
1418 IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, VOL. 31, NO. 3, MAY 2023

Robust Discrete-Time Lateral Control of Racecars by Unknown Input Observers

Salvatore Pedone and Adriano Fagiolini , Member, IEEE

Abstract— This brief addresses the robust lateral control
problem for self-driving racecars. It proposes a discrete-time
estimation and control solution consisting of a delayed unknown
input-state observer (UIO) and a robust tracking controller.
Based on a nominal vehicle model, describing its motion with
respect to a generic desired trajectory and requiring no infor-
mation about the surrounding environment, the observer recon-
structs the total force disturbance signal, resulting from imperfect
knowledge of the time-varying tire-road interface characteristics,
presence of other vehicles nearby, wind gusts, and other model
uncertainty. Then, the controller actively compensates the esti-
mated force and asymptotically steers the tracking error to zero.
The brief also presents a closed-loop stability proof of the method,
ensuring perfect asymptotic estimation and tracking by the
controlled vehicle. The proposed solution advantageously needs
no a-priori information about the total disturbance boundedness,
additional variables to model uncertainty, or observer parame-
ters to be tuned. Its effectiveness and superiority to existing
methods are studied in theory and shown in simulations where
a full racecar model, based on the vehicle dynamics blockset,
is required to track aggressive maneuvers. Through a faster
and more accurate disturbance estimation, the solution robustly
ensures better dynamic responses even with measurement noise.

Index Terms— Autonomous vehicles, extended state observer
(ESO), input-state estimation, racecars, robust vehicle control,
self-driving.

I. INTRODUCTION

THE motion of a vehicle is governed by the traction
force, generated at the wheels, and all resistance forces

that apply to it [1]. The traction force results from the
complex interaction between the tire contact patch and the
road. It nonlinearly depends on the driving motor torque and
a set of parameters that vary with time and can only be
identified for typical road typologies (cf., Burckhardt’s [2]
and Pacejka’s [3] models). Resistance forces include the
aerodynamic load losses and rolling resistance which have
known expressions under nominal conditions. Yet, they still
depend on coefficients whose accurate knowledge requires
perfect modeling of the vehicle profile. Other external forces
are disturbance signals, not easy to predict, such as wind
gusts (normally modeled via stochastic Dryden winds [4]),
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airflow-turbulence due to surrounding vehicles, and road bank
angle changes.

To obtain precise motion regulation for a vehicle, robust
control techniques are naturally advocated. The technique
presented in [5] achieved improved performance on a four-
wheel vehicle. A comparison of the immersion and invariance
principle, sliding mode control, and passivity techniques is
reported [6]. These methods require a-priori knowledge of the
maximum disturbance magnitude, involve high control gains
and integral terms, or discontinuous control signals, which
may result in over-conservative strategies, needing bigger
efforts to prevent instability. Another way to cope with uncer-
tainty is to estimate and compensate for the actual disturbance.
A cascaded backstepping control method with an augmented
observer is proposed in [7] to control the lateral dynamics of an
autonomous vehicle in the presence of disturbance. However,
it assumes that the disturbance slowly changes, thus limiting
its applicability and effectiveness in general. Traditional dis-
turbance estimation approaches, based on extended Kalman
filters (EKFs), suffer from known disadvantages due to the
necessity to calibrate noise covariance matrices and introduce
additional states, whose dynamics can only be based on the
generic random walk [8]. Beyond the fact that a convergence
proof in the general scenario cannot be found, they result in
over-delayed estimation or, even worse, divergent estimation
behaviors (see the discussion in [9]).

Other more effective solutions rely on disturbance observer-
based (DOB) approaches [10], [11], [12], [13]. Built upon
a nominal vehicle model, they reach great estimation perfor-
mance when the system state is entirely measurable. In fact,
when the state is not fully accessible, they require an additional
state observer, introducing further complexity and reducing the
solution’s efficiency. To overcome this limitation and simulta-
neously estimate disturbance inputs and states, extended state
observers (ESOs) come in handy, which, similar to EKFs,
model the deviation with respect to a nominal behavior as
additional states and only require tuning a set of control
parameters [14], [15], [16]. Despite their simplicity, they
involve again high-gain parameters that make them often too
sensitive to measurement noise and lead to peaky estimations.
Also, they assume a small or negligible change over time of
the disturbance signals [17]. Closely related to the ESOs is the
active disturbance rejection control (ADRC) technique [18],
[19], [20], [21]. It is a robust control method assuming
that parameter and model uncertainties are modeled as a
disturbance input vector, estimated via an ESO, and finally
compensated via a state-feedback control law [14]. Despite its
simplicity, its closed-loop stability remains strongly linked to
the underlying ESO’s primary assumption that the disturbance
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acting on the system has a negligible rate of change, which
leads to worse estimation performance in systems with fast
varying disturbances.

