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Abstract: In this review, we investigate several aspects and features of spatial field correlations for the
massless scalar field and the electromagnetic field, both in stationary and nonstationary conditions,
and show how they manifest in two- and many-body static and dynamic dispersion interactions (van
der Waals and Casimir–Polder). We initially analyze the spatial field correlations for noninteracting
fields, stressing their nonlocal behavior, and their relation to two-body dispersion interactions. We
then consider how field correlations are modified by the presence of a field source, such as an atom
or in general a polarizable body, firstly in a stationary condition and then in a dynamical condition,
starting from a nonstationary state. We first evaluate the spatial field correlation for the electric
field in the stationary case, in the presence of a ground-state or excited-state atom, and then we
consider its time evolution in the case of an initially nonstationary state. We discuss in detail their
nonlocal features, in both stationary and nonstationary conditions. We then explicitly show how the
nonlocality of field correlations can manifest itself in van der Waals and Casimir–Polder interactions
between atoms, both in static and dynamic situations. We discuss how this can allow us to indirectly
probe the existence and the properties of nonlocal vacuum field correlations of the electromagnetic
field, a research subject of strong actual interest, also in consequence of recent measurements of
spatial field correlations exploiting electro-optical sampling techniques. The subtle and intriguing
relation between nonlocality and causality is also discussed.

Keywords: field correlations; nonlocality; Casimir–Polder dispersion interactions

1. Introduction

In quantum field theory, field commutators vanish outside the light cone, as expected
from relativistic causality considerations [1]. However, it is well known that vacuum field
correlations in general do not vanish for space-like separations; this is not in contradiction
with relativistic causality since a nonvanishing field correlation function does not allow the
possibility of a superluminal transmission of information [2–6].

The fact that quantum vacuum fluctuations, for example in the case of the electro-
magnetic field, possess nonvanishing correlations between spacetime points separated by
a space-like interval can, however, have profound conceptual implications and physical
consequences. Examples are inducing correlations between quantum objects in causally
disconnected regions of spacetime [3,7] and determining radiation-mediated (van der
Waals and Casimir-Polder) interactions between atoms [8–12], even in dynamical (time-
dependent) conditions [13]. Dispersion interactions are thus an indirect evidence of the
existence of vacuum fluctuation and of their spectral and spatial correlation features. Direct
measurements of the vacuum fluctuations of the quantum electric field have been reported,
as well as their dependence on the space-time volume sampled [14].

Recently, some experiments have been able to demonstrate the existence of vacuum
field correlations between non-causally connected space-time points, exploiting electro-
optic sampling [7,15]. Previous theoretical achievements on vacuum fluctuations and their
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spatial correlations, and the experimental possibility of proving their existence, make it
very important to analyze in detail their properties and physical consequences, as well as
their relevance on observable physical effects. Very recently, the possibility of experimen-
tally probing and individually separating vacuum field fluctuations and source radiation
contributions exploiting electro-optic sampling has been also proposed [16].

The experimental results and theoretical proposals above are currently giving a strong
theoretical and experimental boost and relevance to studying the physical features of
vacuum field correlations, including their nonlocality, in both stationary and nonstationary
conditions, as well as their effects on different quantum systems and observable quantities.

The existence of zero-point field fluctuations is one of the most prominent predictions
of the quantum theory of the electromagnetic field, and quantum fields in general; even
in the ground state of the free field, the electric and magnetic fields fluctuate around their
vanishing average value, as a consequence of the Heisenberg uncertainty principle resulting
from the noncommutativity of components of the electric and magnetic field operators [17].
These fluctuations are at the origin of many important observable effects, such as the
spontaneous decay of an excited atom in vacuum, the Lamb shift, and the Casimir and
Casimir–Polder forces between neutral objects in vacuum [11,17–20].

In this paper, we review relevant properties of the electromagnetic and scalar field
vacuum fluctuations, both in the vacuum and in the presence of field sources. We consider
both equilibrium and nonequilibrium conditions. Specifically, we investigate and review
their space-time correlations in both static and dynamical conditions, their role in static and
dynamical radiation-mediated effects such as two- and many-body dispersion interactions
(van der Waals and Casimir–Polder), as well as their nonlocal properties and consequent
relation with entanglement between field and matter observables [8,9,13,21–25].

This paper is organized as follows. In Section 2, we first introduce the equal-time
vacuum field correlations in the field ground state, both for the massless scalar field and
the electromagnetic field, stressing their nonlocal features. We then discuss how they are
modified by the presence of a polarizable body such as a ground- or excited-state atom,
considering a stationary configuration. In Section 3, we investigate how Casimir–Polder
dispersion interactions between two or three atoms give an indirect evidence of the nonlocal
features of the spatial field correlations. In Section 4, we consider nonstationary cases, when
the interacting system starts from a nonequilibrium configuration, discussing in detail the
time evolution of the nonlocal spatial correlations of the electric field. We then investigate
how this leads to dynamical three-body Casimir–Polder interactions, both in the case of
three bare ground-state atoms and when one of the three atoms is initially in a bare excited
state. Section 5 is devoted to our conclusive remarks.

2. Stationary Vacuum Field Correlations

We first discuss the vacuum field correlations for the massless relativistic scalar field
and for the electromagnetic field, in a stationary case, specifically the vacuum state. Let us
first consider a massless real scalar field; the field operator is given by [26]

φ(r, t) = ∑
k

(
h̄c2

2Vωk

)1/2(
akeik·re−iωkt + a†

ke−ik·reiωkt
)

, (1)

where ωk = c|k|, V is the quantization volume, the annihilation and creation operators ak
and a†

k satisfy the usual bosonic commutation rules, and periodic boundary conditions are
used. We have 〈0|φ(r, t)|0〉, where |0〉 is the vacuum state of the field defined as ak|0〉 = 0
for all k. The equal-time vacuum correlation function is easily obtained as

〈0|φ(r, t)φ(r′, t)|0〉 = h̄c2

2V ∑
k

1
ωk

eik·(r−r′). (2)

In the continuum limit, V → ∞, ∑k → V/(2π)3
∫

d3k, Equation (2) becomes
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〈0|φ(r, t)φ(r′, t)|0〉 = h̄c
4π

1
2i

1
|r− r′| lim

η→0+

∫ ∞

0

(
eik(|r−r′ |+iη) − e−ik(|r−r′ |−iη)

)
, (3)

where an exponential regularization factor e−ηk, with η > 0, has been introduced. After the
integration over k, taking η → 0, we have (for r 6= r′)

〈0|φ(r, t)φ(r′, t)|0〉 = h̄c
4π

1
|r− r′|2 . (4)

This relation shows the existence of nonlocal spatial field correlations outside the
light cone, as well as a divergence on the light cone (even if Equation (4) is an equal-time
correlation function, it can be easily extended to the general case).

