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A B S T R A C T

The optimization of integrated membrane bioreactors (MBRs) models is of paramount importance in view of reducing the costs, greenhouse gas emissions or
enhancing the water quality. On this behalf, this paper, produced by the International Water Association (IWA) Task Group on Membrane modelling and control,
reviews the current state-of-the-art regarding the control and optimization of integrated MBR models. Whether aerobic or anaerobic, such modelling allows the
consideration of specific functioning conditions and optimization problems together with the estimation and monitoring of Performance Index (PIs). This paper
reviews the diversity of those problems criteria used in performance assessment. Dividing issues that can be addressed either off-line or online, it is shown that
integrated models have attained an important degree of maturity. Several recommendations for mainstreaming the optimization of MBRs using such integrated
models. The key findings of this work show that there is room for improving and optimizing the functioning of MBRs using integrated modelling and that this
integrated modelling approach is necessary to link functioning conditions together with PI estimation and monitoring.

1. Introduction

When dealing with wastewater treatment processes, membrane
bioreactors (MBRs) are excellent candidates since they allow almost any
quality level of treated water while guaranteeing health and environ-
mental safety. An MBR is a very efficient water treatment with several
advantages over conventional technologies. Maintaining a pressure
difference on both sides of the membrane creates a driving force for the
fluid to be treated, enabling the separation of the various solutes present.
Depending on the technology used, the membrane may be immersed or
external. MBRs are used for municipal and industrial wastewater treat-
ment applications (Judd and Judd, 2011). However, such systems still
suffer from relatively high capital expenditures (CAPEX) and operating
expenses (OPEX), and membrane fouling remains one of the main
problems. The optimization of an MBR plant is a challenging task due to
numerous specific conditions concerning its functioning (Krzeminski
et al., 2017).

An MBR usually operates in alternating filtration and backwash/
relaxation phases. Often, it is also submitted to varying inputs: it is thus a
complex “dynamical system”, the optimization of which has attracted
much attention these last years. It refers to the search for optimal tra-
jectories – concerning a given criterion or set of criteria - by manipu-
lating several degrees of freedom (named control variables in a
dynamical context), possibly under several constraints specified by the
user. This very general definition calls for several important remarks.

First, in the static case (when time is not considered), an optimiza-
tion is nothing more than finding the minima or maxima of some
function (i.e., the optimization criterion). Then, in a model identifica-
tion procedure, these values of model parameters – or control inputs and
setpoints - are to be identified. At the same time, the optimization cri-
terion is a measure of the distance between the available data and model
predictions. In a “design optimization problem” (i.e. finding the best
values of a given process input, for instance), the problem often reduces
to the capacity of the user to explore a grid of values for this degree of
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freedom and to retain that one which minimizes/maximizes the cost
function, if the parameter space (i.e. the number of degrees of freedom)
is very small. In the dynamic case (i.e. finding the best trajectory of a
control input/setpoint/free parameter), it is no longer a single value
searched for. Still, precisely a trajectory - otherwise, an infinite number
of values! In addition, notice that even in an academic example where
the parameter and state spaces would be very small, the “capacity to
experiment” may take a very long time when confronted with a funda-
mental process optimization problem. Indeed, solving a dynamical
optimization problem is a difficult task. In the presence of nonlinearity
(either in the criterion, which is sometimes the case with the issues of
interest here or in the system, which is always the case in the considered
MBR models), the uniqueness of the optimal solution is not guaranteed,
and, from the best of authors knowledge, there is no guarantee that the
computed solution be the global optimum.

When dealing with MBR control and optimization, we are dealing
with three major questions.

• The first question to be asked is thus to formalize which criterion to
be optimized, i.e., which target must be achieved to reach an optimal
operating status and how this target (hereafter named “Performance
Index” or PIs) be quantified. To answer this first question, we claim
that integrated modelling is a key to correctly proceeding.

• The second question is related to the user’s capacity to address MBR
optimization questions: is the optimization problem static (for
instance, optimize some design parameters such as volumes, recir-
culation rates, and operating setpoints …) in the presence of constant
environmental inputs or dynamic (for example, find the appropriate
feedback loops such that disturbance(s) be rejected and while a given
(or several) criteria be optimized)? Independently of the optimiza-
tion method used, the main difference between both questions is the
real-time nature - the online implementation - of the second for the
first. What can integrated models be used for in these two contexts,
and how can they be used? For optimizing the functioning of a sys-
tem, the optimizer needs “to know” the system and, in particular,
how it reacts when the optimization parameter(s) is (are) manipu-
lated. In other words, how the variables that appear in the optimi-
zation criterion, which are often the performance indicators we just
mentioned, are related to the available model of the process. For
MBRs, the “price to pay” is the need for an integrated process model
to be optimized. It is often forgotten, but one of the significant ad-
vantages of having a dynamic process model is quantifying the dis-
tance from the theoretical optimum (assuming it may be found and
qualified as such) at which the system operates for any given func-
tioning mode. Applying an integrated approach may thus provide a
faster solution to help MBR achieve a more sustainable performance.
With this regard, a framework that couples an integrated model with
algorithms that correctly estimate performance indicators may
become an important analytic tool to pursue better outputs.

• The third question we may ask is to return to the online imple-
mentation of process optimization: how can we implement such
optimization strategies? This question is somewhat related to
implementing online control. The results of optimization procedures
- such as those resulting from applying optimal control theory - often
do not give any practical information about their online imple-
mentation. The rule rather than the exception is that they provide so-
called open-loop optimal trajectories but do not provide any feed-
back structure to apply them in practice. Thus, this third question
relates to how we can implement online optimal control solutions for
MBRs to optimize their practical functioning. With integrated
modelling, this question is addressed in two ways in the literature.
Either integrated models are used as a means of simulating a real
process - a virtual process - on which optimization strategies are
tested following a “plant-wide control” approach: in this family, we
find articles dealing with the evaluation of membrane filtration
controls just as much as articles dealing with the optimization of the

biological functioning of the system. Either integrated model is used
to optimize real systems. There are far fewer articles following this
logic, as it requires the prior identification of an integrated model to
simulate satisfactorily the actual process to be optimized.

In line with the work initiated and realized within the IWA Working
Group on MBR modelling these last years, we aim to provide a literature
review of MBR optimization and give some insights into their online
optimization. While optimization is permanently coupled to modelling,
this paper focuses on the optimization part, given that the integrated
modelling aspect is addressed elsewhere (Mannina et al., 2021).

The paper is organized around the three important questions that
were raised above. In section 2, we express the concept of multi-
objective assessment for MBRs. In particular, it is insisted that the per-
formance objectives are no longer captured by a single criterion but
rather follow a multi-objective framework. In section 3, we review the
literature for each performance indicator. Then, we examine the speci-
ficities of MBRs with respect to optimization purposes in a section
named “Integrated MBR models towards optimization”. Section 4 ex-
plains how PIs and integrated modelling must be considered for the
optimization problems of interest. Considering that fouling control is
one of the main levers of action for the practical improvement of MBR
operation, we devote section 5 to a review of approaches enabling its
online optimization. Finally, we recommend online optimization of
MBRs to improve their performances while minimizing their OPEX and
CAPEX. Of course, this paper is related to control and optimization,
OPEX is much more addressed than CAPEX. However, searching for the
best configuration may have an important influence on CAPEX associ-
ated with the number of Pis reviewed (for instance, on the system’s
volume), as we will see in the following sections.

2. Multi-objective performance assessment

Before optimizing any MBR, it is important to understand which
MBR issues may be modelled, i.e., which target must be achieved to
reach an optimal operating status, in a sense, to be precise. For example,
membrane fouling is one of the most addressed topics among literature
reviews related to MBR issues, which is why it may be considered an
important target to be optimized. Moreover, this fouling increases en-
ergy consumption, which is also another significant target since MBRs
are known to consume at least two times more energy than conventional
activated sludge systems (CAS) (Bertanza et al., 2017; Cornel and
Krause, 2006; Gil et al., 2010), mainly due to the high aeration demand
(Sun et al., 2016). Regarding aeration, within an MBR system, this
feature has twomain goals, often through two different aeration devices:
preventing membrane fouling due to the capability of acting over the
cake layer (Meng et al., 2019; Du et al., 2019) and enhancing biological
performance due to its positive effects over nitrification (Yang et al.,
2016; Zheng et al., 2018). This aeration demand is also linked to the TSS
concentration, which impacts the reactor design (volume). Considering
that these two purposes are highly relevant to the plant’s performance,
one may consider aeration an important target to optimize.

