correspondence with its midpoint) from which it is once again
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(a) (b) (c)

(d) (e) (f)

FIGURE 6.12: Welding process. The red point represents the impact
area of the laser beam. Initial zone: (a)-(b); central zone: (c)-(d)-(e)

and final zone: (f).

highlighted how, moving away from the welding line, the cooling of the plates is
drastic (see Figure 6.16(a)). On the other hand, moving along the welding line, the
thermal cycles show behaviors that are qualitatively/quantitatively similar to each
other (see Figure 6.16(b)). Particularly, during the welding process, the temperature
peaks are well above the melting range of the alloy, as required by the welding ex-
ecution practice, to guarantee the melting of the material along the entire depth of
the plates.

Exploiting conical 3D laser heat source

Here, we set all parameters, as in Subsection 6.2.5. Moreover, here zU = 4 mm
and zL = 0 mm, as often happens in many aluminum alloy plate welding pro-
cesses. Therefore, the T(x, t) distribution in Ω as highlighted in Figures 6.13(b)-
6.14(b) (when the laser beam reaches the final position of the welding path), sim-
ulating a laser welding of the same duration as the one simulated in subsection
6.2.5. Further in this case, in Ω3, T(x, t), throughout the welding process, settles
on values, ensuring the fusion of the aluminum even in depth, although the tem-
peratures reached are higher than when a classical Gaussian 3D laser head source
is considered, risking carrying out a melting and re-solidification process that does
not meet the required quality standards. As regards the thermal cycles both trans-
versely and longitudinally of the welding line, they appear qualitatively superim-
posable to those obtained in Figures 6.16(a) and 6.16(b). Thus, (6.26) does not con-
sider any thermal losses (as well as any time-lag that slows down the temperature
distribution), the Conical 3D laser head source could not be suitable to model the
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laser beam because the real T(x, t) in Ω3, being oversized, could not guarantee the
total melting of the alloy without compromising the internal structure of the mate-
rial. This phenomenon is more evident by analyzing Figures 6.13(b)-6.14(b) where
the aforementioned drop in temperatures is most apparent. However, as highlighted
in Subsection 6.2.5, the weld bead still has a truncated cone shape whose geometric
parameters are still potentially compatible with those required by current legislation
on laser welding. Furthermore, the surface temperature during the welding process
is characterized by peaks that largely exceed the melting range of the alloy (see Fig-
ures 6.15(c) and 6.15(d)) with consequent marked degradation of the surface itself. It
follows that (6.26), together with the joint use of the 3D heat source conic and the val-
ues chosen for both P and I0, does not represent a reliable tool for dynamic mapping
of the temperature in the process of laser welding under study, as metallurgically
recently proved [204, 205].

(a) (b)

(c)

FIGURE 6.13: Distribution of T(x, t) in Ω when the laser beam, mod-
eled using: (a) Gaussian formulation, (b) conical formulation and (c)
ellisoidal formulation has reached the final point of the welding path.

Exploiting ellipsoid laser heat source

As a further confirmation of the precision of using the classical 3D Gaussian for-
mulation for laser beam modeling, here we present the results obtained using the
ellipsoid formulation as specified in Subsection 6.2.3. Here, too, as for the previous
subsections, we have simulated the welding of the same duration using the same
physical parameters for the alloy (Table 6.4) while, concerning the ellipsoid laser
heat source parameters, as the literature suggests, we set a f = 1 mm, ar = 5 mm, and
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(a) (b)

(c)

FIGURE 6.14: Distribution of T(x, t) in Ω when the laser beam, mod-
eled using: (a) Gaussian formulation, (b) conical formulation and (c)

ellisoidal formulation.

