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A B S T R A C T

A novel pure penalty discontinuous Galerkin method is proposed for the geometrically nonlinear analysis of
multilayered composite plates and shells, modelled via high-order refined theories. The approach allows to
build different two-dimensional equivalent single layer structural models, which are obtained by expressing
the covariant components of the displacement field through-the-thickness via Taylor’s polynomial expansion
of different order. The problem governing equations are deduced starting from the geometrically nonlinear
principle of virtual displacements in a total Lagrangian formulation. They are addressed with a pure penalty
discontinuous Galerkin method using Legendre polynomials trial functions. The resulting nonlinear algebraic
system is solved by a Newton–Raphson arc-length linearization scheme. Numerical tests involving plates and
shells are proposed to validate the method, by comparison with literature benchmark problems and finite
element solutions, and to assess its features. The obtained results demonstrate the accuracy of the method as
well as the effectiveness of high-order elements.
1. Introduction

Thin-walled multilayered composite components, in the form of
plates, shells and their assemblies, are of great interest in structural
applications and are widely used to minimize the weight while still
being very effective in carrying applied external loads. In particular,
shells, which are characterized by a curved mid-surface, offer the de-
signer the possibility to take advantage of the strong coupling between
flexural and membrane behaviours; on the other hand, sometimes, the
need for a curved surface is due to non-structural requirements, e.g. in
aerodynamic components. Generally, thin-walled structures operate in
the small displacements regime and the linear elastic analysis may
be sufficient to predict their response. However, in advanced appli-
cations they may undergo large displacements, requiring non-linear
analysis to characterize accurately their behaviour. In this framework,
a fundamental role is played by the modelling and analysis of these
structure that need to be carried out with appropriate fidelity and cost
effectiveness to implement successfully their design and optimization.

Due to their geometric characteristics, plates and shells are gen-
erally modelled via two-dimensional (2D) theories, which allow to
significantly reduce the computational cost in numerical solutions.
Focusing on nonlinear behaviour, the first model was developed by
Von Kármán [1] who supplemented with non-linear terms the classical
Kirchhoff–Love theory [2]. Afterwards, the First Order Shear Defor-
mation Theory (FSDT) by Reissner [3] and Mindlin [4] introduced
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the assumption of a constant shear deformation across the thickness
extending the accuracy of the model to moderately thick plates and
shells. A comprehensive review of the multitude of improvements
developed to the above mentioned classical theories can be found in
the work by Chia [5]. However, the wide use of multilayered composite
plates and shells showed the need of more accurate models based
on higher-order assumptions on the behaviour of the kinematic and
mechanical fields throughout the thickness of the structure. Thus, to
enhance the modelling accuracy, refined theories have been developed
based on high-order expansion of the model primary variables across
the thickness. The theories developed can be classified into two cat-
egories: (i) Equivalent-Single-Layer (ESL) approaches that are based
on common variable expansions for all the layers of the laminate; (ii)
Layer-Wise (LW) approaches where each layer has its own expansion
and only the C0 continuity of the solution at the elements interface is
guaranteed by properly choosing such functions. ESL and LW theories
have been unified in the framework of the Carrera Unified Formulation
(CUF) [6,7] that is a powerful technique to develop and implement
general plates and shells theories and the related solution numerical
tools.

The nonlinear governing equations stemming from plates and shells
two-dimensional high-order theories are generally strongly coupled
partial differential equations and their solution in close form is very
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difficult and restricted to simple cases. Thus, numerical methods need
to be introduced to solve these structural models and the most common
approach in the literature is the finite element method (e.g. Refs. [8–
12]). To cite some amongst the alternatives to finite elements, the
Ritz method was recently used to study the buckling and post-buckling
behaviour of plates using the FSDT [13–18] and the third-order shear
deformation theory [19,20]. Mesh-less solutions have been proposed
using the smoothed particle hydrodynamics method [21], the mesh-
free collocation method [22], the meshless collocation method [23] and
the radial basis function method [24]. Also the isogeometric analysis
approach (IGA) has been employed to investigate the behaviour of
shells using classical theories for both the linear [25,26] and non-linear
regimes [27–30]; IGA models have been also proposed in combination
with high-order theories for linear [31,32] and non-linear [33] analysis.

The discontinuous Galerkin (dG) method has been recently used
for elasticity problem solutions [34–36]. It is based on the partition
of the problem domain into elements and some penalization integrals
to enforce the continuity of the solution across these elements and
the boundary conditions. The dG method has interesting advantages
in the use of nonstandard element and shape functions, in the appli-
cation of non conformal meshes as well as high-order elements, in the
implementation of meshing strategies such as hierarchical refinement
and adaptativity, in scalable implementations and in addressing of
locking phenomena. These features can underlie a robust treatment of
complex geometries and loadings such as those occurring in advanced
lightweight structures. Indeed, the examination of the relevant liter-
ature reveals that the dG method attracted interest in this field. In
particular, dG formulations and investigations have been proposed for
the linear analysis of: (i) plates, modelled by the Kircchoff [37–39]
nd Mindlin–Reissner [40–42] first order theories; (ii) shells studied by

using the Kircchoff–Love [43], Koiter [44] and Reissner–Mindlin [45]
first order theories. As regard the non-linear regime, dG methods have
been employed for the solution of: (i) Kircchoff plates [46–48], (ii)
Kircchoff–Love shells [49–51] and (iii) shear flexible shells modelled
with the first order theory [52,53]. Also, refined shell models have
been proposed for both the linear [54] and nonlinear [55] analysis,
based on finite elements built using a dG approach along the thick-
ness direction. Generally the reported formulations refer to isotropic,
homogeneous sections whereas a few works focus on multilayered
structures [46,54,55]. Eventually, the authors and co-workers proposed
dG formulations for high-order theories of multilayered plates [56–58]
and shells [59–61] addressing linear static and buckling analysis.

In this framework, to the best of the authors’ knowledge, the dG
method has never been adopted in combination with high-order the-
ories for the nonlinear analysis of plates and shells. This is the main
motivation of the present research, which extends previous authors’
works [59,60] where a dG approach is developed for linear behaviour
of shells. Here, for the first time, a discontinuous Galerkin formulation
for the geometrically non-linear static analysis of multilayered shells is
presented and validated, which is the novelty of the present work.

In the context of a total Lagrangian approach, the proposed formu-
lation provides two-dimensional models of shells assuming the kine-
matic fields expansion along the thickness up to a desired order and
using equivalent single-layer modelization. The resulting governing
equations are solved via the dG method based on the pure penalty
approach exploring the use of high-order elements, which are expected
to present high convergence rates and high level of accuracy with a
contained number of degrees of freedom. This has been confirmed
by the proposed validation examples, which illustrates the method
characteristics.

The paper is organized as following: in Section 2 the shell models
and the corresponding governing equations in their weak form are
deduced for the geometrically non-linear static analysis; Section 3
describes the discontinuous Galerkin method used to numerically solve
the shell models; in Section 4 some benchmark solutions and their
comparison with literature or finite element results are presented to
validate the approach and assess its features; finally, conclusions are
2

drawn. t
2. Shell model

Let us consider a composite, multilayered, generally-curved shell
subjected to prescribed external loads and boundary conditions. The
shell is built by stacking 𝑁𝓁 fibre-reinforced layers, which are modelled
as homogeneous and orthotropic and are assumed to be perfectly
bonded at their interfaces. A quantity referring to the 𝓁th layer is
denoted by a superscript ⟨𝓁⟩; as such, the volume occupied by the 𝓁th
layer is denoted by 𝑉 ⟨𝓁⟩ and its fibre deposition angle by 𝜃⟨𝓁⟩. Each
layer has uniform thickness 𝜏⟨𝓁⟩ and thus the thickness of the whole
laminate is 𝜏 =

∑𝑁𝓁
𝓁=1 𝜏

⟨𝓁⟩. The volume of the shell 𝑉 ⊂ R3 is obtained
as 𝑉 = ∪𝑁𝓁

𝓁=1𝑉
⟨𝓁⟩ and its boundary is denoted as 𝜕𝑉 .

In the following, the Einstein’s summation convention is used with
Latin indices 𝑖 and 𝑗 taking values in the set {1, 2, 3} and Greek indices
𝛼 and 𝛽 taking values in the set {1, 2}.