Similar considerations hold for the electromagnetic field, that is the main point of this
paper. We are mainly interested to the nonrelativistic quantum electrodynamical case, and
in this case it is convenient to work in the Coulomb gauge, ∇ ·A = 0. The expressions of
the vector potential, electric field and magnetic field operators are (Gauss units) [17]

A(r, t) = ∑
kλ

A(kλ; r, t) = ∑
kλ

(
2πh̄c2

ωkV

)1/2

êkλ

(
akλ(t)eik·r + a†

kλ(t)e
−ik·r

)
,

E(r, t) = ∑
kλ

E(kλ; r, t) = i ∑
kλ

(
2πh̄ωk

V

)1/2
êkλ

(
akλ(t)eik·r − a†

kλ(t)e
−ik·r

)
,

B(r, t) = ∑
kλ

B(kλ; r, t) = i ∑
kλ

(
2πh̄ωk

V

)1/2
(k̂× êkλ)

(
akλ(t)eik·r − a†

kλ(t)e
−ik·r

)
, (5)

where k̂ = k/|k| is a unit vector along the direction of the wavevector k, êkλ (λ = 1, 2) are
polarization unit vectors, assumed real, and ωk = ck.

In the vacuum state, defined by akλ|0〉 = 0 for any (kλ), we have 〈E(r, t)〉 = 0,
〈B(r, t)〉 = 0, and the vacuum equal-time correlation function for the Fourier components
of the (transverse) electric field is easily found as

∑
λ

〈0|Ei(kλ; r, t)Ej(kλ; r′, t)|0〉 = 2πh̄ωk
V ∑

λ

(êkλ)i(êkλ)jeik·(r−r′) =
2πh̄ωk

V

(
δij − k̂i k̂ j

)
eik·R, (6)

where R = r− r′ and from now on the Einstein’s convention of repeated indices is used.
For the sum over the polarizations, we have used

∑
λ=1,2

(êkλ)i(êkλ)j = δij − k̂i k̂ j. (7)

In the continuum limit, V → ∞, ∑k → V/(2π)3
∫

d3k, after integration over k, we
obtain the equal-time vacuum spatial correlation for the components of the electric field

〈0|Ei(r, t)Ej(r′, t)|0〉 = 2πh̄ωk
V ∑

k

(
δij − k̂i k̂ j

)
eik·(r−r′) = −4h̄c

π

(
δij − 2R̂iR̂j

) 1
R4 , (8)

where R̂i is a component of the unit vector R̂ = R/|R|.
Similarly to the massless scalar field case, Equation (8) shows that vacuum fluctuations

of the electric field have nonlocal spatial correlations (i.e., they do not vanish outside the
light cone) [3,27].

There are also vacuum nonlocal correlations between components of the magnetic
field, as well as between components of the electric and magnetic fields. For the magnetic-
magnetic correlation, we have

∑
λ

〈0|Bi(kλ; r, t)Bj(kλ; r′, t)|0〉 =
2πh̄ωk

V ∑
λ

(k̂× êkλ)i(k̂× êkλ)jeik·(r−r′)

=
2πh̄ωk

V

(
δij − k̂i k̂ j

)
eik·R, (9)
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where, for the sum over the polarizations, we have used

∑
λ=1,2

(k̂× êkλ)i(k̂× êkλ)j = δij − k̂i k̂ j. (10)

Equation (9), after summation over k in the continuum limit gives, for the spatial correlation
of the magnetic field, the same expression (8) for the electric field case

〈0|Bi(r, t)Bj(r′, t)|0〉 = −4h̄c
π

(
δij − 2R̂iR̂j

) 1
R4 . (11)

Finally, for the electric-magnetic case we obtain

∑
λ

〈0|Ei(kλ; r, t)Bj(kλ; r′, t)|0〉 = 2πh̄ωk
V ∑

λ

(êkλ)i(k̂× êkλ)jeik·(r−r′) =
2πh̄ωk

V
εij` k̂`eik·R, (12)

where for the sum over polarizations we have used

∑
λ=1,2

(êkλ)i(k̂× êkλ)j = εij` k̂`, (13)

and εij` is the totally antisymmetric Levi–Civita symbol [19]. Analogously,

∑
λ

〈0|Bj(kλ; r′, t)Ei(kλ; r, t)|0〉 = 2πh̄ωk
V

εij` k̂`e−ik·R. (14)

In the continuum limit, the angular k integration of (12) yields∫
dΩk ∑

λ

〈0|Ei(kλ; r′, t)Bj(kλ; r, t)|0〉 = −8π2ih̄ωk
kV

εij`∇`

(
sin(kr)

kr

)
, (15)

that is purely imaginary [27]. The electric–magnetic correlation function (14), after polarization
sum and angular integration, yields the same expression of the first one, Equation (15), but with
the opposite sign. Therefore the symmetrized e-m vacuum correlation function vanishes.

In the next section, we will discuss the deep relation between vacuum field correlation
functions, also in the presence of field sources or in dynamical situations, with van der Waals
and Casimir–Polder interactions between atoms or in general electrically and magnetically
polarizable bodies.

Spatial field correlations are modified by the presence of boundary conditions [28,29]
or field sources, an atom or a polarizable body for example [21,22]. In the latter case, we
speak of dressed spatial field correlations. Let us assume that an atom A is placed at rA,
and µA is its dipole moment operator. The Hamiltonian of the system, in the multipolar
coupling scheme and within the dipole approximation, is

H = HA + HF − µA · E(rA), (16)

where HA and HF are, respectively, the free atom and the free field Hamiltonians, µA
is the dipole moment operator of the atom A and E(rA) is the electric field operator
evaluated at the position rA of the atom (it is indeed the transverse displacement field,
that outside the field source coincides with the total electric field) [11,17,30–32]. We just
mention that also macroscopic boundary condition yield changes to the spatial correlations
of the electromagnetic field and related physical phenomena [28,29,32–34]. Very recently,
spatial field correlations of the massless scalar field between points at the opposite side of a
movable perfect mirror (thus subjected to quantum fluctuations of its position) have been
investigated [35].