Within this context, this brief proposes a novel discrete-time
robust control solution for racecar lateral dynamics, which uses
a linear unknown input-state observer (UIO) [22]. Built upon a
double-track nominal model, the observer reconstructs the total
force disturbance signal, resulting from imperfect knowledge
of the time-varying tire-road interface characteristics, the pres-
ence of other nearby vehicles, wind gusts, model reduction,
and uncertainty. Then, a controller actively compensates the
estimated force and asymptotically steers the tracking error to
zero. Among other advantages, the proposed solution needs no
a-priori information about the total disturbance boundedness,
additional variables to model uncertainty, or tuning of observer
parameters. It allows faster and more accurate disturbance
estimation and better dynamic response.

Contribution: The brief’s contribution is at least fourfold.
First, by starting from the so-called double-track system, the
brief derives a nominal model of the lateral racecar dynamics,
in a form where the input-disturbance and state estimation can
be addressed by using delayed UIO theory; second, a robust
control law is devised which uses state and disturbance esti-
mates to ensure perfect asymptotic tracking of any desired
trajectory, and the full state closed-loop asymptotic stability
is formally proved with convergence speed guarantees; third,
the superiority of the proposed method to existing state-of-the-
art solutions is shown; finally, the effectiveness, the robustness,
and the real-time implementability of the proposed solution are
tested by using the models of MATLAB/Simulink’s Vehicle
Dynamics Blockset [23] and a Raspberry PI 4 system.

II. MODEL FORMALIZATION AND PROBLEM STATEMENT

Consider a rear-wheel drive, front-steering racecar with
mass m and inertia J , moving along a flat horizontal road,
i.e., with zero bank angle. The in-plane lateral dynamics of
the vehicle can be described, in a noninertial frame attached
to it, by the double-track model [1] that reads

m (ÿ + u ψ̇) = Y1(δv )+ Y2(δv )+ Fw
J ψ̈ = a1 Y1(δv)+ a2 Y2(δv)+ χw (1)

where y is its lateral position, ψ is its heading angle, a1 and
a2 are its wheelbases, Y1 and Y2 are the front and rear
lateral forces applied at its center of mass, δv is the front
steering angle and system input, Fw and χw are the lateral
wind force and moment, and u is its longitudinal speed,
which can be considered a time-varying parameter, resulting
from the control of its longitudinal dynamics. The lateral
forces Y1 and Y2 can be decomposed as follows:

Y1 = Fy11(δv ) cos(δ11(δv ))+ Fy12(δv) cos(δ12(δv))

Y2 = Fy21 + Fy22

where Fyi j are the front (i = 1) and rear (i = 2) forces applied
at the left ( j = 1) and right ( j = 2) tires, respectively, and
are nonlinear functions of the front wheel steer angles δ1 j .
Moreover, refer to Fig. 1 and assume that a global positioning
system (GPS) sensor is used to measure the (X,Y ) coordinates

Fig. 1. Depiction of the vehicle schematic, desired path, and coordinate
frames.

of the vehicle center of mass in an Inertial frame. Given the
(Xd,Yd ) coordinates of a point on a desired trajectory to be
tracked, with a curvature radius R, if the vehicle is required
to track such trajectory and, simultaneously, vanish its lateral
position y, while moving at a longitudinal speed u, a lateral
position error e1 can be introduced as the projection of the
error vector (X,Y )T − (Xd ,Yd)

T along the lateral direction
unit vector (− sinψ, cosψ)T , i.e., e1 = (Y − Yd) cosψ −
(X−Xd) sinψ . Indicating with ayd = u2/R = u ψ̇d an
approximated desired lateral acceleration in body frame, the
corresponding lateral acceleration error reads [1] as follows:

ë1 = ay − ayd = ÿ + u ψ̇ − ayd

= 1

m
(Y1(δv)+ Y2(δv)+ Fw)− ayd (2)

where the actual lateral acceleration ay has been expanded
as ay = ÿ + ψ̇ u and the first equation in (1) has been used.

