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The double phase operator is a differential operator that finds applications in several
fields, among the others elasticity theory, biophysics, quantum physics, chemical re-
actions. The aim of this thesis is to present existence and multiplicity results for non-
linear differential equations involving the double phase operator with variable ex-
ponents, under different boundary conditions. In addition, the problems considered
are parameter-dependent and an interval of parameters for which every problem
admits solutions is also provided. The investigation is based on variational methods
and precisely critical point theory; indeed, the main tools are the Mountain Pass the-
orem due to A. Ambrosetti e P. Rabinowitz, a two critical points theorem established
by G. Bonanno and G. D’Aguì and the Nehari manifold method.

The first problem considered is a Dirichlet double phase problem where if the
nonlinearity has a subcritical growth and verifies a superlinear condition, the ex-
istence of two nontrivial weak solutions with opposite energy sign is established.
These results are contained in [6], in collaboration with G. Bonanno, G. D’Aguì and
P. Winkert.

Then, a Robin double phase problem with critical growth on the boundary is
studied. In particular, if the nonlinear term has a subcritical growth and satisfies
the classical Ambrosetti-Rabinowitz condition, the existence of two nontrivial weak
solutions with opposite energy sign is guaranteed. These results are presented in [4],
in collaboration with V. Morabito.

Finally, the last part of the thesis is dedicated to the study of a nonlinear double
phase problem with nonlinear Neumann boundary condition. Under very general
assumptions on the nonlinearity, the existence of three nontrivial weak solutions
is obtained. Specifically, a solution is nonnegative, another one is nonpositive and
the third one is sign-changing with exactly two nodal domains. These results are
obtained in [5], in collaboration with Á. Crespo-Blanco, P. Pucci and P. Winkert.
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Chapter 1

Introduction

The main purpose of this thesis is to present some original results on the existence
and multiplicity of solutions for different nonlinear differential problems involv-
ing the double phase operator with variable exponents. Through critical point the-
ory, the existence of two solutions for a class of double phase problems with either
Dirichlet condition or Robin condition is studied. In addition, the existence of three
solutions for Neumann nonlinear differential problem is investigated, also exploit-
ing the Nehari manifold method.

Since the approach of the present thesis is variational, it is worth emphasizing
the importance of Calculus of Variations in the most diverse fields of science. There
are a great number of problems that are referable to the variational logic scheme and
in which a functional on an assigned constraint is considered in order to study, for
instance, its minimum points or stationary points or decreasing curves, according to
appropriate definitions of these concepts.

To give a few examples, it is necessary to recall first the historically and scien-
tifically important role that Calculus of Variations plays in physics, as in classical
mechanics with the great variational principles that preside over the dynamics of
systems, in the theory of elasticity, in quantum mechanics, in modern developments
in the study of the microstructure of materials, in economics, computer science, bio-
logical or artificial neural networks, control systems, and in numerous other fields.

By applying variational methods, one can obtain more precise results than with
respect to other methods, for instance on the multiplicity of solutions. In Calculus
of Variations, finding the solutions of problems is equivalent to finding the critical
points of certain functionals. In classical theory, this means considering a functional
J defined on a Banach space that admits derivative according to Gâteaux J′ : X →
X∗, and solving the Euler equation

J′(x) = 0.

One of the approaches to finding the critical points of a functional is to search for the
points of global minimum (maximum). This type of study, which originates from the
famous Weierstrass theorem on the extremes of real continuous functions, is known
as direct method because it solves the Euler equation by investigating the properties
of the functional directly. It can be summarized as follows

coercivity + lower semicontinuity =⇒ existence of a minimum,
existence of a minimum =⇒ J′(x) = 0.

Coercivity is a compactness concept. A more general compactness concept that can
be exploited in order to ensure the existence of a critical point is a compactness con-
dition known as Palais-Smale condition.
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The theory of critical points in infinite dimensional spaces for functionals of class
C1 developed in the second half of the 20th century. The most important result
within this theory, besides the Direct Methods theorem, is certainly the Mountain
Pass theorem, obtained in 1973 by A. Ambrosetti and P. Rabinowitz [2]. This theo-
rem can be applied for functionals that are unbounded from below, differently from
the Direct Methods one. This result, recalled in this thesis in Theorem 3.1.5, states
that if a functional F of class C1 satisfies the Palais-Smale condition and the mountain
pass geometry, namely

α = max{γ(0), γ(u1)} < inf
u∈B(0,ρ)

F(u) = β,

then it admits a critical point. Versions of the Mountain Pass theorem were already
known by M. Morse and C.B. Tompkins [73], M. Shiffman [90] and R. Courant [37].
In the result of A. Ambrosetti and P. Rabinowitz it is assumed that α < β, however
the limiting case when α = β was studied by P. Pucci and J. Serrin [83, 84, 85]. With
the aid of the dual family, N. Ghoussoub and D. Preiss [59] observed that one may
get more informations on the localization of the mountain pass points. Both the Di-
rect Methods theorem and the Mountain Pass theorem have been (and still are) used
to establish the existence of at least one solution for various classes of nonlinear dif-
ferential problems.

Summarizing, Direct Methods theorem implies the existence of a global mini-
mum and Mountain Pass theorem guarantees the existence of a critical point that is
not of minimum. An important chapter within critical point theory is the existence
of a local minimum and it is worth mentioning the result of B. Ricceri [87] (2000). A
more precise version of this result is due to G. Bonanno and P. Candito [20] in 2008.
Within this context, in 2012 G. Bonanno [17] generalized these results, ensuring the
existence of a local minimum for a continuously Gâteaux differentiable functional
which is unbounded from below without requiring any weak continuity assump-
tion. The variational formulation that is considered is

I = Φ − Ψ,

where Φ and Ψ are continuously Gâteaux differentiable functionals defined on an
infinite dimensional real Banach space. In fact, in the differential problems the asso-
ciated energy functional is of this type. In this work, G. Bonanno presented a new
definition of the Palais-Smale condition, which is more general than the usual one,
a mountain pass theorem that allows the location of the critical point due to the in-
troduced Palais-Smale condition and, as a result, several critical point theorems are
then established. The main tool used for the proofs is a consequence of the classical
Ekeland variational principle constructed within a nonsmooth framework. A non-
trivial consequence of the local minimum theorem by G. Bonanno in combination
with the Ambrosetti-Rabinowitz theorem is obtained by G. Bonanno and G. D’Aguì
[23] in 2016, which ensures the existence of two nontrivial critical points.

Now, the details of the nonlinear differential problems that are the subject of
this thesis are presented. In recent years, the differential operator known as “dou-
ble phase operator" has found application in numerous research fields. Given a
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bounded domain Ω ⊂ RN with Lipschitz boundary ∂Ω, the double phase opera-
tor is defined as follows

u 7→ −div
(
|∇u|p(x)−2∇u + µ(x)|∇u|q(x)−2∇u

)
,

for every function u belonging to a suitable function space, with appropriate regu-
larity assumptions on the variable exponents p and q and on the weight function µ.
The energy functional associated with the double phase operator is given by

I(u) =
∫

Ω

(
|∇u|p(x)

p(x)
+ µ(x)

|∇u|q(x)

q(x)

)
dx,

and its integrand, that is

H(x, ξ) =
1

p(x)
|ξ|p(x) +

µ(x)
q(x)

|ξ|q(x) for all (x, ξ) ∈ Ω × RN ,

has unbalanced growth if µ is nonnegative and belongs to L∞(Ω), namely

b1|ξ|p(x) ≤ H(x, ξ) ≤ b2

(
1 + |ξ|q(x)

)
for a. a. x ∈ Ω and for all ξ ∈ RN , b1, b2 > 0.

The functional I changes ellipticity on the set where the weight function µ van-
ishes. In fact, the energy density of I presents ellipticity in the gradient of order q(x)
in the set {x ∈ Ω : µ(x) > τ} for any fixed τ > 0 and of order p(x) in the set
{x ∈ Ω : µ(x) = 0}. Thus, the integrand H alternates between two different phases
of elliptic behavior and this is why the differential operator is called double phase.

This type of functionals has been first introduced in 1986 by Zhikov [97] with
constant exponents. Subsequently, numerous authors have investigated problems
involving this operator, which has been employed to model a range of phenom-
ena. Among the topics, it is worth mentioning first the elasticity theory in which
the double phase operator describes the behavior of strongly anisotropic materials,
whose hardening properties are related to the exponents p(·) and q(·) and signifi-
cantly change with the point (since they are variables) and the coefficient µ(·) deter-
mines the geometry of a composite made of two different materials, see Zhikov [98].
Moreover, one can found other applications in the papers of Bahrouni-Rădulescu-
Repovš [7] on transonic flows, Benci-D’Avenia-Fortunato-Pisani [14] on quantum
physics and Zhikov [98] on the Lavrentiev gap phenomenon, the thermistor problem
and the duality theory. For a mathematical study of such integral functionals with
(p, q)-growth we refer to Baroni-Colombo-Mingione [10, 11, 12], Colombo-Mingione
[35, 36], Cupini-Marcellini-Mascolo [41], De Filippis-Mingione [45], Marcellini [70,
71, 72], Ragusa-Tachikawa [86], see also the papers of Beck-Mingione [13] and De
Filippis-Mingione [44] for nonautonomous integrals.

In the context of partial differential equations, the double phase operator emerges
from the investigation of general reaction-diffusion equations including nonhomo-
geneous diffusion and transport aspects. These nonhomogeneous operators find
applications in diverse fields, including biophysics, plasma physics, and chemical
reactions, where the function u denotes the concentration term and the differential
operator represents the diffusion coefficient.

Furthermore, the double phase operator generalizes other differential operators
which have been extensively studied in the literature. Indeed, when infΩ µ > 0 it
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reduces to the (p, q)-Laplacian or (p(·), q(·))-Laplacian and for problems involving
this type of operators we refer without sake of completeness to Chinnì-Sciammetta-
Tornatore [32], Papageorgiou-Qin-Radulescu [76], Papageorgiou-Winkert [80], Pucci
[82] and the references therein. On the other hand, if µ ≡ 0 the double phase
operator reduces to the p-Laplacian or p(x)-Laplacian, see for instance Amoroso-
Bonanno-Perera [3], Barletta-Chinnì-O’Regan [9], Bonanno-Candito [19], Bonanno-
Chinnì [21], Bonanno-D’Aguì [22, 24], Bonanno-D’Aguì-Papageorgiou [25], Bonanno-
D’Aguì-Sciammetta [26], Bonanno-Livrea [27], Candito-Guarnotta-Perera [30], D’Aguì-
Sciammetta [42] and the references therein.

In recent years, many authors have investigated double phase problems in the
constant exponents context, see for instance Biagi-Esposito-Vecchi [15], Colasuonno-
Perera [33], Colasuonno-Squassina [34], Crespo-Blanco-Papageorgiou-Winkert [38],
DAgui-Sciammetta-Tornatore-Winkert [43], Farkas-Winkert [53], Fiscella [54], Gas-
iński-Papageorgiou [55], Gasiński-Winkert [56, 57], Ge-Pucci [58], Liu-Dai [68], Liu-
Papageorgiou [69], Papageorgiou-Rădulescu-Repovš [77], Perera-Squassina [81], Sciam-
metta-Tornatore-Winkert[89], Stegliński [91], Zeng-Bai-Gasiński-Winkert [96] and
the references therein.

On the other hand, there are much fewer results for the variable exponents case,
see Amoroso-Bonanno-D’Aguì-Winkert [6], Amoroso-Crespo-Blanco-Pucci-Winkert
[5], Amoroso-Morabito [4], Bahrouni-Rădulescu-Winkert [8], Cen-Kim-Kim-Zeng
[31], Crespo-Blanco-Gasiński-Harjulehto-Winkert [40], Crespo-Blanco-Winkert [39],
Leonardi-Papageorgiou [66], Liu-Pucci [67], Kim-Kim-Oh-Zeng [63], Ragusa-Tachi-
kawa [86], Vetro-Winkert [93] and Zeng-Rădulescu-Winkert [95].

This thesis is dedicated to the the study of nonlinear differential problems in-
volving the double phase operator with variable exponents under different bound-
ary conditions. In particular, existence and multiplicity results are obtained under
general assumptions, which in some cases (when specified) are new and optimal. In
detail, the thesis is organized as follows.

In Chapter 2, some function spaces that are needed for the investigation are in-
troduced. Specifically, the classical Lebesgue and Sobolev spaces with both con-
stant and variable exponents are presented, together with their basic properties and
embeddings. Then, an overview of general Musielak-Orlicz and Musielak-Orlicz
Sobolev spaces is given and finally the function space that is involved in the study
of double phase problems with variable exponents is introduced and studied in de-
tail. In addition, a new equivalent norm for this space is presented and it has been
first introduced by Amoroso-Crespo-Blanco-Pucci-Winkert [5].

In Chapter 3, some classical results of variational methods are presented, as the
Direct Methods theorem and the Ambrosetti-Rabinowitz theorem, and then some
recent results in the field of critical point theory due to G. Bonanno and G. D’Aguì
are introduced, together with some of their consequences.

Chapter 4 is dedicated to the following parametric Dirichlet problem

−div
(
|∇u|p(x)−2∇u + µ(x)|∇u|q(x)−2∇u

)
= λ f (x, u) in Ω,

u = 0 on ∂Ω,
(Dλ)

for which the existence of two bounded weak solutions is determined under very
general assumptions on the nonlinear term, such as a subcritical growth and a su-
perlinear condition. Also, a range for the parameter λ for which the problem admits
such solutions is established and some special cases in which the solutions turn out
to be nonnegative are presented. The main tool of this investigation is a two critical
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poins theorem due to G. Bonanno and G. D’Aguì. The results presented in this chap-
ter are obtained in [6], in collaboration with G. Bonanno, G. D’Aguì and P. Winkert.

Chapter 5 deals with the study of a nonlinear parametric double phase problem
under Robin boundary conditions with critical growth, that is

−div
(
|∇u|p(x)−2∇u + µ(x)|∇u|q(x)−2∇u

)
+ α(x)|u|p(x)−2u = λ f (x, u) in Ω,(

|∇u|p(x)−2∇u + µ(x)|∇u|q(x)−2∇u
)
· ν = −β(x)|u|p∗(x)−2u on ∂Ω.

(Rλ)

In particular, an interval of parameters that guarantees the existence of two nontriv-
ial weak solutions is determined and under additional conditions the solutions turn
out to be nonnegative. Also for this problem, the proof is based on a two critical
points theorem stated by G. Bonanno and G. D’Aguì in 2016. The results presented
in this chapter are contained in [4], in collaboration with V. Morabito.

Finally, Chapter 6 is dedicated to the following double phase problem with non-
linear Neumann boundary condition

−divF (u) + |u|p(x)−2u = f (x, u) in Ω,

F (u) · ν = g(x, u)− |u|p(x)−2u on ∂Ω,
(Nλ)

for which the existence of multiple bounded solutions under very general assump-
tions on the nonlinearities is proved. Specifically, two constant sign solutions are
obtained via a mountain-pass approach and the existence of a third solution, which
is sign-changing, is proved through the Nehari manifold method. Finally, informa-
tions on the nodal domains of this sign-changing solution are given. The results
presented in this chapter are obtained in [5], in collaboration with Á. Crespo-Blanco,
P. Pucci and P. Winkert.
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Chapter 2

Function spaces:
introduction and basic properties

In this chapter we introduce some function spaces that are needed in our investi-
gation, providing the main properties and embeddings of such spaces. Function
spaces, especially Sobolev spaces, are fundamental to the analysis of differential
problems using a variational approach. Sobolev spaces allow the treatment of func-
tions that have weak derivatives up to a certain order, thus extending the classical
notion of derivatives. This is crucial for studying differential equations in contexts
where the solutions are not necessarily classically differentiable. In the variational
approach, the differential problem is reformulated as a search for a minimum of a
function defined over a Sobolev space, with existence of solutions.

In Section 2.1 we introduce the classical Lebesgue and Sobolev spaces with con-
stant exponents, while in Section 2.2 we deal with the variable exponent case. Then,
Section 2.3 gives an overview of general Musielak-Orlicz and Musielak-Orlicz Sobolev
spaces and in Subsection 2.3.1 we study in detail the function space that is involved
in the investigation of existence and multiplicity results of solutions for double phase
problems with variable exponents. Finally, in Subsection 2.3.2 we introduce a new
equivalent norm in a Musielak-Orlicz Sobolev space.

The result presented in Subsection 2.3.2 are obtained in [5, Section 3], in collabo-
ration with Á. Crespo-Blanco, P. Pucci and P. Winkert.

2.1 Lebesgue and Sobolev spaces with constant exponents

Let Ω ⊂ RN be an open set and denote by M(Ω) the space of all measurable func-
tions u : Ω → R. For any 1 ≤ r < +∞, Lr(Ω) indicates the usual Lebesgue space given
by

Lr(Ω) =

{
u ∈ M(Ω) :

(∫
Ω
|u|r dx

) 1
r

< +∞

}
,

equipped with the norm

∥u∥r =

(∫
Ω
|u|r dx

) 1
r

.

We also define

L∞(Ω) = {u ∈ M(Ω) : |u| ≤ C a.e. in Ω for some C ≥ 0} ,
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endowed with the essential supremum norm

∥u∥∞ = inf {C ≥ 0 : |u(x)| ≤ C for a.a. x ∈ Ω} .

In the following, we summarize the main well-known properties of the Lebesgue
spaces, see for instance the books of Brezis [29, Chapter 4] and Papageorgiou-Winkert
[79, Theorem 2.3.19 and Paragraph 4.1].

Proposition 2.1.1. The Lebesgue space (Lr(Ω), ∥ · ∥r) is:

• a Banach space for any 1 ≤ r ≤ +∞;

• reflexive and uniformly convex for any 1 < r < +∞;

• separable for any 1 ≤ r < +∞.

Given 1 < r < +∞, we say that r′ is the conjugate exponent of r if

1
r
+

1
r′

= 1,

namely r′ = r
r−1 . Also, if r = 1 then r′ = +∞ and if r = +∞ then r′ = 1. In

the following, we recall a basic and important inequality, see for instance Brezis[29,
Theorem 4.6]

Proposition 2.1.2 (Hölder’s inequality). Suppose that f ∈ Lr(Ω) and g ∈ Lr′(Ω), with
1 ≤ r ≤ +∞. Then f g ∈ L1(Ω) and

∥ f g∥1 ≤ ∥ f ∥r∥g∥r′ .

Now, we introduce the Sobolev space and its main properties. To this aim, we
premit a definition and we remind that C1

c (Ω) denotes the space of the functions of
class C1 with compact support.

Definition 2.1.3. Given u ∈ Lr(Ω), we define the distributional derivative of u as follows

∂u
∂xk

(φ) = −
∫

Ω
u

∂φ

∂xk
dx for all φ ∈ C1

c (Ω).

Moreover, if
∂u
∂xk

∈ Lr(Ω), then

∫
Ω

∂u
∂xk

φ dx = −
∫

Ω
u

∂φ

∂xk
dx for all k = 1, . . . , N.

We emphasize that if u is differentiable in the classical sense, then the distribu-
tional derivative is equivalent to the classical one. For 1 ≤ r < +∞, we indicate with
W1,r(Ω) the Sobolev space defined by

W1,r(Ω) =

{
u ∈ Lr(Ω) :

∂u
∂xk

∈ Lr(Ω) for all k = 1, . . . , N
}

,

endowed with the usual norm

∥u∥1,r = ∥u∥r + ∥∇u∥r,
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or with the equivalent norm

∥u∥W1,r(Ω) = (∥u∥r
r + ∥∇u∥r

r)
r ,

where ∥∇u∥r = ∥|∇u|∥r. Furthermore, in correspondence of r = +∞ we introduce

W1,∞(Ω) =

{
u ∈ L∞(Ω) :

∂u
∂xk

∈ L∞(Ω) for all k = 1, . . . , N
}

,

equipped with the norm

∥u∥1,∞ = max
{
∥u∥∞,

∥∥∥∥ ∂u
∂x1

∥∥∥∥
∞

,
∥∥∥∥ ∂u

∂x2

∥∥∥∥
∞

, . . . ,
∥∥∥∥ ∂u

∂xN

∥∥∥∥
∞

}
.

Here, we mention the properties of such spaces, see Brezis[29, Proposition 9.1] and
Papageorgiou-Winkert[79, Proposition 4.5.9].

Proposition 2.1.4. The Sobolev space W1,r(Ω) is:

• a Banach space for any 1 ≤ r ≤ +∞;

• reflexive for any 1 < r < +∞;

• separable for any 1 ≤ r < +∞;

• a Hilbert space for r = 2.

An important result in this topic is the so-called Rellich-Kondrachov Theorem
about the embeddings of the Sobolev spaces into the Lebesgue ones, we refer to
Adams-Fournier[1, Theorem 6.3]. We denote by r∗ the critical Sobolev exponent of
r, given by

r∗ =

{
Nr

N−r if r < N,
any h ∈ (r,+∞) if r ≥ N,

and by r∗ the critical Sobolev exponent of r on the boundary, defined by

r∗ =

{
(N−1)r

N−r if r < N,
any h ∈ (r,+∞) if r ≥ N,

Theorem 2.1.5 (Rellich-Kondrachov Theorem). Let Ω ⊂ RN be a bounded open set
with Lipschitz boundary ∂Ω and 1 ≤ r < +∞. Then, the following embeddings hold:

(i) if 1 ≤ r < N, the embedding W1,r(Ω) ↪→ Ls(Ω) is continuous for all 1 ≤ s ≤ r∗

and it is compact if 1 ≤ s < r∗;

(ii) if r = N, the embedding W1,r(Ω) ↪→ Ls(Ω) is continuous and compact for all 1 ≤
s ≤ +∞;

(iii) if r > N, the embedding W1,r(Ω) ↪→ C(Ω) is continuous and compact.

Moreover, let σ be the (N − 1)-dimensional Hausdorff measure on the boundary
∂Ω and indicate with Lr(∂Ω) the boundary Lebesgue space endowed with the usual

norm ∥ · ∥r,∂Ω =
(∫

∂Ω | · |r dσ
) 1

r . We can consider a trace operator, i.e. a continuous
linear operator γ0 : W1,r(Ω) → Lr(∂Ω), such that

γ0(u) = u|∂Ω for all u ∈ W1,r(Ω) ∩ C(Ω).
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In Kufner-John-Fučik[65, Theorem 6.10.5] the following result can be found.

Theorem 2.1.6. Let Ω ⊂ RN be a bounded open set with Lipschitz boundary ∂Ω and
1 ≤ r < +∞. Then, the following hold:

(i) if 1 ≤ r < N, then γ0 : W1,r(Ω) → Ls(∂Ω) is continuous for all 1 ≤ s ≤ r∗;

(ii) if 1 < r < N, then γ0 : W1,r(Ω) → Ls(∂Ω) is compact for all 1 ≤ s < r∗;

(iii) if r ≥ N, then γ0 : W1,r(Ω) → Ls(∂Ω) is compact for all s ≥ 1.

Let C∞
c (Ω) be the space of the C∞-functions with compact support, also called

test functions. We denote by W1,r
0 (Ω) the completion of C∞

c (Ω) with respect to the
norm ∥ · ∥1,r. However, a well-known result called Poincaré’s inequality, that we
recall in the following, allows us to equip the space W1,r

0 (Ω) with another simpler
norm.

Theorem 2.1.7 (Poincaré’s inequality). Let Ω ⊆ RN be a bounded open set and 1 ≤ r <
+∞. Then, there exists a constant C, depending from r, N, Ω, such that

∥u∥r ≤ C∥∇u∥r for all u ∈ W1,r
0 (Ω),

and ∥ · ∥1,r,0 = ∥∇ · ∥r is an equivalent norm on W1,r
0 (Ω).

2.2 Lebesgue and Sobolev spaces with variable exponents

In this section, we present the Lebesgue and Sobolev spaces with variable exponent
and we recall some useful properties. In 1931, Orlicz[75] was the first who intro-
duced the variable exponent Lebesgue space using the Φ−functions theory requir-
ing that the exponent is finite. Lately, in 1979 Sharapudinov[88] gave the definition
including the infinity case and then in 1991 Kovačik-Rákosník[64] considered the
higher dimensional case.

We underline that the variable exponent Lebesgue spaces are exactly Musielack-
Orlicz spaces related to specific Φ−functions (see Section 2.3). However, in this
section we introduce them directly, avoiding this steps to make it readable. For more
details, we refer to Diening-Harjulehto-Hästö-Růžička[46] and Fan-Zhao[52].

Let Ω ⊂ RN be a bounded open set with Lipschitz boundary ∂Ω and for every
r ∈ M(Ω), put

r− := essinf
x∈Ω

r(x) and r+ := esssup
x∈Ω

r(x), (2.2.1)

and set

M+(Ω) = {r ∈ M(Ω) : r− ≥ 1}.

For any r ∈ M+(Ω), we introduce the modular function ρr(·) given by

ρr(·)(u) =
∫

Ω
|u|r(x) dx,

and we define the Lebesgue space with variable exponent as follows

Lr(·)(Ω) = {u ∈ M(Ω) : ρr(·)(u) < +∞},
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equipped with the so-called Luxemburg norm

∥u∥r(·) = inf
{

τ > 0 : ρr(·)

(u
τ

)
≤ 1

}
.