b = c = 1 mm. In this case, we also used the same mesh exploited in the previous
cases since its refinement did not produce appreciable improvements (compared to a
conspicuous increase in computational complexity). As depicted in Figures 6.13(c)-
6.14(c), the distribution of T(x, t) in Ω3 highlights high values of temperature that
melting the material only on the surface, without eliminating the risk of local dam-
age in the structure, but without producing deep fusion. This is also evidenced in
both Figures 6.15(e) and 6.15(f), which show the same qualitative behavior high-
lighted using the other laser sources, but with different peaks of temperature. We fi-
nally observe that, also in this case, both transversal and longitudinal thermal cycles
are qualitatively superimposable with those obtained using the other formulations
of heat laser sources. Therefore, the proposed model, assisted by this formulation
of the heat source laser and with appropriate power output, appears suitable for in-
dustrial and iron and steel applications, which require superficial and sub-surface
fusions of the material [192, 209–212].
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(a) (b)

(c) (d)

(e) (f)

FIGURE 6.15: Distribution of T(x, t) in five different points on the
welding wire (P0 = (0, 40.5, 4), P1 = (25, 40.5, 4), P2 = (50, 40.5, 4),
P3 = (75, 40.5, 4), P4 = (100, 40.5, 4)) (a)-(b)-(c) and in the middle
point P1 of the welding wire (b)-(d)-(f), with Gaussian 3D laser heat
source in (a)-(b), Conical 3D laser heat source in (c)-(d) and Ellipsoid

3D laser heat source in (e-(f)
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(a) (b)

FIGURE 6.16: Thermal cycles in: (a) transverse direction, (b) longitu-
dinal direction, with Gaussian 3D laser heat source.

The proposed model does not exhaust the phenomenon of laser welding, and
several studies must be conducted to optimize the proposed process and evaluate it
with experimental tests. In particular, non-linearity can be included, as for the ther-
mal conductivity, where it is assumed that the latter depends on temperature. This
would better reflect real world conditions and contribute to more accurate forecasts.

Furthermore, although the laser power is high, it must be borne in mind that it
takes time for the electrical power, converted into thermal equivalent, to penetrate
the material and cause it to melt. In this case it would be appropriate to consider
the material response time before the thermal input of the laser penetrates deep, and
introduce one/two relaxation times, considering a model of type Maxwell-Cattaneo-
Vernotte/Dual-Phase-lag or another extension of Fourier’s law.

Finally, to better simulate the real behaviour of laser welding, phenomena such
as the production of vapour bubbles (closing holes), surface tension imbalances
caused by temperature gradients (Marangoni effect) could be taken into account..
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Conclusions and Future
Perspectives

In this thesis, we derived Fourier’s law and its generalizations from the framework
of Extended Thermodynamics and discussed comparisons with other theories. Par-
ticular emphasis was placed on the role of non-Fourier heat conduction, focusing on
the temperature dependence of thermal conductivity and relaxation time. We first
explored the thermodynamic origin of the Fourier (F), Maxwell-Cattaneo-Vernotte
(MCV), and Guyer-Krumhansl (GK) equations, showing how these derivations are
based solely on the first and second laws of thermodynamics, and highlighting the
connection between material parameters.

In Chapter 3, we investigated the effects of nonlinearities in thermal conductiv-
ity within the Fourier framework. Specifically, we examined cases where the thermal
conductivity increases or decreases with rising temperature. Such nonlinear effects
are particularly relevant in situations where material properties vary significantly
with temperature, and their impact must be accounted for in both theoretical mod-
els and experimental settings.

In Chapter 4, we investigated the nonlinearities in the MCV model, particularly
in the context of heat pulse experiments. We found that even a simple linear tem-
perature dependence in both the relaxation time and thermal conductivity can in-
duce temperature-dependent mass density. This implies that mechanical effects,
such as thermal expansion, might need to be considered in future models to ob-
tain a more realistic description of the system. However, the primary objective here
was to demonstrate the effectiveness of a staggered numerical scheme in solving
nonlinear heat conduction problems in one and two dimensions. We analyzed the
scheme’s stability and convergence properties, finding that while stability estimates
using a linearized version of the problem are useful, they are not fully reliable for
predicting the maximum temperature field in nonlinear scenarios. Despite this, the
approach allowed for efficient simulations. Our results showed that temperature-
dependent material parameters significantly affect the steepness of the temperature
wavefront, which could serve as an indicator of nonlinearity in experimental con-
texts. Moreover, these parameters often produced opposite effects, complicating the
identification of specific nonlinearities in measurements. In two-dimensional prob-
lems, we observed delays and oscillations in the heat pulse reflections, which are not
artifacts of the method but rather a result of the heat conduction dynamics. These
effects, along with our method’s dispersion properties, could prove valuable for fu-
ture experimental work on nonlinear heat conduction.