2.1. Shell geometry

Let the mid-surface of the shell in the undeformed configuration
be denoted as 𝑆 ⊂ R3 and let it be described mapping the so-called
reference domain 𝛺𝜉 ⊂ R2 (see Fig. 1). The map uses two curvilinear
variables 𝜉1 and 𝜉2 that span in 𝛺𝜉 . Introduced an orthogonal reference
system 𝑥1𝑥2𝑥3, a generic point 𝒙0 =

{

𝑥01 𝑥02 𝑥03
}T of 𝑆 is obtained as

𝒙0 = 𝒙0(𝜉1, 𝜉2), for (𝜉1, 𝜉2) ∈ 𝛺𝜉 (1)

Starting from Eq. (1), for each point on the shell mid-surface, the unit
normal vector is defined as

𝒏0 =
𝒂1 × 𝒂2

‖𝒂1 × 𝒂2‖
(2)

where

𝒂𝑖 =
𝜕𝒙0
𝜕𝜉𝑖

𝑖 = 1, 2 (3)

point 𝒙 = {𝑥1 𝑥2 𝑥3}T in the volume of the shell 𝑉 has orthogonal
oordinates described by the map

= 𝒙(𝜉1, 𝜉2, 𝜉3) = 𝒙0(𝜉1, 𝜉2) + 𝜉3𝒏0(𝜉1, 𝜉2), for (𝜉1, 𝜉2, 𝜉3) ∈ 𝛺𝜉 × 𝐼𝜉3 (4)

here the thickness curvilinear coordinate 𝜉3 is introduced spanning
he set 𝐼𝜉3 = [−𝜏∕2, 𝜏∕2]. Consistently, the volume of the 𝓁th layer
s identified as the region of 𝑉 where 𝜉3 ∈ 𝐼 ⟨𝓁⟩𝜉3

= [𝜉⟨𝓁⟩3𝑏 , 𝜉⟨𝓁⟩3𝑡 ], being
⟨𝓁⟩
3𝑏 and 𝜉⟨𝓁⟩3𝑡 the 𝜉3 coordinates of the bottom and top faces of the 𝓁th
ayer, respectively. As such, it results that 𝜉⟨1⟩3𝑏 = −𝜏∕2, 𝜉⟨𝑁𝓁⟩

3𝑡 = 𝜏∕2,
⟨𝓁⟩ = 𝜉⟨𝓁⟩3𝑡 − 𝜉⟨𝓁⟩3𝑏 and 𝜉⟨𝓁−1⟩3𝑡 = 𝜉⟨𝓁⟩3𝑏 for 𝓁 = 2,… , 𝑁𝓁 . The map of the
olume is used to define the vectors 𝒈𝑖 of the local covariant basis and
he vectors 𝒈𝑖 of the local contravariant basis as

𝑖 =
𝜕𝒙
𝜕𝜉𝑖

(5a)

𝑖 ⋅ 𝒈𝑗 = 𝛿𝑗𝑖 (5b)

here 𝛿𝑗𝑖 is the Kronecker delta. Additionally, the 𝑖𝑗th covariant and
ontravariant components of the metric tensor are obtained as 𝑔𝑖𝑗 =
𝑖 ⋅ 𝒈𝑗 and 𝑔𝑖𝑗 = 𝒈𝑖 ⋅ 𝒈𝑗 , respectively.

Eventually, to the aim of the formulation development, it is worth
oting that a vector in R3 is either described in terms of its components

in the orthogonal reference system as 𝒗 = {𝑣1 𝑣2 𝑣3}T or in terms of its
ovariant components as 𝒗𝜉 = {𝑣𝜉1 𝑣𝜉2 𝑣𝜉3}

T. These vectors obey the
ollowing transformation law

= 𝑹𝜉𝒗𝜉 (6)

here the matrix 𝑹𝜉 collects the contravariant basis as columns. For
ore details on the differential geometry employed in the present work,

he interested reader is referred to [62].
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Fig. 1. Mapping scheme for the shell mid-surface.
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.2. Shell kinematics

According to the geometrical description introduced in the previ-
us Section, the shell deformation can be described in terms of the
isplacement vector expressed either in orthogonal components as 𝒖 =

{𝑢1 𝑢2 𝑢3}T or in covariant components as 𝒖𝜉 = {𝑢𝜉1 𝑢𝜉2 𝑢𝜉3}
T. The shell

inematics employed to develop the present formulation is based on the
xpansion of the displacements component across the shell thickness
hrough known functions of 𝜉3. Thus, the covariant components 𝑢𝜉𝑖 of

the displacement vector are expressed as

𝑢𝜉𝑖 (𝜉1, 𝜉2, 𝜉3) =
𝑁𝑖
∑

𝑘=0
𝑍𝑖

𝑘(𝜉3)𝑈𝑖𝑘(𝜉1, 𝜉2) (7)

where 𝑁𝑖 is the order of the expansion assumed for 𝑢𝜉𝑖 , 𝑍
𝑖
𝑘(𝜉3) is the

𝑘th function of the expansion of 𝑢𝜉𝑖 and 𝑈𝑖𝑘(𝜉1, 𝜉2) are the unknown
generalized displacements. It is worth noting that, according to the
Carrera Unified Formulation underlying principles [6], in Eq. (7) 𝑁𝑖 can
be considered as parameters whose values allow to build different order
shell structural theories falling within the ESL approach for multilay-
ered structures . The shell theory corresponding to the expansion orders
𝑁1, 𝑁2 and 𝑁3 is denoted as ED𝑁1𝑁2𝑁3

. Collecting the generalized
displacements as elements of the vector 𝑼 (𝜉1, 𝜉2), having size 𝑁𝑈 =
𝑁1+𝑁2+𝑁3+3, and consistently arranging the functions 𝑍 𝑖

𝑘 as elements
of the matrix 𝒁(𝜉3), the Eq. (7) is compactly rewritten in matrix form
as

𝒖𝜉 = 𝒁(𝜉3)𝑼 (𝜉1, 𝜉2) (8)

and, by using Eqs. (6) and (8), the displacement 𝒖 in the orthogonal
reference system is obtained in terms of the generalized displacement
vector 𝑼 as

𝒖 = 𝑹𝜉𝒁𝑼 (9)

It is observed that the expansion functions 𝑍 𝑖
𝑘(𝜉3) can be chosen with-

out particular restrictions (e.g polynomial, exponential, trigonometric).
Here, they are taken as the Taylor polynomials having order 𝑘 ≤ 𝑁𝑖
and scaled in the interval 𝐼𝜉3 . As an example, for the ED222 theory, the
matrix 𝒁 is obtained as

𝒁 =

⎡

⎢

⎢

⎢

⎣

1 2𝜉3∕𝜏
(

2𝜉3∕𝜏
)2 0 0 0 0 0 0

0 0 0 1 2𝜉3∕𝜏
(

2𝜉3∕𝜏
)2 0 0 0

0 0 0 0 0 0 1 2𝜉3∕𝜏
(

2𝜉3∕𝜏
)2

⎤

⎥

⎥

⎥

⎦

(10)
3

The Green–Lagrange strain components vector, namely 𝜸 = {𝛾11 𝛾22
33 𝛾23 𝛾13 𝛾12 }T, expressed in the orthogonal reference system is given
y

=
(

𝑰 𝑖 +
1
2
𝑾 𝑖

) 𝜕𝒖
𝜕𝑥𝑖

(11)

where the following auxiliary matrices have been introduced

𝑰1 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

1 0 0
0 0 0
0 0 0
0 0 0
0 0 1
0 1 0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

, 𝑰2 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

0 0 0
0 1 0
0 0 0
0 0 1
0 0 0
1 0 0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

, 𝑰3 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

0 0 0
0 0 0
0 0 1
0 1 0
1 0 0
0 0 0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

,

(12a)

𝑾 1 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝜕𝑢1
𝜕𝑥1

𝜕𝑢2
𝜕𝑥1

𝜕𝑢3
𝜕𝑥1

0 0 0
0 0 0
0 0 0
𝜕𝑢1
𝜕𝑥3

𝜕𝑢2
𝜕𝑥3

𝜕𝑢3
𝜕𝑥3

𝜕𝑢1
𝜕𝑥2

𝜕𝑢2
𝜕𝑥2

𝜕𝑢3
𝜕𝑥2

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

, 𝑾 2 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

0 0 0
𝜕𝑢1
𝜕𝑥2

𝜕𝑢2
𝜕𝑥2

𝜕𝑢3
𝜕𝑥2

0 0 0
𝜕𝑢1
𝜕𝑥3

𝜕𝑢2
𝜕𝑥3

𝜕𝑢3
𝜕𝑥3

0 0 0
𝜕𝑢1
𝜕𝑥1

𝜕𝑢2
𝜕𝑥1

𝜕𝑢3
𝜕𝑥1

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

,

𝑾 3 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

0 0 0
0 0 0
𝜕𝑢1
𝜕𝑥3

𝜕𝑢2
𝜕𝑥3

𝜕𝑢3
𝜕𝑥3

𝜕𝑢1
𝜕𝑥2

𝜕𝑢2
𝜕𝑥2

𝜕𝑢3
𝜕𝑥2

𝜕𝑢1
𝜕𝑥1

𝜕𝑢2
𝜕𝑥1

𝜕𝑢3
𝜕𝑥1

0 0 0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(12b)

The Eq. (11) extends the notation introduced in Ref. [56] including
all the nonlinear terms arising in the definition of the strain tensor.
It is worth noting that additional assumptions in the definition of the
nonlinear strain, e.g. the Von Kármán approximation for plates, can be
accounted for by suitably modifying the definition of the matrices 𝑾 𝑖.
Using Eq. (9) and applying the chain rule to express the derivatives
in the orthogonal reference system coordinates through those in the
curvilinear coordinates, one obtains
𝜕𝒖
𝜕𝑥𝑖

= 𝑫0𝑖𝑼 +𝑫𝛼𝑖
𝜕𝑼
𝜕𝜉𝛼

(13)

here

0𝑖 =
𝜕𝜉𝑗 𝜕𝑹𝜉 𝒁 +

𝜕𝜉3𝑹𝜉
d𝒁 (14a)
𝜕𝑥𝑖 𝜕𝜉𝑗 𝜕𝑥𝑖 d𝜉3
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f
G
p
b

