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Preface

CLADAG 2015, the 10th Scientific Meeting of the Classification and Data
Analysis Group of the Italian Statistical Society (SIS), will be held in Santa
Margherita di Pula, Cagliari, Italy, from October 8th to October 10th 2015.
The local organizer is the Department of Business and Economics of the Uni-
versity of Cagliari.
CLADAG 2015 will take place under the auspices of the International Feder-
ation of Classification Societies (IFCS) and of the Italian Statistical Society
(SIS). It promotes advanced methodological research in multivariate statistics
with a special vocation in Data Analysis and Classification. CLADAG supports
the interchange of ideas in these fields of research, including the dissemination
of concepts, numerical methods, algorithms, computational and applied results.
It will also benefit of the support of Fondazione Banco di Sardegna.
CLADAG is a member of the International Federation of Classification Societies
(IFCS). Among its activities, CLADAG organizes a biennial scientific meeting,
schools related to classification and data analysis, publishes a newsletter, and
cooperates with other member societies of the IFCS to the organization of their
conferences.
The scientific program comprises three Keynote Lectures, an Invited Session,
10 Specialized Sessions, 15 Solicited Sessions and 15 Contributed Sessions. All
the Specialized and Solicited Sessions have been promoted by the members of
the Scientific Program Committee. The organizers wish to thank them for their
cooperation in contributing to the success of CLADAG 2015.
The Book of Abstracts contains short papers of all the presentations scheduled
in the conference program. It is organized according to type of session/lecture:
Keynote Lectures, Specialized Sessions, Solicited Sessions and Contributed Ses-
sions.
The editors would like to express their gratitude to the Rector of the University
of Cagliari, the Director of the Department of Business and Economics and to
all the statisticians working in the Department of Business and Economics for
their enthusiasm in supporting the organization of this event from the very be-
ginning, as well as to all people who worked hard to make it a success. Special
thanks go to Dr. Massimo Cannas, Dr. Luca Frigau and Dr. Farideh Tavazoee
for their editorial support
Last but not least, we thank all authors and participants, without whom the
conference would not have been possible.

Cagliari, October 8 2015.

Francesco Mola,
Claudio Conversano

1

3



Conference Themes

The 10th Meeting is orientated towards all topics related to data analysis,
classification, multivariate and computational statistics. Submission of papers
addressing these topics in both methodological and practical perspective has
been encouraged by the members of the Scientific Program Committee.

The list of topics includes, but is not limited to, the following:

A Classification Theory
Bayesian Classification Biplots Clustering models Consensus of Classifications
Correspondence Analysis Discrimination and Classification Factor Analysis
and Dimension Reduction Methods Fuzzy Methods Genetic Algorithms Hier-
archical Classification Multidimensional Scaling Multiway Scaling Multiway
Methods Neural Networks for Classification Non Hierarchical Classification
Similarities and Dissimilarities Software algorithms for classification Unfolding
and Related Scaling Methods

B Data Analysis
Bayesian data Analysis Big data analysis- Categorical Data Analysis Covari-
ance Structure Analysis Data Mining Data Science Data Visualization Decision
Trees Functional data analysis Mixture and Latent Class Models Multilevel
data Analysis Non Linear Data Analysis Nonparametric and Semiparametric
Regression Partial Least Squares Pattern recognition Robustness and Data Di-
agnostics Social networks- Software algorithms for multivariate analysis Spatial
Data Analysis Symbolic Data Analysis.
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Committees

Scientific Program Committee

Chair: Paolo Giudici (University of Pavia)

Members
Giuseppe Bove (University of Roma Tre)
Daniela Calo (University of Bologna)
Agostino Di Ciaccio (University of Roma La Sapienza)
Vincenzo Esposito Vinzi (ESSEC, France)
Francesca Greselin (University of Milano Bicocca)
Francesco Mola (University of Cagliari)
Francesco Palumbo (University of Naples Federico II)
Carla Rampichini (University of Firenze)
Giancarlo Ragozini (University of Naples Federico II)
Fabrizio Ruggeri (CNR IMATI, Milan)
Silvia Salini (University of Milan)
Adalbert F.X. Wilhelm (Jacobs University Bremen, Germany)

Local Organizing Committee
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DIAGNOSTIC TOOLS FOR GAMLSS FITTED OBJECTS

Andrea Marletta1, Mariangela Sciandra1

1 Dipartimento di Scienze Economiche Aziendali e Statistiche, Univer-
sità degli Studi di Palermo, (e-mail: andrea.marletta@unipa.it,
mariangela.sciandra@unipa.it)

ABSTRACT: In the last years GAMLSS models were applied in many research fields
representing a good solution to analyze data with huge variabilty. In this paper we
propose a new approach to diagnostics in GAMLSS as an alternative to classical worm
plot. An application will be shown where the class of GAMLSS is applied in order to
detect the presence of liver fibrosis as a function of patients risk factors.

KEYWORDS: GAMLSS, liver fibrosis, mixture, worm plot, residuals analysis.