In the future, the study of more complex geometries, potentially using finite el-
ement or finite volume methods, will be necessary to extend these results to real-
world applications. Although the current method could handle more complicated
domains, its implementation in such cases presents challenges.
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In the last part of the Chapter 4, we compared two nonlinear formulations of
the MCV equation: one assuming temperature-dependent material coefficients, and
another using a conservation-dissipation framework to describe the evolution of the
thermodynamic conjugate of the heat flux. By focusing on the propagation of short
temperature pulses, we examined how nonlinear effects in the thermal conductivity,
λ(T), and relaxation time, τ(T), influenced the velocity and shape of the thermal
signal. Future research should focus on applying these results to specific materials
and experimental setups, as well as comparing nonlinear MCV models with exper-
imental data. Additionally, exploring soliton propagation in wires and nanowires
using nonlinear MCV models could be of significant interest, especially in the con-
text of information transmission via thermal pulses.

The Guyer-Krumhansl (GK) model was the focus of Chapter 5, as it is a promis-
ing candidate for future engineering applications. We studied the nonlinear effects
of temperature-dependent material parameters within the GK framework, finding
that the behavior of nonlinear terms, particularly in relaxation time and thermal
conductivity, exhibited similar trends to those observed in the MCV model. Specifi-
cally, increasing thermal conductivity enhanced heat propagation, while increasing
relaxation time delayed it.

Our analysis of the GK model showed that nonlocal terms, which measure the
departure from the hyperbolic regime, are significantly affected by nonlinearities.
Nonlinearity in thermal conductivity, in particular, reduced the temperature peak
and slowed heat propagation. Interestingly, when the nonlocal term was defined
as a generic temperature-dependent function, increasing the nonlinearity initially
delayed heat propagation, but at higher values, wave-like behavior reemerged, re-
vealing the model’s hyperbolic nature.

By employing a staggered numerical scheme, we solved a two-dimensional heat
conduction problem with space- and time-dependent boundary conditions. We in-
troduced a second-order tensor Q as an auxiliary quantity to facilitate boundary con-
dition implementation, which helped in reproducing Fourier-like solutions under
specific resonance conditions. Additionally, when rotational terms dominated heat
flux evolution, significant local temperature reductions were observed, though this
effect is distinct from negative temperatures and occurs only briefly. These results
could be useful in future studies involving heterogeneous materials and nanoscales,
where adjusting the parameters allows the model to extend beyond the scope of
phonon hydrodynamics.

Chapter 6 explored the potential applications of non-Fourier heat conduction
models, particularly in biological and medical fields such as bioheat transfer and
laser surgery. Predicting tissue temperature during laser irradiation is a critical fac-
tor in medical treatments. Here, the Maxwell-Cattaneo-Vernotte equation proves
useful for accurately modeling heat transfer in living tissues, especially in scenarios
where finite heat propagation speeds are important. Non-Fourier models are also
more reliable than classical Fourier models for capturing the thermal response of tis-
sues with long thermal relaxation times. Our analytical solution of a hyperbolic bio-
heat equation, including terms for blood perfusion and laser irradiation, provided
valuable insights into how thermal relaxation time and perfusion rates affect tem-
perature distributions in tissues during thermal therapy. These results suggest that
increased blood perfusion lowers local temperature, while long relaxation times con-
centrate heat at the surface, leading to higher temperatures. Future work will aim to
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incorporate temperature-dependent relaxation times and perfusion rates to further
improve these models.