As for the constant exponent case treated in Section 2.1, also in the variable expo-
nent case the Lebesgue space Lr(·)(Ω) has the following properties, see the book
of Diening-Harjulehto-Hästö-Růžička [46, Theorems 3.2.7, 3.4.7, 3.4.9 and Corollary
3.4.5].

Proposition 2.2.1. For any r ∈ M+(Ω), the Lebesgue space (Lr(·)(Ω), ∥ · ∥r(·)) is:

• a Banach space;

• reflexive and uniformly convex when 1 < r− ≤ r+ < +∞;

• separable when r+ < +∞.

Now, we summarize the properties about the relation between the norm ∥ · ∥r(·)
and the modular ρr(·), see Fan-Zhao [52].

Proposition 2.2.2. Let r ∈ C+(Ω), u ∈ Lr(·)(Ω) and τ ∈ R. Then the following hold:

(i) If u ̸= 0, then ∥u∥r(·) = τ ⇐⇒ ρr(·)(
u
τ ) = 1;

(ii) ∥u∥r(·) < 1 (resp.> 1, = 1) ⇐⇒ ρr(·)(u) < 1 (resp.> 1, = 1);

(iii) If ∥u∥r(·) < 1 =⇒ ∥u∥r+
r(·) ≤ ρr(·)(u) ≤ ∥u∥r−

r(·);

(iv) If ∥u∥r(·) > 1 =⇒ ∥u∥r−
r(·) ≤ ρr(·)(u) ≤ ∥u∥r+

r(·);

(v) ∥u∥r(·) → 0 ⇐⇒ ρr(·)(u) → 0;

(vi) ∥u∥r(·) → 1 ⇐⇒ ρr(·)(u) → 1;

(vii) ∥u∥r(·) → +∞ ⇐⇒ ρr(·)(u) → +∞;

(viii) If un → u in Lr(·)(Ω) =⇒ ρr(·)(un) → ρr(·)(u).

The following Hölder’s inequality holds, see Diening-Harjulehto-Hästö-Růžička
[46, Lemma 3.2.20].

Proposition 2.2.3 (Hölder’s inequality). Let p, q, s ∈ M+(Ω) such that

1
s(x)

=
1

p(x)
+

1
q(x)

for a.a. x ∈ Ω,

and suppose that u ∈ Lp(·)(Ω) and v ∈ Lq(·)(Ω). Then uv ∈ Ls(·)(Ω) and

ρs(·)(uv) ≤ ρp(·)(u) + ρq(·)(v),

∥uv∥s(·) ≤ 2∥u∥p(·)∥v∥q(·).

In particular, denoting by r′ ∈ M+(Ω) the conjugate variable exponent to r, that is

1
r(x)

+
1

r′(x)
= 1 for all x ∈ Ω,
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we have that the dual space is Lr(·)(Ω)∗ = Lr′(·)(Ω) (see [46, Theorem 3.2.13]) and

∥uv∥1 ≤ 2∥u∥r(·)∥v∥r′(·), (2.2.2)

for all u ∈ Lr(·)(Ω) and for all v ∈ Lr′(·)(Ω). Moreover, for r1, r2 ∈ M+(Ω) with
r1(x) ≤ r2(x) for a.a. x ∈ Ω and 1 ∈ Lr(·)(Ω), where

1
k(·) = max

{
1

q(·) −
1

p(·) , 0
}

,

we have the continuous embedding

Lr2(·)(Ω) ↪→ Lr1(·)(Ω), (2.2.3)

with

∥u∥r1(·) ≤ 2∥1∥k(·)∥u∥r2(·) for all u ∈ Lr2(·)(Ω),

which follows from (2.2.2). Furthermore, we define the weighted Lebesgue spaces
with variable exponents as follows, that will be useful in the sequel. For any r ∈
M+(Ω) and ω ∈ L1(Ω), ω ≥ 0, we introduce the modular

ρr(·),ω(u) =
∫

Ω
ω(x)|u|r(x) dx,

and we define the space

Lr(·)
ω (Ω) =

{
u ∈ M(Ω) : ρr(·),ω(u) dx < +∞

}
,

equipped with the seminorm

∥u∥r(·),ω = inf
{

λ > 0 : ρr(·),ω

(u
λ

)
≤ 1

}
.

Now, we introduce the variable exponent Sobolev space W1,r(·)(Ω). Given r ∈
M+(Ω), we define it by

W1,r(·)(Ω) =
{

u ∈ Lr(·)(Ω) : |∇u| ∈ Lr(·)(Ω)
}

,

endowed with the norm

∥u∥1,r(·) = ∥u∥r(·) + ∥∇u∥r(·),

where clearly ∥∇u∥r(·) = ∥ |∇u| ∥r(·). In the following proposition we give the
main properties of the Sobolev space W1,r(·)(Ω) which can be found in the book
of Diening-Harjulehto-Hästö-Růžička [46, Theorem 8.1.6].

Proposition 2.2.4. For any r ∈ M+(Ω), the Sobolev space W1,r(·)(Ω) is

• a Banach space;

• reflexive and uniformly convex if 1 < r− ≤ r+ < +∞;

• separable if r+ < +∞.
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For any r ∈ M+(Ω), we indicate with r∗ and r∗ the critical Sobolev exponents to r,
given by

r∗(x) =

{
Nr(x)

N−r(x) if r(x) < N,

∞ if r(x) ≥ N,
r∗(x) =

{
(N−1)r(x)

N−r(x) if r(x) < N,

∞ if r(x) ≥ N.
(2.2.4)

Here, we present the embeddings of the Sobolev spaces W1,r(·)(Ω) into the Lebesgue
ones, depending on the relation between the exponent r(·) and the dimension N of

the space. To this aim, we denote by C0, 1
| log t| (Ω) the set of all functions s : Ω → R

that are log-Hölder continuous, that is, there exists a constant C > 0 such that

|s(x)− s(y)| ≤ C
| log |x − y|| for all x, y ∈ Ω with |x − y| < 1

2
.

Moreover, if r ∈ C(Ω) clearly from (2.2.1) it follows that

r+ = max
x∈Ω

r(x) and r− = min
x∈Ω

r(x), (2.2.5)

and we set

C+(Ω) = {r ∈ C(Ω) : r− > 1}.

For the following results we refer to Diening-Harjulehto-Hästö-Růžička [46, Corol-
lary 8.3.2] and Fan-Shen-Zhao [51] where the condition r+ < N is required and Fan
[49, Proposition 2.2] where there is no restriction on r+.

Proposition 2.2.5. Let r ∈ C0, 1
| log t| (Ω) ∩ C+(Ω) and let s ∈ C(Ω) be such that

1 ≤ s(x) ≤ r∗(x) for all x ∈ Ω.

Then, the embedding W1,r(·)(Ω) ↪→ Ls(·)(Ω) is continuous. If r ∈ C+(Ω), s ∈ C(Ω) and
1 ≤ s(x) < r∗(x) for all x ∈ Ω, then the embedding above is compact.

Proposition 2.2.6. Let r ∈ C+(Ω) such that r− > N. Then W1,r(·)(Ω) ⊂ C(Ω).

Furthermore, let σ be the (N − 1)-dimensional Hausdorff measure on the bound-
ary ∂Ω and denote with Lr(·)(∂Ω) the boundary Lebesgue space endowed with
the usual norm ∥ · ∥r(·),∂Ω with corresponding modular ρr(·),∂Ω(·). In the following
proposition we present some embedding results into the boundary Lebesgue space,
see Ho-Kim-Winkert-Zhang [61, Proposition 2.5] for the continuous embedding and
Fan [48, Corollary 2.4] for the compact one.

Proposition 2.2.7. Suppose that r ∈ C+(Ω) ∩ W1,γ(Ω) for some γ > N. Let s ∈ C(Ω)
be such that

1 ≤ s(x) ≤ r∗(x) for all x ∈ Ω.

Then, the embedding W1,r(·)(Ω) ↪→ Ls(·)(∂Ω) is continuous. If r ∈ C+(Ω), s ∈ C(Ω) and
1 ≤ s(x) < r∗(x) for all x ∈ Ω, then the embedding is compact.

Hence, we can consider a trace operator

γ0(u) = u|∂Ω for all u ∈ W1,r(·)(Ω) ∩ C(Ω), (2.2.6)
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as in Proposition 2.2.7. In this thesis, we avoid the notation of the trace operator and
we consider all the restrictions of Sobolev functions to the boundary ∂Ω in the sense
of traces.

Remark 2.2.8. Note that for a bounded domain Ω ⊂ RN and γ > N we have the following
inclusions

C0,1(Ω) ⊂ W1,γ(Ω) ⊂ C0,1− N
γ (Ω) ⊂ C0, 1

| log t| (Ω).

Finally, we denote by W1,r(·)
0 (Ω) the closure of C∞

c (Ω) in W1,r(·)(Ω) with respect
to the norm ∥ · ∥1,r(·). Also in the variable exponent case, there exists a Poincaré’s
inequality that we recall in the following proposition, see Diening-Harjulehto-Hästö-
Růžička [46, Theorem 8.2.4].

Theorem 2.2.9 (Poincaré’s inequality). Let r ∈ M+(Ω) ∩ C0, 1
| log t| (Ω) be such that

r+ < ∞. Then, there exists a constant C, depending from r, N, Ω, such that

∥u∥r(·) ≤ C∥∇u∥r(·) for all u ∈ W1,r(·)
0 (Ω),

and ∥ · ∥1,r(·),0 = ∥∇ · ∥r(·) is an equivalent norm on W1,r(·)
0 (Ω).

2.3 Musielak-Orlicz and
Musielak-Orlicz Sobolev spaces

This section is devoted to introduce the Musielak-Orlicz spaces, whose study is im-
portant since the weak solutions of partial differential equations are functions be-
longing to Musielak-Orlicz Sobolev spaces. In particular, we will focus on a spe-
cific Musielak-Orlicz Sobolev space involved in the study of our double phase prob-
lems. For more details on the general spaces we refer to the books of Musielak [74],
Harjulehto-Hästö [60] and Diening-Harjulehto-Hästö-Růžička [46] as well as the pa-
pers of Colasuonno-Squassina [34] and Fan [50].

First, we recall some definitions on an important class of functions.

Definition 2.3.1.

(1) Let φ : [0,+∞[→ [0,+∞[ be a continuous and convex function. We say that φ is a
Φ-function if φ(0) = 0 and φ(t) > 0 for every t > 0.

(2) Let φ : Ω × [0,+∞[→ [0,+∞[ be a function. We say that φ is a generalized Φ-
function if

(i) φ(·, t) is measurable for all t ≥ 0,

(ii) φ(x, ·) is a Φ-function for a. a. x ∈ Ω,

and we denote by Φ(Ω) the set of all generalized Φ-functions on Ω.

(3) A function φ ∈ Φ(Ω) is locally integrable on Ω if φ(·, t) ∈ L1(E) for all t > 0 and
for all measurable E ⊂ Ω with |E| < ∞.

(4) We say that φ ∈ Φ(Ω) satisfies the (∆2)-condition if there exist a constant C > 0
and a nonnegative function h ∈ L1(Ω) such that

φ(x, 2t) ≤ Cφ(x, t) + h(x) (∆2)
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for a. a. x ∈ Ω and for all t ≥ 0.

(5) Given φ, ψ ∈ Φ(Ω), we say that φ is weaker than ψ, denoted by φ ≺ ψ, if there exist
two positive constants C1, C2 and a nonnegative function h ∈ L1(Ω) such that

φ(x, t) ≤ C1ψ(x, C2t) + h(x)

for a. a. x ∈ Ω and for all t ≥ 0.

For any φ ∈ Φ(Ω), we introduce the modular function ρr(·) given by

ρφ(u) :=
∫

Ω
φ (x, |u|) dx,

and we define the Musielak-Orlicz space Lφ(Ω) by

Lφ(Ω) =
{

u ∈ M(Ω) : there exists τ > 0 such that ρφ(τu) < +∞
}

,

endowed with the Luxemburg norm

∥u∥φ := inf
{

τ > 0 : ρφ

(u
τ

)
≤ 1

}
. (2.3.1)

In the following proposition we summarize some main results that will be useful
in the sequel, see Musielak [74, Theorems 7.7, 8.5 and 8.13] and Diening-Harjulehto-
Hästö-Růžička [46, Lemma 2.1.14].

Proposition 2.3.2. Let φ, ψ ∈ Φ(Ω). Then, the following hold:

(i)
(

Lφ(Ω), ∥ · ∥φ

)
is a Banach space.

(ii) If φ and ψ are locally integrable with φ ≺ ψ, then

Lψ(Ω) ↪→ Lφ(Ω).

(iii) If φ satisfy the (∆2)-condition, then

Lφ(Ω) =
{

u ∈ M(Ω) : ρφ(u) < +∞
}

.

(iv) [Unit ball property] If u ∈ Lφ(Ω), then

ρφ(u) < 1 (resp. = 1;> 1) ⇔ ∥u∥φ < 1 (resp. = 1;> 1).

We also need to introduce a subclass of Φ(Ω) with “nicer" functions, namely
that have better properties. This functions are called N-functions, where N stands
for nice. Here, we give the definition and other related ones.

Definition 2.3.3. (1) Let φ : [0,+∞[→ [0,+∞[ be a Φ-function. We say that φ is a
N-function if

lim
t→0+

φ(t)
t

= 0 and lim
t→∞

φ(t)
t

= ∞.

(2) Let φ : Ω × [0,+∞[→ [0,+∞[ be a function. We say that φ is a generalized N-
function if
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(i) φ(·, t) is measurable for all t ≥ 0,

(ii) φ(x, ·) is a N-function for a. a. x ∈ Ω,

and we denote by N(Ω) the class of all generalized N-functions on Ω.

(3) Given φ, ψ ∈ N(Ω), we say that φ increases essentially slower than ψ near infinity
(and we write φ ≪ ψ) if for any k > 0

lim
t→+∞

φ(x, kt)
ψ(x, t)

= 0 uniformly for a. a. x ∈ Ω.

(4) We say that φ ∈ N(Ω) is uniformly convex if for every ε > 0 there exists δ > 0 such
that

|t − s| ≤ ε max{t, s} or φ

(
x,

t + s
2

)
≤ (1 − δ)

φ(x, t) + φ(x, s)
2

for all t, s ≥ 0 and for a. a. x ∈ Ω.

Thanks to this subclass of functions, we have another property of the Musielak-
Orlicz spaces Lφ(Ω) and we refer to Diening-Harjulehto-Hästö-Růžička [46, Theo-
rems 2.4.11 and 2.4.14].

Theorem 2.3.4. Let φ ∈ N(Ω) be uniformly convex and satisfying the (∆2)-condition.
Then, the norm ∥ · ∥φ defined on Lφ(Ω) is uniformly convex and hence Lφ(Ω) is uniformly
convex.

In order to state a Hölder-type inequality, we first need the following definition.

Definition 2.3.5. Let φ ∈ Φ(Ω). The conjugate function φ∗ : Ω × [0,+∞[→ R of φ is
defined by

φ∗(x, s) = sup
t≥0

(st − φ(x, t))

for a. a. x ∈ Ω and for all s ∈ [0,+∞[.

The next proposition can be found in Diening-Harjulehto-Hästö-Růžička [46,
Lemma 2.6.5].

Proposition 2.3.6 (Hölder’s inequality). If φ ∈ Φ(Ω), then∫
Ω
|uv|dx ≤ 2∥u∥φ∥v∥φ∗

for all u ∈ Lφ(Ω) and for all v ∈ Lφ∗
(Ω).

Given φ ∈ Φ(Ω), we define the Musielak-Orlicz Sobolev space as follows

W1,φ(Ω) = {u ∈ Lφ(Ω) : |∇u| ∈ Lφ(Ω)} ,

endowed with the norm

∥u∥1,φ = ∥u∥φ + ∥∇u∥φ,

with ∥∇u∥φ = ∥|∇u|∥φ.
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If φ ∈ N(Ω) is locally integrable, we denote by W1,φ
0 (Ω) the completion of

C∞
0 (Ω) in W1,φ(Ω). The following result on the properties of these spaces can be

found in Musielak [74, Theorem 10.2] and Fan [50, Proposition 1.8].

Theorem 2.3.7. Let φ ∈ N(Ω). If φ is locally integrable and

inf
x∈Ω

φ(x, 1) > 0, (2.3.2)

then the spaces W1,φ(Ω) and W1,φ
0 (Ω) are separable Banach spaces. Moreover, if Lφ(Ω) is

reflexive, then W1,φ(Ω) and W1,φ
0 (Ω) are reflexive.

Remark 2.3.8. We underline that one can construct the Lebesgue spaces Lr(Ω) and L(r(x))(Ω)
as Musielak-Orlicz spaces Lφ(Ω) by choosing φ(t) = |t|r for every t ∈ R and φ(x, t) =
|t|r(x) for every (x, t) ∈ Ω × R, respectively.

2.3.1 Function spaces for double phase problems

In order to investigate the existence of weak solutions for differential double phase
problems, we first need to determine the function space to which the solutions be-
long, namely we have to introduce the corresponding N-function. In particular, we
want to study nonlinear problems involving the following double phase operator
with variable exponents

u 7−→ −div
(
|∇u|p(x)−2∇u + µ(x)|∇u|q(x)−2∇u

)
, x ∈ Ω, (2.3.3)

where p, q, µ satisfy suitable assumptions that will be stated in the sequel. In this
subsection we will provide the properties of the function space related to the double
phase operator given in (2.3.3) and we mainly refer to the paper of Crespo-Blanco-
Gasiński-Harjulehto-Winkert [40], where the authors extend, under weaker assump-
tions, the results of Colasuonno-Squassina [34] and Liu-Dai [68] on the properties of
the function space and its embeddings, respectively.

First, we suppose that

(H1) Ω ⊆ RN , N ≥ 2, is a bounded domain with Lipschitz boundary ∂Ω, p, q ∈ C(Ω)
such that 1 < p(x) < N and p(x) < q(x) for all x ∈ Ω and µ ∈ L1(Ω) with
µ(x) ≥ 0 for a.a. x ∈ Ω.

Consider the nonlinear function H : Ω × [0,+∞[→ [0,+∞[, given by

H(x, t) = tp(x) + µ(x)tq(x) for all (x, t) ∈ Ω × [0,+∞[.

It is easy to see that H is a generalized Φ-function if p−, q− ∈ [1,+∞], where p−, q−
are defined in (2.2.5) and it is also a generalized N-function since 1 < p− ≤ p+ <
+∞ and 1 < q− ≤ q+ < +∞ by (H1). In addition, H fulfills the (∆2)-condition, since
we have

H(x, 2t) = (2t)p(x) + µ(x)(2t)q(x)

≤ 2p+ tp(x) + 2q+µ(x)tq(x)

≤ 2q+H(x, t).

(2.3.4)

Now, we denote with LH(Ω) the correspondent Musielak-Orlicz space, that from
Proposition 2.3.2(iii) is defined by

LH(Ω) = {u ∈ M(Ω) : ρH(u) < +∞} ,
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where ρH(·) is the corresponding modular, i.e.

ρH(u) =
∫

Ω
H(x, |u|) dx =

∫
Ω

(
|u|p(x) + µ(x)|u|q(x)

)
dx.

We endow LH(Ω) with the Luxemburg norm given in (2.3.1), that we recall here for
completeness

∥u∥H = inf
{

τ > 0 : ρH
(u

τ

)
≤ 1

}
. (2.3.5)

In the same way, we can introduce the Musielak-Orlicz Sobolev space W1,H(Ω), de-
fined by

W1,H(Ω) =
{

u ∈ LH(Ω) : |∇u| ∈ LH(Ω)
}

,

equipped with the usual norm

∥u∥1,H = ∥∇u∥H + ∥u∥H,

where ∥∇u∥H = ∥ |∇u| ∥H. In addition, H is locally integrable since for any E ⊂ Ω
with |E| < ∞ and for every t > 0 it holds that∫

E
H(x, t) dx ≤ |E| (max {tp− , tp+}+ ∥µ∥∞ max {tq− , tq+}) , (2.3.6)

then we denote by W1,H
0 (Ω) the completion of C∞

0 (Ω) in W1,H(Ω). Thanks to the
properties of function H, in the next proposition we present the properties of the
spaces and we also give the proof, which can be found in Crespo-Blanco-Gasiński-
Harjulehto-Winkert [40, Proposition 2.12].

Proposition 2.3.9. Let (H1) be satisfied. Then, LH(Ω) is uniformly convex and LH(Ω),
W1,H(Ω) and W1,H

0 (Ω) are separable reflexive Banach spaces.

Proof. From Proposition 2.3.2(i) it follows that LH(Ω) is complete. Also, since H(x,t)
t

is almost increasing for a. a. x ∈ Ω and H satisfies (∆2)-contidion (see (2.3.4)), by
combining Lemma 2.2.6 and Theorem 3.5.2 in [60] we obtain that LH(Ω) is separa-
ble. Moreover, H is locally integrable from (2.3.6) and it is easy to see that it satis-
fies condition (2.3.2). Hence, by Theorem 2.3.7 we have that W1,H(Ω) and W1,H

0 (Ω)
are separable Banach spaces. Now, we want to apply Theorem 2.3.4 in order to
show that LH(Ω) is uniformly convex. The nonlinear function H is a generalized N-
function and from (2.3.4) we know that it satisfies the (∆2)-condition, so it remains
to prove that it is a uniformly convex function. To this aim, let ε > 0 and t, s ≥ 0 be
such that |t − s| > ε max{t, s} and consider the function t 7→ tp− , that is uniformly
convex since from (H1) we have that p− > 1, see Diening-Harjulehto-Hästö-Růžička
[46, Remark 2.4.6]. Thus, there exists δp = δp(ε, p−) > 0 such that(

t + s
2

)p−
≤ (1 − δp)

tp− + sp−

2
,

and by the convexity of t 7−→ t
p(x)
p− for x ∈ Ω, we obtain

(
t + s

2

)p(x)

≤
(
(1 − δp)

tp− + sp−

2

) p(x)
p−

≤ (1 − δp)
tp(x) + sp(x)

2
.
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In the same way, we get (
t + s

2

)q(x)

≤ (1 − δq)
tq(x) + sq(x)

2

for some δq = δq(ε, q−) > 0. Combining them together and putting δ = min{δp, δq},
we have (

t + s
2

)p(x)

+ µ(x)
(

t + s
2

)q(x)

≤ (1 − min{δp, δq})
tp(x) + µ(x)tq(x) + sp(x) + µ(x)sq(x)

2

= (1 − δ)
H(x, t) +H(x, s)

2
,

which implies that H is uniformly convex and by applying Theorem 2.3.4 we obtain
the uniform convexity of LH(Ω). Applying the Milman-Pettis Theorem, see for in-
stance Papageorgiou-Winkert [79, Theorem 3.4.28], it follows that LH(Ω) is reflexive
and so they are W1,H(Ω) and W1,H

0 (Ω) from Theorem 2.3.7.

Also in this setting, we can give a version of Proposition 2.2.2 on the relation be-
tween the norm ∥ · ∥H and the modular ρH(·). This result and its proof, that we also
recall here, can be found in Crespo-Blanco-Gasiński-Harjulehto-Winkert [40, Propo-
sition 2.13].

Proposition 2.3.10. Let (H1) be satisfied, u ∈ W1,H(Ω) and τ > 0. Then the following
hold:

(i) If u ̸= 0, then ∥u∥H = τ ⇐⇒ ρH(
u
τ ) = 1;

(ii) ∥u∥H < 1 (resp.> 1, = 1) ⇐⇒ ρH(u) < 1 (resp.> 1, = 1);

(iii) If ∥u∥H < 1 =⇒ ∥u∥q+
H ⩽ ρH(u) ⩽ ∥u∥p−

H ;

(iv) If ∥u∥H > 1 =⇒ ∥u∥p−
H ⩽ ρH(u) ⩽ ∥u∥q+

H ;

(v) ∥u∥H → 0 ⇐⇒ ρH(u) → 0;

(vi) ∥u∥H → +∞ ⇐⇒ ρH(u) → +∞.

(vii) ∥u∥H → 1 ⇐⇒ ρH(u) → 1.

(viii) If un → u in LH(Ω) =⇒ ρH(un) → ρH(u).

Proof. First, we observe that for any u ∈ LH(Ω) the mapping

a 7→ ρH(au) =
∫

Ω

(
|au|p(x) + µ(x)|au|q(x)

)
dx, a ∈ R,

is continuous, convex, even and it is strictly increasing in [0,+∞[. These properties
simply the proof.

(i) From the monotonicity of ρH(τu) and from the definition of ∥ · ∥H given in
(2.3.5), it follows that

∥u∥H = τ ⇐⇒ ρH
(u

τ

)
= 1.
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(ii) Taking into account that ρH(τu) is continuous and increasing in the variable τ,
the thesis follows directly from (i).

(iii) For every u ∈ LH(Ω) the following inequalities hold

ap−ρH(u) ≤ ρH(au) ≤ aq+ρH(u) if a > 1, (2.3.7)
aq+ρH(u) ≤ ρH(au) ≤ ap−ρH(u) if 0 < a < 1. (2.3.8)

If ∥u∥H = τ < 1, then using (2.3.7) in correspondence of 1
τ > 1, we get

ρH(u)
τp−

≤ ρH
(u

τ

)
≤ ρH(u)

τq+
.

From (i) we know that ρH
( u

τ

)
= 1, hence it follows that

∥u∥q+
H ⩽ ρH(u) ⩽ ∥u∥p−

H .