Furthermore, achieving precise and complete characteri-
zation of the nonlinear and possibly time-varying functions
Y1 and Y2 requires ad hoc identification procedures which also
need to be repeated over time [1]. Beyond that, the wind force
and moment signals are only predictable via statistical models
and hence their actual values over time remain unknown.
Therefore, it is convenient to obtain a nominal vehicle model
based on quantities that can be easily identified. For this
purpose, one recalls that the lateral forces at the tires depend
on the respective wheel slip angles αi j , for i, j = 1, 2; such
dependence can be approximated, for small αi j , as Fyi j =
Ci j αi j , where Ci j are the tires’ cornering stiffness coefficients,
which are known with good accuracy. Moreover, the wheel slip
angles can be expressed by the following formulas:

α1 j = δ1 j(δv)− arctan
(
(v + r a1)/(u + (−1) jr t1/2)

)
α2 j = − arctan

(
(v−r a2)/(u + (−1) jr t2/2)

)
with t1 and t2 being the front and rear vehicle tracks, v =
ẏ and r = ψ̇ are the lateral and yaw speeds. While the
functions δ1 j(δv) are highly nonlinear, for small values of their
argument, the following second-order Taylor expansions can
be used [1]:

δ1 j(δv) = (−1) j δ0
1 + τ δv + (−1) j−1βt1

2l
τ 2 δ2

v + ν

with δ0
1 , l, τ , and β being the static toe angle, the total wheel-

base, the steering gear ratio, and the Ackermann coefficient,
respectively, and ν the approximation error signal. In light
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of the above reasoning, the following nominal model can be
assumed, involving only the nominal values of the vehicle
mass m̄, the cornering coefficient C̄1 = C̄11 + C̄12, and the
steering gear ratio τ̄ as follows:

ë1 = (
C̄1τ̄ /m̄

)
δv +w (3)

where w is a disturbance signal lumping together the effects
due to parameter and model uncertainties, and even exogenous
unknown inputs. Moreover, given a sampling time λ and a
discrete time step k and defined the sampled state vector and
disturbance with Zk = (e1k, ė1k)

T = (e1(kλ), ė1(kλ))T and
wk = w(kλ), respectively, the model in (3) can be discretized
via Euler’s method and finally written in state form as follows:

Zk+1 = Ak Zk + Bk δk + Wk wk

yk = Ck Zk + Dk δk (4)

where δk = δv(kλ) is the input sample signal, yk = y(kλ),
and the involved matrices are

Ak =
(

1 λ
0 1

)
, Bk = λ

(
0

C̄1τ̄ /m̄

)
, Wk = λ

(
0
1

)
Ck = (

1 0
)
, Dk = 0.

It should be noted that, even though part of the expression
of the disturbance w is known, the discrete-time signal wk is
assumed to be fully unknown.

Within this setting, the following problem is addressed as
follows.

Problem 1: Design a robust observer-based controller for
the model in (2) ensuring the asymptotic tracking of desired
accelerations ayd by using only information about the lateral
position y and the nominal values of mass m, front cornering
coefficients, C11 and C12, and steering gear ratio τ .

III. DELAYED UNKNOWN-INPUT OBSERVER

(DUIO)-BASED ROBUST LATERAL

VEHICLE CONTROL

The here adopted strategy to solve Problem 1 is to devise
an input-state observer of the system in (4) and to provide
the estimated data to a suitable controller ensuring the overall
system stability. This is formalized in the two steps described
in the remainder of this section, after briefly recalling the
DUIO theory, while a graphical depiction of it is illustrated
in Fig. 2.

A. Mathematical Framework of DUIOs

Consider a discrete-time linear system of the form

Zk+1 = A Zk + B Uk, 
k = C Zk + D Uk (5)

where Zk ∈ Rn , Uk ∈ Rm , and 
k ∈ Rp are state,
input, and output vectors, respectively, and k is discrete time
step. Without loss of generality, assume (BT , DT )T to be a
full-column rank matrix. Given a positive integer, L ∈ N+, the
L-step invertibility and observability matrices are obtained via
the following recursive definitions:

H
L =

(
D 0

OL−1 B HL−1

)
and O

L =
(

C
OL−1 A

)
.

Fig. 2. Schematic of the estimation and control strategy. The output yk = e1k
of the racecar is buffered in the output history vector Yk , which is used by the
DUIO to estimate the racecar delayed state Zk−L and unknown input wk−L ;
this information along with the desired acceleration ayd are finally used by
the controller to asymptotically steer the vehicle on the desired trajectory.

Then, the following can be recalled from [22].
Proposition 1 (DUIO): Given a large enough delay L, the

discrete-time linear system

Ẑk−L+1 = E Ẑk−L + F Y
L
k

Ûk−L = G

(
Ẑk−L+1−A Ẑk−L


k−L −C Ẑk−L

)
(6)

where Y
L
k = (
k, . . . , 
k−L ) is L-step output history, G is

the left-pseudoinverse of (BT , DT )T , and E and F satisfy the
conditions as follows:
A1) F HL = (B, 0n×m) (input decoupling);
A2) E = A−F OL (initial state decoupling);
A3) E is Schur, i.e., having eigenvalues in the unit circle

(free solution convergence);
is a DUIO for the model in (5), i.e., it generates delayed state
and input estimates, Ẑk−L and Ûk−L , asymptotically tracking
the ones of model in (5), or equivalently

lim
k→∞

(Ẑk−L − Zk−L ) = 0 , lim
k→∞

(Ûk−L − Uk−L ) = 0. �

The existence of a DUIO is connected to the solvability of
A1 for some L and F , for which the following can be stated
as follow.