Effluent quality is another target that may be considered whilst
seeking the optimization of an MBR plant since it provides the highest
attainable performance for a biological process and the highest effluent
quality with more reuse and disinfection capabilities when compared to
CAS (Judd and Judd, 2011; Hamedi et al., 2019). Bertanza et al. (2011)
also demonstrated a higher ability to reduce the estrogenic activity of
the effluent. GHG emissions may also be assessed since MBRs are known
to emit the three major gases that represent GHGs: carbon dioxide (CO2),
methane (CH4), and nitrous oxide (N2O). These emissions can be direct
(i.e., from biological processes) or indirect (i.e., from electricity and
chemical consumption) (Bao et al., 2016; Parravicini et al., 2016; Pol-
ruang et al., 2018). In particular, MBR is accounted for indirectly
emitting more CO2 than CAS due to the high energy. Finally, MBR’s
high-cost demand is considered one of the major drawbacks of the
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scattering of the technology, which is why the operating cost can be
regarded as one of the most critical targets when assessing MBR’s
optimization.

As mentioned above, effluent quality, membrane fouling, operating
costs, GHG emissions, aeration and energy consumption are targets to be
achieved while managing an MBR to optimize its functioning. Thus,
considering these six targets provides a framework for MBR optimiza-
tion related to plant performance. However, building a connection be-
tween the integrated MBR model and the targets is important to become
quantifiable and, consequently, optimizable. In this regard, establishing
performance indicators (PIs) related to each target allows for measuring
plant functioning. Indeed, numerous PIs have been developed over the
years to assess wastewater treatment performance.

Extensive research among published literature showed different PIs
with the potential to be applied to integrated MBR models regarding
several important control strategies during plant management. Some
emerged to meet an MBR specific necessity, while others arose as a so-
lution for CAS processes (as well as for anaerobic systems) and were
adapted for MBRs. PIs are recommended while optimizing MBR since
they can interpret operating issues and present reliable results to
improve plant management. In other words, PIs can enable the manager
to understand which operating variables/parameters should be assessed
or undergo intervention in a decision-making process, saving time and
money while solving a determined problem.

Fig. 1 summarizes the main relationships between the optimization
targets and the PIs, with particular attention to their positioning within
the integrated MBR model.

From Fig. 1, one can understand that numerous PIs may be applied to
optimize each target. Additionally, using an integrated MBR model as
the platform for the framework allows for comprehensively assessing the
WWTP, as the PIs can be evaluated by considering biological, physical,
and integrated features. Thus, the integrated approach may be consid-
ered a reliable tool for optimizing effluent quality, energy consumption,
operating costs, GHG emissions, membrane fouling, and aeration.

The following sections contain an up-to-date compendium of per-
formance indicators regarding effluent quality, energy consumption,
operating costs, GHG emissions, membrane fouling, and aeration. The
main purpose of these sections is to provide the reader with mathe-
matical elements that could be applied to the framework of integrated
models for MBR multi-objective optimization.

Still, open questions are also highlighted, showing knowledge gaps
and the need for further research.

3. Performance indicators

3.1. Effluent quality

The assessment of nutrient removal was the first purpose of model-
ling WWTPs, which is why the mathematical modelling concerning this
aspect is widespread and well-developed. Nevertheless, literature usu-
ally approaches quantitative assessment only regarding nutrient
removal without addressing this issue using a performance indicator. In
other words, when understanding if the effluent has more or fewer
pollutants, papers usually present results in concentration or percentage.
For the qualitative assessment, however, the effluent quality index (EQI)
is a well-known PI applied by several researchers (Verrecht et al., 2010;
Ko, 2018; among others) that considers the amount of pollutants to
express the condition of the effluent before its discharge. Indeed, the
application of EQI meets the plant’s requirements for evaluating the
produced effluent, making the demand for a quantitative indicator
superfluous.

The EQI is PI based on the approach of Copp (2002), which quantifies
the pollution load to a receiving water body (as kg pollution units/day or
kg pollution units/treated volume). The higher the result of EQI, the
worse the effluent quality (Verrecht et al., 2010). As previously
mentioned, EQI was applied in various works, and its acronym may be
presented in different ways in the literature (e.g., EQ, EQI, among
others). Thus, this work will refer to it as EQILIQ as it relates to a liquid
component. The EQILIQ is calculated as follows (Nopens et al., 2010).

EQILIQ =
1

T − 1000

∫ t1

t0

[∑
Pk(t)

]
⋅Qeff dt (1)

where t0 indicates the initial time, t1 the end of the simulation period,
Qeff is the accumulated effluent flow, dt is the time step within the
simulation period, Pk is the pollutant weighted concentration of each
component at time t, which is expressed according to equation (2).

Pk = βx⋅Ck (2)

where βx is the weighting factor of every single pollutant, and Ck is the
pollutant concentration (mg•L− 1).

The value of βx may be proportional to the pollutant harm potential
or the legal limit applied by the regional law to the effluent discharge.
Hence, the applicant can choose the criterion representing a liability to
interpreting EQILIQ because it can contribute to an underestimated/

Fig. 1. Schematic representation of the framework towards MBR’s optimization. Targets are presented in grey.
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overestimated qualitative assessment. Despite this, several applications
are reported in the literature, and βx usually assumes similar values. For
example, Gabarrón et al., 2015 used the following values for, respec-
tively, TSS, COD, biochemical oxygen demand (BOD), total Kjeldahl
nitrogen (TKN), nitric oxide (NO) and phosphorus (PO): βTSS = 2, βCOD
= 1, βBOD = 2, βTKN = 30, βNO = 10 and βPO = 50. Mannina and Cosenza
(2015) employed the values reported by Vanrolleghem et al. (1996) for,
respectively, COD and the soluble concentrations of ammonium (NH4),
nitrite (NO3), nitrous oxide and PO: βCOD = 1, βNH = 20, βNO3 = 20, βN2O
= 50 and βPO = 50.

The βTSS presented by Gabarrón et al., 2015 seemed a conservative
measure, as the MBR is expected to retain 100% of the TSS, leading to a
PTSS = 0. Considering the work of Mannina and Cosenza (2015), the
value of βN2O equal to βPO seems to be overestimated, as N2O represents
a higher danger to the environment while in gas form, and the study
considered its soluble form. Both works applied the same value for βCOD
and βPO (the only repeated component among the considered ones), and
this consensus suggests that they are deemed feasible by both types of
research. The nitrogenous components, however, presented a different
approach. Initially, Initially, Gabarrón et al., 2015 considered TKN and
NO pollutants, while Mannina and Cosenza (2015) used NH4, NO3, and
N2O. By evaluating both works, it is clear that the components chosen
are related to those most significant within the assessed scenarios.

Nonetheless, the reason why other components were not considered
is not clear, even if the concentration of a non-significant pollutant
would provoke a derisory difference in the result. Even so, it is under-
standable that EQILIQ is calculated based on the scenario of interest
using specific weighting factors because it is impossible to assume that a
particular pollutant can affect different water bodies similarly. The main
obstacle to this is that the absence of specific components in the equation
hampers the possibility of comparing different results.

Even though some details must be defined, the EQILIQ has shown
great potential in optimizing MBRs. Among several other results,
Gabarrón et al., 2015 found that the lowest EQILIQ (i.e., the higher
effluent quality) were correlated with the highest recirculation rate
values and, consequently, with the highest pumping costs. Thus, the
improvement of effluent quality corresponded to a higher operating
cost. This result confirms that MBRs have a higher associated cost but
also indicates a window of opportunity for plant optimization, as using
an optimal recirculation rate can guarantee the best effluent quality with
the minimal possible cost.

All the above PIs mainly refer to the “standard” pollution factors.
New frontiers may consist of modelling (and PI definition) of emerging
contaminants, given the demonstrated effect of process conditions on
their removal and the advantages of MBRs vs CAS, shown by advanced
monitoring techniques (Bertanza et al., 2011).

3.2. Energy consumption

As reported by Sun et al. (2016), specific energy consumption in an
MBR plant has been cut these last ten years to reach 0.39 kWh⋅m− 3 in
Japan (Itokawa et al., 2014) and Singapore (Tao et al., 2010), 0.50
kWh⋅m− 3 as an average value in China (Xiao et al., 2014), and between
0.65, 0.8 and 2.4 kWh⋅m− 3 in Europe (Barillon et al., 2013; Krzeminski
et al., 2012).

Different PIs can be found in the literature representing MBR’s en-
ergy assessment (Maere et al., 2011; Mannina et al., 2019; among
others), but they all present the same core: to assess the energy required
by the pumping system. The variations observed are usually related to
the boundaries considered by this system, i.e., the assessment can
comprise only the air blowers or can be expanded to include recycle
pumps, mixers and permeate extraction. In the end, the complete PI for
the energy demand (ED) will be the one considering the highest amount
of features related to power consumption, but this does not mean that all
MBR scenarios need such a comprehensive approach.

Maere et al. (2011) modelled the total power requirement (PR, as

kWh⋅m− 3) of an MBR using a Benchmark Simulation Model (BSM)
applied to it, as presented in equation (3).

PR=AE+ PE+ME (3)

Where AE (as kWh⋅m− 3) is the aeration energy, PE (as kWh⋅m− 3) rep-
resents the energy of the sludge recycle pumps and ME (as kWh⋅m− 3) is
the energy used for mixing the anoxic, aerobic tanks and membrane
tanks.