(iv) Follows using the same argument of (iii) and exploiting (2.3.8).

(v) Follows from (iii).

(vi) Follows from (iv).

(vii) Follows combining (iii) and (iv).

(viii) If un → u in LH(Ω), then from (v) we know that

ρH(un − u) = ρp(·)(un − u) + ρq(·),µ(un − u) −→ 0.

Since both addends are positive, it follows that ρp(·)(un −u) → 0 and by Propo-
sition 2.2.2(v) we have that ∥un − u∥p(·) → 0. By the embedding Lp(·)(Ω) ↪→
Lp−(Ω) we obtain that ∥un − u∥p− → 0, hence un → u a. e. up to a subsequence
(not relabeled). Moreover, it holds that

|un|p(x) + µ(x)|un|q(x) ≤

≤ 2p+−1
(
|un − u|p(x) + |u|p(x)

)
+ 2q+−1µ(x)

(
|un − u|q(x) + |u|q(x)

)
≤ 2q+−1

(
|un − u|p(x) + µ(x)|un − u|q(x) + |u|p(x) + µ(x)|u|q(x)

)
,

and we know that
{
|un|p(x) + µ(x)|un|q(x)

}
n∈N

is a uniformly integrable se-

quence that converges a. e. to |u|p(x) + µ(x)|u|q(x), thanks to the a. e. conver-
gence of un → u. By Lebesgue-Vitali Theorem (see Bogachev [16, Theorem
4.5.4]) it follows that ρH(un) → ρH(u) through this subsequence. Recovering
the whole sequence by the subsequence principle, the proof is complete.

Remark 2.3.11. We observe that from Proposition 2.3.10(iii)-(iv) it follows that

min
{
∥u∥q+

H , ∥u∥p−
H
}
≤ ρH(u) ≤ max

{
∥u∥q+

H , ∥u∥p−
H
}

,

for all u ∈ W1,H(Ω).
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The following result about the main embeddings of LH(Ω), W1,H(Ω) and W1,H
0 (Ω)

can be found in Crespo-Blanco-Gasiński-Harjulehto-Winkert [40, Propositions 2.16].
Since we assume in (H1) that p(x) < N for all x ∈ Ω, the critical exponents to p,
defined in (2.2.4), are exactly the following

p∗(x) :=
Np(x)

N − p(x)
and p∗(x) :=

(N − 1)p(x)
N − p(x)

for all x ∈ Ω.

Proposition 2.3.12. Let (H1) be satisfied. Then the following embeddings hold:

(i) LH(Ω) ↪→ Lr(·)(Ω), W1,H(Ω) ↪→ W1,r(·)(Ω), W1,H
0 (Ω) ↪→ W1,r(·)

0 (Ω) are contin-
uous for all r ∈ C(Ω) with 1 ≤ r(x) ≤ p(x) for all x ∈ Ω;

(ii) if p ∈ C+(Ω)∩ C0, 1
| log t| (Ω), then W1,H(Ω) ↪→ Lr(·)(Ω) and W1,H

0 (Ω) ↪→ Lr(·)(Ω)
are continuous for r ∈ C(Ω) with 1 ≤ r(x) ≤ p∗(x) for all x ∈ Ω;

(iii) W1,H(Ω) ↪→ Lr(·)(Ω) and W1,H
0 (Ω) ↪→ Lr(·)(Ω) are compact for r ∈ C(Ω) with

1 ≤ r(x) < p∗(x) for all x ∈ Ω;

(iv) if p ∈ C+(Ω) ∩ W1,γ(Ω) for some γ > N, then W1,H(Ω) ↪→ Lr(·)(∂Ω) and
W1,H

0 (Ω) ↪→ Lr(·)(∂Ω) are continuous for r ∈ C(Ω) with 1 ≤ r(x) ≤ p∗(x)
for all x ∈ Ω;

(v) W1,H(Ω) ↪→ Lr(·)(∂Ω) and W1,H
0 (Ω) ↪→ Lr(·)(∂Ω) are compact for r ∈ C(Ω) with

1 ≤ r(x) < p∗(x) for all x ∈ Ω;

(vi) LH(Ω) ↪→ Lq(·)
µ (Ω) is continuous;

(vii) if µ ∈ L∞(Ω), then Lq(·)(Ω) ↪→ LH(Ω) is continuous.

Proof.

(i) Put Hp(·)(x, t) = tp(x) for all t ≥ 0 and for all x ∈ Ω. Clearly it holds that
Hp(·) ≺ H, see Definition 2.3.1 (5), hence from Proposition 2.3.2(ii) we obtain
the following continuous embeddings

LH(Ω) ↪→ Lp(·)(Ω), W1,H(Ω) ↪→ W1,p(·)(Ω), W1,H
0 (Ω) ↪→ W1,p(·)

0 (Ω).

Thus, assertion (i) is a direct consequence of the classical embedding results
for variable Lebesgue and Sobolev spaces due to the boundedness of Ω, see
(2.2.3).

(ii)-(iii) Follows from (i) and Proposition 2.2.5.

(iv)-(v) Follows from (i) and Proposition 2.2.7.

(vi) Let u ∈ LH(Ω), then we have∫
Ω

µ(x)|u|q(x) dx ≤
∫

Ω

(
|u|p(x) + µ(x)|u|q(x)

)
dx = ρH(u).

Since ρH
(

u
∥u∥H

)
= 1 whenever u ̸= 0, we get for u ̸= 0

∫
Ω

µ(x)
(

u
∥u∥H

)q(x)

dx ≤ 1,
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which implies that

∥u∥q(·),µ ≤ ∥u∥H.

(vii) For all t ≥ 0 and for a. a. x ∈ Ω one has

H(x, t) ≤
(

1 + tq(x)
)
+ µ(x)tq(x) ≤ 1 + (1 + ∥µ∥∞) tq(x),

so by applying Proposition 2.3.2 (ii) we complete the proof.

Also for the Musielak-Orlicz Sobolev space W1,H
0 (Ω) there exists a Poincaré’s

inequality, which allow us to equip the space with an equivalent norm. However, it
is necessary to require a more restrictive assumption than (H1), namely

(H) Ω ⊆ RN , N ≥ 2, is a bounded domain with Lipschitz boundary ∂Ω, p, q ∈ C(Ω)
such that 1 < p(x) < N and p(x) < q(x) < p∗(x) for all x ∈ Ω, where
p∗(·) = Np(·)

N−p(·) is the critical Sobolev exponent to p(·), and µ ∈ L∞(Ω) with
µ(x) ≥ 0 for a.a. x ∈ Ω.

However, it is worth emphasizing that the exponents p(·) and q(·) do not need to
verify a condition of the type

q(·)
p(·) < 1 +

1
N

(2.3.9)

as it was needed, for example, in Kim-Kim-Oh-Zeng [63] or in Colasuonno-Squassina
[34] and Liu-Dai [68] for the constant exponent case. Indeed, only assumption (H) is
needed, since Crespo-Blanco-Gasiński-Harjulehto-Winkert in [40, Proposition 2.18]
recently proved that the function space W1,H(Ω) can be equipped with the equiva-
lent norm ∥∇ · ∥H without supposing (2.3.9).

Proposition 2.3.13. Let (H) be satisfied. Then the following hold:

(i) W1,H(Ω) ↪→ LH(Ω) is a compact embedding;

(ii) There exists a constant C > 0 independent of u such that

∥u∥H ≤ C∥∇u∥H for all u ∈ W1,H
0 (Ω).

Proof.

(i) Follows by Proposition 2.3.12 (iii) and (vii).

(ii) We prove it by contradiction, so we assume that the assertion is not true. Then,
there exists a sequence {un}n∈N ⊆ W1,H

0 (Ω) such that

∥un∥H > n∥∇un∥H ⇐⇒ ∥∇un∥H
∥un∥H

<
1
n

.

Let yn := un
∥un∥H , then we have

∥yn∥H = 1 and ∥∇yn∥H <
1
n
< 1 for all n ∈ N,
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i.e. the sequence {yn}n∈N is bounded in W1,H
0 (Ω). Since W1,H

0 (Ω) is a reflexive
space, there exist a subsequence (not relabeled) and y ∈ W1,H

0 (Ω) such that

yn ⇀ y in W1,H
0 (Ω).

By the weak lower semicontinuity of the mapping v 7→ ∥∇v∥H on W1,H
0 (Ω) (it

is a convex, continuous mapping) one has that

∥∇y∥H ≤ lim inf
n→∞

∥∇yn∥H ≤ lim
n→∞

1
n
= 0,

hence y = c ∈ R is a constant function. Moreover, by Proposition 2.3.12 (i)
we have that y ∈ W1,p(·)

0 (Ω), so it must be y = 0 since it is the only constant
function of the space. On the other hand, by the compact embedding in (i) we
have that

yn → y in LH(Ω),

thus ∥y∥H = lim
n→∞

∥yn∥H = 1, so y ̸= 0, which is a contradiction and this
completes the proof.

Thanks to the previous proposition, we can endow the space W1,H
0 (Ω) with the

following equivalent norm

∥u∥1,H,0 = ∥∇u∥H for all u ∈ W1,H
0 (Ω). (2.3.10)

Finally, we have that this norm is uniformly convex on W1,H
0 (Ω) and satisfies the

Radon–Riesz (or Kadec-Klee) property with respect to the modular. This result is
due to Crespo-Blanco-Gasiński-Harjulehto-Winkert in [40, Proposition 2.19].

Proposition 2.3.14. Let (H) be satisfied. Then the following hold:

(i) The norm ∥ · ∥1,H,0 on W1,H
0 (Ω) is uniformly convex.

(ii) For any sequence {un}n∈N ⊆ W1,H
0 (Ω) such that

un ⇀ u in W1,H
0 (Ω) and ρH(∇un) → ρH(∇u)

it holds that un → u in W1,H
0 (Ω).

2.3.2 A new equivalent norm

In this subsection we prove the existence of a new and general equivalent norm in
W1,H(Ω), which is useful since it allows the study of more double phase problems
than can be dealt with the usual norm. Amoroso-Crespo-Blanco-Pucci-Winkert in-
troduced this norm in [5, Section 3].

First, in addition to (H), we suppose the following conditions:

(H2) (i) δ1, δ2 ∈ C(Ω) with 1 ≤ δ1(x) ≤ p∗(x) and 1 ≤ δ2(x) ≤ p∗(x) for all
x ∈ Ω, where

(a1) p ∈ C(Ω) ∩ C0, 1
| log t| (Ω), if δ1(x) = p∗(x) for some x ∈ Ω;

(a2) p ∈ C(Ω) ∩ W1,γ(Ω) for some γ > N, if δ2(x) = p∗(x) for some
x ∈ Ω;
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(ii) ϑ1 ∈ L∞(Ω) with ϑ1(x) ≥ 0 for a.a. x ∈ Ω;

(iii) ϑ2 ∈ L∞(∂Ω) with ϑ2(x) ≥ 0 for a.a. x ∈ ∂Ω;

(iv) ϑ1 ̸≡ 0 or ϑ2 ̸≡ 0.

In the sequel we use the seminormed spaces

Lδ1(·)
ϑ1

(Ω) =

{
u ∈ M(Ω) :

∫
Ω

ϑ1(x)|u|δ1(x) dx < ∞
}

,

Lδ2(·)
ϑ2

(∂Ω) =

{
u ∈ M(Ω) :

∫
∂Ω

ϑ2(x)|u|δ2(x) dσ < ∞
}

,

with corresponding seminorms

∥u∥δ1(·),ϑ1
= inf

{
τ > 0 :

∫
Ω

ϑ1(x)
∣∣∣u
τ

∣∣∣δ1(x)
dx ≤ 1

}
,

∥u∥δ2(·),ϑ2,∂Ω = inf
{

τ > 0 :
∫

∂Ω
ϑ2(x)

∣∣∣u
τ

∣∣∣δ2(x)
dσ ≤ 1

}
,

respectively. We set

∥u∥◦1,H = ∥∇u∥H + ∥u∥δ1(·),ϑ1
+ ∥u∥δ2(·),ϑ2,∂Ω,

and

∥u∥∗1,H = inf

{
τ > 0 :

∫
Ω

(∣∣∣∣∇u
τ

∣∣∣∣p(x)

+ µ(x)
∣∣∣∣∇u

τ

∣∣∣∣q(x)
)

dx

+
∫

Ω
ϑ1(x)

∣∣∣u
τ

∣∣∣δ1(x)
dx +

∫
∂Ω

ϑ2(x)
∣∣∣u
τ

∣∣∣δ2(x)
dσ ≤ 1

}
.

(2.3.11)

It can be easily seen that ∥ · ∥◦1,H and ∥ · ∥∗1,H are norms on W1,H(Ω). In the next
result, we prove that they are both equivalent to the usual one.

Proposition 2.3.15. Let (H) and (H2) be satisfied. Then, ∥ · ∥◦1,H and ∥ · ∥∗1,H are both
equivalent norms on W1,H(Ω).

Proof. We only prove the result when δ1(x) = p∗(x) and δ2(x) = p∗(x) for all
x ∈ Ω, the other cases can be shown in a similar way. So, we suppose that p ∈
C(Ω) ∩ W1,γ(Ω) for some γ > N. Then, by Remark 2.2.8 we know that p ∈ C(Ω) ∩
C0, 1

| log t| (Ω) as well. First, for u ∈ W1,H(Ω) \ {0} we have

∫
Ω

ϑ1(x)

(
|u|

∥u∥p∗(·)

)p∗(x)

dx ≤ ∥ϑ1∥∞ ρp∗(·)

(
u

∥u∥p∗(·)

)
= ∥ϑ1∥∞.

Hence,

∥u∥p∗(·),ϑ1
≤ ∥ϑ1∥∞∥u∥p∗(·).

In the same way, we show that

∥u∥p∗(·),ϑ2,∂Ω ≤ ∥ϑ2∥∞,∂Ω ∥u∥p∗(·),∂Ω.
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Using these along with Proposition 2.3.12(ii), (iv), we obtain

∥u∥◦1,H ≤ ∥∇u∥H + C1∥u∥p∗(·) + C2∥u∥p∗(·),∂Ω

≤ ∥∇u∥H + C3∥u∥1,H + C4∥u∥1,H

≤ C5∥u∥1,H,

for all u ∈ W1,H(Ω), with positive constants Ci, i = 1, . . . 5.
Next, we are going to prove that

∥u∥H ≤ C6∥u∥◦1,H, (2.3.12)

for some C6 > 0. We argue indirectly and assume that (2.3.12) does not hold. Then,
we find a sequence {un}n∈N ⊂ W1,H(Ω) such that

∥un∥H > n∥un∥◦1,H for all n ∈ N. (2.3.13)

Let yn = un
∥un∥H . Hence, ∥yn∥H = 1 and from (2.3.13) we get

1
n
> ∥yn∥◦1,H. (2.3.14)

From ∥yn∥H = 1 and (2.3.14), we know that {yn}n∈N ⊂ W1,H(Ω) is bounded. There-
fore, using the embeddings in Proposition 2.3.12(ii), (iv) and up to a subsequence if
necessary, we may assume that

yn ⇀ y in W1,H(Ω) and yn ⇀ y in Lp∗(·)(Ω) and Lp∗(·)(∂Ω). (2.3.15)

Furthermore, from (2.3.15) and Proposition 2.3.12(viii), we conclude that yn → y in
LH(Ω) and because of ∥yn∥H = 1 we have y ̸= 0. Passing to the limit in (2.3.14)
as n → ∞ and using (2.3.15) along with the weak lower semicontinuity of the norm
∥∇ · ∥H and of the seminorms ∥ · ∥p∗(·),ϑ1

, ∥ · ∥p∗(·),ϑ2,∂Ω we obtain

0 ≥ ∥∇y∥H + ∥y∥p∗(·),ϑ1
+ ∥y∥p∗(·),ϑ2,∂Ω. (2.3.16)

Inequality (2.3.16) implies that y ≡ η ̸= 0 is a constant and so we have the following
contradiction

0 ≥ |η|∥1∥p∗(·),ϑ1
+ |η|∥1∥p∗(·),ϑ2,∂Ω > 0,

because of (H2)(iv). Therefore (2.3.12) holds and we get

∥u∥1,H ≤ C7∥u∥◦1,H,

for some C7 > 0.
Next, we are going to show that ∥ · ∥◦1,H and ∥ · ∥∗1,H are equivalent norms in

W1,H(Ω). For u ∈ W1,H(Ω), we obtain

∫
Ω

( |∇u|
∥u∥◦1,H

)p(x)

+ µ(x)

(
|∇u|
∥u∥◦1,H

)q(x)
 dx

+
∫

Ω
ϑ1(x)

(
|u|

∥u∥◦1,H

)p∗(x)

dx +
∫

∂Ω
ϑ2(x)

(
|u|

∥u∥◦1,H

)p∗(x)

dσ



Chapter 2. Function spaces 25

≤ ρH

(
∇u

∥∇u∥H

)
+
∫

Ω
ϑ1(x)

(
|u|

∥u∥p∗(·),θ1

)p∗(x)

dx

+
∫

∂Ω
ϑ2(x)

(
|u|

∥u∥p∗(·),θ2,∂Ω

)p∗(x)

dσ

= 3.

Thus,

∥u∥∗1,H ≤ 3∥u∥◦1,H. (2.3.17)

On the other hand, we have

∫
Ω

( |∇u|
∥u∥∗1,H

)p(x)

+ µ(x)

(
|∇u|
∥u∥∗1,H

)q(x)
 dx

+
∫

Ω
ϑ1(x)

(
|u|

∥u∥∗1,H

)p∗(x)

dx +
∫

∂Ω
ϑ2(x)

(
|u|

∥u∥∗1,H

)p∗(x)

dσ

≤ ρ∗1,H

(
u

∥u∥∗1,H

)
,

(2.3.18)

where ρ∗1,H is the corresponding modular to ∥ · ∥∗1,H given by

ρ∗1,H(u) =
∫

Ω

(
|∇u|p(x) + µ(x)|∇u|q(x)

)
dx +

∫
Ω

ϑ1(x)|u|p∗(x) dx

+
∫

∂Ω
ϑ2(x)|u|p∗(x) dσ.

Note that, for u ∈ W1,H(Ω), the function τ 7→ ρ∗1,H(τu) is continuous, convex and
even and it is strictly increasing when τ ∈ [0,+∞[. So, by definition, we directly
obtain

∥u∥∗1,H = τ if and only if ρ∗1,H

(u
τ

)
= 1.

From this and (2.3.18) we conclude that

∥∇u∥H ≤ ∥u∥∗1,H, ∥u∥p∗(·),ϑ1
≤ ∥u∥∗1,H and ∥u∥p∗(·),ϑ2,∂Ω ≤ ∥u∥∗1,H.

Therefore,

1
3
∥u∥◦1,H ≤ ∥u∥∗1,H. (2.3.19)

From (2.3.17) and (2.3.19) the proof is complete.

Set

r1 := min {p−, (δ1)−, (δ2)−} and r2 := max {q+, (δ1)+, (δ2)+} .

In the following proposition we give the relation between the norm ∥ · ∥∗1,H and the
related modular function ρ∗1,H(·). This result is given in Amoroso-Crespo-Blanco-
Pucci-Winkert [5, Proposition 3.2] and the proof is similar to that one of Proposition
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2.13 given by Crespo-Blanco-Gasiński-Harjulehto-Winkert in [40], recalled in this
thesis in Proposition 2.3.10.

Proposition 2.3.16. Let (H) and (H2) be satisfied, u ∈ W1,H(Ω) and λ ∈ R. Then the
following hold:

(i) If u ̸= 0, then ∥u∥∗1,H = λ ⇐⇒ ρ∗1,H(
u
λ ) = 1;

(ii) ∥u∥∗1,H < 1 (resp.> 1, = 1) ⇐⇒ ρ∗1,H(u) < 1 (resp.> 1, = 1);

(iii) If ∥u∥∗1,H < 1 =⇒
(
∥u∥∗1,H

)r2
≤ ρ∗1,H(u) ≤

(
∥u∥∗1,H

)r1
;

(iv) If ∥u∥∗1,H > 1 =⇒
(
∥u∥∗1,H

)r1
≤ ρ∗1,H(u) ≤

(
∥u∥∗1,H

)r2
;

(v) ∥u∥∗1,H → 0 ⇐⇒ ρ∗1,H(u) → 0;

(vi) ∥u∥∗1,H → ∞ ⇐⇒ ρ∗1,H(u) → ∞;

(vii) ∥u∥∗1,H → 1 ⇐⇒ ρ∗1,H(u) → 1.
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Chapter 3

Variational methods and
Critical point theory

In this chapter, we present the classical results of variational methods, that are the
Direct Methods theorem (Theorem 3.1.1) and the Mountain Pass theorem (Theo-
rem 3.1.5), and we introduce some recent results in the field of critical point theory,
namely Theorems 3.2.2 and 3.2.5 and some of their consequences.

3.1 Classical results

The general results that establish the existence of solutions to variational problems
are based on the fundamental idea of combining the semicontinuity of the functional
with the compactness of its domain.

This type of approach derives from the famous Weierstrass theorem on the ex-
tremes of continuous functions of real variables and it is known as "direct method"
because it does not go through Euler’s equations, but aims to study the properties of
the functional directly. As the study of functional spaces progressed, the idea under-
went successive elaborations, generalisations and refinements until, with Tonelli, it
became the fundamental nucleus around which the calculus of variations gravitated.

In order to apply the direct method, one has to formulate the problem of finding
a minimum in a space with a topology strong enough to make the functional semi-
continuous and at the same time weak enough for a sufficiently large quantity of
compact sets to exist.

A sufficient condition for the existence of the absolute minimum is the following
result, usually called Direct Methods theorem.

Theorem 3.1.1 (Direct Methods Theorem). Let X be a reflexive Banach space equipped
with norm ∥ · ∥ and let Y ⊂ X a weakly closed subset of X. Suppose that F : Y → R ∪+∞
is coercive on Y with respect to X, i.e.

(i) lim
∥u∥→+∞

F(u) = +∞, u ∈ Y

and sequentially weakly lower semicontinuous on Y with respect to X, namely

(ii) for all u ∈ Y and for all {un} ⊂ Y such that un ⇀ u in X, it holds that

F(u) ≤ lim inf
n→+∞

F(un).

Then F is bounded from below on Y and it has a minimum in Y.
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Proof. Set α0 = infY F and let {un} be a minimizing suquence, that is a sequence such
that

lim
n→+∞

F(un) = α.

Taking the coercivity of F into account, one has that {un} is bounded in Y. Since
X is reflexive, by the Eberlein-Šmulian Theorem (see [29]) we may assume that un
weakly converges to u ∈ X. But Y is weakly closed, therefor u ∈ Y and from the
weakly semicontinuity we get that

F(u) ≤ lim inf
n→+∞

F(un) = α0,

and this completes the proof.

As in the fundamentals of mathematical analysis, in the infinite dimensional con-
text minima are critical points of the functional. Let us briefly recall some basic def-
initions.

Definition 3.1.2. Let X be a real Banach space and denote by X∗ its dual space. Let A ⊂
X be an open set and consider the functional F : X → R. We say that F is Gâteaux
differentiable in x0 ∈ A if there exists φ ∈ X∗ such that

lim
t→0+

F(x0 + ty)− F(x0)

t
= φ(y) ∀ y ∈ X.

In thi case, we say that φ is the Gâteaux derivative of F in x0 and we set

F′(x0) = φ(y).

Moreover, we say that x0 is a critical point of F if F′(x0) = 0X∗ .

It is easy to prove that if x0 is a local minimum of F in X, then x0 is a critical point
of F. In the following, we provide a consequence of Theorem 3.1.1.

Corollary 3.1.3. Let X be a reflexive Banach space. Suppose that the functional F : X → R

is coercive, sequentially weakly lower semicontinuous and Gâteaux differentiable. Then F
admits at least a critical point in X.

Now, we present the Mountain Pass theorem, which is the most famous theorem
in critical point theory. It does not look for local extremes, but characterises a critical
value of a functional through minimax theorems.

The basis of this result is the following compactness condition.

Definition 3.1.4. Let (X, ∥ · ∥) be a Banach space, X∗ its dual and F : X → R a Gâteaux
differentiable functional. We say that the functional F satisfies the Palais-Smale condition at
level c (in short, (PS)c-condition), if any sequence {un} ⊆ X such that

(PS1
c ) F(un) → c ∈ R,

(PS2
c ) F′(un) → 0 in X∗ as n → ∞,

has a strongly convergent subsequence in X.

Among the numerous versions of the Mountain Pass theorem, we initially recall
the original one due to Ambrosetti and Rabinowitz ([2]).
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Theorem 3.1.5 (Mountain Pass Theorem). Let X be a Banach space and let F : X → R

be a functional, F ∈ C1(X). Suppose that there exists u1 ∈ X such that ∥u1∥ > ρ > 0 and

α = max{γ(0), γ(u1)} < inf
u∈B(0,ρ)

F(u) = β.

Set

c = inf
γ∈Γ

max
u∈γ([0,1])

F(u),

where

Γ = {γ ∈ C([0, 1], X), γ(0) = 0 and γ(1) = u1},

and suppose that F verifies the (PS)c-condition.
Then F has critical value c ≥ β.

Proof. First, we observe that c < +∞. For any path γ ∈ Γ it holds that γ([0, 1]) is
connected, γ(0) = 0 and γ(1) = u1, therefore

γ([0, 1]) ∩ B(0, ρ) ̸= ∅.