𝑫𝛼𝑖 =
𝜕𝜉𝛼
𝜕𝑥𝑖

𝑹𝜉𝒁 (14b)

inally, upon introducing Eq. (13) in Eqs. (11), the Green–Lagrange
trains are expressed as

=
(

𝑰 𝑖 +
1
2
𝑾 𝑖

)

(

𝑫0𝑖𝑼 +𝑫𝛼𝑖
𝜕𝑼
𝜕𝜉𝛼

)

(15)

2.3. Constitutive behaviour

Each layer of the laminated shell is assumed to be homogeneous,
orthotropic and obeying a generalized Hooke’s law, meaning that a
linear relationship between the second Piola–Kirchhoff stress tensor
and the Green–Lagrange strain tensor holds. As the layers follow the
curvature of the shell, the constitutive relationships in the orthogonal
reference system depend on the position on the reference domain. At
a generic point of the 𝓁th layer, the constitutive law can be expressed
n the orthotropic material reference system whose orthonormal basis
s given by the vectors
⟨𝓁⟩
1 = 𝑹𝒏0 (𝜃

⟨𝓁⟩)
𝒈1

‖𝒈1‖
, 𝒎⟨𝓁⟩

3 = 𝒏0, and 𝒎⟨𝓁⟩
2 = 𝒎⟨𝓁⟩

3 ×𝒎⟨𝓁⟩
1 (16)

where 𝑹𝒏0 (𝜃
⟨𝓁⟩) is the transformation matrix that rotate a vector around

𝒏0 of an angle correspondent to the lamination angle 𝜃⟨𝓁⟩, which
is measured with respect the 𝒈1 direction. In this local orthonormal
basis, the relationship between the second Piola–Kirchhoff stress 𝝈⟨𝓁⟩ =
{𝜎⟨𝓁⟩11 𝜎⟨𝓁⟩22 𝜎⟨𝓁⟩33 𝜎⟨𝓁⟩23 𝜎⟨𝓁⟩13 𝜎⟨𝓁⟩12 }T and the Green–Lagrange strains
𝜸⟨𝓁⟩ = {�̃�⟨𝓁⟩11 �̃�⟨𝓁⟩22 �̃�⟨𝓁⟩33 �̃�⟨𝓁⟩23 �̃�⟨𝓁⟩13 �̃�⟨𝓁⟩12 }T is given by

𝝈⟨𝓁⟩ = �̃�⟨𝓁⟩�̃�⟨𝓁⟩ (17)

where the stiffness matrix �̃�⟨𝓁⟩ is obtained from the orthotropic ma-
terial properties as given in Appendix A. The constitutive matrix 𝒄⟨𝓁⟩
expressed in the orthogonal reference system 𝑥1𝑥2𝑥3 is then deduced
applying the 4th rank tensor transformation of axes formulas to �̃�⟨𝓁⟩

obtaining

𝝈⟨𝓁⟩ = 𝑻 �̃�⟨𝓁⟩𝑻 T𝜸 = 𝒄⟨𝓁⟩𝜸 (18)

where 𝝈⟨𝓁⟩ = {𝜎⟨𝓁⟩11 𝜎⟨𝓁⟩22 𝜎⟨𝓁⟩33 𝜎⟨𝓁⟩23 𝜎⟨𝓁⟩13 𝜎⟨𝓁⟩12 }T is the vector of the stress
components in the orthogonal reference system and the transformation
matrix 𝑻 is defined in Appendix A.

2.4. Principle of virtual works

The governing equations for the introduced shell models are in-
ferred from the principle of virtual works that reads as

𝛿𝐿𝑖𝑛𝑡 = 𝛿𝐿𝑒𝑥𝑡 (19)

where 𝛿𝐿𝑖𝑛𝑡 and 𝛿𝐿𝑒𝑥𝑡 are the virtual work of the internal and external
forces, respectively. For a multilayered structure they are expressed as

𝛿𝐿𝑖𝑛𝑡 =
𝑁𝓁
∑

𝓁=1
∫𝑉 ⟨𝓁⟩

𝛿𝜸T𝝈⟨𝓁⟩d𝑉 (20a)

𝛿𝐿𝑒𝑥𝑡 =
𝑁𝓁
∑

𝓁=1
∫𝑉 ⟨𝓁⟩

𝛿𝒖T𝒃d𝑉 +
𝑁𝓁
∑

𝓁=1
∫𝜕𝑉 ⟨𝓁⟩

𝛿𝒖T𝒕d𝜕𝑉 (20b)

here 𝒃 and 𝒕 are the volume forces acting on 𝑉 ⟨𝓁⟩ and the applied
tractions acting on 𝜕𝑉 ⟨𝓁⟩, respectively. From Eq. (11) the virtual strains
re given by

𝜸 = (𝑰 𝑖 +𝑾 𝑖)
𝜕𝛿𝒖
𝜕𝑥𝑖

(21)

Inserting Eqs. (21), (18) and (11) into Eq. (20a), the virtual internal
work is written as

𝛿𝐿𝑖𝑛𝑡 =
𝑁𝓁
∑

∫
𝜕𝛿𝒖 T

𝑪 𝑖𝑗
𝜕𝒖 (22)
4

𝓁=1 𝑉 ⟨𝓁⟩ 𝜕𝑥𝑖 𝜕𝑥𝑗 l
here

𝑖𝑗 =
(

𝑰T
𝑖 +𝑾 T

𝑖
)

𝒄⟨𝓁⟩
(

𝑰 𝑖 +
1
2
𝑾 𝑖

)

(23)

Furthermore, introducing Eq. (13) into Eq. (22) and integrating along
the thickness, one obtains

𝛿𝐿𝑖𝑛𝑡 = ∫𝛺𝜉

[

𝜕𝛿𝑼T

𝜕𝜉𝛼

(

𝑸𝛼𝛽
𝜕𝑼
𝜕𝜉𝛽

+𝑹𝛼3𝑼
)

+ 𝛿𝑼T
(

𝑹3𝛼
𝜕𝑼
𝜕𝜉𝛼

+ 𝑺33𝑼
)]

d𝛺𝜉

(24)

here the generalized stiffness matrices are introduced as

𝛼𝛽 =
𝑁𝓁
∑

𝓁=1
∫

𝜉⟨𝓁⟩3𝑡

𝜉⟨𝓁⟩3𝑏

𝑫T
𝛼𝑖𝑪 𝑖𝑗𝑫𝛽𝑗

√

𝑔 d𝜉3 (25a)

𝑹𝛼3 =
𝑁𝓁
∑

𝓁=1
∫

𝜉⟨𝓁⟩3𝑡

𝜉⟨𝓁⟩3𝑏

𝑫T
𝛼𝑖𝑪 𝑖𝑗𝑫0𝑗

√

𝑔 d𝜉3 (25b)

3𝛼 =
𝑁𝓁
∑

𝓁=1
∫

𝜉⟨𝓁⟩3𝑡

𝜉⟨𝓁⟩3𝑏

𝑫T
0𝑖𝑪 𝑖𝑗𝑫𝛼𝑗

√

𝑔 d𝜉3 (25c)

𝑺33 =
𝑁𝓁
∑

𝓁=1
∫

𝜉⟨𝓁⟩3𝑡

𝜉⟨𝓁⟩3𝑏

𝑫T
0𝑖𝑪 𝑖𝑗𝑫0𝑗

√

𝑔 d𝜉3 (25d)

eing 𝑔 the determinant of the metric tensor. Similarly, introducing
q. (9) into Eq. (20b) and integrating along the thickness, for the
xternal forces virtual work one writes

𝐿𝑒𝑥𝑡 = ∫𝛺𝜉

𝛿𝑼T𝑩 d𝛺𝜉 + ∫𝜕𝛺𝜉

𝛿𝑼T𝑻 d𝜕𝛺𝜉 (26)

where 𝑩 and 𝑻 are the generalized domain forces and the generalized
boundary forces, respectively. They are defined, as

𝑩 = 𝒁T𝑹T
𝜉 𝒕
√

𝑔
√

𝑛𝑖𝑔𝑖𝑗𝑛𝑗
|

|

|

|𝜉3=±𝜏∕2
+

𝑁𝓁
∑

𝓁=1
∫

𝜉⟨𝓁⟩3𝑡

𝜉⟨𝓁⟩3𝑏

𝒁T𝑹T
𝜉 𝒃

√

𝑔 d𝜉3 (27a)

𝑻 =
𝑁𝓁
∑

𝓁=1
∫

𝜉⟨𝓁⟩3𝑡

𝜉⟨𝓁⟩3𝑏

𝒁T𝑹T
𝜉 𝒕
√

𝑔
√

𝑛𝑖𝑔𝑖𝑗𝑛𝑗 d𝜉3 (27b)

here the notation 𝑓 |𝜉3=𝜉3 indicates evaluation of 𝑓 at 𝜉3 = 𝜉3.
Finally, the following expression of the principle of virtual works for

he non-linear static analysis of multilayered shells is obtained, which
epresents the weak form of the problem governing equations

𝛺𝜉

[

𝜕𝛿𝑼T

𝜕𝜉𝛼

(

𝑸𝛼𝛽
𝜕𝑼
𝜕𝜉𝛽

+𝑹𝛼3𝑼
)