Finally, our analysis has shown that non-Fourier heat conduction models have
significant potential for a variety of practical applications, from laser welding to
bioheat transport. A key area of future research will involve developing more com-
prehensive nonlinear models that can be applied to real-world materials and ge-
ometries, with the goal of improving both the theoretical understanding and the
practical implementation of non-Fourier heat conduction in advanced engineering
and medical contexts.
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Appendix A

Dissipation and Dispersion Errors
of NL-MCV

A.1 Two-dimensional case

The investigation of the dissipation (artificial decrease of the amplitude) and disper-
sion errors (artificial oscillations) is an important task as the simulation outcomes
can be significantly distorted by these errors.

As it is possible to see from the Fig. A.2, using non-homogeneous boundary
conditions the solution is affected by more evident oscillations. In both situations the
significant oscillations highlighted in the figures A.1 (c)-(d) and A.2 (c)-(d) leading
to the instability of the solution are the consequence of the fact that the time step
is higher than the threshold value of time step that guarantees the stability of the
solution.

More insight is provided by Figures A.3, A.4, A.5 and A.6.
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(a) (b)

(c) (d)

(e) (f)

FIGURE A.1: Temperature distribution on the rear face with homo-
geneous boundary conditions in space, ∆x = ∆y = 0.02, ∆tmin =
5.0367 · 10−5 (a) ∆t = 10−5, (b) ∆t = ∆tmin, (c)-(d) ∆t = 1.2 · 10−4 and

(e)-(f) ∆t = 1.5 · 10−4.
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(a) (b)

(c) (d)

(e)

FIGURE A.2: Temperature distribution on the rear face with
non-homogeneous boundary conditions in space, ∆x = ∆y =
0.02, ∆tmin = 5.0367 · 10−5 (a) ∆t = 10−5, (b) ∆t = ∆tmin, (c)-(d)

∆t = 1.2 · 10−4 and (e) ∆t = 1.5 · 10−4.
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(a) (b)

(c)

FIGURE A.3: (a)-(b) The roots of p(ξ) and (c) their argument, with
∆x = ∆y = 0.02, ∆t = 10−5 ≤ ∆tmin = 5.0367 · 10−5. The maximum
is choose Z = 3. The maximum of the modulus of each roots is:

max |ξ1| = 1.00000, max |ξ2| = 0.99998, max |ξ3| = 0.99998.
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(a) (b)

(c)

FIGURE A.4: (a)-(b) The roots of p(ξ) and (c) their argument, with
∆x = ∆y = 0.02, ∆t = 10−6 ≤ ∆tmin = 5.0367 · 10−5. The maxi-
mum is choose Z = 3.The maximum of the modulus of each roots is:

max |ξ1| = 1.00000, max |ξ2| = 1.00000, max |ξ3| = 1.00000.
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(a) (b)

FIGURE A.5: The roots of p(ξ) with ∆x = ∆y = 0.02, ∆t =
1.5 · 10−4 ≥ ∆tmin = 5.0367 · 10−5. The maximum is choose Z =
3. The maximum of the modulus of each roots is: max |ξ1| =

1.0000, max |ξ2| = 1.00018, max |ξ3| = 1.00018.

(a) (b)

FIGURE A.6: The roots of p(ξ) with ∆x = ∆y = 0.02, ∆t = 10−3 ≥
∆tmin = 5.0367 · 10−5. The maximum is choose Z = 3. The maxi-
mum of the modulus of each roots is: max |ξ1| = 1.0000, max |ξ2| =

1.02131, max |ξ3| = 1.02131.
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Accuracy order of nonlinear model

It is possible to estimate the accuracy order of the numerical scheme (in powers of
∆x, ∆y and ∆t). The error of the prediction for (qx)

n+1
i+1/2,j reads

(qx)
n+1
i+1/2,j − qx(xj, yi+1/2, tn+1) =

(
∆t

τq1 + τq2 Tn
i+1/2,j+1/2

− 1

)
(qx)

n
i+1/2,j

−

(
τ

qx
p1 + τ

qx
p2 Tn

i+1/2,j+1/2

)
(

τq1 + τq2 Tn
i+1/2,j+1/2

) · ∆t
∆x

·
(

Tn
i+1/2,j+1/2 − Tn

i+1/2,j−1/2

)
− qx(xj, yi+1/2, tn+1)

≃
(

∆t
τq1 + τq2 T(xj+1/2, xi+1/2, tn)