Hence, one has

max
u∈γ([0,1])

F(u) ≥ inf
v∈B(0,ρ)

F(v) ≥ β,

so c ≥ β.
Now, arguing by contradiction, suppose that c is a regular value, namely Kc = ∅.

Then, by the Deformation Lemma ([62]) there exist ϵ ∈]0, (β − α)/2[ and a deforma-
tion η such that

η(1, Fc+ϵ) ⊂ Fc−ϵ. (3.1.1)

From the definition of c it follows that there exists some γ ∈ Γ such that

max
u∈γ([0,1])

F(u) ≤ c + ϵ. (3.1.2)

Clearly, the function γ∗(t) = η(1, γ(t)) belogns to C([0, 1]; X). Moreover, γ∗(0) =
η(1, 0)) and γ∗(1) = η(1, u1)) = u1 by (3.1.1) and also because max{γ(0), γ(u1)} =
α < c − 2ϵ. Then γ∗ belongs to Γ and, by (3.1.2), γ([0, 1]) ⊂ Fc+ϵ. Therefore, from
(3.1.1) we obtain

γ∗([0, 1]) = η(1, γ([0, 1])) ⊂ Fc+ϵ,

that is

max
u∈γ∗([0,1])

F(u) ≤ c − ε.

This is a contradiction, since γ∗ ∈ Γ.

Remark 3.1.6. It is worth emphasizing that G. Bonanno and R. Livrea in [28] gave an
alternative proof of the Ghoussoub-Preiss theorem, where the mountain pass geometry is the
original assumption of Ambrosetti-Rabinowitz where also the equality is considered. The
authors proved the theorem by using the ε-perturbation as introduced by Brezis-Nirenberg
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and besides the deformation lemma, other advanced tools such as the Radon measures space,
sub-differential, or the theory of non-differentiable functions, are avoided.

We recall also the result by Pucci-Serrin ([84]), giving first a definition.

Definition 3.1.7. Let (X, ∥ · ∥) be a Banach space, X∗ its dual and I : X → R a Gâteaux
differentiable functional. We say that a functional I satisfies the Palais-Smale condition (in
short (PS)-condition), if any sequence {un} ⊆ X such that

(PS1) I(un) is bounded,

(PS2) I′(un) → 0 in X∗ as n → ∞,

has a strongly convergent subsequence in X.

Clearly, if I satisfies the (PS)c-condition for all c ∈ R, then it satisfies the (PS)-
condition.

Theorem 3.1.8. Let X be a Banach space, F : X → R a Gâteaux differentiable functional
that satisfies the (PS)-condition and let x0, x1 be local minima points for F, with x0 ̸= x1.
Then, there exists x2 ∈ X \ {x0, x1} such that F′(x2) = 0.

The following version of the Mountain-Pass theorem is stated in the book of
Papageorgiou-Rădulescu-Repovš [78, Theorem 5.4.6] and we recall the definition of
the Cerami condition that is needed for the statement. In the following, for X being
a Banach space, we denote by X∗ its topological dual space.

Definition 3.1.9. Given I ∈ C1(X), we say that I satisfies the Cerami-condition at level c,
(C)c-condition for short, if every sequence {un}n∈N ⊆ X such that

(C1
c ) I(un) → c as n → ∞,

(C2
c ) (1 + ∥un∥X) I′(un) → 0 in X∗ as n → ∞,

admits a strongly convergent subsequence in X.

If the (C)c-condition holds for every c ∈ R, we say that I satisfies the (C)-condition,
that we can define as follows.

Definition 3.1.10. Given I ∈ C1(X), we say that I satisfies the Cerami-condition, (C)-
condition for short, if every sequence {un}n∈N ⊆ X such that

(C1) {I(un)}n≥1 ⊆ R is bounded,

(C2) (1 + ∥un∥X) I′(un) → 0 in X∗ as n → ∞,

admits a strongly convergent subsequence in X.

Theorem 3.1.11. Let X be a Banach space and suppose φ ∈ C1(X), u0, u1 ∈ X with
∥u1 − u0∥ > δ > 0,

max {φ(u0), φ(u1)} ≤ inf {φ(u) : ∥u − u0∥ = δ} = mδ,
c = inf

γ∈Γ
max
0≤t≤1

φ(γ(t)) with Γ = {γ ∈ C ([0, 1], X) : γ(0) = u0, γ(1) = u1} ,

and φ satisfies the (C)c-condition. Then c ≥ mδ and c is a critical value of φ. Moreover, if
c = mδ, then there exists u ∈ Bδ(u0) such that φ′(u) = 0.
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3.2 Recent critical point theorems

In this section, we present some of the most recent results in the field of critical point
theory. In particular, we mention the results that we are exploited in the study of
some problems in the next chapters. Indeed, we recall a local minimum theorem
due to Bonanno [17, 18] and a two critical points theorem established by Bonanno-
D’Aguì in [23].

First, we present a local minimum theorem established by Bonanno in 2012 [17]
and we premit a definition of a compactness conditions the is needed in the sequel.
Let (X, ∥ · ∥) be a Banach space, X∗ its dual and I : X → R a Gâteaux differentiable
functional.

Definition 3.2.1. Let Φ, Ψ : X → R be two continuously Gâteaux differentiable functions,
put

I = Φ − Ψ,

and fix r1, r2 ∈ [−∞,+∞], with r1 < r2. We say that I verifies the Palais-Smale condition
cut off lower at r1 and upper at r2 (in short [r1](PS)[r2]-condition) if any sequence {un} such
that (PS1), (PS2) hold and

(PSu
l ) (γ)r1 < Φ (un) < r2∀n ∈ N,

has a convergent subsequence.

Clearly, if r1 = −∞ and r2 = +∞ it coincides with the classical (PS)-condition.
Moreover, if r1 = −∞ and r2 ∈ R it is denoted by (PS) [r2], while if r1 ∈ R and
r2 = +∞ it is denoted by [r1] (PS).

Furthermore, if I = Φ−Ψ satisfies [r1] (PS) [r2]-condition, then it satisfies [ρ1](PS)[ρ2]-
condition for all ρ1, ρ2 ∈ [−∞,+∞] such that r1 ≤ ρ1 < ρ2 ≤ r2. So, in particular, if
I = Φ − Ψ satisfies the classical (PS)-condition, then it satisfies [ρ1](PS)[ρ2]-condition
for all ρ1, ρ2 ∈ [−∞,+∞] with ρ1 < ρ2.

Now, we present a result by Bonanno [17, Theorem 3.1] that ensures the existence
of a local minimum for a given functional.

Theorem 3.2.2. Let X be a real Banach space and let Φ, Ψ : X → R be two continuously
Gâteaux differentiable functions. Put

I = Φ − Ψ

and assume that there are x0 ∈ X and r1, r2 ∈ R, with r1 < Φ (x0) < r2, such that

sup
u∈Φ−1(]r1,r2[)

Ψ(u) ≤ r2 − Φ (x0) + Ψ (x0) , (3.2.1)

sup
u∈Φ−1(]−∞,r1])

Ψ(u) ≤ r1 − Φ (x0) + Ψ (x0) . (3.2.2)

Moreover, assume that I satisfies [r1](PS)[r2]-condition.
Then, there is u0 ∈ Φ−1(]r1, r2[) such that

I (u0) ≤ I(u) for all u ∈ Φ−1(]r1, r2[) and I ′ (u0) = 0.

Remark 3.2.3. We remind that if I satisfies (PS)-condition, then it verifies also [r1](PS)[r2]-
condition for any r1, r2 ∈ R with r1 < r2. Hence, if the functional I satisfies the (PS)-
condition and the algebraic inequalities given in (3.2.1) and (3.2.2), then the conclusion of
Theorem 3.2.2 hold true.
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Now, we point out a consequence of the previous local minimum theorem, which
can be found in Bonanno [18, Theorem 2.3].

Theorem 3.2.4. Let X be a real Banach space and let Φ, Ψ : X → R be two continuously
Gâteaux differentiable functionals such that

inf
X

Φ = Φ(0) = Ψ(0) = 0.

Assume that there are r ∈ R and ũ ∈ X, with 0 < Φ(ũ) < r, such that

sup
u∈Φ−1(]−∞,r[)

Ψ(u)

r
<

Ψ(ũ)
Φ(ũ)

, (3.2.3)

and, for each

λ ∈ Λr :=

]
Φ(ũ)
Ψ(ũ)

,
r

sup
u∈Φ−1([−∞,r[)

Ψ(u)

[
,

the functional Iλ = Φ − λΨ satisfies the (PS)[r]-condition.
Then, for each λ ∈ Λr there is uλ ∈ Φ−1(]0, r[) (hence, uλ ̸= 0) such that

Iλ (uλ) ≤ Iλ(u) for all u ∈ Φ−1(]0, r[) and I ′λ (uλ) = 0.

An important multiliplicity result that we exploit in our study is a two critical
point theorem established by Bonanno-D’Aguì in 2016 [23, Theorem 2.1], which is
a nontrivial consequence of the local minimum theorem given in Theorem 3.2.4 in
combination with the Ambrosetti-Rabinowitz Theorem (Theorem 3.1.5).

Theorem 3.2.5. Let X be a real Banach space and let Φ, Ψ : X → R be two continuously
Gâteaux differentiable functionals such that

inf
X

Φ = Φ(0) = Ψ(0) = 0.

Assume that there are r ∈ R and ũ ∈ X, with 0 < Φ(ũ) < r, such that

sup
u∈Φ−1(]−∞,r])

Ψ(u)

r
<

Ψ(ũ)
Φ(ũ)

(3.2.4)

and for all λ ∈ Λr =

]
Φ(ũ)
Ψ(ũ) , r

sup
u∈Φ−1(]−∞,r])

Ψ(u)

[
, the functional Iλ = Φ − λΨ satisfies (PS)-

condition and it is unbounded from below.
Then, for each λ ∈ Λr, the functional Φ − λΨ admits at least two non-zero critical

points uλ,1, uλ,2 such that Iλ(uλ,1) < 0 < Iλ(uλ,2).

Proof. Fix λ as in the conclusion. Since Iλ satisfies (PS)-condition, then it verifies also
(PS)[r]-condition. Moreover, by (3.2.4) one has

sup
u∈Φ−1([−∞,r[)

Ψ(u)

r
<

Ψ(ũ)
Φ(ũ)

,
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with 0 < Φ(ũ) < r. Therefore, from Theorem 3.2.4 it follows that there exits uλ,1 ∈
Φ−1(]0, r[) (hence, uλ,1 ̸= 0 ) such that

Iλ (uλ,1) ≤ Iλ(u) for all u ∈ Φ−1(]0, r[) and I′λ (uλ,1) = 0.

Furthermore, we observe that one also has

Iλ (uλ,1) ≤ Iλ(u) for all u ∈ Φ−1(]− ∞, r]) and Iλ (uλ,1) < 0.

In fact, since λ > Φ(ũ)
Ψ(ũ) , it holds that Φ(ũ)− λΨ(ũ) < 0 = Φ(0)− λΨ(0), for which

Iλ (uλ,1) ≤ Iλ(ũ) < Iλ(0) = 0. Moreover, for all ū ∈ X such that Φ(ū) = r, taking
into account that λ < r

sup u∈Φ−1(j−∞,r]) Ψ(u) , one has

Φ(ū)− λΨ(ū) ≥ Φ(ū)− λ sup
u∈Φ−1(]−∞,r])

Ψ(u) > Φ(ū)− r = 0,

that is Iλ(ū) > Iλ(0) > Iλ (uλ,1). So, our claim is proved.
Now, since Iλ is unbounded from below there is ūλ,2 ∈ X such that

Iλ (ūλ,2) < Iλ (uλ,1)

Clearly, being uλ,1 a global minimum for Iλ in Φ−1(]−∞, r]), must be Φ (ūλ,2) > r. It
is easy to verify that all the assumptions of the Mountain Pass Theorem are satisfied,
hence there exists uλ,2 ∈ X such that

I′λ (uλ,2) = 0 and Iλ (uλ,2) = inf
γ∈Γ

max
t∈[0,1]

Iλ(γ(t)),

where Γ = {γ ∈ C([0, 1]) : γ(0) = uλ,1, γ(1) = ūλ,2}.
We now claim that Iλ (uλ,2) > 0. To this end, set

k = r − λ sup
u∈Φ−1([−∞,r])

Ψ(u),

and then observe that, since λ < r
sup u∈Φ−1(]−∞,r]) Ψ(u) , one has k > 0. Now, let γ ∈ Γ.

Since Φ(γ(0)) < r and Φ(γ(1)) > r, there is t̄ ∈]0, 1[ such that Φ(γ(t̄)) = r. So,
setting ū = γ(t̄), one has

Φ(ū)− λΨ(ū) ≥ Φ(ū)− λ sup
u∈Φ−1(]−∞,r])

Ψ(u) = r − λ sup
u∈Φ−1([]−∞,r])

Ψ(u) = k,

that is Iλ(γ(t̄)) > k. It follows that maxt∈[0,1] Iλ(γ(t)) > k for each γ ∈ Γ. Hence, one
has

Iλ (uλ,2) = inf
γ∈Γ

max
t∈[0,1]

Iλ(γ(t)) ≥ k > 0,

for which our claim is proved and the conclusion is achieved.

A version of this result can be obtained taking into account Remark 2.2 [23].

Theorem 3.2.6. Let X be a real Banach space and let Φ, Ψ : X → R be two continously
Gâteaux differentiable functionals such that

inf
X

Φ = Φ(0) = Ψ(0) = 0.



Chapter 3. Variational methods and Critical point theory 34

Assume that Φ is coercive and there exist r ∈ R and ũ ∈ X, with 0 < Φ(ũ) < r, such that

sup
u∈Φ−1(]−∞,r])

Ψ(u)

r
<

Ψ(ũ)
Φ(ũ)

(3.2.5)

and, for each λ ∈ Λr :=

]
Φ(ũ)
Ψ(ũ) , r

sup
u∈Φ−1(]−∞,r])

Ψ(u)

[
, the functional Iλ = Φ − λΨ satisfies the

(C)-condition and it is unbounded from below.
Then, for each λ ∈ Λr, the functional Iλ admits at least two nontrivial critical points

uλ,1, uλ,2 such that Iλ(uλ,1) < 0 < Iλ(uλ,2).

Proof. One can assume the (C)-condition instead of (PS)-condition, provided that the
coercivity of Φ is assumed. Indeed, it is enough to observe that (PS)-condition and
(C)-condition coincide for bounded sequences and so, taking into account that Φ
is coercive, also (C)-condition implies the (PS)[r]-condition for all r > 0. Therefore,
the same proof of Theorem (3.2.5) ensures our claim, by applying the version of
mountain pass theorem with the (C)-condition (see, for instance, Theorem 3.1.11).
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Chapter 4

Dirichlet double phase problem

This chapter is devoted to the study of a nonlinear double phase problem with vari-
able exponents under Dirichlet boundary condition. In particular, through critical
point theory we determine the existence of two bounded weak solutions under very
general assumptions on the nonlinear term, such as a subcritical growth and a su-
perlinear condition. Moreover, we state some special cases in which the solutions
turn out to be nonnegative.

The results presented in this chapter are obtained in [6], in collaboration with G.
Bonanno, G. D’Aguì and P. Winkert.

4.1 The problem

Consider the following boundary value problem with a nonlinear differential equa-
tion involving the double phase operator with variable exponents and Dirichlet
boundary condition

−div
(
|∇u|p(x)−2∇u + µ(x)|∇u|q(x)−2∇u

)
= λ f (x, u) in Ω,

u = 0 on ∂Ω,
(Dλ)

where the domain Ω, the exponents p, q and the weight µ verify assumption (H),
λ > 0 is a parameter and f : Ω × R → R is a Carathéodory function that satisfies
subcritical growth and a certain behavior at ±∞.

For the sake of completeness, we recall here hypothesis (H), which has been in-
troduced in Chapter 2, and we introduce the assumptions on the perturbation in
problem (Dλ).
Suppose the following hypotheses:

(H) Ω ⊆ RN , N ≥ 2, is a bounded domain with Lipschitz boundary ∂Ω, p, q ∈ C(Ω)
such that 1 < p(x) < N and p(x) < q(x) < p∗(x) for all x ∈ Ω, where
p∗(·) = Np(·)

N−p(·) is the critical Sobolev exponent to p(·), and µ ∈ L∞(Ω) with
µ(x) ≥ 0 for a.a. x ∈ Ω,

(HD
f ) Let f : Ω × R → R and F(x, t) =

∫ t
0 f (x, s) ds for all x ∈ Ω be such that the

following hold:

(fD
1 ) f is a Carathéodory function, that is, x → f (x, t) is measurable for all

t ∈ R and x → f (x, t) is continuous for a.a. x ∈ Ω;

(fD
2 ) there exist ℓ ∈ C+(Ω) with ℓ+ < (p−)∗ and κ1 > 0 such that

| f (x, t)| ≤ κ1

(
1 + |t|ℓ(x)−1

)
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for a.a. x ∈ Ω and for all t ∈ R;

(fD
3 )

lim
t→±∞

F(x, t)
|t|q+ = +∞

uniformly for a.a. x ∈ Ω;

(fD
4 ) there exists ζ ∈ C+(Ω) with

ζ− ∈
(
(ℓ+ − p−)

N
p−

, ℓ+

)
and ζ0 > 0 such that

0 < ζ0 ≤ lim inf
t→±∞

f (x, t)t − q+F(x, t)
|t|ζ(x)

uniformly for a.a. x ∈ Ω.

Here, we give some remarks on the assumptions.

Remark 4.1.1. We obeserve that (fD
3 ) is weaker than requiring that

lim
t→±∞

f (x, t)
|t|q+ = +∞

uniformly for a.a. x ∈ Ω. On the other hand, using q+ is stronger than using q(·) as
exponent.

Remark 4.1.2. It is worth noting that the condition on ζ in (fD
4 ) is well defined since from

(fD
2 ) we have ℓ+ < (p−)∗ and so it holds

(ℓ+ − p−)
N
p−

= ℓ+
N
p−

− (p−)∗
N − p−

p−
< ℓ+

N
p−

− ℓ+
N − p−

p−
= ℓ+.

We underline that this boundedness is needed for the interpolation argument in the claim of
Lemma 4.3.1 and it is required only for ζ− and not for the whole exponent ζ. Indeed, this
is one of the advantages of the variable exponent setting. Furthermore, another advantage
is that one can choose different exponents for going to ±∞ (see for example (hN

4 ) for the
Neumann problem in Chapter 6), however in this case we choose the same exponent just for
simplicity.

4.2 Variational framework

The differential operator in (Dλ) is the so-called double phase operator with variable
exponents given by

−div
(
|∇(·)|p(x)−2∇(·) + µ(x)|∇(·)|q(x)−2∇(·)

)
,

and since we deal with Dirichlet boundary conditions, we search for solutions u of
problem (Dλ) in the Musielack-Orlicz Sobolev space W1,H

0 (Ω), introduced in Chap-
ter 2, endowed with the norm ∥ · ∥1,H,0 (see Proposition 2.3.13 and formula (2.3.10)).
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We refer to subsection 2.3.1 for the properties of the space W1,H
0 (Ω) and in particular

we will exploit the embeddings in (i) and (iii) of Proposition 2.3.12, which clearly
hold also under assumption (H) that is stronger than (H1).

Now, for any r ∈ C(Ω) for which the continuous embedding W1,H
0 (Ω) ↪→ Lr(·)(Ω)

hold (see Proposition 2.3.12), we denote by c̃r the best constant for which one has

∥u∥r(·) ≤ c̃r∥u∥1,H,0. (4.2.1)

It is well known that u ∈ W1,H
0 (Ω) is called a weak solution of problem (Dλ) if∫

Ω

(
|∇u|p(x)−2∇u + µ(x)|∇u|q(x)−2∇u

)
· ∇v dx = λ

∫
Ω

f (x, u)v dx, (4.2.2)

for all v ∈ W1,H
0 (Ω). In order to establish results on the existence of two nontrivial

weak solution for (Dλ), we define the functionals Φ, Ψ, Iλ : W1,H
0 (Ω) → R by

Φ(u) =
∫

Ω

(
|∇u|p(x)

p(x)
+ µ(x)

|∇u|q(x)

q(x)

)
dx, Ψ(u) =

∫
Ω

F(x, u(x)) dx,

and

Iλ(u) = Φ(u)− λΨ(u),

for all u ∈ W1,H
0 (Ω), where Iλ is the so-called energy functional related to the prob-

lem. We know that Φ and Ψ are Gâteaux differentiable (see [40, Proposition 3.1])
with the following derivatives

⟨Φ′(u), v⟩ =
∫

Ω

(
|∇u|p(x)−2∇u + µ(x)|∇u|q(x)−2∇u

)
· ∇v dx,

⟨Ψ′(u), v⟩ =
∫

Ω
f (x, u)v dx,

⟨I′λ(u), v⟩ =
∫

Ω

(
|∇u|p(x)−2∇u + µ(x)|∇u|q(x)−2∇u

)
· ∇v dx − λ

∫
Ω

f (x, u)v dx,

for all u, v ∈ W1,H
0 (Ω), where ⟨ · , · ⟩ is the duality pairing between W1,H

0 (Ω) and its
dual space W1,H

0 (Ω)∗. Hence, from (4.2.2) it follows that u is a weak solution of (Dλ)
if and only if u is a critical point of Iλ, i.e.

u ∈ W1,H
0 (Ω) weak solution of (Dλ) ⇐⇒ ⟨I′λ(u), v⟩ = 0 for all v ∈ W1,H

0 (Ω).

In the next proposition we summarize the properties of the operator Φ′ : W1,H
0 (Ω) →

W1,H
0 (Ω)∗, see [40, Theorem 3.3] which is a generalization of [68, Proposition 3.1] in

the variable exponent case.

Proposition 4.2.1. Let (H) be satisfied. Then, the operator Φ′ is continuous, bounded,
strictly monotone, coercive, a homeomorphism and it satisfies the (S+)−property, that is,

if un ⇀ u in W1,H
0 (Ω) and lim sup

n→∞
⟨Φ′(un), un − u⟩ ≤ 0,

then un → u in W1,H
0 (Ω).

Our main tool is is a two critical point theorem due to Bonanno-D’Aguì in [23,
Theorem 2.1 and Remark 2.2], recalled in Theorem 3.2.6 in Chapter 3.
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4.3 Main results

In this section, we present our main result on the existence of two nontrivial solu-
tions for the Dirichlet double phase problem with variational exponents given in
(Dλ). From now on, in this chapter, we put

X = W1,H
0 (Ω) and ∥ · ∥X = ∥ · ∥1,H,0 = ∥∇ · ∥H.

First, we present the following Lemma that we will use in the proof of the main
result.

Lemma 4.3.1. Let (H) and (HD
f ) be satisfied. Then, the functional Iλ satisfies the (C)-

condition for all λ > 0.

Proof. Let {un}n∈N ⊆ W1,H
0 (Ω) be a sequence such that (C1) and (C2) from Definition

3.1.10 hold. We provide the proof in three steps.
Claim 1. {un}n∈N is bounded in Lζ−(Ω).
First, it is easy to show that using (fD

1 ) and (fD
4 ) we get that

f (x, t)t − q+F(x, t) ≥ c1|t|ζ− − c2 for a.a. x ∈ Ω and for all t ∈ R, (4.3.1)

with some constants c1, c2 > 0. Moreover, from C1 we have that there exists a con-
stant M > 0 such that for all n ∈ N one has |Iλ(un)| ≤ M, so∣∣∣∣∣

∫
Ω

(
|∇un|p(x)

p(x)
+ µ(x)

|∇un|q(x)

q(x)

)
dx − λ

∫
Ω

F(x, un) dx

∣∣∣∣∣ ≤ M,

which, multiplying by q+, leads to

ρH(∇un)− λ
∫

Ω
q+F(x, un) dx ≤ c3, (4.3.2)

for some c3 > 0 and for all n ∈ N. Besides, from (C2), there exists {εn}n∈N with
εn → 0+ such that∣∣⟨I′λ(un), v⟩

∣∣ ≤ εn∥v∥X

1 + ∥un∥X
for all n ∈ N and for all v ∈ X. (4.3.3)

Choosing v = un, one has∣∣∣∣∫Ω

(
|∇un|p(x) + µ(x)|∇un|q(x)

)
dx − λ

∫
Ω

f (x, un)un dx
∣∣∣∣ < εn,

which implies

−ρH(∇un) + λ
∫

Ω
f (x, un)un dx < εn (4.3.4)

for all n ∈ N. Adding (4.3.2) and (4.3.4) we obtain∫
Ω
( f (x, un)un − q+F(x, un)) dx < c4
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for all n ∈ N with some constant c4 > 0. Using this along with (4.3.1) we derive∫
Ω

(
c1|un|ζ− − c2

)
dx < c4,

which gives

∥un∥ζ−
ζ− < c5 for all n ∈ N

with some c5 > 0. Hence, {un}n∈N is bounded in Lζ−(Ω) and so Claim 1 is proved.
Claim 2. {un}n∈N is bounded in X.
From (fD

2 ) and (fD
4 ), we have that

ζ− < ℓ+ < (p−)∗.