Proposition 2 (System Invertibility): Given the sequence of
matrices {HL}, for L = 1, . . . , n, Condition A1) can be solved
for some F if, and only if, there exists L such that

rank(HL)− rank(HL−1) = m. (7)

B. Discrete-Time UIO Design

Consider the racecar model in (4) with inputs given by the
steering angle δk and the unknown disturbance wk , generated
by model deviations from the nominal behavior as well as
external signals, and the output given by the lateral position
error ek . The following first main result can be proved as
follow.

Theorem 1 (UIO Design for Racecars): The discrete-time
linear system described by the iterative rule

Ẑk−L+1 = E Ẑk−L + F Y
L
k

ŵk−L = G

(
Ẑk−L+1 − Ak Ẑk−L − Bk δk−L

yk−L − Ck Ẑk−L

)
(8)
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where Ẑk−L = (êk−L , ˆ̇ek−L )
T , YL

k = (ek, ek−1, ek−2)
T , and

E =
(
σ1 0
0 σ2

)
, F =

(−σ1 1 0
σ2

λ
−1 + σ2

λ
λ

)

G =
(

0
1

λ
0

)
(9)

with σ1 and σ2 being free constants such that |σ1|, |σ2| < 1, is a
DUIO for the model in (4) with reconstruction delay L = 2.
That is, the filter in (8) can asymptotically reconstruct the
full system state Zk−L = (ek−L , ėk−L )

T and the unknown
disturbance wk−L .

Proof: To design a DUIO of the form in (6) for the
racecar model in (4) one need first to introduce a new
input Uk−L = b δk−L + wk−L , with b = C̄1τ̄ /m̄, collecting
both the known control δk and the disturbance wk , and its
corresponding input matrix B = λ (0, 1)T . Choosing the
output and direct matrices are C = Ck and D = Dk , the
smallest integer satisfying Proposition 2 is L = 2, for which
it holds rank(H2)− rank(H1) = 1 = m since H1 = 02×2 and

H
2 =

⎛
⎝ D 0 0

C B D 0
C AB C B 0

⎞
⎠ =

⎛
⎝ 0 0 0

0 0 0
λ2 0 0

⎞
⎠.

Consequently, the output history can be chosen as Y
2
k =

(ek, ek−1, ek−2)
T . Condition A1 in Section III-A implies that

matrix F belong to the left-nullspace of the last columns of
matrix H2, which are given by P =

(
02×2

H1

)
. To determine F ,

consider first a matrix N̄ whose rows form a basis for the

left-nullspace of H1, so that
(

Ip 0p×2

02×p N̄

)
is a matrix whose

rows form a basis for the left-nullspace of P . Constant
p equals the unity since the system output ek is scalar.
Given the null value of H

1, for this system, it suffices to
choose N̄ = I2×2. Furthermore, for any invertible matrix W ,

we can define a matrix N = W
(

1 01×2

02×1 N̄

)
= W I3×3, whose

rows also form a basis for the left nullspace of P . Therefore,
given the one-step observability matrix (see Section III-A),

O1 = (
C

C A

) = (
1 0
1 λ

)
, to find W , one can first note that

N
( D 0

O1 B H

) = W
(

D 0
N̄ O1 B 02×1

)
. Moreover, as Proposition 2 is

satisfied for a delay L = 2, the first columns of H2 are linearly
independent, which implies that the matrix

(
D 0

N̄ O1 B 02×1

)
have

rank equal to the unity. Direct computation of the above

matrix shows indeed that
(

D 0
N̄ O1 B 02×1

)
= (

0 0 λ2

0 0 0

)T
. Now,

one can choose matrix W so that the last rows form a
left-inverse of the last above matrix, while the upper ones
form a basis of its left-nullspace. A possible choice for W
is then W = diag(1, 1, 1/λ2), which leads also to a matrix N
satisfying the expression

N H
2 =

⎛
⎝0 0 0

0 0 0
1 0 0

⎞
⎠.