The estimation of ME was retrieved from values provided by Metcalf
and Eddy (2003). AE was split into the contributions from fine bubble
aeration in the bioreactors (AEbioreactor) and coarse bubble aeration in
the membrane unit (AEmembrane). Both aerations were calculated ac-
cording to equation (4) by the integration of the expression for power
requirement for adiabatic compression provided by Tchobanoglous et al.
(2003) during the evaluation period t:

AE=
24
T

⋅
∫ T

0

w(t)⋅R⋅T
csi⋅n⋅e

⋅
[(

p2
p1

)n

− 1
]

⋅dt (4)

where w is the mass flow of air (kg⋅s− 1) in a time t; R is the gas constant
(equal to 8.314 kJ kmol− 1⋅K− 1); T is the absolute temperature (′C); p1
and p2 are the absolute inlet pressure and absolute outlet pressure (atm),
respectively; csi is a constant according to the International System of
Units (equal to 29.7); n is a constant for air (equal to 0.283); and e is the
blower efficiency (equal to 0.5). AEbioreactor and AEmembrane were sum-
med to provide the final AE.

The pumping energy considered three pump sludge flows (PS, as
kWh⋅m− 3): the internal nitrate recirculation flow (QR1 - m3⋅d− 1), the
waste flow (QR2 - m3⋅d− 1) and the return activated sludge flow (Qwas -
m3⋅d− 1). In addition, PE considered the permeate extraction (PEFF) as a
constant value calculated the same way as the sludge flows. The paper
did not present the exact equation for these four features.

Mannina et al. (2019) calculated eD in a similar way to Maere et al.
(2011). The aeration energy was estimated similarly but nominated as
Pw instead of AE. The main differences between both works are that
Mannina et al. (2019) did not consider the mixing energy of the four
reactors, and PEFF (as kWh/m3) was calculated with a different equation,
as follows:

PEFF =
1

t1 − t0

∫ t1

t0

TMP⋅Qeff (t)
3600⋅η ⋅dt (5)

where TMP is the transmembrane pressure; Qeff is the accumulated
effluent flow in a time t; η is the permeate pump efficiency, and dt is the
simulation period.

Although Maere et al. (2011) did not present the equation used for
PS, Mannina et al. (2019) presented an equation (6) that considers the
same three sludge flows as the first one.

PS =
1

t1 − t0

∫ t1

t0
0.004 ⋅ (QR1 ⋅ 0.06+QR2 ⋅ 0.06+QWAS ⋅ 0.06)⋅dt (6)

where QR1, QR2, and QWAS represent the same acronyms mentioned
while depicting the work of Maere et al. (2011). The values of 0.004 and
0.006 were used to convert the wastewater flow rate into kWh.

In the end, Mannina et al. (2019) calculated PR as shown in equation
(7):

PR=PW + PEFF + PS (7)

Thus, for the sake of completeness, it could be said that a more
comprehensive PR could be calculated as follows:

PR=AE+ME+ PEFF + PS (8)

These three ways of estimating PR represent several approved liter-
ature findings (cf. Metcalf and Eddy, 2003 or Henze et al., 2006 among
others) which explain why they are similar and can be found in other
published works (Verrecht et al., 2010; Mannina and Cosenza, 2013,
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2015; among others). In addition, both works stated that PR presented
realistic results for the assessed scenarios and contributed to better
estimating operating costs. The fact that AE presented the highest results
in both works led to the understanding that optimal aeration must be
pursued to reduce the plant’s energy demand while maintaining good
nitrification and denitrification levels. This is, indeed, a well-known
issue, which led to the development of “smart” aeration control strate-
gies of nitrification reactors of biological WWTPs (e.g., among those
based on fuzzy logic: Kalker et al., 1999; Fiter et al., 2005; Baroni et al.,
2006; Ruano et al., 2024).

3.3. Operating costs

Performing a full cost analysis of an MBR is challenging because the
plant has its specificities (as pointed out in Bertanza et al., 2017). Thus,
before establishing a model that can calculate MBR’s associated costs, it
is necessary to define which boundaries shall be considered, i.e.,
whether the assessment wants to address economic issues considering a
full-scale MBR or some specific features regarding the treatment.

OPEX is a cost indicator that can be used to determine energy and
chemical demand, critical component replacement, fines related to
wastewater discharges, and other items (e.g., labor and servicing) (Judd
and Judd, 2011; Verrecht et al., 2010; Yang et al., 2017). On the other
hand, CAPEX usually includes equipment, installation services (e.g.,
civil, mechanical and electrical services), and land costs (Verrecht et al.,
2010; Yang et al., 2017) if the analysis is limited to the wastewater
treatment process. Indeed, it is known that sludge treatment and
disposal may account for half of total operation costs. Both costs can be
combined to provide the net present value (NPV), which accounts for the
economic profitability of the MBR investment/utilization over its life-
time. Equation (9) depicts the calculation of NPV by considering the
values of OPEX and CAPEX (Verrecht et al., 2010).

NPV=
∑T

t=0

CAPEXt + OPEXt

(i+ 1)t
(9)

where i represents the discount rate or the return net that could be
earned along with the plant functioning, the sum of CAPEX and OPEX
represents the net cash inflow-outflow during the time period t, and T is
the time horizon of the project assessed. T usually varies from 20 to 30
years to represent the whole WWTP lifetime. The available literature did
not present a specific equation for obtaining the values of CAPEX and
OPEX, but a proper definition is provided in the following paragraphs.

The NVP can be used to assess MBR’s costs, and its great potential is
to show the advantages of investing in a robust technology (i.e., CAPEX),
which may lead to a decrease in maintenance and repair costs (i.e.,
OPEX) and an increase in effluent quality. Despite the widespread
application of the NPV, other methods may be used to perform an eco-
nomic assessment of MBRs. For example, Maurer (2009) introduced the
specific net present value (SNPV), which expresses plant’s average costs.
One is the growth rate and plant utilization over the planning horizon,
factors excluded from a standard NPV approach. In other words, using
SNPV can estimate the additional CAPEX for the staged expansion of a
treatment plant. Equation (10) depicts the SNPV proposed by Maurer
(2009), representing the NPV per service unit or population equivalent
(PE).

SNPV=
NPV

1
Tp

∫ Tp
0 Pt⋅dt

(10)

where Tp represents the planning horizon (years) and NPV is the present

value of total expenses, which, in this work, was calculated as the sum of
CAPEX and OPEX. Pt represents the demand (service unit or PE) at a
time dt and it is estimated as follows:

Pt =P0⋅eλ⋅t (11)

where P0 is the population equivalents at time 0, λ is the growth rate of
the population equivalents, and t is the time period.

The author applied the SNPV to an MBR-based system and obtained
the OPEX, which clearly represents the economic weakness of
membrane-based wastewater treatment. Finally, the manuscript stated
that the advantage of SNPV over NPV is better observed when there is a
need for the plant’s rapid growth. It can be said that SNPV is strongly
dependent on NPV; thus, its use is recommended in demanding growth
situations where customer costs must be minimized. In addition to those
mentioned above, the literature contains other approaches for esti-
mating CAPEX, OPEX, and, consequently, SNVP (Maurer, 2009).

As seen by the several PIs previously presented, the economic
assessment of an MBR can be a difficult task. For this reason, some re-
searchers proposed a more simplified approach that considers the three
main contributors to MBR’s operating cost: the costs related to the en-
ergy demand required for aeration purposes, recycle pumps and
permeate extraction; costs due to chemical consumptions for membrane
cleaning; and those due to effluent fines applied for the mass of pollut-
ants discharged (Guerrero et al., 2012; Mannina and Cosenza, 2015).
Mannina and Cosenza (2015) presented equation (12) based on the
previous works of Vanrolleghem and Gillot (2002) to estimate the total
operating costs (TOC, as euro/treated volume).

TOC=CC+ EF + PR⋅γe (12)

where PR is related to the power requirement (as euro/treated volume),
as presented in equation (8); γe is associated with the cost of 1 kWh; CC
corresponds with the chemicals consumption for membrane cleaning (as
euro/treated volume); and EF are the effluent fines (as euro/treated
volume). It is important to highlight that this equation does not consider
the costs related to control strategy (automation and sensors), as they
are location-dependent (Vanrolleghem and Gillot, 2002).

CC is important for membrane cleaning and must be considered as
one of the most common strategies to reduce membrane fouling
(Verrecht et al., 2008; Zuthi et al., 2012; Lee et al., 2013). For the
estimation of CC, Mannina and Cosenza (2015) considered a typical
membrane cleaning protocol including a solution composed of 500 ppm
of sodium hypochlorite (NaOCl) and 2000 ppm of citric acid, with a
value of 0.48 € per chemical cleaning. In this case, the chemical clean-
ings were considered to be held when the TMP reached a value higher
than 60 kPa, by the manufacturer, which would contribute to a decrease
in membrane efficiency and enhanced energy consumption for permeate
extraction.