Due to the atom-field interaction, the non-interacting ground state |gA, 0〉, where
|gA〉 indicates the ground state of the atom A and |0〉 the vacuum field state, is not an
eigenstate of the total Hamiltonian H. At the second order in the atom-field coupling, the
true (interacting) ground state |g̃A〉 of the system can be obtained by time-independent
perturbation theory in the form [8,12,22]
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|g̃A〉 = (1 + N)|gA, 0〉 − i
(

2π

h̄V

)1/2

∑
n

∑
kλ

ω1/2
k (µ

ng
A · êkλ)e−ik·rA

ωng + ωk
|n, 1kλ〉

− 2π

h̄V ∑
mn

∑
kk′λλ′

(ωkωk′)
1/2(µnm

A · êk′λ′)(µ
mg
A · êkλ)e−i(k+k′)·rA

(ωk + ωmg)(ωk + ωk′ + ωng)
|n, 1kλ1k′λ′〉, (17)

where |n, 1kλ〉 and |n, 1kλ1k′λ′〉 are eigenstates of H0 in the form of a tensor product of the
atomic state n and one- and two-photon Fock states, respectively; also,

N = −πh̄
V ∑

n
∑
kλ

ωk|µ
ng
A · êkλ|2

(ωng + ωk)2 (18)

is a normalization factor. In the above equations, m, n indicate a complete set of atomic
states, µmn

A = 〈m|µA|n〉 are the matrix elements of the electric dipole moment operator
of atom A, and ωmg = (Em − Eg)/h̄ are atomic transition frequencies from the ground
state. Equation (17) shows that the dressed ground state is not separable in the atom and
field space state, and the atom is surrounded by a cloud of virtual photons [36,37]. A
similar situation occurs for a physical nucleon where, in the framework of generalized
parton distributions, the bare nucleon is surrounded by a cloud of virtual mesons, and an
expression analogous to (17) is indeed obtained [38].

We can now evaluate the equal-time correlation function between modes of the electric
field [22]

〈g̃A|Ei(kλ; r, t)Ej(k′λ′; r′, t)|g̃A〉 =
2πh̄ωk

V
(êkλ)i(êkλ)jeik·(r−r′)δkk′δλλ′

+
4π2

V2 ωkωk′ ∑
n
(µ

gn
A )p(µ

ng
A )q(êkλ)i(êk′λ′ )j(êkλ)q(êk′λ′ )p

[
e−ik·(r−rA)eik′ ·(r′−rA)

(ωk + ωng)(ωk′ + ωng)

+
eik·(r−rA)eik′ ·(r′−rA)

ωk + ωk′

(
1

ωk + ωng
+

1
ωk′ + ωng

)
+ c.c.

]
, (19)

where c.c. stands for the complex conjugate and, for the sake of simplicity, without loss of
generality, we have assumed that the dipole matrix elements are real, that is µng = µgn.

The first term in the RHS of (19), apart from the polarization sum, is essentially
the same in (6), which is the bare correlation function, while the second term gives the
contribution due to the presence of atom A, yielding the dressed correlation function.
Equation (19) shows that in the presence of an atom, contrarily to the bare vacuum case,
also different field modes become correlated. In the next section, we will discuss in detail the
importance of this point in the non-additive three-body van der Waals and Casimir–Polder
dispersion interaction between ground state atoms [21–23].

Summation of (19) over the field modes yields the dressed spatial correlation function
of the complete electric field at two different points of space and equal time:

〈g̃A|Ei(r)Ej(r′)|g̃A〉 = ∑
kk′λλ′

〈g̃A|Ei(kλ; r, t)Ej(k′λ′; r′, t)|g̃A〉

= 〈0|Ei(r)Ej(r′)|0〉+ 〈g̃A|Ei(r)Ej(r′)|g̃A〉D,
(20)

where the first term is the same given in Equation (8), that is the bare correlation function,
and the second term is the (dressing) correction due to the presence of the ground-state
atom A. The latter term involves polarization sum (see (7)) and angular integrations that
can be easily performed using∫

dΩ
(

δpq − k̂p k̂q

)
e±ik·R =

1
k2 FR

pq

∫
dΩe±ik·R =

4π

k3 FR
pq

sin(kR)
R

, (21)

where we have defined the following differential operator:
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FR
pq =

(
−δpq∇2 +∇p∇q

)R
, (22)

and the apex R indicates the coordinate with respect to which the derivatives are taken.
After straightforward algebra, we obtain the second term in (20) at the second order in the
atom–field coupling in the form of a double frequency integration:

〈g̃A|Ei(r)Ej(r′)|g̃A〉D =
1

π2 ∑
n
(µ

gn
A )p(µ

ng
A )qFR

qi FR′
pj

1
RR′

∫ ∞

0
dωk

∫ ∞

0
dωk′

×
[

1
ωng + ωk

(
1

k′ − k
+

1
k′ + k

)
+ c.c.

](
sin(kR) sin(k′R′) + sin(k′R) sin(kR′)

)
,

(23)

where R = r− rA and R′ = r′ − rA. Performing first the integration over ωk′ and then that
over ωk, we finally obtain

〈g̃A|Ei(r)Ej(r′)|g̃A〉D =
2

π2 ∑
n
(µ

gn
A )p(µ

ng
A )qFR

qi FR′
pj

1
RR′

∫ ∞

0
dωk

sin[ωng(R + R′)/c]
ωk + ωng

=
2
π ∑

n
(µ

gn
A )p(µ

ng
A )qFR

qi FR′
pj

1
RR′

f [ωng(R + R′)/c],
(24)

where f (z) = ci(z) sin(z) − si(z) cos(z) is the auxiliary function of the sine and cosine
integral functions, si(z) and ci(z), respectively [39]. Equation (24) shows that the dressing
part of the correlation function is monotonically decreasing with the distance, with a
characteristic distance scale given by c/ωng. Asymptotically, for R, R′ � c/ωng, we have
f (ωng(R + R′)/c) ∼ (ωng(R + R′)/c)−1 [39]. Thus, Equation (24) asymptotically scales
with the inverse seventh power of the distance from the atom A; this R−7 distance scaling
should be compared with the R−4 scaling of the bare vacuum fluctuations in (8). In the
next section, we will discuss the relevance of this property for the non-additive three-
body Casimir–Polder interaction between ground-state atoms or molecules in the far-zone
(retarded) regime.