+ 𝛿𝑼T
(

𝑹3𝛼
𝜕𝑼
𝜕𝜉𝛼

+ 𝑺33𝑼
)]

d𝛺𝜉 =

∫𝛺𝜉

𝛿𝑼T𝑩 d𝛺𝜉 + ∫𝜕𝛺𝜉

𝛿𝑼T𝑻 d𝜕𝛺𝜉

(28)

After integration by parts of the Eq. (28), ensuring that the resulting
relation holds for any virtual variation of the primary variables pro-
vides the following shell governing equations and the associated natural
boundary conditions

− 𝜕
𝜕𝜉𝛼

(

𝑸𝛼𝛽
𝜕𝑼
𝜕𝜉𝛽

+𝑹𝛼3𝑼
)

+𝑹3𝛼
𝜕𝑼
𝜕𝜉𝛼

+ 𝑺33𝑼 = 𝑩 in 𝛺𝜉 (29a)

𝜈𝛼

(

𝑸𝛼𝛽
𝜕𝑼
𝜕𝜉𝛽

+𝑹𝛼3𝑼
)

= 𝑻 on 𝜕𝛺𝜉𝑁 (29b)

here 𝜈𝛼 are the direction cosines of the outer unit normal defined over
he part 𝜕𝛺𝜉𝑁 of the 𝛺𝜉 domain where natural boundary conditions are
rescribed.

. Discontinuous Galerkin formulation

The solution of the problem governing equations, stated in weak
orm by Eq. (28), is addressed through the Pure Penalty discontinuous
alerkin (dG) method introduced by Babuška in [63] for the Poisson
roblem and in [64] for the Kirchhoff plate problem with homogeneous
oundary conditions, and also employed by Gulizzi et al. in [56,57] for
inear analysis of multilayered plates.
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3.1. Pure penalty discontinuous Galerkin method

Following the standard procedure for dG methods, the shell ref-
erence domain 𝛺𝜉 is partitioned into 𝑁𝑒 elements. For the sake of
simplicity and without lack of generality, a simple rectangular mesh
is adopted in this work; therefore, the domain of the 𝑒th element 𝛺𝑒

𝜉
is identified by 𝛺𝑒

𝜉 ≡ [𝜉𝑒1𝑏, 𝜉
𝑒
1𝑡] × [𝜉𝑒2𝑏, 𝜉

𝑒
2𝑡], where 𝜉𝑒𝑖𝑏 and 𝜉𝑒𝑖𝑡 are the

minimum and maximum values for 𝜉𝑖 within the 𝑒th element. Note that
the superscript 𝑒 is used to denote quantities referred to the 𝑒th element.

The primal form of the Pure Penalty dG method adopted in this
work is stated as

𝐵(𝑽 ,𝑼ℎ) = 𝐹 (𝑽 ,𝑩,𝑻𝑼 ), ∀𝑽 ∈ 𝑈
ℎ𝑝 (30)

here

(𝑽 ,𝑼ℎ) = ∫𝛺ℎ
𝜉

[

𝜕𝑽 T

𝜕𝜉𝛼

(

𝑸𝛼𝛽
𝜕𝑼ℎ

𝜕𝜉𝛽
+𝑹𝛼3𝑼ℎ

)

+ 𝑽 T
(

𝑹3𝛼
𝜕𝑼ℎ

𝜕𝜉𝛼
+ 𝑺33𝑼ℎ

)]

+

∫𝜕𝛺ℎ
𝜉𝐼

𝜇[[𝑽 ]]T𝛼 [[𝑼ℎ]]𝛼 + ∫𝜕𝛺ℎ
𝜉𝐷

𝜇𝑽 T𝑼ℎ

(31a)

𝐹 (𝑽 ,𝑩,𝑻 ,𝑼 ) ≡ ∫𝛺ℎ
𝜉

𝑽 T𝑩 + ∫𝜕𝛺ℎ
𝜉𝑁

𝑽 T𝑻 + ∫𝜕𝛺ℎ
𝜉𝐷

𝜇𝑽 T𝑼 (31b)

eing 𝑼ℎ the approximation of the generalized displacements field
esulting from the solution of the dG statement, 𝑽 the test functions
elonging to the space 𝑈

ℎ𝑝 and 𝑼 the prescribed values of the general-
zed displacements stemming from the essential boundary conditions of
he problem. The integrals appearing in Eqs. (31) are typically referred
o as broken integrals and their definitions are

𝛺ℎ
𝜉

∙ ≡
𝑁𝑒
∑

𝑒=1
∫𝛺𝑒

𝜉

∙𝑒 d𝛺𝜉 (32a)

∫𝜕𝛺ℎ
𝜉𝐼

∙ ≡
𝑁𝑖
∑

𝑖=1
∫𝜕𝛺𝑖

𝜉𝐼

∙𝑖 d𝜕𝛺𝜉 (32b)

∫𝜕𝛺ℎ
𝜉𝐷

∙ ≡
𝑁𝑒
∑

𝑒=1
∫𝜕𝛺𝑒

𝜉𝐷

∙𝑒 d𝜕𝛺𝜉 (32c)

∫𝜕𝛺ℎ
𝜉𝑁

∙ ≡
𝑁𝑒
∑

𝑒=1
∫𝜕𝛺𝑒

𝜉𝑁

∙𝑒 d𝜕𝛺𝜉 (32d)

where 𝛺ℎ
𝜉 is the approximation of 𝛺𝜉 that is obtained collecting the

domains 𝛺𝑒
𝜉 of the elements, 𝜕𝛺ℎ

𝜉𝐼 is the collection of the 𝑁𝑖 inter-
element interfaces 𝜕𝛺𝑖

𝜉𝐼 that are generated partitioning the reference
domain, 𝜕𝛺ℎ

𝜉𝐷 and 𝜕𝛺ℎ
𝜉𝑁 are the collections of the elements portions

of boundaries 𝜕𝛺𝑒
𝜉 and 𝜕𝛺𝑒

𝜉𝑁 where the essential and natural boundary
conditions are enforced, respectively. Moreover, in Eqs. (31) the jump
operator [[∙]](𝑖)𝛼 ≡ 𝜈𝑒𝛼 ∙𝑒 +𝜈𝑒′𝛼 ∙𝑒′ appears, being 𝝂𝑒 = {𝜈𝑒1 𝜈𝑒2}

T and 𝝂𝑒′ =
{𝜈𝑒′1 𝜈𝑒′2 }T the outer unit normal vectors defined over 𝜕𝛺𝑒

𝜉 and 𝜕𝛺𝑒′
𝜉 ,

respectively.
In the primal form of the Pure Penalty dG method, namely Eqs. (30)

and (31), 𝜇 is the penalty parameter used to enforce the inter-elements
continuity of the solution and the essential boundary conditions
through the corresponding integrals over 𝜕𝛺ℎ

𝜉𝐼 and 𝜕𝛺ℎ
𝜉𝐷, respectively.

The choice of 𝜇 is crucial for the method to be efficient: a too small
penalty value leads high discontinuities of the solution across the inter-
faces of the elements and a too high penalty causes an ill-conditioning
of the resolving system. A typical choice of the penalty parameter in
the Pure Penalty dG formulation is 𝜇 = 𝑄∕ℎ2𝑝 where 𝑄 is a sufficiently
large constant, typically proportional to the highest Young modulus
of the structure materials, and ℎ is a characteristic mesh size [34]. It
is remarked that differently from other dG formulation, such as the
Interior Penalty [65], in the Pure Penalty one the value of 𝜇 has to
5

be significantly higher and this has an adverse effect on the condition
number of the resolving system matrix [66]. On the other hand, the
primal form associated with the Pure Penalty approach accounts for
integrals over the elements boundaries not involving the internal forces,
which are nonlinear for the problem in hand [56]. Actually these
boundary integrals are linear with respect to 𝑼ℎ and therefore they
do not need to be computed for each iteration of the solution scheme
with consequent computational advantages. For more details on the dG
formulation development the reader is referred to [56].