This fact finally leads to derive that it holds N = W .
Furthermore, based again on Condition A1, matrix F can be

factorized as F = F̄ N , with F̄ = (F̄1, F̄2) and F̄2 being a
vector. Explicitly writing Condition A1 yields

(
F̄1 F̄2

) (
0 0 1
0 0 0

)T

= (
B 02×1 02×1

) =
(

0 0 0
λ 0 0

)

which allows obtaining the solution F̄2 = B = (0, λ)T

and F̄1 a still free design matrix.
Moving now on to the satisfaction of Condition A2, we can

directly obtain E = A−F O2 = A − (F̄1, B) NO2. Splitting
the rows of the matrix NO2 on the right-hand side into two
sub-matrices S1 and S2, that is,

NO
2 =

⎛
⎝1 0 0

0 1 0
0 0 1/λ2

⎞
⎠

⎛
⎝1 0

1 λ
1 2λ

⎞
⎠=

⎛
⎝ 1 0

1 λ
1/λ2 2/λ

⎞
⎠=

(
S1

S2

)

with S1 = (
1 0
1 λ

)
, S2 = (1/λ2 2/λ), allows further expanding

the expression of matrix E as follows:

E = A−BS2 − F̄1 S1 =
(

1 λ
−1/λ −1

)
− F̄1

(
1 0
1 λ

)
.

To finally satisfy also Condition A3, one can impose
matrix E to be given by a Schur diagonal matrix as in (9).
This condition can be attained by choosing the remaining part
of matrix F as F̄1 =

(
−σ1 1
σ2/λ −(1+σ2)/λ

)
. By the above choices,

the solution of the dynamics for the estimation error ẽk =
Ẑk−L − Zk−L is

ẽk+1 = E ẽk (10)

which has a convergent behavior with a speed of convergence
directly dependent on the free parameters σ1 and σ2.

Having guaranteed the convergence of the state estimation
error, the unknown input disturbance wk can be retrieved as
follows. First, (4) can be rearranged as follows:(

Zk−L+1 − Ak Zk−L − Bk δk−L

yk−L − C Zk−L

)
=

(
Wk

Dk

)
wk−L (11)

and its both sides can be left-multiplied by the pseudo-inverse
of (W T

k , DT
k )

T , i.e., matrix G in (9). Doing so and then
replacing the state with its estimate yields

ŵk−L = G

(
Ẑk−L+1 − Ak Ẑk−L − Bk δk−L

yk−L−C Ẑk−L

)
. (12)

Finally, writing explicitly the term yk−L −C Ẑk−L allows
reaching the formula in (8) and concludes the proof.

C. Design of the Robust Lateral Position Control

As a second step, leveraging on the data reconstructed by the
above designed DUIO, a robust lateral position controller for
the steering angle input δk is derived, which ensures ek’s con-
vergence independently of all model uncertainty and external
disturbance. This is formalized in the following second main
result.

Theorem 2: Given the dynamics of the racecar model in (4),
the feedback steering angle control law

δk = − m̄

C̄1τ̄

(
K Ẑk−L + ŵk−L

)
(13)
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where Ẑk−L and ŵk−L are the state and disturbance estimates
from the DUIO in (8) and where K = (k1, k2) is a free
control gain matrix, ensures robust, and global asymptotic
convergence of the state estimation error ẽk and robust and
global uniform bounded stability of the racecar state Zk around
the origin, with a bound decreasing at least linearly with the
sampling time λ.

Proof: The full dynamics of the racecar in (4) and the
DUIO in (8) is(

Zk+1

ẽk+1

)
=

(
Ak 02×2

02×2 E

)(
Zk

ẽk

)
+

(
Bk δk + Wk wk

02×1

)
(14)

in which the state estimation error dynamics is independent of
the controlled input δk and the disturbance signal wk (cf., the
last set of equations). This fact implies that the convergence
of ẽk in the closed-loop system is again ensured by E being
Schur, and that, after convergence, Ẑk−L � Zk−L and ŵk−L �
wk−L . Consequently, the feedback law in (13) becomes δk �
−m̄/(C̄1τ̄ )(K Zk−L +wk−L ). Hence, closing the loop on (14)
with such a feedback law yields(

Zk+1

ẽk+1

)
=

(
Ak 02×2

02×2 E

)(
Zk

ẽk

)
−

(
Bv

02×1

)
(K Zk−L − w̃k)

(15)

where Bv = λ (0, 1)T = Wk and w̃k = wk − wk−L

is the disturbance estimation error. Using the factorization
Ak Zk − BvK Zk−L + Bv w̃k = (Ak − BvK ) Zk + φk , with
φk = Bv(K (Zk −Zk−L )+w̃k) allows rewriting (15) as follows:(