Equations (17)–(19) have been obtained for a ground-state atom. If we consider the case
of an atom in one of its excited states, in the continuum limit there is an extra contribution
from the frequency integrations due to the resonance pole [23]. In this case, for simplicity
we consider a two-level atom with transition frequency ωA = (Ee − Eg)/h̄, located at
rA, and interacting with the quantum electromagnetic field through the Hamiltonian (16).
|gA〉 and |eA〉 indicate the ground and excited state of atom A, with energy Eg and Ee,
respectively. The bare excited state is then |eA, 0〉. We assume to consider timescales shorter
than the lifetime of the excited state, and thus we neglect the spontaneous decay of the
atom. The second-order interacting excited state is then [8,23]

|ẽA〉 = (1 + N′)|eA, 0〉+ i
(

2π

h̄V

)1/2

∑
kλ

ω1/2
k (µ

ge
A · êkλ)e−ik·rA

ωA −ωk
|gA, 1kλ〉

+
2π

h̄V ∑
kk′λλ′

(ωkωk′)
1/2(µ

ge
A · êk′λ′)(µ

ge
A · êkλ)e−i(k+k′)·rA

(ωA −ωk)(ωk + ωk′)
|eA, 1kλ1k′λ′〉, (25)

where N′ is a normalization factor. The presence of a pole at ωk = ωA, related to the
possibility of a real transition from the excited to the ground state, should be noted; we will
see that its presence has important consequences on the spatial correlations of the field and
on the three-body Casimir–Polder interaction when an excited atom is involved.

Analogously to the ground-state case, we can now evaluate the spatial correlation
function relative to two modes of the electric field on the dressed state (25), and we obtain,
up to the second order in the atom-field coupling (we are assuming that the matrix elements
µ

eg
A are real) [23]
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〈ẽA|Ei(kλ; r, t)Ej(k′λ′; r′, t)|ẽA〉 =
2πh̄ωk

V
(êkλ)i(êkλ)jeik·(r−r′)δkk′δλλ′

+
4π2

V2 ωkωk′(µ
eg
A )p(µ

eg
A )q(êkλ)i(êk′λ′)j(êkλ)q(êk′λ′)p

[
eik·(r−rA)e−ik′ ·(r′−rA)

(ωA −ωk)(ωA −ωk′)

− eik·(r−rA)eik′ ·(r′−rA)

ωk + ωk′

(
1

ωA −ωk
+

1
ωA −ωk′

)
+ c.c.

]
. (26)

With a procedure analogous to the previous ground-state case we can now obtain, in
the continuum limit, the following expression for the spatial correlation function of the
complete electric field

〈ẽA|Ei(r)Ej(r′)|ẽA〉 = ∑
kk′λλ′

〈ẽA|Ei(kλ; r, t)Ej(k′λ′; r′, t)|ẽA〉

= 〈0|Ei(r)Ej(r′)|0〉+ 〈ẽA|Ei(r)Ej(r′)|ẽA〉D,

where 〈0|Ei(r)Ej(r′)|0〉 is the bare spatial correlation (8) and the dressing correlation
〈ẽA|Ei(r)Ej(r′)|ẽA〉D has a structure analogous to that of the ground-state case previously
considered. The main difference is the presence of a pole at ωk, ωk′ = ωA in the frequency
integration path, as it is evident from Equation (26), yielding a resonant contribution to the
correlation function. The final result is [23]

〈ẽA|Ei(r)Ej(r′)|ẽA〉D =
2
π
(µ

eg
A )q(µ

eg
A )p

× FR
qi FR′

pj
1

RR′

[
PV

∫ ∞

0
dω

sin[ω(R + R′)/c]
ω−ωA

+ 2π sin
(

ωAR
c

)
sin
(

ωAR′

c

)]
,

(27)

where PV indicates the Principal Value of the integral. This equation contains two terms.
Comparison of (27) with (24) shows that the first term has a similar structure as in the case
of the ground state and includes contributions from all field modes; the second term in (27)
is a new one, originating from the resonant pole at ω = ωA and shows spatial oscillations
with a scale given by c/ωA [23].

3. Bare and Dressed Vacuum Field Correlations and Stationary Casimir–Polder
Dispersion Interactions between Atoms

In this section, we explore the deep connection between spatial correlations of the
vacuum electromagnetic field and dispersion interactions (van der Waals and Casimir–
Polder) between atoms, including many-body effects. The physical basis is that, even
in the vacuum state, the electric and magnetic fields fluctuate around their zero average
value, and they induce instantaneous dipole moments in electrically and/or magnetically
polarizable objects such as atoms or molecules: since vacuum fields are spatially correlated,
as we have shown in the previous section, the induced atomic dipole moments will be
correlated too, and this eventually leads to an interaction energy between them [9,11,12].
Furthermore, since these correlations change when a third atom is present (see previous
section), its presence affects the interaction between the two other atoms, leading to non-
additive effects in the dispersion interaction between three or more atoms [11,23]. We will
now address these effects.

We first analyze the two-body interaction case.

3.1. Two-Body Dispersion Interactions

Let consider two ground-state atoms or in general two polarizable bodies B and C,
located in rB and rC, respectively. For simplicity, we assume they are isotropic. We now
discuss an heuristic model to obtain the dispersion interactions between two atoms based
on vacuum field correlations [9,11,32]; we would like to mention that this heuristic model
can also be rigorously derived from the standard atom-field Hamiltonian [10]. In the two
points where atoms B and C are located, fluctuations of the electric and magnetic fields
exist, and, as shown in the previous sections, these field fluctuations are spatially correlated;
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thus, for each field mode, they induce and correlate dipole moments in the two atoms. We
have, in the spirit of a linear response theory [9,11,12,20,40],

µe
B(C)i(k) ∼ αe

B(C)(ωk)Ei(kλ; rB(C)), µm
B(C)i(k) ∼ αm

B(C)(ωk)Bi(kλ; rB(C)) (28)

where µe
B(C)i(k) and µm

B(C)i(k) are, respectively, the Fourier components of the induced elec-
tric and magnetic dipole moments of one of the two atoms; also, αe

B(C)(ωk) and αm
B(C)(ωk)

are, respectively, the electric and magnetic dynamical polarizabilities of the atoms, that
we assume are isotropic so that they are scalar functions of the frequency. We also assume
that the induced and correlated dipoles interact via a classical dipole–dipole interaction
between oscillating dipole moments. Thus, we have