Hence, there exists s ∈ (0, 1) such that

1
ℓ+

=
s

(p−)∗
+

1 − t
ζ−

, (4.3.5)

and using the interpolation inequality, see Papageorgiou-Winkert [79, Proposition
2.3.17 p.116], one has

∥un∥ℓ+ ≤ ∥un∥s
(p−)∗∥un∥1−s

ζ−
for all n ∈ N.

From Claim 1, it follows that

∥un∥ℓ+ ≤ c6∥un∥s
(p−)∗ (4.3.6)

for some c6 > 0 and for all n ∈ N. Again, from (4.3.3) with v = un, we get

ρH(∇un)− λ
∫

Ω
f (x, un)un dx < εn. (4.3.7)

We may assume ∥un∥X ≥ 1 for all n ∈ N, otherwise we are done. Then, using
Proposition 2.3.10(iv), (4.3.7), (fD

2 ) and (4.3.6), we derive that

∥un∥p−
X ≤ ρH(∇un) < εn + λ

∫
Ω

f (x, un)un dx

≤ λκ1

(
∥un∥1 + ∥un∥ℓ+ℓ+

)
+ εn

≤ c7

(
1 + cℓ+6 ∥un∥sℓ+

(p−)∗

)
+ εn

with c7 > 0. Hence, taking the embedding X ↪→ L(p−)∗(Ω) into account, we have

∥un∥p−
X ≤ c8

(
1 + ∥un∥sℓ+

X

)
+ εn,

for all n ∈ N and for some c8 > 0. From (4.3.5) and (fD
4 ), it follows that

sℓ+ =
(p−)∗)(ℓ+ − ζ−)

(p−)∗)− ζ−
=

Np−(ℓ+ − ζ−)

Np− − Nζ− + ζ−p−

<
Np−(ℓ+ − ζ−)

Np− − Nζ− + p−(ℓ+ − p−) N
p−

= p−,
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and this shows our second claim.
Claim 3. un → u in X up to a subsequence.
Since {un}n∈N ⊂ X is bounded (Claim 2) and X is a reflexive space, there exists a

subsequence, not relabeled, that converges weakly in X and strongly in Lℓ+(Ω), that
is,

un ⇀ u in X and un → u in Lℓ+(Ω).

Using this to (4.3.3) with v = un − u and passing to the limit as n → ∞, we obtain

⟨Φ′(un), un − u⟩ → 0 as n → ∞.

Since Φ′ satisfies the (S+)-property, see Proposition 4.2.1, the proof is complete.

Now, we state our main result. For this purpose, let

R := sup
x∈Ω

dist(x, ∂Ω).

Then there exists x0 ∈ Ω such that the ball with center x0 and radius R > 0 belongs
to Ω, that is,

B(x0, R) ⊆ Ω.

We indicate with ωR the the Lebesgue measure of B(x0, R) in RN given by

ωR := |B(x0, R)| = π
N
2

Γ(1 + N
2 )

RN ,

and we put

δ :=
min {Rp− , Rq+} p−

max {1, ∥µ∥∞} ωR (2N − 1)2q++1−N .

Furthermore, for any r, η ∈ R+, we define

α(r) := κ1

c̃1 max
{
(q+r)

1
p− , (q+r)

1
q+

}
+ c̄ℓ max

{
(q+r)

ℓ+
p− , (q+r)

ℓ−
q+

}
r

, (4.3.8)

β(η) := δ

∫
B(x0, R

2 )
F(x, η) dx

max {ηp− , ηq+} , (4.3.9)

where c̄ℓ = max
{

c̃ℓ−ℓ , c̃ℓ+ℓ
}

and c̃1, c̃ℓ, κ1, ℓ are given in (4.2.1) and (fD
2 ), respectively.

Theorem 4.3.2. Assume that (H) and (HD
f ) hold. Furthermore, suppose that there exist two

positive constants r, η satisfying

max {ηp− , ηq+} < δr , (4.3.10)

such that

(hD
1 ) F(x, t) ≥ 0 for a.a. x ∈ Ω and for all t ∈ [0, η];

(hD
2 ) α(r) < β(η),
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as defined in (4.3.8) and (4.3.9). Then, for each λ ∈ Λ, where

Λ :=

]
1

β(η)
,

1
α(r)

[
,

problem (Dλ) admits at least two nontrivial bounded weak solutions uλ,1, uλ,2 ∈ W1,H
0 (Ω)

with opposite energy sign.

Proof. Our aim is to apply Theorem 3.2.6. Let (X, ∥ · ∥X), Φ, Ψ be as introduced in
Section 4.2 and note that they already fulfill the required assumptions needed in
Theorem 3.2.6. In particular, from Proposition 2.3.10(vi) and (fD

3 ) follows that Φ is
coercive and Iλ is unbounded from below, respectively.

Now, fix λ ∈ Λ, which is nonempty because of (hD
2 ), and consider ũ ∈ X defined

by

ũ(x) =


0 if x ∈ Ω \ B(x0, R),

2η

R
(R − |x − x0|) if x ∈ B(x0, R) \ B

(
x0, R

2

)
,

η if x ∈ B
(
x0, R

2

)
.

Clearly, ũ ∈ X. We show that 0 < Φ(ũ) < r. Indeed, using (4.3.10), it follows that

Φ(ũ) =
∫

B(x0,R)\B(x0, R
2 )

(
1

p(x)

(
2η

R

)p(x)

+
µ(x)
q(x)

(
2η

R

)q(x)
)

dx

≤ 2q+

p−

∫
B(x0,R)\B(x0, R

2 )

(( η

R

)p(x)
+ µ(x)

( η

R

)q(x)
)

dx

≤ 2q+

p−
max {1, ∥u∥∞}
min {Rp− , Rq+} max {ηp− , ηq+} · 2 ·

(
ωR − ω R

2

)
=

1
δ

max {ηp− , ηq+} < r.

Now, we prove (3.2.5). From assumption (hD
1 ), we obtain

Ψ(ũ) =
∫

B(x0, R
2 )

F(x, η) dx +
∫

B(x0,R)\B(x0, R
2 )

F
(

x,
2η

R
(R − |x − x0|)

)
dx

≥
∫

B(x0, R
2 )

F(x, η) dx.

Hence,

Ψ(ũ)
Φ(ũ)

≥ δ

∫
B(x0, R

2 )
F(x, η) dx

max {ηp− , ηq+} . (4.3.11)

On the other hand, fix u ∈ X such that Φ(u) < r. Then, one has

q+r > q+Φ(u) > ρH(∇u) ≥ min
{
∥u∥p−

X , ∥u∥q+
X
}

,

which implies that

Φ−1 (]− ∞, r]) ⊆
{

u ∈ X : ∥u∥X ≤ max
{
(q+r)

1
p− , (q+r)

1
q+

}}
.
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Furthermore, we have

sup
u∈Φ−1(]−∞,r])

Ψ(u)

≤ sup
u∈Φ−1(]−∞,r])

κ1

∫
Ω

(
|u|+ |u|ℓ(x)

)
dx

= sup
u∈Φ−1(]−∞,r])

κ1

(
∥u∥1 + ρℓ(·)(u)

)
≤ sup

u∈Φ−1(]−∞,r])
κ1

(
∥u∥1 + max

{
∥u∥ℓ−

ℓ(·), ∥u∥ℓ+
ℓ(·)

})
≤ sup

u∈Φ−1(]−∞,r])
κ1

(
c̃1∥u∥X + c̃ℓ max

{
∥u∥ℓ−X , ∥u∥ℓ+X

})
≤ κ1

(
c̃1 max

{
(q+r)

1
p− , (q+r)

1
q+

}
+ c̃ℓ max

{
(q+r)

ℓ+
p− , (q+r)

ℓ−
q+

})
.

Then, taking (hD
2 ) and (4.3.11) into account, we get

sup
u∈Φ−1(]−∞,r])

Ψ(u)

r

≤
κ1

(
c̃1 max

{
(q+r)

1
p− , (q+r)

1
q+

}
+ c̄ℓ max

{
(q+r)

ℓ+
p− , (q+r)

ℓ−
q+

})
r

< δ

∫
B(x0, R

2 )
F(x, η) dx

max {ηp− , ηq+} ≤ Ψ(ũ)
Φ(ũ)

,

namely hypothesis (3.2.5) is satisfied. Hence, along with Lemma 4.3.1, Theorem 3.2.6
ensures the existence of two nontrivial weak solutions uλ,1, uλ,2 ∈ W1,H

0 (Ω) such
that Iλ(uλ,1) < 0 < Iλ(uλ,2). Finally, from Crespo-Blanco-Winkert [39, Theorem 3.1]
it follows that uλ,1, uλ,2 belong to L∞(Ω). This finishes the proof.

Corollary 4.3.3. Suppose that all assumptions of Theorem 4.3.2 are satisfied. Moreover,
assume that

f (x, 0) ≥ 0 and f (x, t) = f (x, 0) for a.a. x ∈ Ω and for all t < 0.

Then, problem (Dλ) admits at least two nontrivial and nonnegative bounded weak solutions
uλ,1, uλ,2 ∈ W1,H

0 (Ω) with opposite energy sign.

Proof. Since all the assumptions are satisfied, we can apply Theorem 4.3.2. We only
need to prove that the solutions uλ,1, uλ,2 are nonnegative. Since uλ,1 is a weak so-
lution of (Dλ), from (4.2.2) one has ⟨I′λ(uλ,1), v⟩ = 0 for every v ∈ X. Choosing
v = −u−

λ,1 = −max{−uλ,1, 0} ∈ W1,H
0 (Ω), see [40, Proposition 2.17(iii)], we have∫

Ω

(
|∇uλ,1|p(x)−2∇uλ,1 + µ(x)|∇uλ,1|q(x)−2∇uλ,1

)
· ∇
(
−u−

λ,1

)
dx

= λ
∫

Ω
f (x, uλ,1)

(
−u−

λ,1

)
dx,
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which leads to

−ρH(∇u−
λ,1) ≥ 0.

But the previous inequality implies that

min
{
∥u−

λ,1∥
p−
X , ∥u−

λ,1∥
q+
X

}
≤ ρH(∇u−

λ,1) ≤ 0,

which gives ∥u−
λ,1∥X = 0. Then, u−

λ,1 = 0 and uλ,1 ≥ 0. With the same argument we
obtain uλ,2 ≥ 0 and the proof is complete.

Now we consider the special case when the nonlinear term is nonnegative.

Theorem 4.3.4. Assume that (H) and (HD
f ) hold. Furthermore, suppose that f is nonnega-

tive and

lim sup
t→0+

inf
x∈Ω

F(x, t)

tp−
= +∞ (hD

3 )

Then, for each λ ∈]0, λ∗[, with

λ∗ = sup
r>0

1
α(r)

,

where α(r) is given in (4.3.8), problem (Dλ) admits at least two nontrivial and nonnegative
bounded weak solutions uλ,1, uλ,2 ∈ W1,H

0 (Ω) with opposite energy sign.

Proof. We observe that (hD
3 ) implies that

lim sup
η→0+

β(η) = lim sup
η→0+

δ

∫
B(x0, R

2 )
F(x, η) dx

max {ηp− , ηq+}

≥ δ ω R
2

lim sup
η→0+

inf
x∈Ω

F(x, η)

ηp−
= +∞.

(4.3.12)

Then, fixing λ ∈]0, λ∗[, there exists r > 0 such that

λ <
1

α(r)
=

r

κ1

(
c̃1 max

{
(q+r)

1
p− , (q+r)

1
q+

}
+ c̃ℓ max

{
(q+r)

ℓ+
p− , (q+r)

ℓ−
q+

}) .

Moreover, from (4.3.12), there is η > 0 small enough such that

δ ω R
2

inf
x∈Ω

F(x, η)

ηp−
>

1
λ

,

implying that α(r) < β(η). Applying Theorem 4.3.2 and arguing as in the proof of
Corollary 4.3.3, we achieve our goal.

Finally, we provide an example of a function that satisfies our assumptions.
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Example 4.3.5. Consider f : Ω × R → R defined by

f (x, t) =

{
|t|α(x)−2t if |t| < 1,
|t|β(x)−2t (log |t|+ 1) if |t| ≥ 1,

where α, β ∈ C(Ω) such that q+ < β(x) < (p−)∗ for all x ∈ Ω and

β+

p−
− β−

N
< 1.

Then, f satisfies assumptions (HD
f ) with ζ(x) = β(x) for all x ∈ Ω and ℓ(x) = β(x) + σ

for all x ∈ Ω, with σ > 0 small enough such that

ℓ+ < (p−)∗,
ℓ+
p−

− β−
N

< 1.

Moreover, we can apply Theorem 4.3.4 at f̃ (x, t) = | f (x, t)| for every (x, t) ∈ Ω × R,
requiring also that α(x) < p− for all x ∈ Ω.
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Chapter 5

Robin double phase problem

This chapter deals with the study of a nonlinear parametric differential problem in-
volving the double phase operator with variable exponents and Robin boundary
conditions with critical growth. In particular, we determine an interval of parame-
ters that guarantees the existence of two nontrivial weak solutions and we state the
hypotheses under which the solutions turn out to be nonnegative. The main tool of
our investigastion is a two critical points theorem.

The results presented in this chapter are obtained in [4], in collaboration with V.
Morabito.

5.1 The problem

Let Ω ⊆ RN , N ≥ 2 be a bounded domain with Lipschitz boundary ∂Ω and denote
with ν(x) the unit normal of Ω at every point x ∈ ∂Ω. We study the following
nonlinear differential equation involving the double phase operator with variable
exponents under nonlinear Robin boundary conditions

−div
(
|∇u|p(x)−2∇u + µ(x)|∇u|q(x)−2∇u

)
+ α(x)|u|p(x)−2u = λ f (x, u) in Ω,(

|∇u|p(x)−2∇u + µ(x)|∇u|q(x)−2∇u
)
· ν = −β(x)|u|p∗(x)−2u on ∂Ω,

(Rλ)

where λ > 0, p, q, µ satisfy assumptions stated in the sequel, α, β are nonnegative
functions belonging to suitable spaces and f : Ω×R → R is a L1-Carathéodory func-
tion with a subcritical growth that satisfies the well-known Ambrosetti-Rabinowitz
condition. In particular, recalling that

p∗(x) :=
Np(x)

N − p(x)
and p∗(x) :=

(N − 1)p(x)
N − p(x)

for all x ∈ Ω,

are the critical Sobolev exponent of p and the critical exponent to p on ∂Ω, respec-
tively, we emphasize that we allow a critical growth on the boundary. Clearly, if
β ≡ 0, then (Rλ) becomes the corresponding homogeneous Neumann problem

−div
(
|∇u|p(x)−2∇u + µ(x)|∇u|q(x)−2∇u

)
+ α(x)|u(x)|p(x)−2u = λ f (x, u) in Ω,(

|∇u|p(x)−2∇u + µ(x)|∇u|q(x)−2∇u
)
· ν = 0 on ∂Ω.

For our purpose, we require more restrictive hypotheses than (H) on the exponents.
Now, we introduce them and we also state the assumptions on the weight functions.
Indeed, we assume the following:
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(HR) (i) p ∈ C(Ω) ∩ W1,γ(Ω) for some γ > N, q ∈ C(Ω) such that

1 < p(x) < N, p(x) < q(x) < p∗(x) for all x ∈ Ω,

(ii) µ ∈ L∞(Ω) with µ ≥ 0 a.e. in Ω,

(iii) α ∈ L∞(Ω) with α ≥ 0 a.e. in Ω and α ̸≡ 0,

(iv) β ∈ L∞(∂Ω) with β ≥ 0 a.e. in ∂Ω.

(HR
f ) Let f : Ω × R → R and F(x, t) =

∫ t
0 f (x, s) ds for all x ∈ Ω be such that:

(fR
1 ) f is L1-Carathéodory, i.e.

(i) x → f (x, t) is measurable for all t ∈ R;
(ii) t → f (x, t) is continuous for a.a. x ∈ Ω;
(iii) for all s > 0 the function sup

|t|≤s
| f (·, t)| belongs to L1(Ω);

(fR
2 ) there exist k1, k2 > 0 and ℓ ∈ C+(Ω) with ℓ+ < (p∗)−, such that

| f (x, t)| ≤ k1 + k2|t|ℓ(x)−1

for a.a. x ∈ Ω and for all t ∈ R;

(AR) there exist η > (p∗)+, s > 0 such that

0 < ηF(x, t) ≤ t f (x, t)

for all x ∈ Ω and for all |t| ≥ s.

5.2 Variational framework

Since we deal with a nonlinear Robin double phase problem, we search for solutions
u of problem (Rλ) in the Musielack-Orlicz Sobolev space W1,H(Ω), introduced in
Chapter 2. We need to equipe the space with an equivalent norm, which is a par-
ticular case of the new general one introduced in subsection 2.3.2. To this aim we
consider the seminormed spaces

Lp(·)
α (Ω) =

{
u ∈ M(Ω) :

∫
Ω

α(x)|u|p(x) dx < ∞
}

,

Lp∗(·)
β (∂Ω) =

{
u ∈ M(Ω) :

∫
∂Ω

β(x)|u|p∗(x) dσ < ∞
}

,

endowed with the seminorms

∥u∥p(·),α = inf
{

τ > 0 :
∫

Ω
α(x)

∣∣∣u
τ

∣∣∣p(x)
dx ≤ 1

}
,

∥u∥p∗(·),β,∂Ω = inf
{

τ > 0 :
∫

∂Ω
β(x)

∣∣∣u
τ

∣∣∣p∗(x)
dσ ≤ 1

}
,
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whose corresponding modular are given by

ρp(·),α(u) =
∫

Ω
α(x)|u|p(x) dx for all u ∈ Lp(·)

α (Ω),

ρp∗(·),β,∂Ω(u) =
∫

∂Ω
β(x)|u|p∗(x) dσ for all u ∈ Lp∗(·)

β (∂Ω),

respectively. We recall that in Section 2.2 we introduced a trace operator

γ0 : W1,r(·)(Ω) → Lk(·)(∂Ω) for every k ∈ C(Ω) with 1 ≤ k(x) ≤ r∗(x) ∀x ∈ Ω.

So, we avoid the notation of the trace map and we consider all the restrictions of
Sobolev functions to the boundary ∂Ω in the sense of traces, see Proposition 2.2.7
for more details. Now, we endow the space W1,H(Ω) with the following equivalent
norm

∥u∥ = inf

{
τ > 0 :

∫
Ω

(∣∣∣∣∇u
τ

∣∣∣∣p(x)

+µ(x)
∣∣∣∣∇u

τ

∣∣∣∣q(x))
dx

+
∫

Ω
α(x)

∣∣∣∣uτ
∣∣∣∣p(x)

dx +
∫

∂Ω
β(x)

∣∣∣∣uτ
∣∣∣∣p∗(x)

dσ ≤ 1

}
,

which is obtained by ∥ · ∥∗1,H, defined in (2.3.11), by choosing θ1 ≡ α, δ1 ≡ p, θ2 ≡ β

and δ2 ≡ p∗. Clearly, assumption (H2) is satisfied since we assume (HR), so the
results presented in subsection 2.3.2 hold true. In particular, the norm ∥ · ∥ and the
corresponding modular function ρ(·), given by

ρ(u) =
∫

Ω

(
|∇u|p(x) + µ(x)|∇u|q(x)

)
dx +

∫
Ω

α(x)|u|p(x) dx +
∫

∂Ω
β(x)|u|p∗(x) dσ,

for all u ∈ W1,H(Ω), are related as in Proposition 2.3.16. For reader’s convenience,
we recall such propoperties in our case in the following proposition.

Proposition 5.2.1. Let (HR) be satisfied, u ∈ W1,H(Ω) and τ > 0. Then the following
hold:

(i) If u ̸= 0, then ∥u∥ = τ ⇐⇒ ρ( u
τ ) = 1;

(ii) ∥u∥ < 1 (resp. > 1, = 1) ⇐⇒ ρ(u) < 1 (resp.> 1, = 1);

(iii) If ∥u∥ < 1 =⇒ ∥u∥(p∗)+ ≤ ρ(u) ≤ ∥u∥p− ;

(iv) If ∥u∥ > 1 =⇒ ∥u∥p− ≤ ρ(u) ≤ ∥u∥(p∗)+ ;

(v) ∥u∥ → 0 ⇐⇒ ρ(u) → 0;

(vi) ∥u∥ → ∞ ⇐⇒ ρ(u) → ∞;

(vii) ∥u∥ → 1 ⇐⇒ ρ(u) → 1.

We refer to subsection 2.3.1 for the properties of the space W1,H(Ω), which clearly
hold also under assumption (HR) that is more restrictive than (H) and (H1). More-
over, we prove two other embeddings that are useful in our treatment.

Proposition 5.2.2. Let (HR) be satisfied. Then the following embeddings hold:

(i) W1,H(Ω) ↪→ Lp(·)
α (Ω) is continuous;
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(ii) W1,H(Ω) ↪→ Lp∗(·)
β (∂Ω) is continuous.

Proof. Fix u ∈ W1,H(Ω) with u ̸= 0, then it holds that

ρp(·),α(u) =
∫

Ω
α(x)|u|p(x) dx

≤
∫

Ω

(
|∇u|p(x) + µ(x)|∇u|q(x) + α(x)|u|p(x)

)
dx +

∫
∂Ω

β(x)|u|p∗(x) dσ

=ρ(u).

From Proposition 5.2.1(i) it follows that

ρp(·),α

(
u

∥u∥

)
≤ ρ

(
u

∥u∥

)
= 1.

Hence, we have
∥u∥p(·),α ≤ ∥u∥,

and (i) is proved. The embedding in (ii) can be proved similarly.

Our aim is to establish the existence of two nontrivial weak solutions for the
problem (Rλ). We say that u ∈ W1,H(Ω) is a nontrivial weak solution of (Rλ) if the
following holds∫

Ω

(
|∇u|p(x)−2∇u + µ(x)|∇u|q(x)−2∇u

)
· ∇v dx +

∫
Ω

α(x)|u|p(x)−2 uv dx

+
∫

∂Ω
β(x)|u|p∗(x)−2 uv dσ = λ

∫
Ω

f (x, u)v dx

for all v ∈ W1,H(Ω). We denote by ⟨·, ·⟩ the duality pairing between W1,H(Ω) and
its dual space W1,H(Ω)∗ and we introduce the nonlinear operator J : W1,H(Ω) →
W1,H(Ω)∗ defined by

⟨J(u), v⟩ =
∫

Ω

(
|∇u|p(x)−2∇u + µ(x)|∇u|q(x)−2∇u

)
· ∇v dx

+
∫

Ω
α(x)|u|p(x)−2 uv dx +

∫
∂Ω

β(x)|u|p∗(x)−2 uv dσ.

In the next proposition we give the properties of the operator J which has been
proved in Amoroso-Crespo-Blanco-Pucci-Winkert [5, Proposition 3.3] for a more
general operator.

Proposition 5.2.3. Let (HR) be satisfied. Then, the operator J : W1,H(Ω) → W1,H(Ω)∗ is
bounded, continuous, strictly monotone, coercive, a homeomorphism and of type (S+), that
is

un ⇀ u in W1,H(Ω) and lim sup
n→+∞

⟨J(un), un − u⟩ ≤ 0

imply un → u in W1,H(Ω).

Furthermore, we define the functionals Φ, Ψ, Iλ : W1,H(Ω) → R by

Φ(u) =
∫

Ω

(
|∇u|p(x)

p(x)
+ µ(x)

|∇u|q(x)

q(x)
+ α(x)

|u|p(x)

p(x)

)
dx +

∫
∂Ω

β(x)
|u|p∗(x)

p∗(x)
dσ,

Ψ(u) =
∫

Ω
F(x, u) dx,

Iλ(u) = Φ(u)− λΨ(u),

(5.2.1)
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for all u ∈ W1,H(Ω) and Iλ is the so-called energy functional associated to our
problem (Rλ).

Proposition 5.2.4. Let (HR) be satisfied. Then, the functional Φ is well-defined and of class
C1 with Φ′(u) = J(u).