Zk+1

ẽk+1

)
= Ac

(
Zk

ẽk

)
+

(
I2×2

02×1

)
φk (16)

with

Ac =
(

Ak − BvK −BvK
02×2 E

)
=

⎛
⎜⎜⎝

1 λ 0 0
−λk1 γ1 −λk1 −λk2

0 0 σ1 0
0 0 0 σ2

⎞
⎟⎟⎠

and γ1 = 1−λk2. It should be first noticed that the free solution
of (16) can be made convergent, by properly allocating the
eigenvalues of Ac. In this respect, matrix Ac is upper-block
triangular and hence the set of its eigenvalues comprises those
of the DUIO, σ1 and σ2, and those of Ak −BvK . The controlla-
bility matrix of the pair (Ak, Bv) is R = (Bv |Ak Bv) = (

0 λ2

λ λ

)
and has full rank, which ensures the existence of a matrix K
so that Ak − BvK has all eigenvalues within the unit circle and
then generates asymptotically stable modes only. Furthermore,
recall from [24] that for a small enough sampling time λ,
it holds, for consecutive samples, Ẑk � Ẑk−1 and wk � wk−1

or equivalently

||Zk − Zk−1||2 < pZ (λ), ||wk −wk−1||2 < pw(λ) (17)

with pZ , pw ∈ R+ diminishing with the decrease of λ and
where ||·||2 is the Euclidean norm. From the property in (17),
derived from [24], it also follows δk � δk−1 � δk−L , which
solves the algebraic dependence of wk from δk . Analogously,
it holds yk � yk−1 � yk−L . Moreover, recalling that L = 2, the
term φk can be rewritten as φk = K (Zk − Zk−1)+ K (Zk−1 −

Zk−2) + wk − wk−1 + wk−1 − wk−2, and thus can be upper
bounded as follows:

||φk ||2 ≤ ||Bv ||2 ||K ||2 ||Zk − Zk−1||2
+ ||Bv ||2 ||K ||2 ||Zk−1 − Zk−2||2
+ ||wk −wk−1||2 + ||wk−1 −wk−2||2

= λ(2 ||K ||2 pZ (λ)+ 2 pw(λ)).

From the first set of equations in (16), we have

||Zk+1|| ≤ ||Ac Zk || + ||φk ||
≤ ||Ac Zk || + λ(2 ||K ||2 pZ (λ)+ 2 pw(λ)).

Since Ac is Schur, the first addend in the equation above is
contracting, i.e., ||Ac Zk || < ||Zk|| and hence, after a transient,
the norm of the racecar state is only excited by the forcing
term φk which decreases at least linearly with the decrease
of λ.

Furthermore, as for the convergence of disturbance estima-
tion error, w̃k , from its definition, one can write as follows:

w̃k = G

(
Zk+1 − Ak Zk − Bk δk

yk−C Zk

)
+

− G

(
Ẑk−L+1 − Ak Ẑk−L − Bk δk−L

yk−L−C Ẑk−L

)

which, after having defined the signals νk = Ẑk−L − Zk , ηk =
δk−L − δk , and ξk = yk−L − yk , becomes finally

w̃k = G

(
Ak νk + Bk ηk − νk+1

C νk − ξk

)
. (18)

Again under the hypothesis of [24] for small delays, the
signals νk , ηk , and ξk are bounded, i.e. there exist constant
upper-bounds, S, V , T ∈ R

+, such that ||νk ||2 ≤ S, ||ηk ||2 ≤
V , and ||ξk ||2 ≤ T , for all k, and also convergent due to (17),
i.e., for increasing values of k the upper bounds can be chosen
as S, V , T → 0. As a consequence, from (18), one can obtain

||w̃k ||22 ≤ ||G||22
∣∣∣∣
∣∣∣∣ Akνk + Bkηk − νk+1

C ν̂k − ξk

∣∣∣∣
∣∣∣∣
2

2

≤ G2
2 (||Akνk + Bkηk − νk+1||2 + ||Cνk − ξk ||2)2

≤ G2
2(||Ak||2S + ||Bk ||2V + S + ||C||2S + T )2

≤ G2
2

(
(ρA + 2)S + (λC̄1τ̄ /m̄)V + T )

)2

with G2 = 1/λ and ρA = (ρ(AT
k Ak))

1/2, where ρ(·) indi-
cates the spectral radius of a matrix. Therefore, the fact that
S, V , T → 0 also implies ||w̃k ||2 → 0 and, in turn, w̃k → 0.
Hence, the disturbance estimation error w̃k asymptotically
converges to zero with the same speed of the state estimation
error ẽk , which is specified by the free constants σ1 and σ2 of
the DUIO. This concludes the proof.