∆Eab = ∑
kλ

〈µa
Bi(k)µ

b
Cj(k)〉V.ab

ij (k, R = rC − rB) (29)

where a, b = e (electric), m (magnetic) denote the electric or magnetic components, and
Vab

ij (k, R) is the classical potential tensor between electric or magnetic dipole moments [11,27].
This tensor, representing the tensor part of the interaction energy between two dipoles oscillat-
ing at a frequency ωk = ck and averaged over an oscillation period, for the electric–electric
part is [9,11,27]

Vee
ij (k, R) = −

[
(δij − R̂iR̂j)

k2 cos(kR)
R

− (δij − 3R̂iR̂j)

(
k sin(kR)

R2 +
cos(kR)

R3

)]
= −FR

ij
cos(kR)

R
,

(30)

where FR
ij is the differential operator acting on the variable R defined in (22). It should

be noted that the vacuum-induced correlation between the dipole moments of B and C
appears in (29). Thus, using (28) in (29), the electric–electric interaction energy becomes

∆Eee
BC = ∑

kλ

αe
B(ω)αe

C(ω)〈0|Ei(kλ; rB, t)Ej(k′λ′; rC, t)|0〉Vee
ij (k, rC − rB), (31)

showing a sharp relation between dispersion interactions and vacuum field correlations, as
already mentioned [9,10].

Explicit evaluation of (31) yields the standard van der Waals interaction energy be-
tween two neutral ground-state atoms, as obtained by straightforward fourth-order pertur-
bation theory [11,17,19,33,41,42]. As it is well known, this dispersion energy scales with
the distance as R−6 in the near zone (London–van der Waals nonretarded regime) and as
R−7 in the far zone (Casimir–Polder retarded regime). The transition between the near and
the far zone occurs at a distance around the main transition wavelength from the ground
state of the atoms [17,19,41]. We wish to stress that the present evaluation of the dispersion
energy in terms of vacuum spatial field correlation has some conceptual relevance, since it
allows an insight of the origin of such interactions, showing that they can be interpreted
partially from classical arguments, because quantum properties enter only in the existence
of spatially-correlated vacuum fluctuations. Furthermore, in the far zone, where the atomic
static (frequency independent) polarizability is involved, the physical interpretation is very
clear: the spatial field correlation and the consequent dipoles correlation scales as R−4,
as (8) and (28) show, and the potential tensor scales as R−3, yielding a far-zone interaction
energy decreasing with the distance as R−7.

Similar results can be analogously obtained for the magnetic–magnetic and electric–
magnetic dispersion interactions between ground-state atoms, using the spatial correlation
functions (9), (12) and (14), respectively, together with the appropriate potential tensors
Vmm

ij (k, R) and Vem
ij (k, R), given by [27]

Vmm
ij (k, R) = −

[
(δij − R̂iR̂j)

k2 cos(kR)
R

− (δij − 3R̂iR̂j)

(
k sin(kR)

R2 +
cos(kR)

R3

)]
, (32)
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Vem
ij (k, R) = εij`(R̂)`

[
k sin(kR)

R2 − k2 sin(kr)
R

]
. (33)

An explicit evaluation yields, also for the magnetic–magnetic and electric–magnetic in-
teractions [27], the known expressions as obtained by fourth-order perturbation theory [43].
This shows that the relation between spatial field correlations and dispersion interactions
holds also for magnetic–magnetic and electric–magnetic dispersion interactions.

3.2. Three-Body Dispersion Interactions

The connection between spatial field correlations and dispersion interactions dis-
cussed in the previous subsection, can be extended to the non-additive three-body van der
Waals and Casimir–Polder forces in terms of the dressed spatial correlations introduced in
Section 2.

We consider three atoms, A, B and C, respectively, located at rA, rB and rC. The main
physical point is that the presence of one atom, let us say atom A, modifies the spatial field
correlation evaluated at the points where the two other atoms B and C are located, as we
have shown in Section 2 for both a ground-state atom and an excited-state one. This change
affects the interaction between atoms B and C, that now depends also on the presence of
atom A: the spatial correlation function dressed by atom A, such as (19) or (26), is in this
case involved in the expression analogous to (29). From now on, we will consider only
electric interactions between the atoms, so, in order to simplify the notation, we omit the
apex e.

In the specific case of three ground-state atoms, the (electric–electric) interaction energy
between B and C, in the presence of A, in analogy with (31), is obtained by replacing the
bare spatial correlation of the electric field with the dressed one given by (19). Thus, it can
be written down as

∆EBC = ∑
kλk′λ′

αB(ωk)αC(ωk′)〈g̃A|Ei(kλ; rB)Ej(k′λ′; rC)|g̃A〉Vij(k, k′; rC − rB), (34)

where
Vij(k, k′; rC − rB) =

1
2
(
Vij(k, rC − rB) + Vij(k′, rC − rB)

)
(35)

is the symmetrized generalization of the potential tensor (30), necessary since the dressed
field correlation depends from the two wavenumbers k and k′ (due to the presence of atom
A, different field modes are now correlated).

Explicit evaluation of (34) using (19), yields two terms: a two-body contribution
consisting on the direct interaction between atoms B and C (i.e., the same discussed in
the previous subsection) plus a three-body term ∆3

BC containing the effect of the presence
of atom A on the dispersion interaction between B and C, stemming from the dressing
term of 〈g̃A|Ei(kλ; r, t)Ej(k′λ′; r′, t)|g̃A〉 of the spatial correlation, that is the second term
of (19) [22]. The complete three-body dispersion potential is then obtained after a sym-
metrization over the role of the three atoms; after some lengthy algebraic calculations and
introducing the imaginary frequency u = −iωk, it can be cast in the following form:

δEABC =
2
3

(
∆3

AB + ∆3
BC + ∆3

AC

)
= − h̄c

π
Fα

ij F
β
j`Fγ

i`
1

αβγ

∫ ∞

0
duαA(iu)αB(iu)αC(iu)e−u(α+β+γ),

(36)

where α = |rC − rB|, β = |rC − rA| and γ = |rB − rA| are the distances between the
atoms [22]. Equation (36) coincides with the known expression of the three-body com-
ponent of the dispersion interaction as obtained by a standard sixth-order perturbative
approach [11,44–46], or also by field energy density considerations [47,48] or using effective
Hamiltonians [12,49]. Our approach, however, gives a clear physical insight on the origin
of the nonadditive nature of such interactions, stressing the fundamental role played by
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dressed spatial correlations of vacuum fluctuations. Moreover, as we will discuss in the
next section, our approach can be generalized to nonstationary conditions too.