Proof. For any u ∈ W1,H(Ω) one has

0 ≤ ρ(u)
(p∗)+

< Φ(u) <
ρ(u)
p−

< ∞,

which implies that Φ is well defined in W1,H(Ω). Proving that J is the Gâteaux
derivative of Φ means showing that

Φ(u + tv)− Φ(u)
t

t→0−−→ ⟨J(u), v⟩,

for all u, v ∈ W1,H(Ω). In [40, Proposition 3.1] the authors demonstrate that for t ∈ R

and for all u, v ∈ W1,H(Ω)

∫
Ω

(
|∇u + t∇v|p(x) − |∇u|p(x)

tp(x)
+ µ(x)

|∇u + t∇v|q(x) − |∇u|q(x)

tq(x)

)
dx

t→0−−→
∫

Ω

(
|∇u|p(x)−2∇u + µ(x)|∇u|q(x)−2∇u

)
· ∇v dx,

hence it remains to prove that for t ∈ R and for all u, v ∈ W1,H(Ω) the following
hold ∫

Ω
α(x)

|u + tv|p(x) − |u|p(x)

tp(x)
dx t→0−−→

∫
Ω

α(x)|u|p(x)−2uv dx, (5.2.2)

∫
∂Ω

β(x)
|u + tv|p∗(x) − |u|p∗(x)

tp∗(x)
dσ

t→0−−→
∫

∂Ω
β(x)|u|p∗(x)−2 uv dσ. (5.2.3)

First, we consider (5.2.2). From the Mean Value Theorem one has that there exists
ε = ε(x, t) ∈ (0, 1) such that

∫
Ω

α(x)
|u + tv|p(x) − |u|p(x)

tp(x)
dx =

∫
Ω

α(x)|u + εtv|p(x)−2(u + εtv)v dx. (5.2.4)

In order to apply the Dominated Convergence Theorem, we estimate that

α(x)|u + εtv|p(x)−2(u + εtv)v ≤ α(x)|u + εtv|p(x)−1|v|

≤ 2p+−1α(x)
(
|u|p(x)−1 + ε|t||v|p(x)−1

)
|v| ∈ L1(Ω),
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using the embedding in Proposition 5.2.2(i), Hölder’s inequality for variable expo-
nents (Proposition 2.2.3) and Proposition 5.2.1(iii)-(iv). Indeed, we get∫

Ω
α(x)|u|p(x)−1|v|dx =

∫
Ω

α(x)
p(x)−1

p(x) |u|p(x)−1α(x)
1

p(x) |v|dx

≤2
∥∥∥∥α(·)

p(·)−1
p(·) |u|p(·)−1

∥∥∥∥ p(·)
p(·)−1

∥∥∥α(·)
1

p(·) |v|
∥∥∥

p(·)

≤2
(

ρ p(·)
p(·)−1

(
α(·)

p(·)−1
p(·) |u|p(·)−1

))a (
ρp(·)

(
α(·)

1
p(·) |v|

))b

=2
(

ρp(·),α(u)
)a (

ρp(·),α(v)
)b

< ∞,

for some a, b > 0 and similarly for α(·)|v|p(·)−1|v| ∈ L1(Ω). So, passing to the limit
for t → 0 in (5.2.4), by the Dominated Convergence Theorem we obtain (5.2.2). In
the same way we can prove (5.2.3), using now the embedding in Proposition 5.2.2(ii)
and this completes the proof that Φ′(u) = J(u) for every u ∈ W1,H(Ω).

Finally, the C1-property follows from the continuity of J, see Proposition 5.2.3.

In addition, we note that Ψ is of class C1 from the Carathéodory assumption on
f , then Iλ is of class C1 and its derivative is the following

⟨I′λ(u), v⟩
=⟨Φ′(u), v⟩ − λ⟨Ψ′(u), v⟩

=
∫

Ω

(
|∇u|p(x)−2∇u + µ(x)|∇u|q(x)−2∇u

)
· ∇v dx +

∫
Ω

α(x)|u|p(x)−2 uv dx

+
∫

∂Ω
β(x)|u|p∗(x)−2 uv dσ − λ

∫
Ω

f (x, u)v dx,

for all u, v ∈ W1,H(Ω). Hence, u is a nontrivial weak solution of (Rλ) if and only if u
is a critical point of Iλ, i.e.

u ∈ W1,H
0 (Ω) weak solution of (Dλ) ⇐⇒ ⟨I′λ(u), v⟩ = 0 for all v ∈ W1,H(Ω).

So, we study the problem through critical point theory since discussing the existence
of weak solutions for (Rλ) is equivalent to study the existence of critical point of the
energy functional Iλ associated to our problem. Our main tool of investigation is is
a two critical point theorem due to Bonanno-D’Aguì in [23, Theorem 2.1], recalled in
Theorem 3.2.5 in Chapter 3.

5.3 Main results

In this section, we present our main result on the existence of two nontrivial solu-
tions for the nonlinear Robin double phase problem with variable exponents given
by (Rλ). Since our purpose is to apply Theorem 3.2.5 to the functionals Φ and Ψ
defined in (5.2.1), we prove the following result on the required properties of the
energy functional Iλ related to problem (Rλ).

Lemma 5.3.1. Let (HR) and (HR
f ) be satisfied. Then, for every λ > 0 the energy functional

Iλ given in (5.2.1) satisfies the (PS)-condition and is unbounded from below.

Proof. First, we prove that Iλ fulfills the (PS)-condition for any λ > 0.
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Fix λ > 0 and let {un} ⊆ W1,H(Ω) be such that (PS1) and (PS2) hold. We observe
that

η Iλ(un)− I′λ(un)(un) = η

(∫
Ω

(
|∇un|p(x)

p(x)
+ µ(x)

|∇un|q(x)

q(x)
+ α(x)

|un|p(x)

p(x)

)
dx

+
∫

∂Ω
β(x)

|un|p∗(x)

p∗(x)
dσ − λ

∫
Ω

F(x, un) dx
)

− ρ(un) + λ
∫

Ω
f (x, un)un dx

>
η

(p∗)+
ρ(un)− ρ(un) + λ

∫
Ω

(
f (x, un)un − ηF(x, un)

)
dx

=

(
η

(p∗)+
− 1
)

ρ(un) + λ
∫

Ω

(
f (x, un)un − ηF(x, un)

)
dx

for all n ∈ N, where
(

η

(p∗)+
− 1
)
> 0 since η > (p∗)+. Thanks to Proposition 5.2.1

(iii)-(iv), one has

min
{
∥un∥p− , ∥un∥(p∗)+

}
≤ ρ(un) ≤ max

{
∥un∥p− , ∥un∥(p∗)+

}
for all n ∈ N.

Therefore,

η Iλ(un)− I′λ(un)(un) >

(
η

(p∗)+
− 1
)

min
{
∥un∥p− , ∥un∥(p∗)+

}
− λ

∫
Ω

(
ηF(x, un)− f (x, un)un

)
dx.

(5.3.1)

We observe that ∫
Ω

(
ηF(x, un)− f (x, un)un

)
dx ≤ A, (5.3.2)

for some A ≥ 0 and for all n ∈ N. Indeed, by (AR)-condition one has

ηF(x, t)− t f (x, t) ≤ 0 for all |t| ≥ s (5.3.3)

and from hypothesis (fR
1 ) follows that

|F(x, t)| ≤ sup
|t|≤s

| f (x, t)|s ≤ s · hs(x) for all |t| ≤ s (5.3.4)

with hs ∈ L1(Ω). Putting together (5.3.3) and (5.3.4) we obtain (5.3.2) with A =
s(η + 1)∥hs∥1 ≥ 0. Then, using (5.3.2) in (5.3.1) we have

η Iλ(un)− I′λ(un)(un) >

(
η

(p∗)+
− 1
)

min
{
∥un∥p− , ∥un∥(p∗)+

}
− λA,

which yields to(
η

(p∗)+
− 1
)

min
{
∥un∥p− , ∥un∥(p∗)+

}
< η Iλ(un)− I′λ(un)(un) + λA, (5.3.5)
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for all n ∈ N. From (PS1) and (PS2) we have that there exist M > 0 and {εn} ⊆ R+,
with εn → 0+, such that

Iλ(un) ≤ M and |I′λ(un)(v)| ≤ εn∥v∥, (5.3.6)

for all v ∈ W1,H(Ω) and for all n ∈ N. Choosing v = un in (5.3.6) and combining it
with (5.3.5), we get(

η

(p∗)+
− 1
)

min
{
∥un∥p− , ∥un∥(p∗)+

}
< ηM + εn∥un∥+ λA,

and this proves that un is bounded in W1,H(Ω). Since W1,H(Ω) is a reflexive Banach
space, there exists a subsequence, renamed un, that weakly converges in W1,H(Ω).
Hence, taking into account Proposition 2.3.12(iii) and that ℓ+ < (p∗)− from (fR

2 ), it
holds that

un ⇀ u in W1,H(Ω) and un → u in Lℓ(·)(Ω). (5.3.7)

Moreover, choosing v = un − u in (5.3.6), from (fR
2 ) and the convergence properties

in (5.3.7) we obtain

⟨Φ′(un), un − u) → 0 as n → +∞.

Proposition 5.2.3 ensures that Φ′ satisfies the (S+)-property, which implies that

un → u in W1,H(Ω)

and the (PS)-condition is proved. Finally, we prove the unboundedness from below
of Iλ for every λ > 0. Indeed, from the (AR)-condition one has

F(x, t) ≥ min {F(x, s), F(x,−s)}
sη

|t|η =
C1(x)

sη
|t|η for all x ∈ Ω, |t| ≥ s, (5.3.8)

with C1(x) > 0 for all x ∈ Ω and C1 ∈ L1(Ω) since f is L1−Carathéodory (see (fR
1 )).

Also, for all x ∈ Ω and |t| ≤ s it holds that

F(x, t) ≥ min
|ξ|≤s

F(x, ξ) ≥ min
|ξ|≤s

F(x, ξ) +
C1(x)

sη
|t|η − C1(x)

=
C1(x)

sη
|t|η −

(
C1(x)− min

|ξ|≤s
F(x, ξ)

)
=

C1(x)
sη

|t|η − C2(x),
(5.3.9)

where C2(x) > 0, C2 ∈ L1(Ω) by construction. So, combining (5.3.8) and (5.3.9)
together, it follows that

F(x, t) ≥ C1(x)
sη

|t|η − C2(x) for all x ∈ Ω, for all t ∈ R.

Fixing u ∈ W1,H(Ω) such that ∥u∥ ̸= 0 and h ∈ R+, one has

Iλ(hu) ≤ 1
p−

h(p∗)+ρ(u)− λ

sη

∫
Ω

C1(x)|hu|η dx + λ
∫

Ω
C2(x) dx

≤ 1
p−

h(p∗)+ρ(u)− λ

sη
inf
Ω

C1 hη∥u∥η
η + λ∥C2∥1.

Passing to the limit for h → ∞, we achieve our aim and the proof is complete.
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Now, we give our main result concerning the existence of at least two nontrivial
weak solutions for problem (Rλ). For this purpose, set

δ = max
{
∥α∥∞|Ω|, ∥β∥∞,∂Ω|∂Ω|

}
, (5.3.10)

where ∥ · ∥∞,∂Ω = ∥ · ∥L∞(∂Ω) and |∂Ω| denotes the measure of ∂Ω in RN−1. Also, for
any r, ω > 0 put

A(r) =
k1c1 max

{
(r(p∗)+)

1
p− , (r(p∗)+)

1
(p∗)+

}
r

+

k2

ℓ−
c max

{
(r(p∗)+)

ℓ−
p− , (r(p∗)+)

ℓ+
(p∗)+

}
r

,

(5.3.11)

B(ω) =

∫
Ω F(x, ω)dx

δ max
{

ω(p∗)+ , ωp−
} , (5.3.12)

where c1 is the embedding constant of W1,H(Ω) in L1(Ω) and c = max{cℓ−ℓ , cℓ+ℓ },
with cℓ being the embedding constant of W1,H(Ω) in Lℓ(·)(Ω).

Theorem 5.3.2. Let (HR) and (HR
f ) be satisfied. Suppose that there exist r, ω > 0 such that

max
{

ω(p∗)+ , ωp−
}
<

r
δ

, (5.3.13)

and
A(r) < B(ω). (5.3.14)

Then, for each λ ∈ Λ, with

Λ :=
]

1
B(ω)

,
1

A(r)

[
, (5.3.15)

problem (Rλ) admits at least two nontrivial weak solutions with opposite energy sign.

Proof. The proof is based on Theorem 3.2.5. Let W1,H(Ω), Φ, Ψ be as in Section 5.2
and note that they verify all the regularity assumptions required in Theorem 3.2.5.
In addition, Lemma 5.3.1 ensures the (PS)-condition and the unboundedness of Iλ

for every λ > 0. So, it remains to prove only condition (3.2.4). Let ũ ≡ ω ∈ W1,H(Ω),
with ω > 0 as in (5.3.13). It holds that 0 < Φ(ω) < r, indeed one has

0 < Φ(ω) =
∫

Ω
α(x)ωp(x) dx +

∫
∂Ω

β(x)ωp∗(x)dσ ≤

≤max {wp− , ωp+} ∥α∥∞|Ω|

+ max
{

ω(p∗)− , ω(p∗)+
}
∥β∥∞,∂Ω|∂Ω|

≤max
{

ω(p∗)+ , ωp−
}

δ

<r.

(5.3.16)

Then, we consider u ∈ W1,H(Ω) such that Φ(u) ≤ r and using Proposition 5.2.1(iii)-
(iv) we note that

r ≥ Φ(u) ≥ 1
(p∗)+

ρ(u) ≥ 1
(p∗)+

min
{
∥u∥p− , ∥u∥(p∗)+

}
.
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Therefore,

Φ−1 (]− ∞, r]) ⊆
{

u ∈ W1,H(Ω) : ∥u∥ < max
{
(r(p∗)+)

1
p− , (r(p∗)+)

1
(p∗)+

}}
. (5.3.17)

Furthermore, using assumption (fR
2 ), Proposition 2.2.2, Proposition 2.3.12 and (5.3.17),

we get

sup
u∈Φ−1(]−∞,r])

Ψ(u) ≤ sup
u∈Φ−1(]−∞,r])

∫
Ω

(
k1|u|+ k2

|u|ℓ(x)

ℓ(x)

)
dx

≤ sup
u∈Φ−1(]−∞,r])

(
k1∥u∥1 +

k2

ℓ−
ρℓ(·)(u)

)
dx

≤ sup
u∈Φ−1(]−∞,r])

(
k1c1∥u∥+ k2

ℓ−
c max

{
∥u∥ℓ− , ∥u∥ℓ+

})
≤ k1c1 max

{
(r(p∗)+)

1
p− , (r(p∗)+)

1
(p∗)+

}
+

k2

ℓ−
c max

{
(r(p∗)+)

ℓ−
p− , (r(p∗)+)

ℓ+
(p∗)+

}
.

Hence, exploiting (5.3.14) and (5.3.16), from the previous inequality we derive that

sup
u∈Φ−1(]−∞,r])

Ψ(u)

r
≤ A(r) < B(ω) ≤ Ψ(ω)

Φ(ω)
and Λ ⊂ Λr.

Then, hypothesis (3.2.4) is satisfied and Theorem 3.2.5 ensures the existence of two
nontrivial weak solutions uλ,1, uλ,2 ∈ W1,H(Ω) for any λ ∈ Λ with opposite energy
sign, namely such that Iλ(uλ,1) < 0 < Iλ(uλ,2).

In order to find information about the sign of the solutions, we may assume

f (x, t) = f (x, 0) for all x ∈ Ω, for all t < 0.

Indeed, we have the following result.

Lemma 5.3.3. Let u ∈ W1,H(Ω) be a weak solution of problem (Rλ). If f (x, 0) ≥ 0 for
a.a. x ∈ Ω, then u is nonnegative.

Proof. Since u is a weak solution of problem (Rλ), it holds that ⟨I′λ(u), v⟩ = 0, namely∫
Ω

(
|∇u|p(x)−2∇u + µ(x)|∇u|q(x)−2∇u

)
· ∇v dx +

∫
Ω

α(x)|u|p(x)−2 uv dx

+
∫

∂Ω
β(x)|u|p∗(x)−2 uv dσ − λ

∫
Ω

f (x, u)v dx = 0,

for every v ∈ W1,H(Ω). Arguing by contradiction, we suppose that

{x ∈ Ω : u(x) < 0} ̸= ∅.

Choosing v = u− = max{−u, 0}, we obtain

−ρ(u−) = λ
∫

Ω
f (x, u)u− dx = λ

∫
{u<0}

f (x, 0)u− dx ≥ 0.
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From Proposition 5.2.1 it follows that

min
{
∥u−∥p− , ∥u−∥(p∗)+

}
≤ ρ(u−) ≤ 0,

so it must be ∥u−∥ = 0. Thus, u− ≡ 0 which implies that u ≥ 0 and this completes
the proof.

Combining Theorem 5.3.2 and Lemma 5.3.3, we get the following existence result
of two nonnegative weak solutions.

Corollary 5.3.4. Let f (x, 0) ≥ 0 for a.a. x ∈ Ω and assume hypotheses (HR), (fR
1 ) and (fR

2 ).
Suppose that

(AR+) there exist η > (p∗)+, s > 0 such that

0 < ηF(x, t) ≤ t f (x, t) for all x ∈ Ω and for all t ≥ s,

and there exist r, ω > 0 such that

max
{

ω(p∗)+ , ωp−
}
<

r
δ

and A(r) < B(ω),

where δ, A(r) and B(ω) are given by (5.3.10), (5.3.11) and (5.3.12), respectively. Then, for
each λ ∈ Λ, defined in (5.3.15), problem (Rλ) admits at least two nontrivial and nonnegative
weak solutions with opposite energy sign.

Furthermore, we consider some particular cases. In the following Theorem, we
establish an existence result when the nonlinear term is nonnegative, requiring also
a particular behavior near zero.

Theorem 5.3.5. Let (HR), (fR
1 ), (fR

2 ) and (AR+) be satisfied. Suppose that f is nonnegative
and

lim sup
t→0+

inf
x∈Ω

F(x, t)

tp−
= +∞. (5.3.18)

Then, for each λ ∈]0, λ∗[, with

λ∗ = sup
r>0

1
A(r)

,

problem (Rλ) admits at least two nontrivial and nonnegative weak solutions with opposite
energy sign.

Proof. Fix λ ∈]0, λ∗[. Then, there exist r > 0 such that

λ <
1

A(r)
. (5.3.19)

Moreover, from assumption (5.3.18) it follows that

lim sup
ω→0+

B(ω) = lim sup
ω→0+

∫
Ω F(x, ω)dx

δ max
{

ω(p∗)+ , ωp−
}

≥ |Ω|
δ

lim sup
ω→0+

inf
x∈Ω

F(x, ω)

ωp−
= +∞.
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Therefore, there exists ω > 0 small enough such that

|Ω|
δ

inf
x∈Ω

F(x, ω)

ωp−
>

1
λ

,

which together with (5.3.19) implies that A(r) < B(ω). Then, the result follows from
Corollary 5.3.4.

Here, we provide an example of application of the previous result.

Example 5.3.6. Consider the following function

f (x, t) = h1(x) + h2(x)|t|ξ(x)−1 for all (x, t) ∈ Ω × R, (5.3.20)

with h1, h2 ∈ L∞(Ω), essinfΩ hi > 0 for i = 1, 2 and ξ ∈ C+(Ω) with

(p∗)+ < ξ(x) < (p∗)− for all x ∈ Ω.

We observe that (fR
1 ) holds and (fR

2 ) is satisfied by choosing ki = ∥hi∥∞ for i = 1, 2 and
ℓ(x) = ξ(x) + ε for all x ∈ Ω, with ε ≥ 0 small enough such that ℓ+ < (p∗)−. Moreover,
since

F(x, t) = h1(x)t +
h2(x)
ξ(x)

tξ(x) for all x ∈ Ω, t > 0,

it follows that (AR+) is verified for any (p∗)+ < η ≤ ξ− and we have

lim
t→0+

inf
x∈Ω

F(x, t)

tp−
= +∞,

so assumption (5.3.18) is verified. Then, Theorem 5.3.5 ensures that for each λ ∈]0, λ∗[
problem (Rλ) with the nonlinearity given in (5.3.20) admits at least two nontrivial and
nonnegative weak solutions with opposite energy sign.
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Chapter 6

Neumann double phase problem

In this chapter we consider a variable exponent double phase problem with a nonlin-
ear boundary condition and we prove the existence of multiple bounded solutions
under very general assumptions on the nonlinearities. To be more precise, we get
two constant sign solutions via a mountain-pass approach, in particular one is non-
negative and the other one is nonpositive, and we determine the existence of a third
solution, which is sign-changing, through the Nehari manifold method. We also
give informations on the nodal domains of this sign-changing solution.

The results presented in this chapter are obtained in [5], in collaboration with Á.
Crespo-Blanco, P. Pucci and P. Winkert.

6.1 The problem

Given a bounded domain Ω ⊂ RN , N ≥ 2, with Lipschitz boundary ∂Ω and denot-
ing with ν(x) the outer unit normal of Ω at x ∈ ∂Ω, we study the following problem

−divF (u) + |u|p(x)−2u = f (x, u) in Ω,

F (u) · ν = g(x, u)− |u|p(x)−2u on ∂Ω,
(N)

where divF (u) is the variable exponent double phase operator given by

F (u) := |∇u|p(x)−2∇u + µ(x)|∇u|q(x)−2∇u,

and f : Ω × R → R as well as g : ∂Ω × R → R are Carathéodory functions which
are superlinear with respect to the second argument, see the precise conditions in
(HN

f ,g).
Regarding the exponents p, q and the weight µ, we have to strengthen the hy-

potheses in (H) as follows:

(HN) p, q ∈ C(Ω) such that 1 < p(x) < N and p(x) < q(x) < (p−)∗ for all x ∈ Ω
and µ ∈ L∞(Ω) with µ(x) ≥ 0 for a.a. x ∈ Ω.

Next, we state the required assumptions on the nonlinearities:

(HN
f ,g) Let f : Ω × R → R and g : ∂Ω × R → R be Carathéodory functions and

F(x, t) =
∫ t

0 f (x, s) ds and G(x, t) =
∫ t

0 g(x, s) ds be such that the following
hold:
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(hN
1 ) there exist ℓ, κ ∈ C+(Ω) and K1, K2 > 0 with ℓ+ < (p−)∗ and κ+ < (p−)∗

such that

| f (x, t)| ≤ K1

(
1 + |t|ℓ(x)−1

)
for a.a. x ∈ Ω,

|g(x, t)| ≤ K2

(
1 + |t|κ(x)−1

)
for a.a. x ∈ ∂Ω,

and for all t ∈ R;

(hN
2 )

lim
t→±∞

F(x, t)
|t|q+ = ∞ uniformly for a.a. x ∈ Ω,

lim
t→±∞

G(x, t)
|t|q+ = ∞ uniformly for a.a. x ∈ ∂Ω;

(hN
3 )

lim
t→0

F(x, t)
|t|p(x)

= 0 uniformly for a.a. x ∈ Ω,

lim
t→0

G(x, t)
|t|p(x)

= 0 uniformly for a.a. x ∈ ∂Ω;

(hN
4 ) there exist α, β, ζ, θ ∈ C+(Ω) with

min{α−, β−} ∈
(
(ℓ+ − p−)

N
p−

, ℓ+

)
,

min{ζ−, θ−} ∈
(
(κ+ − p−)

N − 1
p− − 1

, κ+

)
,

and K3 > 0 such that

0 < K3 ≤ lim inf
t→∞

f (x, t)t − q+F(x, t)
|t|α(x)

,

0 < K3 ≤ lim inf
t→−∞

f (x, t)t − q+F(x, t)
|t|β(x)

,

uniformly for a.a. x ∈ Ω and K4 > 0 such that

0 < K4 ≤ lim inf
t→∞

g(x, t)t − q+G(x, t)
|t|ζ(x)

,

0 < K4 ≤ lim inf
t→−∞

g(x, t)t − q+G(x, t)
|t|θ(x)

,

uniformly for a.a. x ∈ ∂Ω;

(hN
5 ) the functions

t 7→ f (x, t)
|t|q+−1 and t 7→ g(x, t)

|t|q+−1

are increasing in (−∞, 0) and in (0, ∞) for a.a. x ∈ Ω and for a.a. x ∈ ∂Ω,
respectively.
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Here, we give some important remarks on the assumptions.

Remark 6.1.1. We obeserve that (hN
2 ) and (hN

3 ) are weaker than the corresponding hypothe-
ses obtained replacing F and G with f and g, respectively. However, using q+ is stronger
than using q(·) as exponent and similarly using p(·) is weaker than using p+ but is stronger
than using p− as exponent.

Remark 6.1.2. The conditions on the exponents in (hN
4 ) are well defined since from (hN

1 ) we
have ℓ+ < (p−)∗ and κ+ < (p−)∗ and the following hold

(ℓ+ − p−)
N
p−

= ℓ+
N
p−

− (p−)∗
N − p−

p−
< ℓ+

N
p−

− ℓ+
N − p−

p−
= ℓ+,

(κ+ − p−)
N − 1
p− − 1

= κ+
N − 1
p− − 1

− (p−)∗
N − p−
p− − 1

< κ+
N − 1
p− − 1

− κ+
N − p−
p− − 1

= κ+.

These boundedness conditions are the precise ones that are needed for the interpolation ar-
gument in Proposition 6.3.4 and they are sharp. Precisely, the upper bound with ℓ+ and κ+
is due to Crespo-Blanco-Winkert [39, see Remark 4.2], while the lower bound on the bound-
ary, i.e. (κ+ − p−) N−1

p−−1 , is established by Amoroso-Crespo-Blanco-Pucci-Winkert [5]. We
also underline that one advantage of the variable exponent setting is that these bounds are
required only for the infimum of the exponents and not for the whole ones and also that one
can choose different exponents for going to ±∞.

Remark 6.1.3. We note that assumption (hN
3 ) together with the continuity of f (x, ·) and

g(x, ·) implies that

f (x, 0) = 0 for a.a. x ∈ Ω and g(x, 0) = 0 for a.a. x ∈ ∂Ω. (6.1.1)

Moreover, in Lemma 4.4 of Crespo-Blanco-Winkert [39], the authors summarize the proper-
ties that the nonlinear term of the equation (i.e. function f ) verifies as consequences of the
previous assumptions. Clearly, as the nonlinear function g satisfies similar hypotheses on
the boundary, it also verifies the same properties on ∂Ω.