Some liabilities were reported in the literature regarding the use of
NaOCl during MBR chemical cleaning, which is why other types of
substances were reported as being able to perform membrane cleaning
(e.g., nitric oxide) (Barnes et al., 2015; Jo et al., 2019). Thus, the CC cost
estimation must consider which chemical is recommended for the spe-
cific cleaning process.

The EF is calculated considering the costs for effluent discharge
within and without the limits established by the law (Vanrolleghem
et al., 1996; Mannina and Cosenza, 2015). Hence, the effluent concen-
tration (CjEFF) is compared with the effluent limits (CL,j) for each relevant
pollutant j during the assessment period (t2-t1), as shown in the
following equation:

EF=
1

t2 − t1
⋅
∫ t2

t1

[
1
QIN

⋅

(
∑n

j=1

(
Qeff ⋅ Δαj ⋅CEFF

j +Qeff ⋅
[
β0,j +

(
CEFF
j − CL,j

)
⋅
(
Δβj − Δαj

)])
⋅
(
Heaviside ⋅

(
CEFF
j − CL,j

))
)]

⋅dt (13)
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where QIN and Qeff are, respectively, the influent and effluent flow; Δaj is
the slope of the curve EF versus CjEFF, when CjEFF < CL,j (which attributes
a value of zero to the function Heaviside), while Δβj represents the slope
of the curve EF in the opposite case (i.e., Heaviside = 1); and β0,j are the
increments of fines for the case represented by Heaviside = 1 (Mannina
and Cosenza, 2015). In this case, the values of CjEFF were considered
equal to the ones reported by Stare et al. (2007) and CL,j was based on
the emission limits established by the environmental legislation limits.

Considering all the PIs above, it is possible to understand that re-
searchers made a tough effort to address MBR’s economic assessment.
NPV and TOC can be regarded as comprehensive when addressing
MBR’s lifespan and performance costs. Applying both before imple-
menting an MBR could provide important data to base decision-making
regarding the investment in such technology. However, a PI considering
the sum of NPV and TOC would not be recommendable, as both PIs
involve completely different information.

A more exhaustive estimation of OPEX should include other relevant
items, such as sludge (and other residues) management costs. Process
conditions may significantly affect sludge production and characteris-
tics; likewise, sludge line rejection liquors influence the water line
behaviour and performance. Therefore, efforts should be made to
include these items in the PIs list due to their relevant role in decision-
making (Bertanza et al., 2015, 2016; Svanström et al., 2014).

3.4. Aeration

The importance of aeration for an MBR is related to several aspects
previously discussed (i.e., effluent quality, fouling mitigation, indirect
emissions, and operating costs). For example, the aeration of membrane
modules is known as one of the reasons why MBRs are a higher-cost
technology compared to conventional systems due to the higher en-
ergy demand for the aeration blowers (Wu and He, 2012; Capodici et al.,
2015). This fact also implicates an increase in indirect GHG emissions
(Mannina et al., 2019), which shows that its optimization can affect the
whole MBR system.

The major obstacle related to this aspect is that only some PIs
applicable to aeration were publicized, and the most known are from
ancient literature. Among the available options, the most disseminated
are related to the biological treatment and weremostly applied to CAS or
only to the biological reactor without influencing the MBR. Among
them, it can be mentioned the oxygen transfer rate (OTR, as kgO2⋅h− 1),
the aeration efficiency (AEFF, as kgO2⋅kWh− 1), the oxygen transfer ef-
ficiency (OTE, as %) and the oxygen uptake rate (OUR, as mg⋅L− 1⋅h− 1).
OTR, AEFF, and OTE are related to the oxygen mass transfer, while OUR
is related to dissolved oxygen (DO) consumption.

More details regarding these PIs can be found in the literature (Henze
et al., 2006; Trussell et al., 2007; Pittoors et al., 2014). However, it is
important to mention that several studies reported these PIs with
different nominations, such as standard oxygen transfer rate (SOTR),
standard oxygen transfer efficiency (SOTE) and standard aeration effi-
ciency (SAEFF) (Naessens et al., 2012; Suh et al., 2013; Ko, 2018). These
standardized PIs consider process standard conditions instead of
site-specific ones to avoid mistakes while interpreting results. Such
standard conditions are zero DO, zero salinity and 20 ◦C and 1 atm
(Henze et al., 2006). In addition, the application of only one aeration PI
is not considered enough as a method to evaluate and predict the per-
formance of a plant configuration. Indeed, from a control point of view,
minimizing energy without explicitly taking into account at least one
performance criterion or constraint simply does not make sense. To be
properly posed, any control problem must consider both cost criteria (in
this case, linked to system operation, e.g. the energy demand for system
oxygenation) and at least one performance criterion (or constraints), e.g.
the desired level of rejection. Thus, considering the connection among
them, it would be recommendable to apply more than one to obtain a
more comprehensive interpretation of the phenomena related to

aeration.
Another interesting PI to be considered when it comes to aeration

aspects related to biological treatment is the oxygen-to-total-Kjeldahl-
nitrogen ratio (RON) (Boiocchi et al., 2017; Mannina et al., 2020).
RON provides a relation between the amount of oxygen supplied by the
aeration system versus the amount of Total Kjeldahl Nitrogen (TKN) in
the influent to understand how much of the oxygen provided to the
systemwas used to oxidize the influent ammonium. RON is a reliable way
to obtain an optimal oxygen supply reference and is calculated in
equation (14).

RON =

∑n

i=1
kLαAER,i⋅VAER,I⋅

(
SO2,SAT,i − SO2,AER,i

)

Qin⋅SNH,in
(14)

where kLaAER,i is the oxygen mass transfer coefficient of the aerated tank
i; VAER,i is the volume of the aerobic tank i; SO2,SAT,i is the oxygen
saturation concentration of the aerobic tank i; SO2,AER,i is the oxygen
concentration in the aerobic tank i; Qin is the inlet flow rate fed to the
biological zone; and SNH,in is the inlet ammonium nitrogen fed to the
biological zone. The sum (

∑
) represented in the equation is related to all

aerated sections (i.e., aerobic and membrane reactors).
RON was also used by Vangsgaard et al. (2012), as it typically in-

dicates the aeration regime of the treatment plant. It must be highlighted
that Boiocchi et al. (2017) applied RON to a CAS system (anoxic and
aerobic zones), whilst Mannina et al. (2019) adapted it for an MBR in-
tegrated model (anaerobic, anoxic and aerobic zones and a side-stream
membrane bioreactor). However, the application of RON to an MBR did
not affect its calculation. From the work of Mannina et al. (2019), it was
possible to notice that only the features related to the aerobic reactor
substantially affected RON.

Extensive research among published literature indicates the absence
of a PI to assess the effects of aeration over membrane fouling. Indeed, as
shown in the previous section, PIs related to fouling are mostly related to
membrane resistance and solids concentration in view of assessing
phenomena such as cake deposition, pore blocking and clogging,
reversible and irreversible fouling, among others. However, the role of
aeration over fouling should be appropriately analysed since air scour-
ing is responsible for the shear rate at the membrane surface and the
particle back transport into the bulk fluid. A comprehensive assessment
regarding such aspects may provide tools to help augment membrane
lifespan and reduce fouling (Armbruster et al., 2019). Even though no
specific PI was found during this research, the literature indicates the
shear intensity of the fluid turbulence (G) as an alternative PI able to
provide a correlation between aeration and cake formation/membrane
fouling (Mannina et al., 2011).

The estimation of G (s− 1) is based on the cross-sectional approach (Li
and Wang, 2006), which divides the membrane surface into a number i
of equal horizontal sections to assess the reduction of fluid shear caused
by aeration turbulence over the particles deposited on the membrane
surface. The cross-sectional approach considers that fouling is not uni-
formly distributed on the membrane area surface due to the action of the
air blowers (Chu and Li, 2005); thus, the uneven distribution leads to a
different sludge cake deposition in each membrane horizontal sections
(i) (Li and Wang, 2006). In the end, Gi (equation (15)) is related to the
turbulence effect suffered by the particles deposited on each i section of
the membrane. In this case, it is assumed that the higher the section, the
smaller the turbulence suffered by the particles (Mannina et al., 2011).

Gi =

⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒

[

0.1+ 0.45⋅
(

1+sin
(2εi − εa)⋅π

2εa

]

⋅
̅̅̅̅̅̅̅̅̅̅̅̅̅̅ρs⋅g⋅qa

μs

√

; εi < εa
̅̅̅̅̅̅̅̅̅̅̅̅̅̅ρs⋅g⋅qa

μs

√

; εi ≥ εa
(15)

where qa (m− 2⋅s− 1) represents the air flow rate, g represents the gravity
acceleration (m⋅s− 2) and ρs represents the sludge density (kg⋅m− 3). The
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parameter εi (m) is related to the fraction of the membrane surface
nearest to the aerator (i.e. where the Gi is more intense), and εa (m)
regards the membrane surface where the turbulence effect is reduced.
The sludge viscosity (μs as Pa⋅s) is reported in equation (16) as a function
of water viscosity (μw, as Pa⋅s) and the MLSS concentration.