In the far zone (retarded regime), that is when α, β, γ � λc, with λc a characteristic
transition wavelength of the three atoms, only the static polarizabilities of the three atoms
are involved in the three-body dispersion interaction, and, for a equilateral triangular
configuration of the atoms with side R, it scales as R−10 [11,44,47]. This is fully consistent
with our considerations after Equation (24) that at a large distance from atom A the dressing
part of the correlation function scales as R−7, correctly yielding a potential energy scaling
as ∼ R−7R−3 ∼ R−10 (the R−3 term is from the potential tensor (30)).

4. Dressed Dynamical Field Correlations and Dynamical Three-Body Casimir–Polder
Forces

The considerations on dressed field correlations in the previous sections refer to
static (time-independent) situations. Also, the case with one excited atom was considered
for short times, so that its spontaneous decay can be neglected. In this section, we will
address dynamical nonstationary situations, when the system starts from a nonequilibrium
configuration. We will address relevant aspects of the building up in time of nonlocal
spatial field correlations, as well as dynamical time-dependent three-body Casimir–Polder
interactions. We will show that relevant nonlocal features appear in the time evolution
and build-up of the field spatial correlations, and how they manifest in the consequent
time-dependent dispersion (van der Waals and Casimir–Polder) interactions between three
(or more) atoms. This suggests that dynamical dispersion interactions could provide a way
to probe these nonlocal nonequilibrium field correlations, similarly to the stationary case of
previous section.

We first concentrate on the nonstationary spatial field correlations when an atom
(A) is present, in both cases of an initially bare ground-state atom and an initially bare
excited-state atom. In such cases, the initial state at t = 0 is a nonequilibrium state, being
an eigenstate of the unperturbed Hamiltonian and not of the total Hamiltonian: thus, they
will evolve in time. The atom–field Hamiltonian is given by (16).

4.1. Dynamical Ground-State Correlations

We consider an atom A interacting with the quantum electromagnetic field via the
dipolar interaction Hamiltonian (16). We assume that at t = 0 the system is prepared in
the noninteracting (bare) ground state |gA, 0〉, where |gA〉 is the ground state of the atom
and |0〉 is the photon vacuum. Differently from Section 2, here we use a time-dependent
approach in order to study the time evolution of the correlation function starting from
our nonequilibrium initial state. We work in the Heisenberg representation, and solve by
iteration up to the second order the Heisenberg equations for the field operators

akλ(t) = a(0)kλ (t) + a(1)kλ (t) + a(2)kλ (t) + . . . , (37)

where the apex indicates the perturbative order. From the explicit iterative solution (37)
we can obtain the corresponding iterative solution for the electric field operator in the
Heisenberg representation [24,50]

E(r, t) = E(0)(r, t) + E(1)(r, t) + E(2)(r, t) + . . . , (38)

that we will exploit to obtain the equal-time electric-field spatial correlations in a two-level
approximation for the atom, that is µA = µ

eg
A S+ + µ

ge
A S−. Here, S+, S− and Sz are the

pseudospin operators for atom A. Also, µ
eg
A = 〈eA|µA|gA〉 = µ

ge
A
∗

are the matrix elements
of the atomic electric dipole operator between the excited state |eA〉 and the ground state
|gA〉, with energy Ee and Eg, respectively. We will, however, assume, as before, that the
dipole matrix elements are real, so that µ

eg
A = µ

ge
A , In the pseudospin formalism, the atomic

Hamiltonian is HA = h̄ωASz, where ωA = (Ee − Eg)/h̄.
Writing down the Heisenberg equations of motion for the field and atomic operators

and solving them up to the second order in the atom-field coupling, we can finally obtain
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an explicit expression of the two-mode correlation function of the electric field operator in
the initial bare ground state |gA, 0〉 [24]

Cg
ij(kλ, k′λ′; r, r′, t) = 〈gA, 0|Ei(kλ; r, t)Ej(k′λ′; r′, t)|gA, 0〉

=
2πh̄
V

(ωkωk′)
1/2(êkλ)i(êk′λ′)jeik·(r−r′)δkk′δλλ′

− (2π)2

V2 (µ
eg
A · êkλ)(µ

eg
A · êk′λ′)(êkλ)i(êk′λ′)jωkωk′2<

{ ei(k·(r−rA)−ωkt)

i(ωA + ωk)

×
[(

F(ωk + ωk′ , t)− F∗(ωA −ωk′ , t)
)
ei(k′ ·(r′−rA)−ωk′ t) −

(
F(ωk −ωk′ , t)− F∗(ωA + ωk′ , t)

)
× e−i(k′ ·(r′−rA)−ωk′ t)

]
+ c.c.(k 
 k′, r 
 r′)

}
,

(39)

where < stands for the real part and we have defined the function

F(x, t) =
∫ t

0
dt′eixt′ =

eixt − 1
ix

. (40)

Equation (39) clearly shows that different field modes, initially uncorrelated, acquire
with time a correlation consequent to their mutual interaction with the atom (contrarily to
the case of the field bare vacuum).

We also obtain the two-point and equal-time nonstationary spatial correlation function
for the complete electric field, given by

Cg
ij(r, r′, t) = 〈gA, 0|Ei(r, t)Ej(r′, t)|gA, 0〉 = ∑

kλk′λ′
Cg

ij(kλ, k′λ′; r, r′, t)

= 〈gA, 0|E(0)
i (r, t)E(0)

j (r′, t)|gA, 0〉+ 〈gA, 0|E(1)
i (r, t)E(1)

j (r′, t)|gA, 0〉

+ 〈gA, 0|E(0)
i (r, t)E(2)

j (r′, t)|gA, 0〉+ 〈gA, 0|E(2)
i (r, t)E(0)

j (r′, t)|gA, 0〉,

(41)

(first-order terms vanish) [8,50]. After some lengthy algebraic calculations, we find the
following expressions of the single terms in (41)

〈gA, 0|E(0)
i (r, t)E(0)

j (r′, t)|gA, 0〉 = 2πh̄
V ∑

kj
(êkλ)i(êk′λ′)jωkeik·(r−r′),

〈gA, 0|E(1)
i (r, t)E(1)

j (r′, t)|gA, 0〉

= (µ
eg
A )m(µ

eg
A )nFR

im

(
eiωAR/c

R

)
FR′

jn

(
e−iωAR′/c

R

)
θ(ct− R)θ(ct− R′),

〈gA, 0|E(0)
i (r, t)E(2)

j (r′, t)|gA, 0〉+ 〈gA, 0|E(2)
i (r, t)E(0)

j (r′, t)|gA, 0〉

=
2π

V

{
(µ

eg
A )`(µ

eg
A )m ∑

kλ

(êkλ)i(êkλ)`eik·R) ωk
ωk + ωA

FR
jm

1
R

(
e−iωk R/c − e−i(ωk+ωA)teiωAR/c

)
×θ(ct− R) + c.c.(R 
 R′, A 
 B, i 
 j)

}
, (42)

where R = r− rA, R′ = r′ − rA, and θ(x) is the Heaviside step function [24]. Also, FR
ij is

the differential operator defined in (22).
The first term in (41), explicitly given in the first line of (42), coincides with the time-

independent correlation in the bare ground state, as discussed in Section 2 (see Equation (8));
all other terms in (41) and (42) describe the time evolution of the correlation function during
the dynamical self-dressing process of the atom, and are a main object of investigation in
this section.