6.2 Variational framework

Our aim is to investigate the existence of multiple solutions of problem (N) which
involves the double phase operator with variable exponents denoted by F . There-
fore, consider the Musielack-Orlicz Sobolev space W1,H(Ω), introduced in Chapter
2, endowed with the following norm

∥u∥ = inf

{
τ > 0 :

∫
Ω

(∣∣∣∣∇u
τ

∣∣∣∣p(x)

+ µ(x)
∣∣∣∣∇u

τ

∣∣∣∣q(x)
)

dx

+
∫

Ω

∣∣∣u
τ

∣∣∣p(x)
dx +

∫
∂Ω

∣∣∣u
τ

∣∣∣p(x)
dσ ≤ 1

}
,

(6.2.1)

induced by the modular

ρ(u) =
∫

Ω

(
|∇u|p(x) + µ(x)|∇u|q(x)

)
dx +

∫
Ω
|u|p(x) dx +

∫
∂Ω

|u|p(x) dσ,

for all u ∈ W1,H(Ω). For sake of completeness, we remind that in Section 2.2 we
introduced a trace operator that allows us to avoid the notation of the trace map and
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to consider all the restrictions of Sobolev functions to the boundary ∂Ω in the sense
of traces (we refer to Proposition 2.2.7 for more details).

The norm introduced in (6.2.1) derives from ∥ · ∥∗1,H defined in (2.3.11) (subsection
2.3.2) by choosing ϑ1 ≡ ϑ2 ≡ 1 and δ1 ≡ δ2 ≡ p. For reader’s convenience, we give
here the relationship between the modular ρ(·) and the norm ∥ · ∥, that derive from
Proposition 5.2.1.

Proposition 6.2.1. Let (HN) be satisfied, u ∈ W1,H(Ω) and λ ∈ R. Then the following
hold:

(i) If u ̸= 0, then ∥u∥ = λ ⇐⇒ ρ( u
λ ) = 1;

(ii) ∥u∥ < 1 (resp.> 1, = 1) ⇐⇒ ρ(u) < 1 (resp.> 1, = 1);

(iii) If ∥u∥ < 1 =⇒ ∥u∥q+ ≤ ρ(u) ≤ ∥u∥p− ;

(iv) If ∥u∥ > 1 =⇒ ∥u∥p− ≤ ρ(u) ≤ ∥u∥q+ ;

(v) ∥u∥ → 0 ⇐⇒ ρ(u) → 0;

(vi) ∥u∥ → +∞ ⇐⇒ ρ(u) → +∞;

(vii) ∥u∥ → 1 ⇐⇒ ρ(u) → 1;

Furthermore, we underline that in subsection 2.3.1 we provide the properties
of the Musielak-Orlicz Sobolev space W1,H(Ω), which hold also under assumption
(HN) that is stronger than (H) and (H1). Now, denote by ⟨ · , · ⟩ the duality pairing
between W1,H(Ω) and its dual space W1,H(Ω)∗ and by A : W1,H(Ω) → W1,H(Ω)∗

the nonlinear operator defined for all u, v ∈ W1,H(Ω) by

⟨A(u), v⟩ =
∫

Ω

(
|∇u|p(x)−2∇u + µ(x)|∇u|q(x)−2∇u

)
· ∇v dx

+
∫

Ω
|u|p(x)−2uv dx +

∫
∂Ω

|u|p(x)−2uv dσ.

In the following proposition we give the properties of this operator, which has been
proved in Amoroso-Crespo-Blanco-Pucci-Winkert [5, Proposition 3.3] for a more
general operator.

Proposition 6.2.2. Let (HN) be satisfied. Then, the operator A : W1,H(Ω)→ W1,H(Ω)∗ is
bounded, continuous, strictly monotone, coercive, a homeomorphism and of type (S+), that
is,

if un ⇀ u in W1,H(Ω) and lim sup
n→∞

⟨A(un), un − u⟩ ≤ 0,

then un → u in W1,H(Ω).

Our aim is to establish results on the existence of weak solutions for problem (N),
namely functions u ∈ W1,H(Ω) such that∫

Ω

(
|∇u|p(x)−2∇u + µ(x)|∇u|q(x)−2∇u

)
· ∇v dx +

∫
Ω
|u|p(x)−2uv dx

=
∫

Ω
f (x, u)v dx +

∫
∂Ω

g(x, u)v dσ −
∫

∂Ω
|u|p(x)−2uv dσ,
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for every v ∈ W1,H(Ω). In particular, these weak solutions are critical points of the
energy functional I : W1,H(Ω) → R associated to the problem (N) given by

I(u) =
∫

Ω

(
|∇u|p(x)

p(x)
+ µ(x)

|∇u|q(x)

q(x)

)
dx +

∫
Ω

|u|p(x)

p(x)
dx

+
∫

∂Ω

|u|p(x)

p(x)
dσ −

∫
Ω

F(x, u) dx −
∫

∂Ω
G(x, u) dσ,

for all u ∈ W1,H(Ω). Therefore, we study the problem through critical point theory
and in particular by a mountain-pass approach and the Nehari manifold method.

Finally, we present a version of the Quantitative Deformation Lemma, which can
be found in Willem [94, Lemma 2.3] and that is used in our treatment.

Lemma 6.2.3. Let X be a Banach space , φ ∈ C(X; R), ∅ ̸= S ⊂ X, c ∈ R, ε, δ > 0 such
that

∥φ′(u)∥∗ ≥
8ε

δ
for all u ∈ φ−1 ([c − 2ε, c + 2ε]) ∩ S2δ,

where Sr = {u ∈ X : d(u, S) = infu0∈S ∥u − u0∥ < r} for any r > 0. Then there exists
η ∈ C([0, 1]× X; X) such that

(i) η(t, u) = u, if t = 0 or if u /∈ φ−1 ([c − 2ε, c + 2ε]) ∩ S2δ,

(ii) φ(η(1, u)) ≤ c − ε for all u ∈ φ−1((−∞, c + ε]) ∩ S,

(iii) η(t, ·) is an homeomorphism of X for all t ∈ [0, 1],

(iv) ∥η(t, u)− u∥ ≤ δ for all u ∈ X and t ∈ [0, 1],

(v) φ(η(·, u)) is decreasing for all u ∈ X,

(vi) φ(η(t, u)) < c for all u ∈ φ−1((−∞, c]) ∩ Sδ and t ∈ (0, 1].

6.3 Main results

In this section, we prove the esxistence of two bounded constant sign solutions
(nonpositive and nonnegative) trhough a version (Theorem 3.1.11) of the classical
Mountain Pass Theorem (Theorem 3.1.5) and we get the existence of a bounded
sign-changing solution by using an appropriate subset of the corresponding Nehari
manifold along with the Brouwer degree and the Quantitative Deformation Lemma
(Lemma 6.2.3).

We present here the main results and we give the proof in the next subsections
in a constructive way, i.e. providing preliminary results that lead to the thesis by
combining them.

Theorem 6.3.1. Let (HN) and (HN
f ,g) be satisfied. Then, there exist three nontrivial weak

solutions u0, v0, w0 ∈ W1,H(Ω) ∩ L∞(Ω) of problem (N) such that u0 ≥ 0, v0 ≤ 0 and w0
is sign-changing.

Furthermore, we derive information about the number of nodal domains of the
sign-changing solution, that is the number of maximal regions where it has constant
sign. The usual definition of nodal domains of a function deals with a continu-
ous function. Nevertheless, we do not know whether our solutions are continuous.
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Therefore, we use the definition proposed by Crespo-Blanco-Winkert [39, Section 6]
that we recall in the following.

Definition 6.3.2. Let u ∈ W1,H(Ω) and A be a Borelian subset of Ω with |A| > 0. We say
that A is a nodal domain of u if

(i) u ≥ 0 a.e. on A or u ≤ 0 a.e. on A;

(ii) 0 ̸= u1A ∈ W1,H(Ω);

(iii) A is minimal w.r.t. (i) and (ii), i.e., if B ⊆ A with B being a Borelian subset of Ω,
|B| > 0 and B satisfies (i) and (ii), then |A \ B| = 0.

For our purposes, we need to require one more assumption on the nonlinearities:

(hN
6 ) the functions t 7→ f (x, t)t − q+F(x, t) and t 7→ g(x, t)t − q+G(x, t) are decreas-

ing in ] − ∞, 0] and increasing in [0,+∞[ for a.a. x ∈ Ω and for a.a. x ∈ ∂Ω,
respectively.

Theorem 6.3.3. Let (HN), (HN
f ,g) and (hN

6 ) be satisfied. Then, there exist three nontrivial
weak solutions u0, v0, w0 ∈ W1,H(Ω) ∩ L∞(Ω) of problem (N) such that

u0 ≥ 0, v0 ≤ 0, w0 being sign-changing with two nodal domains.

6.3.1 Costant sign solutions

For any h ∈ R let

h+ = max{h, 0} and h− = max{−h, 0},

then one has that

h = h+ − h− and |h| = h+ + h−.

Also, from [40, Proposition 2.17] we know that, under assumption (H1), so also un-
der hypothesis (HN), if u ∈ W1,H(Ω) then u± ∈ W1,H(Ω). Since we are first inter-
ested in constant sign solutions, we consider the positive and negative truncations
of the functional I, that are I± : W1,H(Ω) → R defined by

I±(u) =
∫

Ω

(
|∇u|p(x)

p(x)
+ µ(x)

|∇u|q(x)

q(x)

)
dx +

∫
Ω

|u|p(x)

p(x)
dx

+
∫

∂Ω

|u|p(x)

p(x)
dσ −

∫
Ω

F(x,±u±) dx −
∫

∂Ω
G(x,±u±) dσ,

for all u ∈ W1,H(Ω), where we have taken (6.1.1) into account.
Our existence result is based on a version of the Mountain-Pass Theorem given

by Papageorgiou-Rădulescu-Repovš [78, Theorem 5.4.6] and recalled in Theorem
3.1.11. First, we give preliminary results in order to verify the required assumptions
and we start with the compactness condition on the functional.

Proposition 6.3.4. Let (HN), (hN
1 ) and (hN

4 ) be satisfied. Then, the functionals I± satisfy
the (C)-condition.
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Proof. We show the proof for I+, the case for I− works in the same way. Let {un}n∈N ⊆
W1,H(Ω) be a sequence such that (C1) and (C2) from Definition 3.1.10 hold. From
(C2), there exists {εn}n∈N with εn → 0+ such that

∣∣⟨I′+(un), v⟩
∣∣ ≤ εn∥v∥

1 + ∥un∥
for all n ∈ N and for all v ∈ W1,H(Ω). (6.3.1)

Choosing v = −u−
n ∈ W1,H(Ω), one has

ρ(−u−
n )−

∫
Ω

f (x,+u+
n )(−u−

n ) dx −
∫

∂Ω
g(x,+u+

n )(−u−
n ) dσ ≤ εn,

for all n ∈ N, which leads to ρ(−u−
n ) → 0 as n → ∞, since the supports of +u+

n and
−u−

n do not overlap. From Proposition 6.2.1(v) it follows that

−u−
n → 0 in W1,H(Ω). (6.3.2)

Claim 1: {u+
n }n∈N is bounded in Lα−(Ω) and in Lζ−(∂Ω).

From (C1) we have that there exists a constant M1 > 0 such that for all n ∈ N one
has |I+(un)| ≤ M1, that is

1
q+

ρ(u+
n )−

∫
Ω

F(x, u+
n ) dx −

∫
∂Ω

G(x, u+
n ) dσ ≤ M1 −

1
q+

ρ(−u−
n ),

which, taking (6.3.2) into account, leads to

ρ(u+
n )−

∫
Ω

q+F(x, u+
n ) dx −

∫
∂Ω

q+G(x, u+
n ) dσ ≤ M2, (6.3.3)

for all n ∈ N and for some M2 > 0. Testing (6.3.1) for v = u+
n , we have

−ρ(u+
n ) +

∫
Ω

f (x, u+
n )u

+
n dx +

∫
∂Ω

g(x, u+
n )u

+
n dσ ≤ εn, (6.3.4)

for all n ∈ N. Adding (6.3.3) and (6.3.4) we obtain∫
Ω

(
f (x, u+

n )u
+
n − q+F(x, u+

n )
)

dx

+
∫

∂Ω

(
g(x, u+

n )u
+
n − q+G(x, u+

n )
)

dσ ≤ M3,
(6.3.5)

for all n ∈ N, with M3 > 0. Without loss of generality, we can assume α− ≤ β−
and ζ− ≤ θ−. From (hN

4 ), there exist K̂3, K̃3, K̂4, K̃4 > 0 such that for all t ∈ R the
following hold

f (x, t)t − q+F(x, t) ≥ K̂3|t|α− − K̃3 for a.a. x ∈ Ω,

g(x, t)t − q+G(x, t) ≥ K̂4|t|ζ− − K̃4 for a.a. x ∈ ∂Ω.

Exploiting these relations in (6.3.5), we derive

K̂3∥u+
n ∥

α−
α− + K̂4∥u+

n ∥
ζ−
ζ−,∂Ω ≤ M4,

which gives

∥u+
n ∥α− ≤ M5 and ∥u+

n ∥ζ−,∂Ω ≤ M̃5 for all n ∈ N
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for some M5, M̃5 > 0 and Claim 1 is achieved.

Claim 2: {u+
n }n∈N is bounded in W1,H(Ω).

From (hN
1 ) and (hN

4 ), we have that

α− < ℓ+ < (p−)∗ and ζ− < κ+ < (p−)∗.

Hence, there exist s, τ ∈ (0, 1) such that

1
ℓ+

=
s

(p−)∗
+

1 − s
α−

and
1

κ+
=

τ

(p−)∗
+

1 − τ

ζ−
, (6.3.6)

and applying the interpolation inequality, see Papageorgiou-Winkert [79, Proposi-
tion 2.3.17 p.116], we obtain

∥u+
n ∥ℓ+ ≤ ∥u+

n ∥s
(p−)∗∥u+

n ∥1−s
α− ,

∥u+
n ∥κ+,∂Ω ≤ ∥u+

n ∥τ
(p−)∗,∂Ω∥u+

n ∥1−τ
ζ−,∂Ω,

for all n ∈ N. Taking Claim 1 into account, one has

∥u+
n ∥ℓ+ ≤ M6∥u+

n ∥s
(p−)∗ and ∥u+

n ∥κ+,∂Ω ≤ M̃6∥u+
n ∥τ

(p−)∗,∂Ω, (6.3.7)

for some M6, M̃6 > 0 and for all n ∈ N. Again, from (6.3.1) with v = u+
n , using (hN

1 ),
it follows that

ρ(u+
n ) ≤ εn + K1

∫
Ω

(
|u+

n |+ |u+
n |ℓ(x)

)
dx + K2

∫
∂Ω

(
|u+

n |+ |u+
n |κ(x)

)
dσ. (6.3.8)

We may assume that ∥u+
n ∥ ≥ 1 for all n ∈ N, otherwise we are done. Then, using

Proposition 6.2.1(iv), (6.3.8) and (6.3.7), we derive that

∥u+
n ∥p− ≤ ρ(u+

n ) ≤ εn + K1

(
∥u+

n ∥1 + ∥u+
n ∥

ℓ+
ℓ+

)
+ K2

(
∥u+

n ∥1,∂Ω + ∥u+
n ∥

κ+
κ+,∂Ω

)
≤ εn + M7

(
1 + ∥u+

n ∥
sℓ+
(p−)∗

)
+ M̃7

(
1 + ∥u+

n ∥
τκ+
(p−)∗,∂Ω

)
,

with M7, M̃7 > 0. Then, considering the embeddings W1,H(Ω) ↪→ W1,p−(Ω) ↪→
L(p−)∗(Ω) and W1,H(Ω) ↪→ W1,p−(Ω) ↪→ L(p−)∗(∂Ω), we get

∥u+
n ∥p− ≤ εn + M8

(
1 + ∥u+

n ∥sℓ+ + ∥u+
n ∥τκ+

)
,

for all n ∈ N and for some M8 > 0. From (6.3.6), the definition of (p−)∗ and (hN
4 ),

one has

sℓ+ =
(p−)∗(ℓ+ − α−)

(p−)∗ − α−
=

Np−(ℓ+ − α−)

Np− − Nα− + p−α−

<
Np−(ℓ+ − α−)

Np− − Nα− + p−(ℓ+ − p−) N
p−

= p−.

Similarly, from (6.3.6), the definition of (p−)∗ and (hN
4 ), we have

ζ− >
ζ−
p−

+ (κ+ − p−)
N − 1

p−
,
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which implies

τκ+ =
(p−)∗(κ+ − ζ−)

(p−)∗ − ζ−
=

(N − 1)p−(κ+ − ζ−)

(N − 1)p− − Nζ− + p−ζ−

<
(N − 1)p−(κ+ − ζ−)

(N − 1)p− − Nζ− + p−
(

ζ−
p− + (κ+ − p−)N−1

p−

) = p−.

This completes the proof of Claim 2.

Claim 3: un → u in W1,H(Ω) up to a subsequence.
From (6.3.2) and Claim 2, it follows that {un}n∈N is bounded in W1,H(Ω). Since
W1,H(Ω) is a reflexive space, there exists a weakly convergent subsequence in W1,H(Ω),
not relabeled, such that

un ⇀ u in W1,H(Ω).

Then, as by (hN
1 ) and (6.3.1) in correspondence of v = un − u, it holds

⟨I′+(un), un − u⟩ → 0 as n → ∞.

The f and g terms are strongly continuous (see for example [39, Lemma 4.4]), hence
their limit vanishes and we derive

⟨A(un), un − u⟩ → 0 as n → ∞.

As A satisfies the (S+)-property, see Proposition 4.2.1, the proof is complete.

The following results are needed to verify the so-called mountain-pass geometry.

Proposition 6.3.5. Let (HN), (hN
1 ) and (hN

3 ) be satisfied. Then, there exist constants Ci >
0, i = 1, . . . , 5 such that

I(u), I±(u) ≥
{

C1∥u∥q+ − C2∥u∥ℓ− − C3∥u∥κ− if ∥u∥ ≤ min{1, C4, C5},
C1∥u∥p− − C2∥u∥ℓ+ − C3∥u∥κ+ if ∥u∥ ≥ max{1, C4, C5}.

Proof. We give the proof only for the functional I, the proof for I± is similar. From
assumptions (hN

1 ) and (hN
3 ) it follows that for all ε > 0 there exist cε, c̃ε > 0 such that

|F(x, t)| ≤ ε

p(x)
|t|p(x) + cε|t|ℓ(x) for a.a. x ∈ Ω and for all t ∈ R,

|G(x, t)| ≤ ε

p(x)
|t|p(x) + c̃ε|t|κ(x) for a.a. x ∈ ∂Ω and for all t ∈ R.

(6.3.9)

Let u ∈ W1,H(Ω) be fixed. Using (6.3.9), Proposition 2.2.2, the embedding W1,H(Ω)
↪→ Lℓ(·)(Ω) with constant Cℓ and the embedding W1,H(Ω) ↪→ Lκ(·)(∂Ω) with con-
stant Cκ,∂Ω one has

I(u) ≥ 1
q+

ρH(∇u) +
1

p+
ρp(·)(u) +

1
p+

ρp(·),∂Ω(u)

− ε

p−
ρp(·)(u)− cερℓ(·)(u)−

ε

p−
ρp(·),∂Ω(u)− c̃ερκ(·),∂Ω(u)
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=
1

q+
ρH(∇u) +

(
1

p+
− ε

p−

)
ρp(·)(u) +

(
1

p+
− ε

p−

)
ρp(·),∂Ω(u)

− cερℓ(·)(u)− c̃ερκ(·),∂Ω(u)

≥ min
{

1
q+

,
1

p+
− ε

p−

}
ρ(u)

− cε max
{
∥u∥ℓ−

ℓ(·), ∥u∥ℓ+
ℓ(·)

}
− c̃ε max

{
∥u∥κ−

κ(·),∂Ω, ∥u∥κ+
κ(·),∂Ω

}
≥ min

{
1

q+
,

1
p+

− ε

p−

}
ρ(u)

− cε max
{

Cℓ−
ℓ ∥u∥ℓ− , Cℓ+

ℓ ∥u∥ℓ+
}
− c̃ε max

{
Cκ−

κ,∂Ω∥u∥κ− , Cκ+
κ,∂Ω∥u∥κ+

}
.

Choosing ε ∈
(

0, (q+−p+)p−
p+q+

)
and taking

C1 =
1

q+
, C4 =

1
Cℓ

and C5 =
1

Cκ,∂Ω
,

our statement follows from Proposition 6.2.1(iii)-(iv) and by setting

C2 = cεC
ℓ−
ℓ and C3 = c̃εC

κ−
κ,∂Ω if ∥u∥ ≤ min{1, C4, C5},

C2 = cεC
ℓ+
ℓ and C3 = c̃εC

κ+
κ,∂Ω if ∥u∥ ≥ max{1, C4, C5}.

The following result is a direct consequence of Proposition 6.3.5.

Proposition 6.3.6. Let (HN), (hN
1 ) and (hN

3 ) be satisfied with q+ < ℓ−, κ−. Then there
exists δ > 0 such that

inf
∥u∥=δ

I(u) > 0 and inf
∥u∥=δ

I±(u) > 0,

or alternatively, there exists λ > 0 such that I(u) > 0 for 0 < ∥u∥ < λ.

Proposition 6.3.7. Let (HN), (hN
1 ) and (hN

2 ) be satisfied. Then, I(su) → −∞ as s →
±∞ for every u ∈ W1,H(Ω) \ {0}. Moreover, I±(su) → −∞ as s → ±∞ for all u ∈
W1,H(Ω) \ {0} such that u ≥ 0 a.e. in Ω.

Proof. We give the proof only for the functional I, since if u ≥ 0 a.e. in Ω then
I±(su) = I(su) for ±s > 0. Fix s, ε ∈ R and u ∈ W1,H(Ω) such that |s| ≥ 1, ε ≥ 1
and u ̸= 0. From (hN

1 ) and (hN
2 ) it follows that

|F(x, t)| ≥ ε

q+
|t|q+ − cε for a.a. x ∈ Ω,

|G(x, t)| ≥ ε

q+
|t|q+ − cε for a.a. x ∈ ∂Ω,

see also [39, Lemma 4.4]. Then, using the previous inequalities, one has

I(su) ≤ |s|p+
p−

(
ρp(·)(∇u) + ρp(·)(u) + ρp(·),∂Ω(u)

)
+ cε (|Ω|+ |∂Ω|)

+ |s|q+
[

ρq(·),µ(∇u)
q−

− ε

q+

(
∥u∥q+

q+ + ∥u∥q+
q+,∂Ω

)]
.
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Noting that ∥u∥q+ < ∞ and ∥u∥q+,∂Ω < ∞ since q+ < l− < (p−)∗ and q+ < κ− <
(p−)∗, we can choose ε large enough such that the third term is negative and I(su) →
−∞ as |s| → ∞.

Finally, we state the main result of this section.

Theorem 6.3.8. Let (HN), (hN
1 )–(hN

4 ) be satisfied. Then, there exist two nontrivial weak
solutions u0, v0 ∈ W1,H(Ω) ∩ L∞(Ω) of problem (N) such that u0 ≥ 0 and v0 ≤ 0 a.e. in
Ω.

Proof. Thanks to Proposition 6.3.4, 6.3.6 and 6.3.7, we can apply Theorem 3.1.11 to
both functionals I±. Then, there exist u0, v0 ∈ W1,H(Ω) such that I′+(u0) = 0 and
I′−(v0) = 0, namely u0, v0 are weak solutions of problem (N). In particular, from
Proposition 6.3.6 it follows that

I+(u0) ≥ inf
∥u∥=δ

I+(u) > 0 = I+(0),

which implies u0 ̸= 0. Analogously, I−(v0) > 0 and v0 ̸= 0. Finally, since ⟨I′+(u0), v⟩ =
0 for every v ∈ W1,H(Ω), we can choose v = −u−

0 and this leads to

ρ(−u−
0 ) =

∫
Ω

f (x, u+
0 )u

−
0 dx +

∫
∂Ω

g(x, u+
0 )u

−
0 dσ = 0.

From Proposition 6.2.1 it follows that −u−
0 = 0 a.e. in Ω, hence u0 ≥ 0 a.e. in Ω.

Similarly, we can test ⟨I′−(v0), v+0 ⟩ = 0 and derive that v0 ≤ 0 a.e in Ω. Finally,
we know that u0 and v0 are bounded functions because we can apply Theorem 4.1
of Amoroso-Crespo-Blanco-Pucci-Winkert [5], which is a boundedness result for a
more general class of problems.

6.3.2 Sign-changing solution

We indicate with N the Nehari manifold of I, defined by

N =
{

u ∈ W1,H(Ω) : ⟨I′(u), u⟩ = 0, u ̸= 0
}

.

Clearly, any nontrivial weak solution of (N) belongs to N , because the weak so-
lutions of (N) are exactly the critical points of I. Since we are interested in sign-
changing solutions, we introduce the following subset of N

N0 =
{

u ∈ W1,H(Ω) : ±u± ∈ N
}

.

For an overview on the method of the Nehari manifold, we refer to the book chapter
of Szulkin-Weth [92].

First, we prove some properties of the Nehari manifold N (Proposition 6.3.9) and
of the energy functional I restricted to N (Proposition 6.3.10).

Proposition 6.3.9. Let (HN), (hN
1 )–(hN

3 ) and (hN
5 ) be satisfied. Then, for any u ∈ W1,H(Ω) \

{0}, there exists a unique su > 0 such that suu ∈ N .
Moreover, one has

I(suu) > 0 and I(suu) > I(su) for all s > 0 with s ̸= su.
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and

∂s I(su) > 0 for 0 < s < su and ∂s I(su) < 0 for s > su.