Therefore, the DUIO-based control observes the system
state and inputs at the time-step k − L, reconstructs the
unknown disturbance ŵk−L , and finally determines the control
action for the time step k steering the closed-loop system
in (14) and allowing the sought asymptotic convergence to
zero.
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TABLE I

NOMINAL INERTIAL AND GEOMETRIC PARAMETERS OF A ROBOCAR FROM
THE ROBORACE CHALLENGE [25]

TABLE II

MAGIC FORMULA’S COEFFICIENTS FOR TYPICAL ROAD CONDITIONS

IV. SIMULATION AND VALIDATION

The correctness and robustness of the proposed method
are shown in this section, along with a comparison of its
effectiveness for a benchmark using a standard disturbance
rejection technique.

A. Vehicle Model Implementation
To show the effectiveness and robustness of the proposed

method, the implementation of a real Robocar model is used
by using the Vehicle Dynamics Blockset of the MATLAB/
Simulink environment. The geometric and inertial parameters
of the vehicle are listed in Table I. The interaction with the
road surface is modeled by generating all lateral wheel forces,
Fyi j , via the nonlinear Pacejka tire model, the so-called the
magic formula [26], i.e., Fyi j = Fzi j μi j , with

μi j = D sin(C arctan(Bαi j−E(Bαi j − arctan(Bαi j))))

(19)

where B , C , D, and E are dimensionless coefficients whose
values depend on the road surface (cf., Table II) for the typical
values, also used here, to represent dry, wet, snow, and icy
surfaces, and where are the vertical forces applied at each
wheel. These last forces are given by

Fz1 j = (m/2l)(g a2 − ax h)+ (−1) j�Z1

Fz2 j = (m/2l)(g a1 + ax h)+ (−1) j�Z2

for j = 1, 2, where g is the gravity acceleration, h is the
height of the vehicle center of gravity with respect to the road
and ax is the vehicle’s longitudinal acceleration in body frame,
and Zi are the lateral load transfers due to the suspensions,
which are given by

�Z1 = ( d1/t1l)(Y a2 + N) + (kφ1/kφ)(h−d)Y

�Z2 = (d2/t1l)(Y a1−N) + (kφ2/kφ)(h−d)Y

where l is the vehicle wheelbase, d1 and d2 are the front
and rear no-roll center height, kφ = kφ1 + kφ2 , with kφ1

and kφ2 being the front and rear suspension roll stiffness,
respectively, and finally d = (a2d1 + a1d2)/ l, Y = Y1 + Y2,
N = Y1a1 − Y2a2. It should be noted that the roll and
suspension effects on vehicle dynamics are taken into account
via the lateral load transfers described above. Numerical values
for the front and rear no-roll center height are d1 = 0.025 m
and d2 = 0.045 m, respectively, with kφ1 = 21740.6 (N/rad)
and kφ2 = 22322.2 N/rad.

Moreover, the wind force signal is obtained by modeling the
wind speed uw according to the stochastic Dryden model [4].
Specifically, the wind speed signal uw(t) is chosen to replicate
turbulence at low altitudes, characterized by a height from
the sea level of h = 6 m, an airspeed of V = 50 m/s, and
a turbulence level of W20 = 15 kn. Moreover, to generate
the wind moment signal, the lever arm xw of the wind
force is assumed to be a stochastic process with uniform
distribution over the length of the vehicle, i.e., −a2 ≤ xw ≤ a1.
Accordingly, the wind force Fw and wind moment χw are
obtained via the expressions

Fw = 1

2
ρ S Cy u2

w, χw = Fw xw

where ρ = 1.225 kg/m3 is the air density at sea level, S =
2 m2 the so-called vehicle’s lateral wetted area, Cy = 1.5 its
lateral aerodynamic coefficient. Overall, the second equation
of the lateral dynamics in 1 becomes J ψ̈ = a1 Y1(δv) +
a2 Y2(δv )+χw+Nx , where Nx = �X1 t1+�X2 t2, with�X1 =
(1/2)(Fy11 sin δ11 − Fy12 sin δ12) and �X2 = (1/2)(Fx22 −
Fx21), respectively.

B. Derivation of the DESO-Based Benchmark

The following benchmark based on the well-established
theory described in [14] has been developed to compare
the performance of our method with a de-facto standard
disturbance rejection technique. It consists of a discrete-time
implementation of the system obtained by the application of
such a method, according to which an ADRC, based on an
ESO, can be obtained as follows. First, consider an augmented
state εk = (Z T

k , wk)
T , including as an additional variable the

disturbance wk for which a dynamics must also be introduced.
Assuming, as for our method, that only lateral position error
measures, yεk = ek , are available, and that, for a small delay
of one sample, it holds δk−1 � δk [24], a discrete-time ESO
(DESO) is described by the iterative rule