− 1
)

qx(xj, yi+1/2, tn)− qx(xj, yi+1/2, tn+1)−

−

(
τ

qx
p1 + τ

qx
p2 Tn

i+1/2,j+1/2

)
(
τq1 + τq2 T(xj+1/2, xi+1/2, tn)

) · ∆t
∆x

·
[
T(xj+1/2, yi+1/2, tn)− T(xj−1/2, xi+1/2, tn)

]
= −

[
qx(xj, yi+1/2, tn+1)− qx(xj, yi+1/2, tn)

]
+ ∆t ·

qx(xj, yi+1/2, tn)

τq1 + τq2 T(xj+1/2, xi+1/2, tn)

−

(
τ

qx
p1 + τ

qx
p2 Tn

i+1/2,j+1/2

)
(
τq1 + τq2 T(xj+1/2, xi+1/2, tn)

) · ∆t
∆x

·
[
T(xj+1/2, yi+1/2, tn)− T(xj−1/2, xi+1/2, tn)

]
= −∆t · ∂qx

∂t
(xj, yi+1/2, tn) + o(∆t2) + ∆t ·

qx(xj, yi+1/2, tn)

τq1 + τq2 T(xj+1/2, xi+1/2, tn)

−

(
τ

qx
p1 + τ

qx
p2 Tn

i+1/2,j+1/2

)
(
τq1 + τq2 T(xj+1/2, xi+1/2, tn)

) · ∆t
∆x

·
[

∆x · ∂T
∂x

(xj, xi+1/2, tn) + o(∆x3)

]

= o(∆t2) + o(∆x2).

after Taylor series expansion, simplification, and use of equation (4.59b).
Analogously, after executing the same calculations, for the second component of
heat flux we obtain

(qy)
n+1
i,j+1/2 − qy(xj+1/2, yi, tn+1) = o(∆t2) + o(∆y2).
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The error of the prediction for Tn+1
i+1/2,j+1/2 is expressed as

Tn+1
i+1/2,j+1/2 − T(xj+1/2, yi+1/2, tn+1) = Tn

i+1/2,j+1/2

− L̂

[
(qx)n

i+1/2,j+1 − (qx)n
i+1/2,j

]
τd

(
1 +

τq2

τq1

Tn
i+1/2,j+1/2

) · ∆t
∆x

−
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i,j+1/2

]
τd

(
1 +

τq2

τq1

Tn
i+1/2,j+1/2

) · ∆t
∆y
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≃ −
[
T(xj+1/2, yi+1/2, tn+1)− T(xj+1/2, yi+1/2, tn)

]
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]
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(
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τq2

τq1
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]
τd

(
1 +

τq2

τq1

T(xj+1/2, yi+1/2, tn)

) · ∆t
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= −∆t · ∂T
∂t

(xj+1/2, yi+1/2, tn) + o(∆t2)

− L̂

τd

(
1 +

τq2

τq1

Tn
i+1/2,j+1/2

) · ∆t
∆x

·
[

∂qx

∂x
(xj, yi+1/2, tn)∆x + o(∆x2)

]

− 1

τd

(
1 +

τq2

τq1

Tn
i+1/2,j+1/2

) · ∆t
∆y

·
[

∂qy

∂y
(xj+1/2, yi, tn)∆y + o(∆y2)

]

= o(∆t2) + o(∆x) + o(∆y).

after Taylor series expansion, cancellation and use of equation (4.59a).
Finally

Tn+1
i+1/2,j+1/2 − T(xj+1/2, yi+1/2, tn+1) = o(∆t2) + o(∆x) + o(∆y),

(qx)
n+1
i+1/2,j − qx(xj, yi+1/2, tn+1) = o(∆t2) + o(∆x2),

(qy)
n+1
i,j+1/2 − qy(xj+1/2, yi, tn+1) = o(∆t2) + o(∆y2).

(A.1)

hence is proved the numerical scheme is second order accurate in time and first
order in space, globally it is of order one.