Proof. For any fixed u ∈ W1,H(Ω) \ {0} we define ϕu : [0, ∞[→ R as follows

ϕu(s) = I(su) for all s ∈ [0, ∞[.

Clearly, ϕu belongs to C ([0, ∞[) and C1 ((0, ∞[). From Propositions 6.3.6 and 6.3.7
we derive that there exist δ, M > 0 such that

ϕu(s) > 0 for 0 < t < δ and ϕu(s) < 0 for t > M.

Then, applying the extreme value theorem, we get in particular that ϕu admits a local
maximum, i.e., there exists 0 < su ≤ M such that

sup
s∈[0,∞)

ϕu(s) = max
s∈[0,M]

ϕu(s) = ϕu(su).

Since su is also a critical point of ϕu, in combination with ϕ′
u(s) = ⟨I′(su), u⟩ for every

s ≥ 0, one has

ϕ′
u(su) = ⟨I′(suu), u⟩ = 0 =⇒ suu ∈ N .

Claim: su is unique.
From assumption (hN

5 ) we have that

s 7→ f (x, su)
sq+−1|u|q+−1 increasing ⇒ s 7→ f (x, su)u

sq+−1 increasing in {x ∈ Ω : u(x) > 0},

s 7→ f (x, su)
sq+−1|u|q+−1 decreasing ⇒ s 7→ f (x, su)u

sq+−1 increasing in {x ∈ Ω : u(x) < 0},

s 7→ g(x, su)
sq+−1|u|q+−1 increasing ⇒ s 7→ g(x, su)u

sq+−1 increasing in {x ∈ ∂Ω : u(x) > 0},

s 7→ g(x, su)
sq+−1|u|q+−1 decreasing ⇒ s 7→ g(x, su)u

sq+−1 increasing in {x ∈ ∂Ω : u(x) < 0}.

Multiplying the equation ϕ′
u(s) = ⟨I′(su), u⟩ = 0 with s > 0, which is a necessary

condition for su ∈ N , by 1/sq+−1, we obtain

∫
Ω

(
|∇u|p(x)

sq+−p(x)
+

µ(x)|∇u|q(x)

sq+−q(x)

)
dx +

∫
Ω

|u|p(x)

sq+−p(x)
dx +

∫
∂Ω

|u|p(x)

sq+−p(x)
dσ

=
∫

Ω

f (x, su)u
sq+−1 dx +

∫
∂Ω

g(x, su)u
sq+−1 dσ.

(6.3.10)

As functions of s, the left-hand side is strictly decreasing, because it is so in the sets
{x ∈ Ω : ∇u ̸= 0}, {x ∈ Ω : u ̸= 0} and {x ∈ ∂Ω : u ̸= 0} and at least decreasing
in the rest (we recall that p(x) < q(x) ≤ q+ for all x ∈ Ω), while from the previous
comments the right-hand side is increasing. Consequently, there can be at most one
single value su > 0 for which the equation holds, namely there exists a unique su > 0
such that suu ∈ N .
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Finally, since s 7→ ϕ′
u(s) is strictly decreasing (see (6.3.10) and the comments

above) and ϕ′
u(su) = 0, it follows that

ϕ′
u(s) > 0 for 0 < s < su, and ϕ′

u(s) < 0 for s > su.

Thus su is a strict maximum for ϕu and this completes the proof.

Proposition 6.3.10. Let (HN), (hN
1 )–(hN

3 ) and (hN
5 ) be satisfied. Then, the functional I|N

is sequentially coercive, namely for any sequence {un}n∈N ⊂ N such that ∥un∥
n→∞−−−→ ∞

one has I(un)
n→∞−−−→ ∞.

Proof. Let {un}n∈N ⊂ N be a sequence such that ∥un∥
n→∞−−−→ ∞ and put

yn =
un

∥un∥
for all n ∈ N. (6.3.11)

Since {yn} is bounded in the reflexive space W1,H(Ω), there exists a subsequence
{ynk}k∈N and y ∈ W1,H(Ω) such that

ynk ⇀ y in W1,H(Ω).

Claim: y = 0.
By contradiction, suppose that y ̸= 0. As ∥un∥ → ∞, there exists k0 ∈ N such that
for every k ≥ k0 one has ∥unk∥ ≥ 1 and

I(unk) ≤
1

p−
ρ(unk)−

∫
Ω

F(x, unk) dx −
∫

∂Ω
G(x, unk) dσ

≤ 1
p−

∥unk∥q+ −
∫

Ω
F(x, unk) dx −

∫
∂Ω

G(x, unk) dσ,

where we have used Proposition 6.2.1(iv). Dividing by ∥unk∥q+ and taking (6.3.11)
into account, we obtain

I(unk)

∥unk∥q+
≤ 1

p−
−
∫

Ω

F(x, unk)

|unk |q+
|ynk |q+ dx −

∫
∂Ω

G(x, unk)

|unk |q+
|ynk |q+ dσ. (6.3.12)

Now, we observe that if f and g fulfill (hN
1 ) and (hN

2 ), then there exist M9, M10 > 0
such that

F(x, t) > −M9 for a.a. x ∈ Ω and for all t ∈ R,
G(x, t) > −M10 for a.a. x ∈ ∂Ω and for all t ∈ R.

(6.3.13)

Setting Ω0 = {x ∈ Ω : y(x) = 0}, by using (6.3.13), (hN
2 ) and Fatou’s Lemma, we

get

lim
k→∞

∫
Ω

F(x, unk)

|unk |q+
|ynk |q+ dx

= lim
k→∞

(∫
Ω\Ω0

F(x, unk)

|unk |q+
|ynk |q+ dx +

∫
Ω0

F(x, unk)

∥unk∥q+

)
≥
∫

Ω\Ω0

(
lim
k→∞

F(x, unk)

|unk |q+
|ynk |q+

)
dx − lim

k→∞

M9|Ω0|
∥unk∥q+

= ∞.
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Analogously, for Σ0 = {x ∈ ∂Ω : y(x) = 0}, we have

lim
k→∞

∫
∂Ω

G(x, unk)

|unk |q+
|ynk |q+ dσ

= lim
k→∞

(∫
∂Ω\Σ0

G(x, unk)

|unk |q+
|ynk |q+ dσ +

∫
Σ0

G(x, unk)

∥unk∥q+

)
≥
∫

∂Ω\Σ0

(
lim
k→∞

G(x, unk)

|unk |q+
|ynk |q+

)
dσ − lim

k→∞

M10|Σ0|
∥unk∥q+

= ∞.

Hence, passing to the limit as k → ∞ in (6.3.12), it follows that

lim
k→∞

I(unk)

∥unk∥q+
= −∞,

which is a contradiction with {un}n∈N ⊆ N that implies I(un) > 0 for all n ∈ N

(see Proposition 6.3.9). Thus, the proof of our claim is complete.
Recall that unk ∈ N for every k ∈ N, from Proposition 6.3.9 it follows that

I(unk) ≥ I(sunk) for every s > 0, s ̸= 1 and for all k ∈ N. Fixing s > 1 and us-
ing Proposition 6.2.1(iv), one has

I(unk) ≥ I(synk)

≥ 1
p−

ρ(synk)−
∫

Ω
F(x, synk) dx −

∫
∂Ω

G(x, synk) dσ

≥ 1
p−

∥synk∥p− −
∫

Ω
F(x, synk) dx −

∫
∂Ω

G(x, synk) dσ

=
sp−

p−
−
∫

Ω
F(x, synk) dx −

∫
∂Ω

G(x, synk) dσ.

Moreover, as a consequence of the assumptions on the nonlinear functions f and g, it
follows that the integral terms are strongly continuous (see for example [39, Lemma
4.4]). Since synk ⇀ 0, we derive that there exists k1 ∈ N such that

I(unk) ≥
sp−

p−
− 1 for all k ≥ k1.

From the arbitrariness of s > 1, we get I(unk) → ∞ as k → ∞, which implies that
I(un)

n→∞−−−→ ∞ and our statement is achieved.

Now, we are able to prove the existence of a minimizer of I restricted to N0.

Proposition 6.3.11. Let (HN), (hN
1 )–(hN

3 ) and (hN
5 ) be satisfied. Then

inf
u∈N

I(u) > 0 and inf
u∈N0

I(u) > 0.

Proof. Fix u ∈ N . Then, from Proposition 6.3.9 we have that I(u) ≥ I(su) for all
s > 0, s ̸= 1. In particular, applying Proposition 6.3.6, it follows that

I(u) ≥ I
(

δ

∥u∥u
)
≥ inf

∥u∥=δ
I(u) > 0 for all u ∈ N ,
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that implies

inf
u∈N

I(u) > 0.

Now, fix u ∈ N0. Since by definition ±u± ∈ N , we get

I(u) = I(u+) + I(−u−) ≥ 2 inf
u∈N

I(u) > 0 for all u ∈ N0,

so we obtain

inf
u∈N0

I(u) > 0.

Proposition 6.3.12. Let (HN), (hN
1 )–(hN

3 ) and (hN
5 ) be satisfied. Then, there exists w0 ∈ N0

such that

I(w0) = inf
u∈N0

I(u).

Proof. Let {un}n∈N ⊆ N0 be a minimizing sequence, that is, I(un) ↘ infu∈N0 I(u).
As un ∈ N0, then ±u±

n ∈ N and I(±u±
n ) > 0 for all n ∈ N (see Proposition 6.3.9).

Moreover, since I(un) = I(u+
n ) + I(−u−

n ) for every n ∈ N and from Proposition
6.3.10, one has that {±u±

n }n∈N are both bounded. Then, there exist subsequences
{±u±

nk
}k∈N and v1, v2 ∈ W1,H(Ω) such that

u+
nk

⇀ v1 in W1,H(Ω) with v1 ≥ 0,

u−
nk

⇀ v2 in W1,H(Ω) with v2 ≥ 0 and v1v2 = 0.

Claim: v1, v2 ̸= 0.
Arguing by contradiction, suppose that v1 = 0. Recalling that u+

nk
∈ N implies that

⟨I′(u+
nk
), u+

nk
⟩ = 0,

one has

ρ(u+
nk
)−

∫
Ω

f (x, u+
nk
)(u+

nk
) dx −

∫
∂Ω

g(x, u+
nk
)(u+

nk
) dσ = 0.

From the Carathéodory assumption on the nonlinearities f and g and by (hN
1 ), it

follows that the two integral terms are strongly continuous (see [39, Lemma 4.4]),
thus ρ(u+

nk
) → 0 as k → ∞. By Proposition 6.2.1(v), we get u+

nk
→ 0 in W1,H(Ω) and

0 < inf
u∈N

I(u) ≤ I(u+
nk
) → I(0) = 0 as k → ∞,

that is a contradiction. Analogously we prove that v2 ̸= 0 and our claim is true.
Now, using Proposition 6.3.9, there exist s1, s2 > 0 such that s1v1, s2v2 ∈ N . We put

w0 = s1v1 − s2v2 = w+
0 − w−

0 ,

hence w0 ∈ N0. Finally, it remains to prove that I(w0) = infu∈N0 I(u). It is worth
noticing that the modular is convex and continuous, thus sequentially weakly lower
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semicontinuous, and the nonlinear terms are strongly continuous. Hence, I is se-
quentially weakly lower semicontinuous and this leads to

inf
u∈N0

I(u) = lim
k→∞

I(unk) = lim
k→∞

(
I(u+

nk
) + I(−u−

nk
)
)

≥ lim inf
k→∞

(
I(s1u+

nk
) + I(−s2u−

nk
)
)

≥ I(s1v1) + I(−s2v2)

= I(w+
0 ) + I(−w−

0 )

= I(w0) ≥ inf
u∈N0

I(u).

The proof is complete.

Now, we prove that the minimizer obtained in Proposition 6.3.12 is a critical
point of the functional I.

Proposition 6.3.13. Let (HN), (hN
1 )–(hN

3 ) and (hN
5 ) be satisfied and let w0 ∈ N0 such that

I(w0) = inf
u∈N0

I(u). Then, w0 is a critical point of the functional I.

Proof. First, we observe something that will be useful in the sequel. Recalling that
±w±

0 ̸= 0 and indicating with Cp− the constant of the embedding W1,H(Ω) ↪→ Lp−(Ω),
we have that

∥w0 − v∥ ≥ C−1
p− ∥w0 − v∥p− ≥

{
C−1

p− ∥w−
0 ∥p− if v− = 0,

C−1
p− ∥w+

0 ∥p− if v+ = 0,

for all v ∈ W1,H(Ω). Thus, taking

0 < δ0 < min
{

C−1
p− ∥w+

0 ∥p− , C−1
p− ∥w−

0 ∥p−

}
,

we have the following implication

if ∥w0 − v∥ < δ0, then v+ ̸= 0 ̸= v−. (6.3.14)

Now, arguing by contradiction, suppose that I′(w0) ̸= 0. Then there exists γ, δ1 > 0
such that

∥I′(u)∥∗ ≥ γ for all u ∈ W1,H(Ω) with ∥u − w0∥ < 3δ1. (6.3.15)

Put

δ = min
{

δ0

2
, δ1

}
. (6.3.16)

From the continuity of the map defined by (s, t) 7→ sw+
0 − tw−

0 for every (s, t) ∈
[0, ∞[2, we have that for every δ > 0 there exists λ > 0 such that

∥sw+
0 − tw−

0 − w0∥ < δ, (6.3.17)

for all (s, t) ∈ [0, ∞[2 with max{|s − 1|, |t − 1|} < λ. Let

D = (1 − λ, 1 + λ)2, m0 = max
(s,t)∈∂D

I(sw+
0 − tw−

0 ),
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and

c = inf
u∈N0

I(u). (6.3.18)

We emphasize that for any (s, t) ∈ [0, ∞[2\{(1, 1)}, using Proposition 6.3.9, one has

I(sw+
0 − tw−

0 ) = I(sw+
0 ) + I(−tw−

0 )

< I(w+
0 ) + I(−w−

0 ) = I(w0) = inf
u∈N0

I(u), (6.3.19)

which implies that m0 < c. In order to use the same notation of the Quantitative
Deformation Lemma given in Lemma 6.2.3, we set

S = B(w0, δ), ε = min
{

c − m0

4
,

γ δ

8

}
,

and δ, c as in (6.3.16) and (6.3.18), respectively. We also notice that by the definition
of S it follows that Sδ = B(w0, 2δ) and S2δ = B(w0, 3δ). From (6.3.15), we get

∥I′(u)∥∗ ≥ γ ≥ 8ε

δ
for all u ∈ S2δ,

so all the assumptions of Lemma 6.2.3 are verified. Hence, there exists a mapping
η ∈ C

(
[0, 1]× W1,H(Ω), W1,H(Ω)

)
such that

(i) η(t, u) = u, if t = 0 or if u /∈ I−1 ([c − 2ε, c + 2ε]) ∩ S2δ,

(ii) I(η(1, u)) ≤ c − ε for all u ∈ I−1 (]− ∞, c + ε]) ∩ S,

(iii) η(t, ·) is an homeomorphism of W1,H(Ω) for all t ∈ [0, 1],

(iv) ∥η(t, u)− u∥ ≤ δ for all u ∈ W1,H(Ω) and t ∈ [0, 1],

(v) I(η(·, u)) is decreasing for all u ∈ W1,H(Ω),

(vi) I(η(t, u)) < c for all u ∈ I−1 (]− ∞, c]) ∩ Sδ and t ∈]0, 1].

Afterwards, we consider h : [0, ∞[2→ W1,H(Ω) defined by

h(s, t) = η(1, sw+
0 − tw−

0 ) for all (s, t) ∈ [0, ∞[2,

which has the following properties:

(vii) h ∈ C
(
[0, ∞[2, W1,H(Ω)

)
,

(viii) I(h(s, t)) < c − ε for all (s, t) ∈ D, by (ii), (6.3.17) and (6.3.19),

(ix) h(D) ⊆ Sδ, by (iv) and (6.3.17),

(x) h(s, t) = sw+
0 − tw−

0 for all (s, t) ∈ ∂D,

where the last one follows from (i) and

I(sw+
0 − tw−

0 ) ≤ m0 + c − c < c −
(

c − m0

2

)
≤ c − 2ε for all (s, t) ∈ ∂D.
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Now, we define two mappings H0, H1 : (0, ∞)2 → R2 given by

H0(s, t) =
(
⟨I′(sw+

0 ), w+
0 ⟩ , ⟨I′(−tw−

0 ),−w−
0 ⟩
)

,

H1(s, t) =
(

1
s
⟨I′(h+(s, t)), h+(s, t)⟩ ,

1
t
⟨(−h−(s, t)),−h−(s, t)⟩

)
,

which are clearly continuous. From Proposition 6.3.9 it follows that

⟨I′(sw+
0 ), w+

0 ⟩
{
> 0 for all 0 < s < 1,
< 0 for all s > 1,

⟨I′(−tw−
0 ),−w−

0 ⟩
{
> 0 for all 0 < t < 1,
< 0 for all t > 1.

(6.3.20)

Given A ⊆ RN open and bounded and g ∈ C(A, RN), we denote by deg(g, A, y)
the Brouwer degree over A of g at the value y ∈ RN \ g(∂A). From the Cartesian
product property of the Brouwer degree (see the book of Dinca-Mawhin[47, Lemma
7.1.1 and Theorem 7.1.1]) we get

deg(H0, D, 0) = deg
(
⟨I′(sw+

0 ), w+
0 ⟩ , (1 − λ, 1 + λ) , 0

)
× deg

(
⟨I′(−tw−

0 ),−w−
0 ⟩ , (1 − λ, 1 + λ) , 0

)
,

and by (6.3.20) and Proposition 1.2.3 of Dinca-Mawhin[47], we obtain

deg(H0, D, 0) = (−1)(−1) = 1.

We observe that (x) implies H0|∂D = H1|∂D, so as the Brouwer degree depends on
the boundary ([47, Corollary 1.2.7]), we have

deg(H1, D, 0) = deg(H0, D, 0) = 1,

and by the solution property ([47, Corollary 1.2.5]) it follows that there exists (s0, t0) ∈
D such that H1(s0, t0) = (0, 0), namely

⟨I′(h+(s0, t0)), h+(s0, t0)⟩ = 0 = ⟨I′(−h−(s0, t0)),−h−(s0, t0)⟩.

Finally, by (ix)

∥h(s0, t0)− w0∥ ≤ 2δ ≤ δ0,

which, taking (6.3.14) into account, leads to

h+(s0, t0) ̸= 0 and − h−(s0, t0) ̸= 0.

Thus, h(s0, t0) ∈ N0, that is a contradiction with

I(h(s0, t0)) < c − ε = inf
u∈N0

I(u)− ε,

obtained by (viii). This completes the proof.

Now, we are able to prove the first main result.

Proof of Theorem 6.3.1. Combining Theorem 6.3.8 with Propositions 6.3.12 and
6.3.13, we get the existence of three weak solutions for problem (N). We further
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know that they are bounded functions thanks to Theorem 4.1 of Amoroso-Crespo-
Blanco-Pucci-Winkert [5].

In the last part of this subsection, we provide information on the nodal domain
of the sign-changing solution.

Proposition 6.3.14. Let (HN), (HN
f ,g) and (hN

6 ) be satisfied. Then, any sign-changing weak
solution of problem (N), which is also a minimizer of I|N0 , has exactly two nodal domains.

Proof. Let w0 be such that I(w0) = inf
u∈N0

I(u), fix any w̃0 representative of w0 and set

Ω± = {x ∈ Ω : ±w̃0(x) > 0} .

As w01Ω± = ±w̃0
± a.e. in Ω, it follows that Ω+ and Ω− satisfy conditions (i) and

(ii) of Definition 6.3.2. By contradiction, we prove that they are also minimal. We
assume, without loss of generality, that there exist Borelian subsets A1, A2 of Ω, with
A1 ∩ A2 = ∅, |A1| > 0 and |A2| > 0, such that Ω− = A1∪̇A2 and A1 satisfies (i) and
(ii) of Definition 6.3.2. Moreover, it holds

w01A2 = w̃01A2 < 0 a.e. in A2,

w01A2 = w01Ω− − w01A1 ∈ W1,H(Ω),

thus A2 also satisfies (i) and (ii). Summarizing, we have

1Ω+w0 ≥ 0, 1A1 w0 ≤ 0, 1A2 w0 ≤ 0 a.e. in Ω, (6.3.21)

and

w0 = 1Ω+w0 + 1A1 w0 + 1A2 w0 a.e. in Ω.

Setting y1 = 1Ω+w0 + 1A1 w0 and y2 = 1A2 w0, from (6.3.21) we have y+1 = 1Ω+w0
and −y−1 = 1A1 w0. Since I′(w0) = 0 and as the supports of y+1 ,−y−1 and y2 do not
overlap, one has

0 = ⟨I′(w0), y+1 ⟩ = ⟨I′(y+1 ), y+1 ⟩.

Hence y+1 ∈ N and analogously, −y−1 ∈ N . Therefore, y1 ∈ N0. With the same
argument one can show that ⟨I′(y2), y2⟩ = 0. Then, from these properties, we obtain

I(y2) = I(y2)−
1

q+
⟨I′(y2), y2⟩

≥
(

1
p+

− 1
q+

)
ρp(·)(∇y2) +

(
1

p+
− 1

q+

)
ρp(·)(y2) +

(
1

p+
− 1

q+

)
ρp(·),∂Ω(y2)

+
∫

Ω

(
1

q+
f (x, y2)y2 − F(x, y2)

)
dx +

∫
∂Ω

(
1

q+
g(x, y2)y2 − G(x, y2)

)
dσ,

which leads to

I(y2) > 0,

because of p+ < q+, y2 ̸= 0 and (hN
6 ). Finally, we get

inf
u∈N0

I(u) = I(w0) = I(y1) + I(y2) > I(y1) ≥ inf
u∈N0

I(u),
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which is a contradiction and this completes the proof.

Finally, we are able to prove the second main result.

Proof of Theorem 6.3.3. Combining Theorem 6.3.1 and Proposition 6.3.14, we
get the existence of three bounded weak solutions of problem (N) such that one is
nonnegative, one is nonpositive and one is sign-changing with two nodal domains.
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List of Symbols

a.e. almost everywhere
a.a. almost all
w.r.t. with respect to

C(Ω) space of continuoua functions in Ω
C1

C(Ω) space of C1-functions with compact support
C∞

C (Ω) space of C∞-functions with compact support
C0,α(Ω) space of Hölder continuous functions with exponent α

C0, 1
| log t| (Ω) set of log-Hölder continuous functions

C+(Ω) set of continuous functions in Ω that are greater or equal than 1
M(Ω) space of measurable functions in Ω
M+(Ω) set of measurable functions in Ω that are greater or equal than 1
X∗ dual space of X
⟨·, ·⟩ duality pairing between a space X and its dual X∗

Lr(Ω) Lebesgue space with constant exponent r
Lr(∂Ω) Lebesgue space on the boundary with constant exponent r
W1,r(Ω) Sobolev space with constant exponent r
W1,r

0 (Ω) completion of C∞
C (Ω) in W1,r(Ω)

Lr(·)(Ω) Lebesgue space with variable exponent r(·)
Lr(·)

ω (Ω) weighted Lebesgue space with variable exponent r(·) and weight ω(·)
Lφ(Ω) Musielak-Orlicz space
W1,r(·)(Ω) Sobolev space with variable exponent r(·)
W1,r(·)

0 (Ω) completion of C∞
C (Ω) in W1,r(·)(Ω)

W1,φ(Ω) Musielak-Orlicz Sobolev space
W1,φ

0 (Ω) completion of C∞
0 (Ω) in W1,φ(Ω)

∥ · ∥r usual norm in Lr(Ω)
∥ · ∥r,∂Ω usual norm in Lr(∂Ω)
∥ · ∥1,r usual norm in W1,r(Ω)

∥ · ∥1,r,0 equivalent norm in W1,r
0 (Ω)

∥ · ∥r(·) usual norm in Lr(·)(Ω)

∥ · ∥r(·),ω seminorm in Lr(·)
ω (Ω)

∥ · ∥1,r(·) usual norm in W1,r(·)(Ω)

∥ · ∥1,r(·),0 equivalent norm in W1,r(·)
0 (Ω)

∥ · ∥φ Luxemburg norm (usual norm) in Lφ(Ω)
∥ · ∥1,φ usual norm in W1,φ(Ω)

∥ · ∥1,H,0 equivalent norm in W1,H
0 (Ω)

ρr(·) modular function related to r(·)
ρr(·),ω modular function related to r(·) with weight ω(·)
ρφ modular function related to the Φ-function φ
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r′ conjugate exponent of r
r′(·) conjugate exponent of r(·)
r∗ critical Sobolev exponent of r
r∗ critical Sobolev exponent of r on the boundary
r∗(·) critical Sobolev exponent of r(·)
r∗(·) critical Sobolev exponent of r(·) on the boundary
r− essential inf of r(·) in Ω
r+ essential sup of r(·) in Ω

Φ(Ω) set of all generalized Φ-functions on Ω
ϕ ≺ ψ ϕ weaker than ψ
N(Ω) set of all generalized N-functions on Ω
φ ≪ ψ φ increases essentially slower than ψ near infinity
φ∗ conjugate function of the Φ-function φ

∂s partial derivative with respect to the variable s
1A indicator or characteristic function
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