3.2. Non-linear resolving system

The statement in Eq. (30) is transformed into an algebraic system by
choosing an adequate approximation expansions for the test functions
𝑽 and the primary variables 𝑼ℎ. These are chosen within a space of
discontinuous polynomial basis functions as detailed in [34,56,57]. In
particular, the 𝑘th components 𝑉 𝑒

𝑘 and 𝑈 𝑒
𝑘 of the restriction 𝑽 𝑒 and 𝑼 𝑒

ℎ
of the fields 𝑽 and 𝑼ℎ to the 𝑒th element are approximated as

𝑈 𝑒
𝑘 =

𝑝
∑

𝑝1=0

𝑝
∑

𝑝2=0
𝑒
𝑝1
(𝜉1)𝑒

𝑝2
(𝜉2)𝑋𝑒𝑘

𝑝1𝑝2
(33a)

𝑉 𝑒
𝑘 =

𝑝
∑

𝑝1=0

𝑝
∑

𝑝2=0
𝑒
𝑝1
(𝜉1)𝑒

𝑝2
(𝜉2)𝛿𝑋𝑒𝑘

𝑝1𝑝2
(33b)

where 𝑒
𝑝𝑗
(𝜉𝑗 ) is the Legendre polynomial of order 𝑝𝑗 scaled in the

interval [𝜉𝑒𝑗𝑏, 𝜉
𝑒
𝑗𝑡], 𝑋𝑒𝑘

𝑝1𝑝2
are the unknown expansion coefficients and

𝛿𝑋𝑒𝑘
𝑝1𝑝2

are the arbitrary parameters of the test function. Accordingly,
in compact matrix form, one writes

𝑼 𝑒
ℎ = 𝑷 𝑒(𝜉1, 𝜉2)𝑿𝑒, (34a)

𝑽 𝑒 = 𝑷 𝑒(𝜉1, 𝜉2)𝛿𝑿𝑒 (34b)

here the vectors 𝑿𝑒 and 𝛿𝑿𝑒 collect the unknowns 𝑋𝑒𝑘
𝑝1𝑝2

and the
arameters of the test function 𝛿𝑋𝑒𝑘

𝑝1𝑝2
, respectively, while the matrix

𝑒(𝜉1, 𝜉2) consistently collects the functions used for the expansion of
he components of 𝑼 𝑒

ℎ and 𝑽 𝑒.
Substituting the expressions of 𝑼 𝑒

ℎ and 𝑽 𝑒 into Eq. (30) one obtains
he Pure Penalty dG discrete primal form and applying the standard
ariational calculus procedure the following nonlinear algebraic system
s inferred

(𝑿)𝑿 = 𝑭 (35)

here the vector 𝑿 collect as blocks the vectors 𝑿𝑒 in such way that
he degrees of freedom corresponding to the same element appear as
sequence within 𝑿. The stiffness matrix 𝑲 can be decomposed into

hree kinds of contributes, namely 𝑲 = 𝑲𝐼 + 𝑲𝐼𝐼 + 𝑲𝐼𝐼𝐼 , which
riginates from the work of internal forces, the enforcement of the
ontinuity of the solution across the elements and the enforcement
f the problem essential boundary conditions, respectively. Thus, the
tiffness matrix 𝑲 and the right-hand-side 𝑭 are consistently obtained
y an assembly procedure resting on the following rules:

a. the 𝑒th element provides

– the contribution to the stiffness matrix 𝑲 stemming from the work
of the internal forces given by

𝑲𝑒
𝐼 = ∫𝛺𝑒

𝜉

[

𝜕𝑷 𝑒T

𝜕𝜉𝛼

(

𝑸𝛼𝛽
𝜕𝑷 𝑒

𝜕𝜉𝛽
+𝑹𝛼3𝑷 𝑒

)

+𝑷 𝑒T
(

𝑹3𝛼
𝜕𝑷 𝑒

𝜕𝜉𝛼
+ 𝑺33𝑷 𝑒

)]

d𝛺𝜉 (36)

that sums to the rows and columns associated with the degrees of
freedom of the element;

– the contribution to the right-hand-side 𝑭 due to the body forces,
given by

𝑭 𝑒
𝑏 = ∫ 𝑒

𝑷 𝑒T𝑩 d𝛺𝜉 (37)

𝛺𝜉
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that sums to the rows associated with the degrees of freedom of
the element;

– the contribution to the right-hand-side 𝑭 due to the boundary
forces, given by

𝑭 𝑒
𝑡 = ∫𝜕𝛺𝑒

𝜉𝑁

𝑷 𝑒T𝑻 d𝜕𝛺𝜉 (38)

that sums to the rows associated with the degrees of freedom of
the element;

– the contributions due to the essential boundary conditions that are
given by

𝑲𝑒
𝐼𝐼𝐼 = ∫𝜕𝛺𝑒

𝜉𝐷

𝜇𝑷 𝑒T𝑷 𝑒 d𝜕𝛺𝜉 (39)

that sums to the 𝑲 matrix at the rows and columns associated with
the degrees of freedom of the element, and

𝑭 𝑒
𝑢 = ∫𝜕𝛺𝑒

𝜉𝐷

𝜇𝑷 𝑒T𝑼 d𝜕𝛺𝜉 (40)

that sums to the right-hand-side 𝑭 at the row associated with the
degrees of freedom of the element.

b. the 𝑖th interface between the elements 𝑒 and 𝑒′ provides four con-
tributions to the stiffness matrix 𝑲 enforcing the inter-element
continuity, namely

– the contribution

𝑲 𝑖𝑒𝑒
𝐼𝐼 = ∫𝜕𝛺𝑖

𝜉𝐼

𝜇𝑷 𝑒T𝑷 𝑒 d𝜕𝛺𝜉 (41)

that sums to the rows and columns associated with the degrees of
freedom of the 𝑒th element;

– the contribution

𝑲 𝑖𝑒𝑒′
𝐼𝐼 = ∫𝜕𝛺𝑖

𝜉𝐼

𝜇𝑷 𝑒T𝑷 𝑒′ d𝜕𝛺𝜉 (42)

that sums to the rows associated with the degrees of freedom of
the 𝑒th and the columns associated with the degrees of freedom of
the 𝑒′th elements;

– the contribution

𝑲 𝑖𝑒′𝑒
𝐼𝐼 = ∫𝜕𝛺𝑖

𝜉𝐼

𝜇𝑷 𝑒′T𝑷 𝑒 d𝜕𝛺𝜉 (43)

that sums to the rows associated with the degrees of freedom of
the 𝑒′th and the columns associated with the degrees of freedom
of the 𝑒th elements;

– the contribution

𝑲 𝑖𝑒′𝑒′
𝐼𝐼 = ∫𝜕𝛺𝑖

𝜉𝐼

𝜇𝑷 𝑒′T𝑷 𝑒′d𝜕𝛺𝜉 (44)

that sums to the rows and columns associated with the degrees of
freedom of the 𝑒′th element;

The non-linear algebraic system in Eq. (35) is solved using a
Newton–Raphson method with the path-following arc-length iteration
scheme proposed by Crisfield [67,68]. To apply this solution procedure
the tangent stiffness matrix 𝑲𝑇 is required and then its expression has
been derived as reported in Appendix B.

4. Results

To validate the proposed method and assess its capabilities, nu-
merical tests are performed considering different plates and shells
benchmark problems. The material properties employed in the analyses
are given in Table 1. The presented results refer to three different
theories, namely the ED𝑘𝑘𝑘 with 𝑘 = 1, 2, 3. For the ED𝑘𝑘𝑘 theory,
each covariant component of the displacement vector is expanded using
6

Taylor’s polynomials up to the 𝑘th order; for the ED111, the material
Table 1
Material properties.

Material ID Property Component Value

M1 Young’s modulus 𝐸 75000 MPa
Poisson’s ratios 𝜈 0.3

M2 Young’s modulus 𝐸 75000 MPa
Poisson’s ratios 𝜈 0.316

M3 Young’s modulus 𝐸 3102.75 MPa
Poisson’s ratios 𝜈 0.3

M4 Young’s moduli 𝐸1 3300 MPa
𝐸2, 𝐸3 1100 MPa

Poisson’s ratios 𝜈23, 𝜈13, 𝜈12 0.25
Shear moduli 𝐺23 660 MPa

𝐺13, 𝐺12 660 MPa

stiffness matrix is also modified according to the plane stress state
hypothesis and to keep a shear stress factor equal to 5∕6. In all the
roposed examples, the penalty parameter has been suitably chosen
ccording to the findings reported in Refs. [34,56]. Four tests are pre-
ented: the nonlinear bending of an isotropic plate, the post-buckling
nalysis of an isotropic slender plate, the snap-back and snap-through
f isotropic and laminated cylindrical shells and the nonlinear response
f a complex geometry composite shell. The first three of these tests are
opular benchmarks and they allow the present results to be compared
ith solutions available in the literature. The last case is presented to

llustrate the method capabilities in dealing with complex, general shell
eometries and its solution is compared with finite elements results.

.1. Isotropic plate nonlinear bending

The first validation test regards the nonlinear bending of a constant
hickness, isotropic, square plate referred to the 𝑥1𝑥2𝑥3 orthogonal
oordinate system with origin in the mid-plane at a plate corner, the
1 and 𝑥2 axes directed along the edges and the 𝑥3 axis directed along
he plate thickness. The plate is subjected to a uniform surface load

applied on its upper surface and constantly oriented along the 𝑥3
xis during the deformation. The map of the mid surface of the plate
s obtained as 𝑥01 = 𝜉1, 𝑥02 = 𝜉2 and 𝑥03 = 0, where 𝜉1, 𝜉2 ∈ [0, 𝐿],
eing 𝐿 = 1200 mm the plate edge length. The plate consists of a single
ayer with material properties as M1 in Table 1 and thickness 𝜏. Two
ifferent values for the thickness have been investigated corresponding
o a thin plate having thickness ratio 𝜏∕𝐿 = 0.02 and a moderately thick
late with 𝜏∕𝐿 = 0.1. Two sets of boundary conditions are considered:
) all edges clamped, labelled as CCCC, corresponding to 𝑢𝜉1 = 𝑢𝜉2 =
𝜉3 = 0 at the edge points of coordinates (0, 𝜉2, 𝜉3), (𝜉1, 𝐿, 𝜉3), (𝐿, 𝜉2, 𝜉3)
nd (𝜉1, 0, 𝜉3); ii) all edges simply-supported, labelled as SSSS, where
𝜉1 = 𝑢𝜉2 = 𝑢𝜉3 = 0 at the edge points of coordinates (0, 𝜉2, 0), (𝜉1, 𝐿, 0),
𝐿, 𝜉2, 0) and (𝜉1, 0, 0).