Some intriguing physical considerations are made in order to physically understand
the behavior of the dynamical spatial correlations we have obtained. For the sake of clarity,
we separately consider the various contributions in the expressions above.
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The second contribution in (41) and (42) is the product of the retarded dipole fields
from atom A in points r and r′ (the operator E(1) in (38)) [50]; the presence of the two θ
functions expresses that this contribution to spatial correlation vanishes outside the light
cone centered on atom A: it is different from zero only if both points r and r′ are inside the
causality sphere of A, in full agreement with relativistic causality. However, since |r− r′|
can be larger than ct even if both R = |r− rA| and R′ = |r′ − rA| are smaller than ct, the
correlation can be nonvanishing even for two points r and r′ that are not causally connected
each other; this peculiar behavior is possible because the fields in both points are causally
connected with the “source” atom A. This behavior clearly shows a nonlocal feature of
dynamical spatial field correlations during the atomic dressing.

The contribution of the other terms in (41) and (42), involving the zeroth- and second-
order electric field operators, shows a quite different and peculiar behavior. It is different
from zero even if just one of the two points r and r′ is inside the causality sphere of atom A,
notwithstanding the other point can be outside of it. Mathematically, this is related to the
fact that this term arises from a product of the second-order field generated by atom A (the
operator E(2) in (38)) and the free field (the operator E(0) in (38)): the first one is causally
connected with A while the second one is source independent (i.e., it is the free field at time
t). In other words, this contribution to the spatial correlation function at a generic time t,
can be nonvanishing even for points separated by a space-like interval, provided at least
one of them is inside the causality sphere of A.

We can conclude that nonstationary field correlations, during the evolution of the
atom-field system starting from our nonequilibrium configuration at t = 0, have peculiar
nonlocal features. An important point, in our opinion, is understanding whether such
nonlocal features can manifest or be observed, at least indirectly, in observable physical
quantities. In the next section, we will show how these nonlocal features can indeed
manifest in the dynamical three-body Casimir–Polder dispersion interactions between
atoms or, in general, polarizable bodies.

4.2. Dynamical Excited-State Correlations

We now investigate the case when atom A, approximated as a two-level system, is
initially in its bare excited state |eA〉, with field in its bare vacuum state |0〉. Also in this
case the initial state is a nonequilibrium state, and we expect a dynamical change of the
spatial correlation function of the electric field; moreover, new aspects should appear
with respect to the ground-state case, due to resonance effects related to the possibility
of emission of a real photon. The calculation proceeds similarly to the ground-state case
of the previous subsection, using the same iterative-solution method for the Heisenberg
equations of motion of the field and atom operators, and then evaluating the electric-field
spatial correlation in the bare excited state of atom A and the field vacuum state, |eA, 0〉.
We consider time shorter than the lifetime of the excited state and thus we can neglect
its spontaneous decay; however, contrarily to the ground-state case, a resonance pole
in the frequency integrations is present in this case, yielding a new contribution to the
correlation function.

After lengthy algebraic calculations, we obtain that the spatial correlation function
of the electric field can indeed be separated in two contributions, a resonant one and a
nonresonant one,

Ce
ij(r, r′, t) = 〈eA, 0|Ei(r, t)Ej(r′, t)|eA, 0〉

= 〈Ei(r, t)Ej(r′, t)〉nr + 〈Ei(r, t)Ej(r′, t)〉res.
(43)

The nonresonant term is found to be the same of that for the ground-state atom,
Equations (41) and (42), with an opposite sign, that is 〈Ei(r, t)Ej(r′, t)〉nr = −Cg

ij(r, r′, t).
The resonant term, resulting from the pole at ωk = ωA, is given by [24]

〈Ei(r, t)Ej(r′, t)〉res = 2(µeg
A )m(µ

eg
A )nFR

inFR′
jm

cos[(ωA(R− R′)/c]
RR′

θ(ct− R)θ(ct− R′). (44)
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For the nonresonant contribution, the same physical considerations about its nonlocal
features given in the previous subsection for the ground-state case apply, in particular that
it is in general different from zero if one of the two points is inside the causality sphere of A,
even if the other point is outside the causality sphere. In other words, the presence of the
excited atom manifests itself in the two-point spatial correlation even if one point is outside
the causality sphere of A, provided the other point is inside, and whatever the distance
between the two points is. The resonant contribution (44) shows, as expected, oscillations
in space with a scale given by the atomic transition wavelength c/ωA; it is not vanishing
provided both points are causally connected with the atom A, that is if R, R′ < ct, even in
the case they are not causally connected with each other (that is, |r′ − r| > ct).

We wish to stress that the nonlocal features of the dynamical spatial correlations we
have discussed in this section are totally consistent with relativistic causality, of course,
because correlations cannot transport information.

4.3. Dynamical Three-Body Casimir–Polder Interactions

In this subsection, we briefly analyze some consequence of the nonlocal character of
the dynamical field correlations investigated in the previous subsections, specifically in
dynamical Casimir–Polder three-body interactions, extending the stationary case of the
previous section to nonstationary situations.

Our starting point is the relation between the spatial correlations of a quantum field,
specifically of the electric field, and the dispersive two- and three-body Casimir–Polder
forces, as discussed in Section 3. Here, we mainly consider three-body interactions in
nonstationary conditions, both in the case of three bare ground-state atoms and in the case of
one bare excited atom and two ground-state atoms; we thus extend our methods and results
for stationary three-body interactions, presented in Section 3, to the dynamical case, on the
basis of the dynamical dressed field correlations obtained in the previous subsections.

We assume to have one atom (A) in rA and two other ground-state atoms (B and C) in
rB and rC. We consider both cases of atom A initially in its bare ground state and in its bare
excited state.