A.2 One-dimensional case

Similarly to the two-dimensional case, the analysis of the dissipation and dispersion
errors is shown in the Figures A.7, A.8, A.9, A.10.
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(a) (b)

(c) (d)

(e) (f)

FIGURE A.7: Temperature distribution of rear face in 1D, with ∆x =
0.02, ∆tmin = 9.8015 · 10−5 (a) ∆t = 10−6, (b) ∆t = 10−5, (c)-(d) ∆t =

∆tmin and (e)-(f) ∆t = 1.2 · 10−4.
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(a) (b)

(c)

FIGURE A.8: (a)-(b) The roots of p(ξ) and (c) the argument, with ∆x =
0.02, ∆t = 10−5 ≤ ∆tmin = 9.8015 · 10−5. The maximum is choose
Z = 3. The maximum of the modulus of each roots is: max |ξ1| =

1.00000, max |ξ2| = 1.00000.
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(a) (b)

(c)

FIGURE A.9: (a)-(b) The roots of p(ξ) and (c) the argument, with ∆x =
0.02, ∆t = 10−6 ≤ ∆tmin = 9.8015 · 10−5. The maximum is choose
Z = 3. The maximum of the modulus of each roots is: max |ξ1| =

1.00000, max |ξ2| = 1.00000.

(a) (b)

FIGURE A.10: (a)-(b) The roots of p(ξ) and (c) the argument, with
∆x = 0.02, ∆t = 1.5 · 10−4 ≥ ∆tmin = 9.8015 · 10−5. The maximum
is choose Z = 3. The maximum of the modulus of each roots is:

max |ξ1| = 1.00019, max |ξ2| = 1.00019.
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Appendix B

Numerical scheme of GK-1D with
slip BCs

B.0.1 Numerical scheme

All the main results of Section 5.4 have been obtained by numerical approaches.
Here we briefly comment them.

The numerical solution of the problem given by Eqs. (5.47) can be obtained by
using the explicit finite difference method (FDM): let us, therefore, consider the one
dimensional spatial domain Ωx = [0, 1] and the time interval Ωt = [0, tmax]. The
solutions ϑ(x, t), h(x, t) are consequently defined as

ϑ, h, : Ωx × Ωt −→ R

(x, t) 7−→ ϑ(x, t), h(x, t)

From a numerical point of view, we discretize the Cartesian product Ωx × Ωt as:
for the geometric domain

Ωx : {x1, x2, . . . , xi−1, xi, xi+1, . . . xN , xN+1}

and for the temporal interval

Ωt :
{
t1, t2 . . . , tn−1, tn, tn+1, . . . tF, tF+1

}
,

where the discrete space and time values are obtained as

xi = x1 + (i − 1) · ∆x i = 1, ..., N + 1 (B.1a)
tn = t1 + (n − 1) · ∆t n = 1, ..., F + 1 (B.1b)

with ∆x and ∆t, spatial and time steps respectively (here are assumed to be con-
stant values). Hence, as in [29, 30, 98], the heat flux h is computed in the nodes
x1, x2...xN , xN+1, while the temperature ϑ is computed in the center of the computa-
tion cell Ωi = [xi, xi+1], i.e., in the nodes xi+1/2: the temperature, therefore, is shifted
by half space step ∆x/2, as it is shown in Fig. B.1. Furthermore, no boundary condi-
tions will be prescribed for the temperature.

Then we approximate the solutions as

ϑ(xi+1/2, tn) ≃ ϑn
i+1/2,

h(xi, tn) ≃ hn
i

We have used an forward finite difference for the time derivatives and for the prime
spatial derivatives of the heat flux, while we have used an backward finite difference
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FIGURE B.1: Representation of numerical scheme of “staggered
fields". The filled squares represent the temperature ϑ, and the filled
triangles represent the heat flux h. Empty symbols denote boundary

conditions (only for the heat flux).

for the prime spatial derivatives of the temperature and central finite difference for
the second spatial derivatives of the heat flux.