μs = μw⋅1.05e0.08⋅MLSS (16)

As shown in equation (15), Gi will assume a different value for every
section i to represent the uneven effect of aeration turbulence along the
membrane length. From this, it may be assumed that Gi would only be
applicable for models, considering that the shear force is not uniformly
distributed. However, for more simplified models, i.e., that consider a
uniform turbulence effect along each i-section, the expression of G can
be simplified as follows (Suh et al., 2013):

G=

̅̅̅̅̅̅̅̅̅̅̅̅̅̅ρs⋅g⋅qa
μs

√

(17)

Mannina et al. (2011) and Suh et al. (2013) used the value of G to
obtain the mass of solids attached and detached to the membrane during
the suction phase by Li and Wang’s (2006) approach. The attachment
considered the forces of adhesion (i.e., the diagonal trajectory towards
the membrane surface during the permeate suction) and lifting (i.e., the
force exerted by the aeration, which directs the particle upwards within
the reactor, allowing the particle to deposit itself along the whole
membrane surface). On the other hand, the detachment regards the
force related to the backwashing flux. In the end, it is possible to obtain
the thickness of the dynamic sludge cake layer (i.e., the reversible cake
that can be removed by aeration) and the irreversible cake’s thickness.
From this application, G as a PI may be applicable to correlate the
aeration intensity with the formation of reversible and irreversible
fouling. However, since G depends on other information (e.g., adhesion
and lifting forces, probability of cake deposition), it must be coupled
with other calculations to provide a result that can be interpreted in
terms of membrane fouling.

3.5. GHG emissions

The GHG emitted from MBRs are mainly CO2 and N2O (Daelman
et al., 2015; Lorenzo-Toja et al., 2016; Mannina et al., 2016, 2018,
2019). CO2 is mainly formed by bacteria’s metabolic activities (i.e.,
direct emissions). It may also be formed while converting the energy and
chemical consumption in terms of carbon equivalent (CO2,eq) (i.e., as
indirect emissions) (Corominas et al., 2012; Bao et al., 2016). The N2O is
mainly produced during the biological conversion of nitrogen into ni-
trogen gas (N2) through the nitrification and denitrification processes
(Kampschreur et al., 2009). The pathways for NO formation fromWWTP
are extensively detailed in the literature (Wunderlin et al., 2012; Poc-
quet et al., 2016; Ribera-Guardia et al., 2019), and the importance that
has been given to this matter shows how important it is to have tools
able to correctly estimate N2O emissions and help in its mitigation
(Mannina et al., 2019).

The CO2 is formed during an intrinsic part of the wastewater treat-
ment (i.e., bacteria metabolic activities), so its emissions can be reduced
but hardly prevented. Most of the N2O is formed as an intermediate
product of an incomplete reaction. This fact led researchers to question
if optimizing wastewater treatment in terms of ammonium could reduce
the emissions of N2O (Monteith et al., 2005). For this reason, various
quantification methods are reported in the literature (Shahabadi et al.,
2010; Pan et al., 2011; Rodriguez-Garcia et al., 2012; among others) to
promote a solution for the GHG emissions from MBRs, especially
regarding N2O.

CO2 and N2O are easily soluble in water. Henry’s law constants of
CO2 and N2O are 34 and 24 mM atm− 1 (at 25 ◦C and 0% salinity),
respectively (Weiss and Price, 1980), which is considered relatively high
in comparison to that of O2 (1.3 mM atm− 1, at 25 ◦C and 0% salinity).

Therefore, both gases are known to accumulate in the liquid phase
during wastewater treatment. Considering this concept and based on the
work of Mannina and Cosenza (2015), Mannina et al. (2019) calculated
the stripping of CO2 and N2O off-gas from their liquid forms to obtain the
amount of GHG that can be stripped due to aeration. The quantification
of GHG emission with mass transfer from liquid to gas is well spread in
the literature (Daelman et al., 2015; Marques et al., 2016).

Despite its high GWP (28 over 100 years) (IPCC, 2014), CH4 is the
less studied GHG when it comes to MBRs because its production is
mainly observed when anaerobic processes are implemented (Mannina
et al., 2018). This, again, stresses the importance of including the sludge
treatment within overall assessment procedures, as sludge may be sta-
bilized via the anaerobic process. Indeed, the superficial assessment
observed while quantifying CH4 emissions from MBRs is related to the
fact that membrane studies are often looking for answers regarding the
waterline boundaries, which are those most influenced by MBRs, whilst
approximately 72% of CH4 emissions are related to the sludge lines
(Nguyen et al., 2019). Thus, its emission is usually accounted for in
full-scale processes containing an anaerobic digester or when sludge
handling is considered part of the assessment.

Mannina et al. (2019) applied equations (18) and (19) to calculate
the total direct emissions (DE) and total indirect emissions (IE),
respectively. Due to the boundaries considered by the study, the emis-
sions of CH4 were not inserted in the DE equation.

DE=OffgasCO2 +
(
OffgasN2O ⋅ 265

)
(18)

IE=
(
Pw +Peff +Ps

)
⋅0.245 (19)

where DE and IE were given as kgCO2,eq•m− 3. IE was calculated by
considering the concepts of Pw, Peff and Ps presented in section 3.2,
which represents the total energy demand of the system (eD). The
numbers 265 kgCO2, eq and 0.245 kgCO2 kWh− 1 were conversion fac-
tors. The sum of DE and IE represents the quantification of the GHG
emitted by the plant. It must be highlighted that, in case of a plant-wide
assessment, the emissions from the sludge line should be included to
obtain the total results of DE and IE.

Mannina et al. (2019) reported that DE and EQIGAS presented similar
behaviors, while IE presented a similar behavior to PR and TOC (see
equations (8) and (12), respectively). It is possible to understand that the
EQIGAS represents a reliable PI due to its similarity with DE, even though
the weighting factors applied for its calculations were based on a sub-
jective criterion. However, it is recommended to reconsider the values of
βCO2 and βN2O, as both gasses were expressed as having a similar po-
tential to threaten the atmosphere, which does not depict the reality
(IPCC, 2014). The fact that IE, PR, and TOC are similar illustrates that
reducing MBR’s energy consumption may be considered a priority
during MBR’s optimization.

For completeness, Mannina et al. (2019) presented a modified
version of the EQI (see equation (1)) to include gas emissions. The
EQIGAS represents a qualitative assessment of gas emissions, considering
the potential of CO2 and N2O to harm the atmosphere. The estimation of
this PI is quite similar to the EQILIQ, as shown in equation (20).

EQIGAS =
1

T − 1000

∫ t1

t0

(
βCO2

⋅OffgasCO2 + βN2O ⋅OffgasN2O

)
⋅Qeff dt (20)

where OffgasN2O and OffgasCO2 are related to the gas emitted by the
plant and βCO2 and βN2O are the weighting factors of, respectively, CO2
and N2O. In this case, βCO2 and βN2O were equal to 50. Qeff is the accu-
mulated effluent flow, and dt is the simulation period. Both weighting
values were chosen based on the author’s experience with the lack of
similar values in the literature.
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3.6. Membrane fouling

The formation of membrane fouling is mainly attributed to the un-
desirable deposition and accumulation of organic, inorganic and bio-
logical particles on the membrane surface (Zhang and Jiang, 2019;
Zhang et al., 2021). This reduces permeate flux and increases TMP lead,
reducing productivity, increasing treatment costs, and reducing mem-
brane lifespan (Zuthi et al., 2012). A more conceptual overview of the
phenomena leading to membrane fouling and the reduction of MBR
energy consumption can be found in the literature (Jang et al., 2006;
Hamedi et al., 2019; Wang et al., 2024).

Even though several studies have included this aspect as the main
topic, membrane fouling is still an “open challenge” when optimizing
MBRs. Many strategies have been tried to reduce fouling. The main
similarity among them is that they require direct intervention on the
membrane module, which is not always possible due to several opera-
tional reasons. In this case, the optimization through applying an inte-
grated mathematical model associated with a proper PI can provide a
faster response and allow managers to identify which operating variable
needs an intervention before acting on the process or the equipment. The
main problem is that a few options are available in the literature.