To assess the efficiency of the method, the ℎ𝑝-convergence for dif-
erent theories was investigated. The reference solution 𝑼 𝑟𝑒𝑓 employed
or the convergence studies has been obtained by the present method
ith a 4 × 4 grid of elements with polynomial trial function of order
= 7, which can be considered as converged. For the simply-supported
anel with 𝜏∕𝐿 = 0.1 and the ED111 and ED333 theories, Fig. 2(a)
nd 2(b) show the solution error versus the element size measure
= 1∕

√

𝑁𝑒 for different approximation polynomial order 𝑝; the error is
computed at the step corresponding to a non-dimensional surface load
𝑞 = 𝑞𝐿4∕(𝐸𝜏4) = 400 as

𝑒(𝑼ℎ) =
|𝑼ℎ − 𝑼 𝑟𝑒𝑓 |∞

|𝑼ℎ|∞
(45)

here | ⋅ |∞ is the ∞-norm defined over 𝛺𝜉 . It is worth to note that the
umber of degrees of freedom associated with the theory ED𝑘1𝑘2𝑘3 is
qual to (𝑘1 + 𝑘2 + 𝑘3 + 3)(𝑝+ 1)2𝑁𝑒. The data of Figs. 2(a–b) evidences

that higher polynomial orders are characterized by higher convergence
rates and lower errors. These findings are confirmed by similar studies
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Fig. 2. Convergence study for the simply-supported, isotropic, square plate with edge length 𝐿 = 1200 mm and thickness ratio 𝜏∕𝐿 = 0.1. Convergence is assessed with respect a
reference solution (labelled as Ref. in the figures), which is obtained by the present method using a 4 × 4 grid with elements polynomial trial function order 𝑝 = 7. (a) and (b)
show the curves of the solution error 𝑒(𝑼ℎ) versus the element size ℎ for the ED111 and the ED333 theories, respectively. Curves correspond to different approximation polynomial
order 𝑝. (c) and (d) show the convergence of the ED111 equilibrium path of the non-dimensional transverse displacement 𝑢3 = 𝑢3∕𝜏 at the plate central point for different polynomial
orders 𝑝 and constant number of elements 𝑁𝑒 and for different number of elements 𝑁𝑒 and fixed approximation polynomial order 𝑝, respectively.
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carried out for different cases whose results are not reported here for
the sake of brevity. To complement the illustration of the method
convergence characteristics, Fig. 2(c–d) show the plate equilibrium
paths in terms of the non-dimensional surface load 𝑞 = 𝑝0𝐿4∕𝐸𝜏4 and
he transverse displacement at the central point of the plate 𝑢3 = 𝑢3∕𝜏.

They refer to the case of 𝜏∕𝐿 = 0.1 and simply-supported edges,
analysed by the ED111 theory. In particular, Fig. 2(c) shows solutions for
different polynomials orders and fixed spatial discretization, whereas
Fig. 2(d) reports the solutions for fixed approximating polynomials
order and different number of elements 𝑁𝑒 arranged in an 𝑚×𝑚 regular
grid.

For the considered boundary conditions and thickness ratios, Fig. 3
shows the plate equilibrium paths in terms of the non-dimensional
surface load 𝑞 = 𝑝0𝐿4∕𝐸𝜏4 and transverse displacement at the central
oint of the plate 𝑢3 = 𝑢3∕𝜏. The presented results are computed
hrough a 2 × 2 mesh grid of quadrilateral elements with polynomial
rial functions of order 𝑝 = 5 and they refer to the solution of the ED111

and ED333 models, which consists of 864 and 1728 degrees of freedom,
respectively. The results are compared with those reported in Ref. [69],
in which the FSDT with Von Karman geometrical nonlinearities is
employed, and in Ref. [10] whose solution is based on a second order
theory. It is noticed that in general there is good agreement between
the present and reference results. In particular, for thick plates there
is an excellent agreement for the high-order theory whereas contained
differences are observed for the FSDT case (Fig. 3(b)). As regard the
case of thin plates (Fig. 3(a)) excellent agreement is remarked for the
simply-supported boundary conditions whereas for the clamped plate
the dG solution appears less stiff.
7

4.2. Post-buckling of isotropic plate

The second test regards the post-buckling behaviour of an isotropic,
slender, rectangular plate with edge lengths 𝑎 = 300 mm and 𝑏 = 60 mm
and thickness ratio 𝜏∕𝑏 = 0.1, see Fig. 4(a).

The material properties employed correspond to those of material
2 in Table 1. The reference system 𝑥1𝑥2𝑥3 and the map of the plate

re the same as in the previous case with 𝜉1 ∈ [0, 𝑎] and 𝜉2 ∈ [0, 𝑏].
he plate is clamped on one edge, meaning 𝑢𝜉1 = 𝑢𝜉2 = 𝑢𝜉3 =
at 𝜉1 = 0, while the other edges are free. A compression point

oad 𝑭 is applied at the coordinates (𝜉1 = 𝑎, 𝜉2 = 𝑏∕2, 𝜉3 = 0),
eing constantly directed along the direction of 𝑥1. Additionally, in
rder to enforce post-buckling behaviour, a perturbation consisting of
small concentrated load 𝑷 directed along 𝑥3 is applied at the point

f coordinates 𝜉1 = 𝑎, 𝜉2 = 𝑏∕2, 𝜉3 = 𝜏∕2. The results presented in the
ollowing have been obtained through the ED222 theory solved by a
× 2 mesh grid of elements with polynomial trial function order 𝑝 = 5,
hich provides a resolving system with 1296 degrees of freedom. These

esults are reported and discussed as representative; indeed, similar
ccuracy can be achieved with different combination of polynomials
rder and number of elements as illustrated in the previous section.
ig. 4(b) shows the equilibrium path of the plate in terms of the
on-dimensional load amplitude 𝐹 = 𝐹 (48𝑎2)∕(𝜋2𝐸𝑏𝜏3) versus the non-
imensional transverse displacement 𝑢3 = 𝑢3∕𝑎 evaluated at the load

application point. The comparison of the present results with those of
Ref. [10] evidences good agreement with small differences noticeable
for higher load levels, being the dG solution less stiff. However, for
both curves buckling starts in correspondence of very close load levels
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Fig. 3. Nonlinear bending equilibrium paths of the isotropic square plates with edge length 𝐿 = 1200 mm, different thickness ratio 𝜏∕𝐿 and different boundary conditions,
namely simply-supported (SSSS) and clamped (CCCC) edges. The curves show the non-dimensional transverse displacement at the central point of the plate 𝑢3 = 𝑢3∕𝜏 versus the
non-dimensional surface load 𝑞 = 𝑝0𝐿4∕𝐸𝜏4. Present results for the ED111 and ED333 models, computed through a 2 × 2 mesh grid of quadrilateral elements with polynomial trial
functions of order 𝑝 = 5, and literature solutions are plotted. (a) Thin plate case with 𝜏∕𝐿 = 0.02. (b) Thick plate case with 𝜏∕𝐿 = 0.1.
Fig. 4. Post-buckling response of the cantilevered, isotropic, slender, rectangular plate with edge lengths 𝑎 = 300 mm and 𝑏 = 60 mm and thickness ratio 𝜏∕𝑏 = 0.1 under the
compression load 𝑭 and the perturbation load 𝑷 . (a) Plate geometry, loads and boundary conditions. (b) Equilibrium path in terms of non-dimensional transverse displacement
𝑢3 = 𝑢3∕𝑎 at the compression load application point versus the non-dimensional load amplitude 𝐹 = 𝐹 (48𝑎2)∕(𝜋2𝐸𝑏𝜏3). Results refer to the ED222 theory solved by a 2 × 2 mesh
grid of elements with polynomial trial function order 𝑝 = 5. (c) Post-buckling configurations of the plate for different equilibrium states corresponding to the following compression
loads 𝐹 = 0.0, 1.1, 1.72, 2.27, 2.75. The colour map represents the normalized displacement magnitude |𝒖| ∕𝑎.
and the agreement is very good for the first part of the post-buckling
behaviour. To show the evolution of the cantilever, slender plate kine-
matics with the applied load, some post-buckling configurations are
shown in Fig. 4(c) for different equilibrium states, which correspond to
the load levels 𝐹 = 0.0, 1.1, 1.72, 2.27, 2.75; the colour map represents
the normalized displacement magnitude |𝒖| ∕𝑎.

Eventually, computation of stresses has been carried out and rep-
resentative results are presented to complete the illustration of the
method capabilities. They refer to the cantilevered slender plate mod-
elled by the ED333 theory and solved with the same discretization
described above, resulting in 1728 degrees of freedom. Fig. 5(a) and
5(b) show the through-the-thickness distributions of the normal stress
𝜎11 and transverse shear stress 𝜎13 at the reference domain points of
coordinates 𝜉2 = 𝑏∕2 and 𝜉1 = 𝑎∕3, 𝑎∕2 for different load amplitudes
𝐹 . It is worth to note that as expected the third-order model is able to
inherently describe the quadratic distributions of the transverse shear
stress.