1 Introduction

We discuss some diagnostic tools for Generalized Additive Models for Loca-
tion Scale and Shape (GAMLSS) in order to be able to identify possible de-
partures from the model assumptions. Studying the adequacy of a GAMLSS
model is not so obvious and little has been done in literature because of the
several simultaneous assumptions each model includes about the different pa-
rameter involved in the model. So, for example, GAMLSS could show inac-
curacies in the assumed linear predictors, one for each specified parameter or
inadequacies related to overdispersion and misspecification in link functions.
Moreover, due to the wide flexibility GAMLSS offer another common prob-
lem is related to misspecification of the family of conditional distribution. In
this work we want to emphasize the problem of overdispersion, the most com-
mon form of unexpected variation. It occurs when the data exhibit variability
exceeding that prescribed by the assumed distribution. As Fig. 1 shows, in the
liver fibrosis example, data seem to be overdispersed. There is an increase of
the variance with the mean ((a)) and a non linear relationship between means
and the log transformed variances, as the two fitted curves show ((b)). In order
to detect the presence of a variance-mean relationship, in Section 3 we propose
the use of a mixture model using GAMLSS family of distributions.
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Figure 1. Mean-variance (a) and mean-log(variance) (b) relationships in liver fibrosis
data

2 The GAMLSS models

General Additive Models for Location Scale and Shape were introduced firstly
by Rigby and Stasinopoulos (2001) as a way of overcoming some of the lim-
itations associated with Generalized Linear Models and Generalized Additive
Models. They represent a flexible class of models for several reasons. Firstly,
the distribution of the response variable can be selected by a very wide range of
distributions including highly skewed and kurtotic continuous and discrete dis-
tributions. Moreover, once the response distribution has been fixed, they allow
to model all the parameters of the chosen distribution using parametric and/or
non parametric smooth functions of the explanatory variables. So, assuming
the response variable Y to follow a four parameters distribution Y ∼ D(θ) with
θ = (µ,σ,ν,τ), where µ and σ usually are location and scale parameters while
ν and τ shape parameters, the formulation of GAMLSS given by Rigby and
Stasinopoulos (2005) is

gk(θk) = ηk = Xkβk +
Jk

∑
j=1

h jk(x jk) k = 1,2,3,4 (1)

where gk(.) are known monotonic link functions relating in a parametric way
the distribution parameters to the explanatory variables Xk and h jk represent
the non-parametric additive terms. The vector of parameters βk and the non
parametric terms can be estimated following several approaches as described
in Rigby and Stasinopoulos (2005).
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3 Diagnostic tools for GAMLSS models

As in a classical model regression framework, once a model is fitted, next step
deals with the problem of model selection. In a GAMLSS setting, model se-
lection is usually performed by comparing various competing models in which
different combinations of the components change; then, the overall adequacy
of the selected model is assessed through the analysis of the randomized quan-
tile residuals (Dunn & Smyth, 1996). They are defined as

rq
i = Φ−1(ui), i = 1, . . . ,n

where Φ(·) represents the standard normal distribution function, and ui is an
uniform random variable on a specific region of the linear predictor. Strange
pattern in the plot of these residuals against the predictors could suggest mis-
specified link functions. In order to identify regions of explanatory variables
within which the models do not show an adequate fit an useful tool is given
by the worm plots of residuals introduced by Van Buuren et al. (2001). The
tool consists of a number of detrended Q-Q plots splitted according to some
predictors. A model that fits the data well is characterized by “flat worms”.

This paper proposes the use of a mixture approach for GAMLSS when
standard diagnostic tools show overdispersed data. The central idea is: if the
worm plot shows for example M-shape pattern, it could suggest bimodality in
statistical units. Then, GAMLSS mixture model could be used to identify the
underlying distributions.

4 A real dataset example

Liver fibrosis is one of the ten most frequent causes of death in the world and
consists in a massive presence of connective tissue. It can be classified in 5
stages through the Metavir scoring system from a normal (F0) to a cirrhotic
(F4) liver. In medicine, liver biopsy represents the gold standard test for stag-
ing liver disease. An alternative diagnostic technique is represented by the
Acoustic Radiation Force Impulse (ARFI). ARFI measures the liver stiffness
through mechanical excitation of tissue using acoustic pulses producing shear
waves propoagation. The ARFI principle is that the stiffer the tissue, the faster
be shear waves propagate. The dataset used in this example contains data about
ARFI measurements collected in 2013 for 141 patients. To each elastography
are associated a different number of measurements so the dataset shows a two-
step hierarchical structure: a level for the exam and a second level for the mea-
surements done during the same exam. The response variable is liver stiffness
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Figure 2. Worm plots for two fitted GAMLSS objects

(measured as wave speed in m/s) while explanatory variables are divided into
two groups: patient specific explanatory variables (sex, age, size and weight)
and explanatory variable of exam (depth, liver segment, patient position). In
figure 2 two worm plots are shown: on the left a simple GAMLSS with a four
parameters BCPE distribution shows a clear M-shape pattern; on the right we
use a mixture to obtain a more flat worm and more points between bound-
aries. A possible hypothesis is that two groups could represent two classes of
subjects: healthy and cirrhotic patients. To find further evidence about these
conclusions, we will try to simulate data from different scenarios, for example
by considering several degrees of overdispersion. Moreover, simulations will
be also used to study the inferential properties of the proposed approach.

References

DUNN, P.K., & SMYTH, G.K. 1996. Randomized Quantile Residuals. Jour-
nal of Computational and Graphical Statistics, 236-244.
RIGBY, R.A., & STASINOPOULOS, D. M. 2005. Generalized additive mod-
els for location, scale and shape). Applied Statistics, 54(3), 507-544.
RIGBY, R.A., & STASINOPOULOS, D. M. 2009. A flexible regression ap-
proach using GAMLSS in R.
VAN BUUREN, S., & FREDRIKS. 2001. Worm plot: a simple diagnostic de-
vice for modelling growth reference curves. Statistics in medicine, 1259-1277.

454