The first assessment of membrane fouling with mathematical
modelling was made through the resistances in series (RIS) models
(Psoch and Schiewer, 2006; Rafiei et al., 2014; Di Bella et al., 2018,
among others). However, the calculation of the resistance-in-series re-
lates to the membrane resistance, which is more applicable as a control
parameter than a PI. Among the available options of PIs, the modified
fouling index (MFI) is even used to predict fouling formation on the
membrane. It is considered a reliable sludge filterability indicator for
investigating the potential of fouling formation by considering the MLSS
characteristics and the physical treatment configuration (Sun et al.,
2019). MFI (given as s⋅L− 1) was derived by Schippers and Verdouw
(1980), and its main concept relies on the fact that fouling mechanisms
occur in the order of pore blocking, cake/gel filtration and cake/gel
blocking (Schippers and Verdouw, 1980; Salinas-Rodriguez et al., 2015;
Jin et al., 2017). In addition, its main assumption is that the amount of
matter deposited on the surface of the membrane is proportional to the
permeated volume. Thus, MFI is defined as the gradient of the linear
region found by the slope of the ratio between the filtration time (tf,
given as seconds) and the permeated volume (V, as liters) versus V, as
shown in equation (21) (Jin et al., 2017)

MFI=
tf
V
=

μRm

ΔPA
+

μI
2ΔPA2⋅V (21)

where ΔP is the applied pressure (as N⋅m− 2), μ represents the MLSS
viscosity (as N⋅s⋅m− 2), Rm is the membrane resistance (m− 1), A is the
membrane surface area (m2), and I is the fouling index, which is
determined as shown in equation (22).

I= α⋅C (22)

where α is the cake resistance, and C is the solids concentration.
MFI final result shows a linear correlation between the matter con-

centration (colloidal and suspended) that attaches to the membrane. The
MFI is very often applied to membranes with pore sizes of 0.45 μm
(MFI0.45). Still, it was also adapted for membranes that perform ul-
trafiltration (MFI-UF), nanofiltration (MFI-NF) and reverse osmosis
(MFI-RO) as the MFI0.45 was not considered adequate to predict cake
formation for different pore sizes (Salinas-Rodriguez et al., 2015; Jin
et al., 2017; Sun et al., 2019; among others).

Other approaches can be found in the literature in view of obtaining
the value of MFI (Ju et al., 2015; Harouna et al., 2019; Mannina et al.,
2019). Despite how widespread MFI is nowadays as a PI for assessing
membrane fouling, some concerns are reported in the literature
regarding its representativity when a real application is considered. The
dimension of MFI (time/volume) is one of the objects of criticism since

MFI seems to group many dimensional parameters that must ultimately
explain a relationship between time and volume, making the interaction
caused by the membrane resistance or the solids concentration a sec-
ondary issue. For this reason, the Dimensionless Fouling Index (DFI) was
introduced to overcome the issue related to the measurement unit
described by the MFI and to allow other important parameters to be
accounted for as having more effective participation while assessing
membrane fouling. DFI represents the ratio between the membrane
resistance and the cake due to the TSS concentration by Equation (23).

DFI=
R2
T

2PTSSrsc
(23)

where RT is the total membrane resistance (m− 1), to properly describe
the membrane fouling, it was calculated as proposed by Judd and Judd
(2011). The other acronyms of equation (23) were described along with
equation (21). In this case, rsc can be calculated as Mannina et al. (2011)
suggested.

Mannina et al. (2019) applied DFI to assess the membrane fouling of
a hypothetical plant-wide MBR plant. They used an integrated
process-basedmathematical model to the plant, and the results showed a
strong correlation between DFI and solids concentration (including SMP
concentration).

Once defined, coupled with an integrated model, Pis can be moni-
tored and estimated, possibly online, within a "plant-wide optimization”
framework.

4. Integrated MBR models towards optimization

As mentioned, MBR optimization may be achieved by using perfor-
mance indicators after establishing optimization targets. Althoughmuch
information was published regarding PI and MBR modelling, only a few
works combine both aspects to optimize the whole MBR system. The
main works published in the literature concerning this subject, along
with their main findings, are summarized here below and synthesized in
Table 1.

Table 1
Optimization of MBR through integrated model.

Reference Optimization
method

PIs Results

Maere
et al.
(2011)

Operating and
control strategies –
PI controllers

EQI, EC, operating
costs

Proof of concept for
identifying control
strategies that would
minimize operating
costs without
compromising the
effluent quality

Gabarrón
et al.
(2015)

Scenarios analysis
of control strategies

N removal rate, for
low operating cost

Influence of the DO
set point

Ko (2018) MINLP EQIliq, energy Influence of Recycle
ratio, biological
aeration flowrate

Mannina
et al.
(2019)

Technique for Order
of Preference by
Similarity to Ideal
Solution (TOPSIS)

EQILIQ, EQIGAS,
GHG emissions,
RON, TOC, EC,
effluent fines …

48% reduction of
TOC, 10% reduction
of direct GHG
emissions.
Not possible to
optimize all the PIs

Nam et al.
(2021)

Dual-objective
optimization,
Harmony Search

Jbiological (AE,
EQIliq) + Jphysical
(PErmeation, TMP,
Water Production)

Up to 12% reduction
of EC while
maintaining effluent
quality.
Optimized physical
cleaning duration
decreased PE by up to
17%, extended
membrane life span
by 17 days …
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• The work of Maere et al. (2011) was one of the first to consider the
possibility of optimizing an MBR system using modelling techniques.
The work used a benchmark simulation model for an MBR
(BSM-MBR) to evaluate operating and control strategies to enhance
effluent quality and reduce energy consumption and operating costs.
The results presented included two closed-loops, but it is clearly
stated that these results are just proof of concept for the simulator
and that it is up to the users to use any sets of actuators/sensors and
PIs. The BSM-MBR model was coupled with a dedicated aeration
model to incorporate the effects of sludge concentrations and the
aeration efficiency. On the other hand, SRT, high biomass concen-
tration, and extensive aeration contributed to improved ammonium
removal at the expense of a high operating cost. The model itself
could not provide an optimized result for the aeration; thus, a
closed-loop simulation was applied as proof of concept for identi-
fying control strategies that would better influence lowering oper-
ating costs without compromising the effluent quality.

• Gabarrón et al. (2015) applied a mechanistic integrated model to a
full-scale MBR to simulate viable optimization strategies for
improving effluent quality and reducing operating costs. To do so,
the performance indicators developed for the BSM were used to es-
timate the EQI. At the same time, the TOC was calculated by
considering the energy required for aeration and pumping proced-
ures, as well as sludge production. In this study, the actuators were
the recirculation rates between the different components of the
system and the aeration rates in the aerobic tank. The authors found
room for improving nitrogen removal efficiency by assessing the
plant’s performance, especially during denitrification. In addition,
modelling results showed that air blowers for biological aeration
were responsible for up to 55% of the total energy consumption,
which made it imperative to promote its optimization. The use of
BSM, in this case, is related to the assessment of the plant, consid-
ering not only the biological and physical treatment but also its
full-scale composition. For this reason, the operating costs included
the amount of sludge produced.

• Castillo et al. (2016) coupled a multi-criteria analysis to an inte-
grated MBR model to generate a ranked short-list of possible treat-
ments for three scenarios (which included different types of
wastewater treatment). An uncertainty analysis was further applied
to increase the robustness of the decision. Results showed that the
MBR was the optimal treatment and the most robust solution under
influent uncertainties and tighter effluent limits. The mathematical
modelling applied for optimization was considered reliable when
selecting the most appropriate treatment alternative.

• Ko (2018) applied an integrated model to optimize the design of an
MBR system composed of two anoxic tanks, two aerobic tanks, and
one immersed membrane tank. This application aimed to assess the
MBR functioning with different configurations, volumes, and flow
rates to obtain the most reasonable plant configuration. A
mixed-integer non-linear programming (MINLP) optimization tech-
nique was used to determine the optimal design and set of operating
variables for the plant operation. Results showed a direct influence of
the recycle ratio on EQILIQ. Additionally, a decrease in the recycling
and aeration flow rates resulted in an optimized value of EQILIQ,
pump energy, and aeration energy. Membrane fouling was not
considered during this optimization, but the author recommended its
inclusion in future assessments.

• Mannina et al. (2019) applied an integrated dynamic model to an
MBR pilot plant to optimize its functioning. The model applied was
calibrated and validated in previous works. The following PIs were
used as a reference during the optimization process: EQILIQ, EQIGAS,
GHG direct and indirect emissions, RON, TOC, energy demand, and
effluent fines, among others. Model application comprehended 5000
simulations with different operating parameters to understand their
influence over the PI outputs. A global sensitivity analysis (Exten-
ded-FAST method) was employed to understand the effect of each

variable on the PIs. After this step, an optimization technique named
Technique for Order of Preference by Similarity to Ideal Solution
(TOPSIS) was applied to the most sensitive results in view of iden-
tifying the set of parameters (amongst the applied ones) that pro-
vided the optimal result to be adopted by the plant under study.
Model simulation run with the select set of parameters allowed a
48% reduction in operational costs and a 10% reduction in direct
emissions. The optimization also made it easier to understand that, to
optimize some PIs, some others may be negatively affected. Thus, the
important aspect of this optimization is finding the best trade-off for
proper plant operation. Also, in this study, the membrane fouling
was not assessed as a PI since membrane resistance was evaluated as
a RIS system.