Then, under this approximations we obtain the following FDM for the GK model
(5.47a)-(5.47b)

ϑn+1
i+1/2 − ϑn

i+1/2

∆t
+

Kn2

3
·

hn
i+1 − hn

i

∆x
= 0

hn+1
i − hn

i
∆t

+ hn
i +

ϑn
i+1/2 − ϑn

i−1/2

∆x
− 3Kn2 ·

hn
i+1 − 2hn

i + hn
i−1

(∆x)2 = 0

After some rearrangements, we obtain for i = 2, ..., N

ϑn+1
i+1/2 = ϑn

i+1/2 −A ·
[
hn

i+1 − hn
i
]

(B.2a)

hn+1
i = (1 − ∆t) hn

i − νx ·
(
ϑn

i+1/2 − ϑn
i−1/2

)
+ B ·

[
hn

i+1 − 2hn
i + hn

i−1
]

(B.2b)

where

A = νx
Kn2

3
, B = 3 Kn2νxx, νx =

∆t

∆x
, νxx =

∆t

(∆x)2 (B.3)

For the boundary conditions (i = 1 and i = N + 1), we use for the approximations
of the first/second spatial derivatives: for i = 1 an forward finite difference and for
i = N + 1 an backward finite difference. After some rearrangement we obtain

hn
1 =

CDhn
2 − αD2 [hn

3 − 2hn
2 ]

1 + CD + αD2 , (B.4a)

hn
N+1 =

CDhn
N − αD2 [hn

N−1 − 2hn
N
]

1 + CD + αD2 (B.4b)

with
D =

Kn
∆x

(B.5)

Entropy

For the entropy we have

∂t∆π + ∂x js = Σs

∆π(x, 0) = 0

with js = js(ϑ, h) and Σs = Σs(ϑ, h). From a numerical point of view we compute
the entropy in the internal nodes (filled squares) in Fig. B.1 and the entropy flux in
the triangles. After using the forward finite difference for the time interval of the
entropy and the forward finite difference for the spatial derivative of the entropy
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flux, we obtain

∆πn+1
i+1/2 − ∆πn

i+1/2

∆t
+

(js)n
i+1 − (js)n

i

∆x
= (Σs)

n
i+1/2

from which

∆πn+1
i+1/2 = ∆πn

i+1/2 − νx
[
(js)n

i+1 − (js)n
i
]
+ ∆t · (Σs)

n
i+1/2

with

(js)n
i = js(ϑn

i , hn
i ) = js(ϑn

i , hn
i )

(Σs)
n
i+1/2 = Σs(ϑ

n
i+1/2, hn

i+1/2) = Σs(ϑ
n
i+1/2, hn

i+1/2)

where we replace the unknown values of ϑn
i , hn

i+1/2 with the average between the
values in the nearby nodes as follow

ϑn
i 7−→ ϑn

i :=
ϑn

i+1/2 + ϑn
i−1/2

2

hn
i+1/2 7−→ hn

i+1/2 :=
hn

i+1 + hn
i

2
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Appendix C

Dimensionless form of bioheat
model and inverse Laplace
transform

C.1 Dimensionless form of bioheat model

We choose the following dimensionless variables, in order to obtain the dimension-
less form of the equation (6.4)

η = A t, ξ = B x, θ(ξ, η) = C (T − Ta), (C.1)

wherein A, B, C are suitably chosen. Hence, the dimensionless thermal wave-like
bioheat transfer equation during laser irradiation becomes

τ2
R A2(1 + β̃)

T0 C
· ∂ηηθ +

τR A(1 + β̃ + Λ)

T0 C
· ∂ηθ =

τRB2(αt + αb)

T0 C
· ∂ξξθ − τR β̃wb

T0 C
· θ

+
τR

T0 ρt ct
qmet +

τRaI0

T0 ρt ct
· exp

(
−a

ξ

B

)
·
[

H
(ηlaser

A
− η

A

)
+ τR A ∂η

(
H
(ηlaser

A
− η

A

))]
,

(C.2)

where

β̃ =
ϕ ρb cb

(1 − ϕ)ρt ct
, Λ = τR wb β̃, αt =

kt

ρt ct
, αb =

kb

(1 − ϕ)ρt ct
, ηlaser = A tlaser

(C.3)
with [αt] = [αb] = m2s−1. Moreover, without loss of generality, we can assume that
the coefficients of the derivatives of the temperature are equal to 1, i.e.,