We first consider the case of atom A initially (t = 0) in its bare ground state and
the field in the vacuum state. As already mentioned, this is a nonstationary condition,
because bare states are not eigenstates of the complete Hamiltonian. We start evaluating
the interaction energy between atoms B and C during the self-dressing of atom A assuming,
as mentioned, the state of the interacting system field-(atom A) in the nonequilibrium bare
state |gA, 0〉. We evaluate this interaction energy exploiting the expression (34), extended to
the present nonstationary situation by substituting the two-mode correlation function of
the electric field with its time-dependent expression, Equation (39). After lengthy algebraic
calculations, we can obtain the explicit analytical expression of the dynamical interaction
energy, that at a generic time t > 0 is given by [13]

∆EA(B, C; t) = − 1
2π

(µ
eg
A )n(µ

eg
A )pFα

`mFβ
mpFγ

`n
1

αβγ
<
{ ∫ ∞

0
dω

αB(ω)

ω + ωA

×
[
2
(
αC(ω)e−iωβ/c − αC(ωA)e−iωA β/ce−i(ωA+ω)t) sin

(ωγ

c

)
cos
(ωα

c

)
)θ(ct− β)

+ sin
(ωγ

c

)(
αC(ω)e−iω(α+β)/c − αC(ωA)e−iωA(α+β)/ce−i(ωA+ω)t)θ(ct− (α + β))

+ sin
(ωγ

c

)(
αC(ω)e−iω|β−α|/c − αC(ωA)e−iωA |β−α|/ce−i(ωA+ω)t) sgn(β− α)θ(ct− |β− α|)

]
+ c.c.(B 
 C, β 
 γ)

}
,

(45)

where sgn(x) is the function giving the sign of the variable x, θ(x) is the Heaviside step
function and α, β, γ are the distances between the atoms defined in Section 3.2.
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Several physical considerations relevant to nonlocality and causality can be made
starting from (45), in different specific situations.

Let us first assume that both atoms B and C are inside the causality sphere of A. In such
a case, it is possible to show from (45) that, after a transient period when the interaction
energy is time-dependent, it settles to a stationary value [13], that coincides with that found
with the time-independent approach of Section 3.2. This also shows the self-consistency of
our time-dependent approach.

A remarkable and unexpected result is when at least one of the two atoms B and C is
outside the light-cone of A, i.e., when β > ct and/or γ > ct; evaluating (45) in this case
it follows that ∆EA(B, C; t) can be nonvanishing, and that the interaction between B and
C can be affected by A, clearly showing a nonlocal behavior of the three-body dispersion
energy due to the nonlocality of the dynamical correlation function of the electric field;
more details on the ranges of the relevant parameters α, β γ, t in which this occurs can be
found in [13].

A relevant quantity worth of investigation is the symmetrized dynamical interaction
energy, given by

∆(A, B, C, t) =
2
3
(∆EA(B, C; t) + ∆EB(A, C; t) + ∆EC(A, B; t)), (46)

where the role of the three atoms is exchanged in the symmetrization (for a more detailed
discussion of the difference between the time-dependent interaction energies (45) and (46),
in particular in relation with their measurement, see [51]). Its expression can be directly
obtained from (45). We will discuss here only its main features relevant to the indirect
manifestation of the nonlocality of dressed field correlations in three-body dispersion
interactions, aspect we are mainly interested to.

Firstly, after a transient, it is possible to show that the dynamical interaction energy (46)
settles to its stationary equilibrium value (similarly to (45)), as given by (36) or by a direct
sixth-order perturbative calculation [11,44,45,47].

Secondly, although (46) vanishes if each atom is outside the causality sphere of the
other two, i.e., α, β, γ > ct, it nevertheless shows relevant nonlocal aspects: for example,
for times such that one atom (A, for example) is not causally connected with the other two
atoms (B and C), while B and C are causally connected to each other, situation represented
by the conditions β > ct, γ > ct, α < ct, the dynamical three-body interaction (45) is not
vanishing. In other word, this observable interaction energy manifests a nonlocal behavior,
ultimately related to the nonlocal features of the dynamical spatial correlations of the
electric field, since it is not vanishing even if one atom is outside the causality sphere of the
other two [13,51].

Similar considerations can be made in the nonstationary case in which one of the three
atoms (A) is initially in its bare excited state with the field in its vacuum state, using the
dynamical excited state field correlations given in (43). In this case, the main difference with
the previous case is the presence of the resonant term (44) in the spatial correlation function
of the electric field. This extra term finally yields the following additional contribution to
the dynamical three-body interaction energy [24]:

∆Eres(A, B, C, t) = −(µge
A )n(µ

ge
A )pαB(ω0)αC(ω0)2<

(
Fγ
`nFβ

mp
e−iω0(β+ct)/c

βγ

)

× Fα
`m

(
cos(ω0α/c)

α

)
θ(ct− β)θ(ct− γ),

(47)

where the same notation of the previous cases have been used. The resonant contribution (47)
at time t is not vanishing only if both atoms B and C are inside the light cone of A, i.e., β < ct
and γ < ct even if they can be causally disconnected each other, for example if |rB − rC| > ct,
showing also in this case some nonlocal aspect of the resonant term of the interaction energy.

Finally, we wish to mention that similar considerations about the nonlocal features of
the three-body component of the dynamical dispersion interaction between three atoms can



Entropy 2023, 25, 1424 15 of 17

be obtained by evaluating them exploring effective Hamiltonians [40,49], as discussed in de-
tail in [13,24,51] also with reference to the measurement of the three-body component of dis-
persion interactions which involves the overall system and thus it is intrinsically nonlocal.

5. Conclusions

In this paper, we have reviewed several aspects of spatial correlations and their non-
local features of quantum fields, mainly the electromagnetic field in the Coulomb gauge,
both in their bare vacuum state and in dressed states when a ground- or excited-state atom
is present. We have also considered dynamical (time-dependent) conditions when the
interacting atom-field system starts from a nonequilibrium state, such as the bare ground
or excited states of the atom, with the field in its vacuum state. We have discussed in detail
the nonlocality of the spatial correlations of the quantum electric field in stationary and
nonstationary situations, and their relation to two- and three-body dispersion interactions
between atoms (van der Waals and Casimir–Polder). Specifically, we have shown that
such observable interatomic interactions allow, both in stationary and nonstationary con-
figurations, to gain an indirect evidence on the existence of these nonlocal spatial field
correlations, and their physical properties.
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