Such works are examples of the plant-wide nature of the optimiza-
tion of MBRs. In the next section, we concentrate on the online imple-
mentation of control by focusing on online membrane fouling control
strategies. In such cases, integrated modelling is usually used as a virtual
plant on which the membrane fouling control strategy is tested and
evaluated.

5. Online integrated model-based control

While optimizing any process does not necessarily mean imple-
menting any feedback, the particularity of online control is that it pro-
ceeds with time explicitly taking into account the actual state of the
system to react to it. It is usually the case in the operation of treatment
processes in highly dynamic environments. It should be noted that an
MBR, by its nature, operates by alternating two phases (filtration and
backwash/relaxation) and cannot be compared to other biological re-
actors in terms of control. Because of the total decoupling of hydraulic
and solid retention times in such systems, the time response of MBR is
much less than any other biological system: this is one of the specific
features of MBRs that makes them excellent candidates for online con-
trol. In addition, because the main limitation to MBR functioning is
membrane fouling, many online optimization and control systems are
dedicated to the management of membrane fouling, giving to the online
control a great potential to improve MBR functioning. The first online
fouling model-based control results can be attributed to Drews et al.
(2009); Busch and Marquardt (2009). Their papers dealt on the use of
simple models to automatically adapt filtration/backwash length and
fluxes to maximize permeability. While the papers reported in Table 2
are representative of most recent or representative available results in
membrane fouling control, the reader may refer to several recent review
papers for alternative fouling control methods, such as Quorum
Quenching Reactors (Pang et al., 2023), scouring (Zhang et al., 2021) or
in playing with process configurations to favor optimal bubble size (Wu
et al., 2024), new technologies like the increasing use of Low-Pressure
membranes (Ladouceur et al., 2024), the use of new sensors as Raman
spectroscopy (Virtanen et al., 2018) or actuators like ultrasounds
(Arefi-Oskoui et al., 2019) or still reviewing recent knowledge available
on fouling mechanisms (Chang et al., 2019). Notice that the problem of
online fouling control is very similar for aerobic MBRs and anaerobic
MBRs: Table 2 lists some of the articles already cited in the 2018 state of
the art proposed in (Ferrero et al., 2012; Robles et al., 2018), the latter
one devoted explicitly to AnMBRs. Because the problem of fouling
control is completely different for nanofiltration and reverse osmosis
processes, we focus in Table 2 below on studies related to online fouling
control methods for micro- and ultrafiltration MBR systems. Following
the same idea, works reported on diafiltration membranes, where the
diluent input together with fouling control parameters are usually the
main controls, are not reported here: the reader can refer to (Robles
et al., 2018), where some studies are reported.

The lessons learned from these papers are as follows.
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● The first lesson learned from this review is that there is a very high
diversity of works. Most of them use a “model-based” approach, in
the sense that the authors have used a simulation tool (an integrated
model, whatever its nature) to predict the fouling dynamics.

● To the author’s knowledge, very few studies optimize the func-
tioning of the whole plant (effluent quality/cost operations) and the
fouling (cf. section 4). In most cases, the optimization of MBR refers
either to the control i) of the biological part, notably in terms of
effluent quality - controlling the process with the aeration or with the
recirculation rate in the case of a plant involving several tanks (cf.,
for instance, Gabarrón et al., 2015; Odriozola et al., 2017; Liao et al.,
2024) - or ii) of the fouling (e.g. by maximizing the permeate volume
produced in a given time or by minimizing the operating cost),
explicitly (or not) considering influent characteristics as distur-
bances to be rejected (cf. e.g. Chaaben et al., 2024), but almost never
both objectives at the same time.

● Models based on AI or data-driven techniques (including neural
networks) are increasingly used: the reader may refer to (Jawad
et al., 2021; Bagheri et al., 2019 or Yusuf et al., 2019) for recent
reviews. Very few results without online control are available (and
thus, the corresponding studies are not reported in section 4). Several
recent papers have highlighted the high performance of dynamic
fouling prediction and suggested the use of such control methods
(Prado-Rubio and Huusom, 2024; Wang and Li, 2024). However, in
such a case, it should be noted that their ability to estimate PIs
essential for control remains open since most techniques are dedi-
cated to the prediction of membrane fouling properties and not
necessarily all RIS available when using mechanistic-based inte-
grated models.

● It is particularly interesting to note that most of the proposed ap-
proaches have been evaluated on real pilot plants, not on full-scale
plants. Integrated models are not currently used for online fouling
control; they are rather used as virtual processes to evaluate new
control approaches. The real interest of integrated models is to
evaluate the performance of controlled MBRs, in particular, to esti-
mate PIs that are difficult or impossible to measure or that would be
too costly to monitor online.

Evaluation and validation of plant-wide MBR systems using inte-
grated modelling are part of prospective work. If not sure, it is also likely
that data-based and AI methods will probably be coupled with physical
modelling to address the intrinsic complexity of MBR systems, allowing
a better understanding and control of such systems.

6. Discussion and perspectives

The integrated MBR models can provide credible estimations and
allow managers to explore a variety of operating scenarios before their
application on-site, avoiding waste of environmental, physical and
chemical resources while optimizing operating costs, energy consump-
tion, effluent quality, among others, that can be estimated and moni-
tored through Pis. For this reason, a framework that uses integratedMBR
modelling to optimize MBR’s outputs can be considered a reliable tool,
and it has already shown to provide positive results (Gabarrón et al.,
2015; Ko, 2018; Mannina et al., 2019; among others). We note that there
is little, if any, integration of modelling and control approaches in new
technologies developed to control MBRs, such as Quorum Quenching
Reactors, which technology continues to develop (Pang et al., 2023). We
can imagine that such integration would lead to high-performance sys-
tems whose control issues remain unresolved for the time being.

Specifically concerning the PIs that can be applied to an integrated
mathematical model in order to provide MBR optimization, one can
retrieve the following considerations.

• The weighting factors applied to EQILIQ and EQIGAS may represent a
liability because they seem related to an empirical choice. Never-
theless, several authors have reported the use of EQILIQ as a reliable
way to correlate the effluent concentration to the environment, and
this link is very often required, which makes its use recommendable.

• Specifically for the gaseous index, both gases have a similar potential
to threaten the atmosphere, which does not represent reality since
N2O has a GWP 265 times higher than CO2 (IPCC, 2014). Despite
this, the EQIGAS can be considered a suitable PI to provide a
simplified response regarding GHG direct emissions.

Table 2
Most representative online control methods for controlling membrane fouling.

Reference Type of MBR/model used
for the virtual plant

Simulation (S)
Experimentation (E)

Control method Control objectives Actuators

Busch et al. (2007);
Busch and Marquardt
(2009)

Submerged hollow fiber
aerobic MBR

E Run-To-Run control (model-
based predictive control
principle)

Plant operating costs Backwash frequency
and flux

Vargas et al. (2008) Submerged tubular
membrane module of PVDF

E TMP-based control Permeate flux Backwash frequency

Drews et al. (2009) Data from the literature N/A Recognition of pore blocking
mechanism

Maximize permeability Backflusk flux,
aeration

Ferrero et al. (2011) Submerged hollow fiber and
flat sheet MBR

E Permeability trend Short and long term
permeabilities

Aeration flow rate

Villarroel et al. (2013) Submerged hollow fiber
microfiltration

E TMP-based control Permeate flux Cleaning frequency

Robles et al., 2014 Submerged hollow fiber
anaerobic MBR
(ultrafiltration)

S Supervisory-control
(hierarchical control with fuzzy-
logic controller)

Plant operating costs Backwash frequency
and duration/
setpoints

Chan et al. (2016) PVDF E Stochastic formulation of the
Busch and Marquardt algorithm

Plant operating costs Backwash frequency
and flux

González et al., 2018 Hollow fiber membrane E Knowledge-based control
(decision tree)

Regulation around a given
filtration time setpoint

Permeate flux,
filtration time and
TMP

Kalboussi et al. (2018) MF/UF - Resistance in series
model

S Optimal control Volume of treated water
over a period of time T

Filtration/Backwash
time period

Wahab et al. (2020) Submerged hollow fiber
microfiltration

E Neural-based internal model Permeate flux Permeate pump
power

Aichouche et al. (2020) MF/UF - Resistance in series
model

S Optimal control Functioning costs Filtration/Backwash
time period

Ellouze et al. (2023) UF E Optimal control Functioning costs Filtration/Backwash
time period

G. Mannina et al. Journal of Environmental Management 370 (2024) 122720 

10 



• Considering the GHG emissions, the most efficient way to reduce
them could be by modifying some operating conditions during the
treatment, which is not always possible due to the operating limi-
tations of the installed units (Campos et al., 2016). However, the
application of a mathematical model to understand which operating
condition is more relevant to the GHG scenario may be the key to
allowing a focused intervention that can be performed without the
necessity of strongly interfering in the treatment.