τ2
R A2(1 + β̃)

T0 C
= 1,

τR A(1 + β̃ + Λ)

T0 C
= 1,

τRB2(αt + αb)

T0 C
= 1, (C.4)

this imply the following expressions for the coefficients A, B and C:

A =
1 + β̃ + Λ
τR (1 + β̃)

,

B =
1 + β̃ + Λ√

τR (αt + αb)(1 + β̃)
,

C =
(1 + β̃ + Λ)2

T0 (1 + β̃)
.
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Using the previous coefficients in the relations (C.4), leads us to the further positions:

γ =
τRwb β̃(1 + β̃)

(1 + β̃ + Λ)2
, Γ =

τR

T0 ρt ct
, λ =

τR a I0

T0 ρt ct
, g(η) = F(η) + AτR∂η F(η),

with

F(η) = H
(

ηlaser − η

A

)
.

C.2 Inverse Laplace Transform

The inverse Laplace transform of the first term of equation (6.13) is obtained by
applying the convolution theorem of Laplace transform,

L−1{F(s)G(s)} =
∫ η

0
L−1 {F(s)}s→u L−1{G(s)}s→η−udu =

∫ η

0
F(u) G(η − u)du,

leading to:

L−1
{ λaĝ(s)B
[a2 − B2(s2 + s + γ)]

√
s2 + s + γ

exp
(
−
√

s2 + s + γ ξ

)}
=

= λaB
∫ η

0
exp

(
−η − v

2

)
I0

(1
2

i
√

4γ − 1 ·
√
(η − v)2 − ξ2

)
H(η − v − ξ)×

×
∫ v

0
F(u) exp

(
−v − u

2

)[
−AτR

B2 cosh
(√−4B2γ + 4a2 + B2

2B
(v − u)

)
+

AτR − 2√
−4B2γ + 4a2 + B2

sinh
(√−4B2γ + 4a2 + B2

2B
(v − u)

)]
dudv

− λaB
∫ η

0
exp

(
−η − v

2

)
I0

(1
2

i
√

4γ − 1 ·
√
(η − v)2 − ξ2

)
H(η − v − ξ)×

×
[ 2AτRF(0) exp

(
− v

2

)
B
√
−4B2γ + 4a2 + B2

exp
(
−η

2

)
sinh

(v
2

√
−4B2γ + 4a2 + B2

B

)]
dv, (C.5)

with
ĝ(s) = (1 + AτRs)F̂(s)− AτRH

(ηlaser

A

)
.

The inverse Laplace transform of the second term of (6.13)

L−1
{

1 + s
s2 + s + γ

θ0

}
= θ0 exp

(η

2

) [
cos

(η

2

√
4γ + 1

)
+

+
1√

4γ + 1
sin
(η

2

√
4γ + 1

)]
(C.6)

The inverse Laplace transform of the third term of (6.13) is given by

L−1
{

s
s2 + s + γ

Γqmet

}
= Γqmet exp

(
−η

2

) [
cos

(η

2

√
4γ + 1

)
−

− 1√
4γ + 1

sin
(η

2

√
4γ + 1

)]
. (C.7)
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Moreover, the inverse Laplace transform of the fourth term of (6.13) is:

L−1
{

−λ ĝ(s) B2

a2 − B2 (s2 + s + γ)
exp

(
− a

B
ξ
)}

= −λ B exp
(
− a

B
ξ
) ∫ η

0
F(u) exp

(
−η − u

2

)
×

×
[
−AτR

B
cosh

(√
−4B2 γ + 4a2 + B2

2B
(η − u)

)
+

+
AτR − 2√

−4B2 γ + 4a2 + B2
sinh

(√
−4B2 γ + 4a2 + B2

2B
(η − u)

)]
du+

+
2λ B exp

(
− a

B ξ
)

A τR F(0)√
−4B2 γ + 4a2 + B2

exp
(
−η

2

)
sinh

(
η

2

√
−4B2 γ + 4a2 + B2

B

)
. (C.8)
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