4.3. Snap-back and snap-through of cylindrical shells

The third test focuses on the study of a cylindrical shell under loads
and boundary conditions that result in a snap-back or snap-through
behaviour of the structure. Fig. 6(a) shows the geometry, boundary
conditions and loads of the cylindrical shell along with the orthogonal
8

reference system 𝑥1𝑥2𝑥3. Only a quarter of the structure is modelled
for symmetry conditions. The mean surface of the shell is mapped as
𝑥01 = 𝑅 sin(𝜉1), 𝑥02 = 𝜉2 and 𝑥03 = 𝑅 cos(𝜉1) where 𝜉1 ∈ [−𝜃, 0],
𝜉2 ∈ [0, 𝐿], 𝐿 = 254 mm, 𝑅 = 2540 mm and 𝜃 = 0.1 rad. Three
different shell sections have been considered: i) a single-layer section
of material M3 (see Table 1) and thickness 𝜏 = 6.35 mm, which is
labelled as C1 case (thin shell); ii) a single-layer section of material M3
(see Table 1) and thickness 𝜏 = 12.7 mm, which is labelled as C2 case
(moderately thick shell); iii) a three-layer section with [0∕90∕0] layup
of 4.233 mm thick plies having properties as M4 material in Table 1),
which is labelled as C3 case. The boundary conditions of the first edge
correspond to simply-supported, that is 𝑢𝜉1 = 𝑢𝜉2 = 𝑢𝜉3 = 0 at the
points of coordinates

(

−𝜃, 𝜉2, 0
)

; the edge corresponding to 𝜉2 = 0
is free, while the boundary conditions on the other two edges are
used to enforce symmetry restraints, meaning 𝑢𝜉1 = 0 at the points
of coordinates

(

0, 𝜉2, 0
)

and 𝑢𝜉2 = 0 at the points of coordinates
(

𝜉1, 𝐿, 0
)

. A transverse point load with amplitude 𝐹 is applied at the
coordinates 𝜉1 = 0, 𝜉2 = 𝐿, 𝜉3 = 𝜏∕2.

Fig. 6(b) shows the response of the analysed shells computed using
the ED222 theory and a 2 × 2 mesh grid of elements with polynomial
trial function order 𝑝 = 5 resulting in 1296 degrees of freedom. Once
again, it is remarked that the results obtained by this discretization are
representative and the same accuracy has been achieved with different
combinations of mesh and elements approximation order. The curves
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Fig. 5. Through-the-thickness stress distributions at the reference domain points of coordinates 𝜉1 = 𝑎∕3, 𝑎∕2 and 𝜉2 = 𝑏∕2 for the cantilevered slender plate with edge lengths
𝑎 = 300 mm and 𝑏 = 60 mm and thickness ratio 𝜏∕𝑏 = 0.1. Stress distributions computed by the ED333 theory are plotted for different equilibrium states corresponding to the
following compression loads 𝐹 = 0.0, 1.1, 1.72, 2.27, 2.75. (a) non-dimensional normal stress 𝜎11𝑎∕𝐸𝜏; (b) non-dimensional transverse shear stress 𝜎13𝑎2∕𝐸𝑏𝜏.
Fig. 6. Cylindrical shells with snap-back and snap-through behaviour. (a) Geometry, boundary conditions and applied load: 𝐿 = 254 mm, 𝑅 = 2540 mm and 𝜃 = 0.1 rad. (b)
Nonlinear equilibrium path in terms of load amplitude 𝐹 versus the transverse displacement 𝑢3 at the load application point for the three examined shell sections: (i) a 6.35 mm
thin homogeneous section of material M3, labelled as 𝐶1, (ii) a 12.7 mm moderately thick homogeneous section of material M3, labelled as 𝐶2, and iii) a 12.7 mm thick layered
section with [0∕90∕0] layup of M4 material, equal thickness plies, labelled as 𝐶3. M3 and M4 material properties are given in Table 1. Results are obtained using the ED222 theory
solved by a 2 × 2 mesh grid of elements with polynomial trial function order 𝑝 = 5. (c–g) show the 𝐶1 section shell configurations for different equilibrium states corresponding
to 𝐹 = 0.283,−0.315, 0.185, 1.576, 3.0 [kN]. (h-l) show the 𝐶3 section shell configurations for different equilibrium states corresponding to 𝐹 = 1.043, 1.661, 0.861 1.803, 3.045 [kN].
The colour maps represent the displacement magnitude |𝒖| and refer to the colorbar in (m).
of Fig. 6(b) plot the value of the load amplitude 𝐹 as a function of
the transverse displacement 𝑢3 at the load application point. Figs. 6(c–
l) show the shell configurations for selected equilibrium states. In
9

particular, for the C1 section shell, Figs. 6(c–g) show the shell de-
formed shape at the load levels 𝐹 = 0.283, −0.315, 0.185, 1.576, 3.0 [kN],
whereas Figs. 6(h-l) illustrate the behaviour of the C3 section shell
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Fig. 7. Through-the-thickness stress distributions for the pinched cylindrical shell with radius 𝑅 = 2540 mm, central half-angle 𝜃 = 0.1 rad, half-length 𝐿 = 254 mm and [0∕90∕0]
layup with 4.233 mm thick plies of M4 material (see Table 1). Stress distributions at the reference domain points of coordinates 𝜉1 = 𝜃∕4 and 𝜉2 = 𝐿∕4 are plotted for different
equilibrium states corresponding to the load amplitudes 𝐹 = 1.043, 1.661, 0.861, 1.803, 3.045 [kN]. (a) non-dimensional normal stress 𝜎11𝐿∕𝐸2𝜏; (b) non-dimensional transverse shear
stress 𝜎13𝐿2∕𝐸2𝜏2, being 𝐸2 the M4 material transverse Young’s module and 𝜏 the shell thickness.
showing its configurations at 𝐹 = 1.043, 1.661, 0.861, 1.803, 3.045 [kN].
The shell configurations of Figs. 6(c–l) are supplemented by the dis-
placement magnitude |𝒖| maps, which refer to the colorbar of Fig. 6(m).
Clearly, snap-back or snap-through behaviour occurs depending on the
shell thickness ratio and the comparison of the present results with
those available from Refs. [11,70,71] shows good agreement for both
isotropic and multilayered cases.

Fig. 7 illustrates the through-the-thickness distribution of represen-
tative stress components computed for the C3 section shell at the point
𝜉1 = 𝜃∕4 and 𝜉2 = 𝐿∕4. These are computed for the equilibrium states
corresponding to 𝐹 = 1.043, 1.661, 0.861, 1.803, 3.045 [kN] by using
both the ED222 and ED333 models with the same domain discretization
described above. As expected, the results shows that both the models
are able to capture the in-plane stress distribution with the same
accuracy level as evidenced by Fig. 7(a) where the 𝜎11 curves are almost
coincident for the two theories employed. As regard the transverse
shear stresses, Fig. 7(b) shows the 𝜎13 stress results. They indicate that
the ED222 model is not able to provide reliable shear stress distributions,
e.g. the traction-free surface condition is not ensured; on the other
hand the ED333 theory generally give physically reliable and sound
distributions.

These results illustrate the capabilities of the proposed method to
deal with complex nonlinear behaviour of shells.

4.4. NURBS-based laminated shell

In the last test, a generally-curved shell is considered, whose ge-
ometry is shown in Fig. 8(a–c) being 𝐿 = 600 mm, 𝐻 = 500 mm and
𝐷 = 50 mm.

The shell geometry is described via NURBS functions and for its
data, including the coordinates of the control points, the degree of the
basis functions and the knot vectors, the reader is referred to [60]. The
shell section is a four layers laminate with 1 mm thick plies of material
M4 (see Table 1) and [0, 30, 60, 90] layup. The shell is clamped on the
edge corresponding to 𝜉2 = 1 and it is subjected on the opposite edge to
an uniform, compression displacement 𝑢2 directed along 𝑥2. The shell is
modelled with the ED222 theory and the simulation has been carried out
using a 10 × 10 grid of elements with polynomial order 𝑝 = 4 resulting
in 22500 degrees of freedom.
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Fig. 8(d) shows the shell load–end displacement curve in terms of
the average 𝑥2-directed edge force resultant per unit length, namely
𝑁𝑎𝑣

22 , versus the applied edge displacement 𝑢2. The curve is compared
with that obtained by finite elements using the Abaqus® software [72]
evidencing very good agreement. Additionally, Fig. 8(e–j) show the
contour maps of the displacement vector magnitude |𝒖| of the reference
surface points at the loading steps corresponding to 1%, 20%, 40%,
60%, 80% and 100% of the maximum applied compression displace-
ment 𝑢2𝑚𝑎𝑥 . It is evidenced the complex behaviour of the investigated
shell which experiences coupling effects related to its geometry and
layup. It is worth to note that a thin shell has been used in this test.
This allows to consider accurate the finite element solution obtained
with the first order shear deformation theory whereas a second order
theory has been employed in the dG modelization, so as to validate the
proposed refined approach in the framework of such a complex shell
geometry.

In conclusion, the favourable comparison of the presented solutions
with the literature and finite elements results validates the proposed
approach whose accuracy can be tuned acting both on the employed
number of mesh elements or on the order of the elements polynomial
approximation.