• Energy demand and TOC are directly linked, and it is important to
optimize both since they are considered the main reasons for the
technology stagnation. Regarding aerobic MBRs, it is possible to
affirm that the aeration has a large potential for optimization, and
this operation is imperative since it can influence all other optimi-
zation targets. Considering the aeration as an optimization target, its
main purpose is to correlate the amount of oxygen supplied to the
system with the oxygen consumption by the biomass, which can
allow plant owners to foresee the long-term costs of the aeration
systems and the eventual necessity to meet peak oxygen demands.

• Membrane fouling still is one of the major challenges when it comes
to optimizing an MBR due to the lack of understanding of the con-
sequences that lead to it. Many aspects are already known, and there
are some PIs that can be applied to foresee the membrane fouling by
considering the sludge and treatment features. However, the litera-
ture still has space to provide researchers and engineers with a more
comprehensive tool to consider the dynamicity surrounding the
fouling phenomenon. The literature reviewed shows that most online
optimization studies of MBRs rely, in fact on the optimization of the
fouling itself, without taking any consideration of the biological
compartment. It is expected that using integrated MBR models
together with performance indicators will provide new, cost-
effective ways to be applied to global optimization approaches.

• Finally, using RON as a PI is recommended for integrated MBR
models when there is an interest in optimizing the biological treat-
ment before the physical (in case of a side-stream MBR) by means of
oxygen control strategies or immersed membranes coupled with
aerobic tanks. Consequently, the PI is not recommended to seek a
reduction of the energy demanded in side-stream MBRs, as the study
by Mannina et al. (2019) did not report major changes in this case.

A major advantage of using an integrated model is optimizing both
system design parameters (e.g. reactor volumes, configuration, etc.) and
degrees of freedom (e.g. recirculation rates, set points for certain control
variables, etc.). - all these variables aremore like constants - with control
variables such as aeration rates, certain recirculation or purge flow rates
- more like dynamic variables.

To summarize, from the literature review reported above, and in line
with the previous work realized within the IWA WG on MBR modelling,
one can claim that integrated models are reliable tools to be applied to
the optimization of MBR systems in allowing a realistic way of simu-
lating such complex processes. As for well-adopted models like the ASM
series or the ADM1, models used for MBR optimization should be built
with a common basis, notably concerning what makes their specificity,
that is, the way the biological compartment is coupled to the filtration
compartment. In this sense, it is not a question of imposing a single
model but of providing methodological keys to improving understand-
ing of the models, their coupling and implementation.
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Drews, A., Arellano-Garcia, H., Schöneberger, J., Schaller, J., Wozny, G., Kraume, M.,
2009. Model-based recognition of fouling mechanisms in membrane bioreactors.
Desalination 236 (1–3), 224–233. https://doi.org/10.1016/j.desal.2007.10.071.

Du, X., Zhang, K., Yang, H., Li, K., Liu, X., Wang, Z., Zhou, Q., Li, G., Liang, H., 2019. The
relationship between size-segregated particles migration phenomenon and combined
membrane fouling in ultrafiltration processes: the significance of shear stress.
J. Taiwan Inst. Chem. Eng. 96, 45–52. https://doi.org/10.1016/j.jtice.2018.11.016.

Ellouze, F., Kammoun, Y., Kalboussi, N., Rapaport, A., Harmand, J., Nasr, S., Ben
Amar, N., 2023. Optimal control of backwash scheduling for pumping energy saving:
application to the treatment of urban Wastewater. J. Water Proc. Eng. 56. https://
doi.org/10.1016/j.jwpe.2023.104378.

Ferrero, G., Monclús, H., Buttiglieri, G., Comas, J., Rodríguez-Roda, I., 2011. Automatic
control system for energy optimization in membrane bioreactor. Desalination 268
(1–3), 276–280. https://doi.org/10.1016/j.desal.2010.10.024.

Ferrero, G., Rodríguez-Roda, I., Comas, J., 2012. Automatic control systems for
submerged membrane bioreactors: a state-of-the-art review. Water Res. 46,
3421–3433. https://doi.org/10.1016/j.watres.2012.03.055.

Fiter, M., Güell, D., Coma, J., Colprim, J., Poch, M., Rodríguez-Roda, I., 2005. Energy
saving in a wastewater treatment process: an application of fuzzy logic control.
Environ. Technol. 26 (11), 1263–1270. https://doi.org/10.1080/
09593332608618596.

Gabarrón, S., Dalmau, M., Porro, J., Rodriguez-Roda, I., Comas, J., 2015. Optimization of
full-scale membrane bioreactors for wastewater treatment through a model-based
approach. Chem. Eng. J. 267, 34–42. https://doi.org/10.1016/j.cej.2014.12.097.

González, E., Díaz, O., Vera, L., Rodríguez-Gómez, L.E., Rodríguez-Sevilla, J., 2018.
Feedback control system for filtration optimisation based on a simple fouling model
dynamically applied to membrane bioreactors. J. Membr. Sci. 552, 243–252.
https://doi.org/10.1016/j.memsci.2018.02.007.

Gil, J.A., Túa, L., Rueda, A., Montaño, B., Rodríguez, M., Prats, D., 2010. Monitoring and
analysis of the energy cost of an MBR. Desalination 250 (3), 997–1001. https://doi.
org/10.1016/j.desal.2009.09.089.

Guerrero, J., Guisasola, A., Comas, J., Rodríguez-Roda, I., Baeza, J.A., 2012. Multi-
criteria selection of optimumWWTP control setpoints based on microbiology-related
failures, effluent quality and operating costs. Chem. Eng. J. 188, 23–29. https://doi.
org/10.1016/j.cej.2012.01.115.

Hamedi, H., Ehteshami, M., Mirbagheri, S.A., Rasouli, S.A., Zendehboudi, S., 2019.
Current status and future prospects of membrane bioreactors (MBRs) and fouling
phenomena: a systematic review. Can. J. Chem. Eng. 97, 32–58. https://doi.org/
10.1002/cjce.23345.

Harouna, B.M., Benkortbi, O., Hanini, S., Amrane, A., 2019. Modeling of transitional
pore blockage to cake filtration and modified fouling index – dynamical surface

phenomena in membrane filtration. Chem. Eng. Sci. 193, 298–311. https://doi.org/
10.1016/j.ces.2018.07.054.

Henze, M., Gujer, W., Mino, T., van Loosedrecht, M., 2006. Activated Sludge Models
ASM1, ASM2, ASM2d and ASM3. IWA Publishing. https://doi.org/10.2166/
9781780402369.

IPCC, 2014. Climate change 2014: impacts, adaptation, and vulnerability. https://www.
ipcc.ch/report/ar5/wg2/.

Itokawa, H., Tsuji, K., Yamashita, K., Hashimoto, T., 2014. Design and operating
experiences of full-scale municipal membrane bioreactors in Japan. Water Sci.
Technol. 69 (5), 1088e1093. https://doi.org/10.2166/wst.2014.020.

Jang, N., Ren, X., Cho, J., Kim, S., 2006. Steady-state modeling of bio-fouling potentials
with respect to the biological kinetics in the submerged membrane bioreactor
(SMBR). J. Membr. Sci. 284 (Issues 1–2), 352–360. https://doi.org/10.1016/j.
memsci.2006.08.001.

Jawad, Hawari, J.A.H., Javaid zaidi, S., 2021. Artificial neural network modelling of
wastewater treatment and desalination using membrane processes: a review. Chem.
Eng. J. (Lausanne) 419 (129540). https://doi.org/10.1016/j.cej.2021.129540.

Jin, Y., Lee, H., Jin, Y.O., Hong, S., 2017. Application of multiple modified fouling index
(MFI) measurements at full-scale SWRO plant. Desalination 407, 24–32. https://doi.
org/10.1016/j.desal.2016.12.006.

Jo, Y., Johir, M.A.H., Cho, Y., Naidu, G., Rice, S.A., McDougald, D., Kandasamy, J.,
Vigneswaran, S., Sun, S., 2019. A comparative study on nitric oxide and hypochlorite
as a membrane cleaning agent to minimise biofilm growth in a membrane bioreactor
(MBR) process. Biochem. Eng. J. 148, 9–15. https://doi.org/10.1016/j.
bej.2019.04.019.

Ju, Y., Hong, I., Hong, S., 2015. Multiple MFI measurements for the evaluation of organic
fouling in SWRO desalination. Desalination 365, 136–143. https://doi.org/10.1016/
j.desal.2015.02.035.

Judd, S., Judd, C., 2011. The MBR Book - Principles and Applications of Membrane
Bioreactors for Water and Wastewater Treatment, second ed. Elsevier, p. 519.

Kalboussi, N., Harmand, J., Rapaport, A., Bayen, T., Ellouze, F., Ben Amar, N., 2018.
Optimal control of physical backwash strategy – towards the enhancement of
membrane filtration process performance. J. Membr. Sci. 545, 38–48. https://doi.
org/10.1016/j.memsci.2017.09.053, 2018.

Kalker, T.J.J., van Goor, C.P., Roeleveld, P.J., Ruland, M.F., Babuška, R., 1999. Fuzzy
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