5. Conclusions

This work presents a novel pure penalty discontinuous Galerkin
method for the geometrically nonlinear static analysis of multilayered
plates and shells.

In the context of a total Lagrangian approach, it allows to im-
plement refined equivalent single-layer shell theories with generality
of the through-the-thickness resolution. The corresponding governing
equations are obtained by the principle of virtual works and, for the
first time, their discretized form is inferred by a discontinuous Galerkin
approach resting on the pure penalty formulation. Based on Legendre
polynomial expansion of the primary variables, high-order elements are
developed. The resulting nonlinear algebraic system is solved with a
Newton–Raphson arc-length scheme.

A set of test cases is carried out to validate the proposed approach
and assess its features, focusing on nonlinear bending and post-buckling

response of plates, the snap-back and snap-through of shells, and the
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Fig. 8. NURBS-based shell undergoing compression loading. (a–c) Geometry and loading conditions of the shell: 𝐿 = 600 mm, 𝐻 = 500 mm and 𝐷 = 50 mm; NURBS data to replicate
the geometry are given in Ref. [60]. (d) Equilibrium path in terms of the average 𝑥2-directed edge force resultant per unit length 𝑁𝑎𝑣

22 versus the applied edge displacement 𝑢2.
Colour maps of the non-dimensional displacement vector magnitude |𝒖| ∕𝑢2𝑚𝑎𝑥 at the reference surface points are also shown at the following percentage levels of the loading: (e)
1%, (f) 20%, (g) 40%, (h) 60%, (i) 80%, (j) 100%; they refer to the colorbar shown in (k) where 𝑢2𝑚𝑎𝑥 is the maximum loading amplitude.
analysis of complex shell geometries. The tests prove the ability of the
method to deal with complex nonlinear behaviour of plates and shells.

Indeed, the obtained results reveal very good agreement with those
from the literature or from finite element analyses. The convergence
studies show that the method is effective with respect to the element
order, which entails good accuracy with reduced computational effort
especially for high-order theory modelling. From this point of view, it is
observed that the use of the pure penalty approach in the formulation
requires to compute the elements interface boundary integrals only
once, thus saving computational time during the iterative solution
scheme.

On the other hand, it is observed that the method tends to provide
less stiff response for high loading levels. This behaviour might be in-
duced by the pure penalty approach, which enforces in a weak sense the
kinematical compatibility at the element interfaces without ensuring
internal forces equilibrium. This aspect deserves further investigations.

Overall, the proposed pure penalty discontinuous Galerkin method
can be an alternative and useful mean for the nonlinear analysis of
multilayered plates and shells modelled with high-order, refined two-
dimensional theories. The class of configurations that can be analysed
11
is relatively wide. Future development should be directed towards the
extension of the method to handle typical features found in practical
applications such as nonlinear material behaviour, nonlinear dynamics,
damage.
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Appendix A. Layer stiffness matrix

The layer stiffness matrix in the orthotropic material reference
system is built as

𝒄⟨𝓁⟩ =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢
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1
𝐸1

− 𝜈21
𝐸2

− 𝜈31
𝐸3

0 0 0
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1
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0 0 0

0 0 0 1
𝐺23
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𝐺12
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⎦
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(A.1)

where 𝐸𝑟, 𝜈𝑟𝑠 and 𝐺𝑟𝑠 are the orthotropic material Young’ moduli,
Poisson’ coefficients and shear moduli, respectively.

In turn, the layer stiffness matrix in the orthogonal reference system
𝑥1𝑥2𝑥3, namely 𝒄⟨𝓁⟩, is obtained via Eq. (17) by using the following
ransformation matrix

=

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝜆211 𝜆212 𝜆213 2𝜆12𝜆13 2𝜆11𝜆13 2𝜆11𝜆12
𝜆221 𝜆222 𝜆223 2𝜆22𝜆23 2𝜆21𝜆23 2𝜆21𝜆22
𝜆231 𝜆232 𝜆233 2𝜆32𝜆33 2𝜆31𝜆33 2𝜆31𝜆32

𝜆21𝜆31 𝜆22𝜆32 𝜆23𝜆33 𝜆22𝜆33 + 𝜆23𝜆32 𝜆21𝜆33 + 𝜆23𝜆31 𝜆21𝜆32 + 𝜆22𝜆31
𝜆11𝜆31 𝜆12𝜆32 𝜆13𝜆33 𝜆12𝜆33 + 𝜆13𝜆32 𝜆11𝜆33 + 𝜆13𝜆31 𝜆11𝜆32 + 𝜆12𝜆31
𝜆11𝜆21 𝜆12𝜆22 𝜆13𝜆23 𝜆12𝜆23 + 𝜆13𝜆22 𝜆11𝜆23 + 𝜆13𝜆21 𝜆11𝜆22 + 𝜆12𝜆21
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where 𝜆𝑖𝑗 is the directional cosine of 𝒎𝑖 on 𝑥𝑗 .

Appendix B. Tangent stiffness matrix

The stiffness matrix 𝑲 appearing in the resolving system is a func-
tion of 𝑿 and can be decomposed into three kinds of contributes,
namely 𝑲 = 𝑲𝐼 + 𝑲𝐼𝐼 + 𝑲𝐼𝐼𝐼 , which originates from the work of
internal forces, the enforcement of the continuity of the solution across
the elements and the enforcement of the problem essential boundary
conditions, respectively. Since adopting a Pure Penalty formulation the
contributions 𝑲𝐼𝐼 and 𝑲𝐼𝐼𝐼 do not depend on 𝑿. Therefore, the tangent
stiffness matrix 𝑲𝑇 associated with the stiffness matrix 𝑲 is expressed
as

𝑲𝑇 =
𝜕(𝑲𝐼𝑿)

𝜕𝑿
+𝑲𝐼𝐼 +𝑲𝐼𝐼𝐼 = 𝑲𝐽

𝐼 +𝑲𝐼𝐼 +𝑲𝐼𝐼𝐼 (B.1)

The term 𝑲𝐽
𝐼 = 𝜕(𝑲𝐼𝑿)∕𝜕𝑿 stems from the variation of the virtual

work of the internal forces

𝛿(𝛿𝐿𝑖𝑛𝑡) =
𝑁𝓁
∑

𝓁=1
∫𝑉 ⟨𝓁⟩

𝛿(𝛿𝜸T𝝈⟨𝓁⟩)d𝑉 (B.2)

After some manipulations, accounting for Eqs. (11) and for the consti-
tutive equations, Eq. (B.2) is written as

𝛿(𝛿𝐿𝑖𝑛𝑡) =
𝑁𝓁
∑

𝓁=1
∫𝑉 ⟨𝓁⟩

𝜕𝛿𝒖
𝜕𝑥𝑖

T
𝑪𝐽

𝑖𝑗
𝜕𝛿𝒖
𝜕𝑥𝑗

d𝑉 (B.3)

here
𝐽
𝑖𝑗 =

(

𝑰 𝑖 +𝑾 𝑖
)T 𝒄

(

𝑰 𝑗 +𝑾 𝑗
)

+ 𝜎⟨𝓁⟩𝑖𝑗 𝑰𝑑 (B.4)

being 𝑰𝑑 the 3 × 3 identity matrix. Using Eq. (13) and integrating over
the thickness, Eq. (B.3) becomes

𝛿(𝛿𝐿𝑖𝑛𝑡) =
[

𝜕𝛿𝑼T (

𝑸𝐽
𝛼𝛽

𝜕𝛿𝑼 +𝑹𝐽
𝛼3𝛿𝑼

)

12

∫𝛺𝜉
𝜕𝜉𝛼 𝜕𝜉𝛽
+ 𝛿𝑼T
(

𝑹𝐽
3𝛼

𝜕𝛿𝑼
𝜕𝜉𝛼

+ 𝑺𝐽
33𝛿𝑼

)]

d𝛺𝜉 (B.5)

here the generalized tangent stiffness matrices are introduced as

𝐽
𝛼𝛽 ≡

𝑁𝓁
∑
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𝑔 d𝜉3 (B.6a)
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∑
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∫
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𝐽
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√
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𝐽
33 ≡

𝑁𝓁
∑

𝓁=1
∫

𝜉⟨𝓁⟩3𝑡

𝜉⟨𝓁⟩3𝑏

𝑫T
0𝑖𝑪

𝐽
𝑖𝑗𝑫0𝑗

√

𝑔 d𝜉3 (B.6d)

Accordingly to Eq. (B.5) the 𝑒th element provides a contribution to 𝑲𝐽
𝐼

given by

𝑲𝑒
𝐼 = ∫𝛺𝑒

𝜉

[

𝜕𝑷 𝑒T

𝜕𝜉𝛼

(

𝑸𝐽
𝛼𝛽

𝜕𝑷 𝑒

𝜕𝜉𝛽
+𝑹𝐽

𝛼3𝑷
𝑒
)

+ 𝑷 𝑒T
(

𝑹𝐽
3𝛼

𝜕𝑷 𝑒

𝜕𝜉𝛼
+ 𝑺𝐽

33𝑷
𝑒
)]

d𝛺𝜉

(B.7)

that sums to the row and columns of the tangent stiffness matrix
associated with the degrees of freedom of the element.
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