ε̂k+1 = Aε ε̂k + Bεδk−1 + L (yεk − Cε ε̂k) (20)

with

Aε =
⎛
⎝1 λ 0

0 1 λ
0 0 1

⎞
⎠, Bε = λ

⎛
⎝ 0

C̄1τ̄ /m̄
0

⎞
⎠, Cε = (

1 0 0
)

where L ∈ R3 is such that the closed-loop dynamic
matrix Aε̃ = Aε−LCε is Schur, ensures the asymptotic
boundedness of the augmented state estimation error ε̃k =
ε̂k − εk , if, and only if, the following conditions are met:
1) (Ak,Ck) is fully observable; 2) wk evolves as in wk+1 =
wk + λ κ(εk, wk, k), where κ(εk, wk, k) is a time-varying
bounded function, i.e. ∃ M > 0 s.t. |κ(εk, wk, k)| ≤ M ∀k.
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Fig. 3. Simulation scenario designed to test and assess the effectiveness and performance of the proposed methods. The longitudinal speed profile has
alternating phases of acceleration and deceleration, and two plateau phases at quasi-constant velocities. The road surface ranges from dry, wet, and snow,
while also highly varying wind gust force and moment have to be handled.

As a second step, once an estimate ε̂k = (Ẑ T
k , ŵk)

T of the
augmented state εk is retrieved via the DESO in (20), the
steering control law

δk = − m̄

C̄1τ̄

(
K Ẑk + ŵk

)
(21)

with K = (k1, k2) a free control gain, ensures the bounded
stability of the full system(

Zk+1

ε̃k+1

)
=

(
Ak 02×3

03×3 Aε̃

)(
Zk

ε̃k

)
+

(
Bk

03×1

)
δk +

− Wε κ(εk, wk, k) (22)

with Wε = λ (01×4, 1)T , if, and only if, the signal κ(εk, wk, k)
is bounded. The convergence proof straightforwardly follows
from standard arguments typical of the ADRC technique, but
it is omitted here for the sake of space.

Finally, to obtain comparable behaviors for the proposed
DUIO-based approach and the DESO-based one, the respec-
tive free control gains have been chosen so that the eigenvalues
of the closed-loop matrix in (14) and that of (22) closed in the
loop with (21) are in the similar locations. More specifically,
without loss of generality, the speed of convergence of the
lateral tracking errors has been tuned, via the control gain K ,
so that the eigenvalues of Ak − BvK are in p1 = (0.1,−0.1);
simultaneously, the speed of convergence of the observers has
been chosen to be ten times faster. In the DUIO case, this is
obtained by placing the eigenvalues in p2 = (−0.01, 0.01)
(and hence choosing σ1 = −0.01 and σ2 = 0.01) and,
for the DESO, this is obtained by placing the eigenvalues
in p3 = (−0.01,−0.01, 0.01) (and hence choosing l1, l2,
and l3 accordingly).

C. Simulation and Testing With Vehicle Dynamics Blockset
and Raspberry PI Board

The testing and validation scenario is reported in Fig. 3.
The Robocar system is required to track a trajectory with
a time-varying longitudinal speed u(t) and curvature radius
signal ρ(t), under the presence of sudden wind gusts. The
longitudinal speed profile reproduces a typical telemetry pro-
file with acceleration and braking phases [9]; the time-varying

road friction is modeled via appropriate variation of the magic
formula coefficients.

The goal of the testing is at least fourfold. First, it aims at
showing the effectiveness of the proposed method as well as
its robustness to unmodeled dynamics, parameter uncertainty,
and measurement noise. For this purpose, the Robocar system
is implemented as a double-track racecar by using the Vehicle
Body 3-degree of freedom (DoF) block of vehicle dynamic
blockset in MATLAB/Simulink [27]. Nominal values for the
vehicle mass m̄ with a maximum variation of 45% from
the real value are used in the numerical implementation of
the estimators and controllers. Measurement noise is also
added to the system outputs via the MATLAB/Simulink Ran-
dom Source block, which generates pseudorandom Gaussian
distributions [28]. Second, the testing aims at comparing
the proposed approach with the above-described benchmark.
Third, it aims at proving the real-time implementability of
the solution and assessing the required computation time in
terms of central processing unit (CPU) utilization, through
a low-cost hardware setup, consisting of a Raspberry PI 4
Model B system. To achieve this, the proposed DUIO-based
solution and the DESO-based benchmark are compiled for
the Raspberry PI hardware, via the simulink real-time code
generation, and built as standalone applications. The inclusion
of both control methods represents a further computational
load of the microcontroller, leading to an overestimate of the
required CPU utilization and a further guarantee of the solution
implementability. Finally, the testing intends to show if all
the above-mentioned properties are maintained, even when
enlarging the sampling time. For this reason, the scheduling
times of the involved processes are chosen as λ = 10−3 s and
later as λ = 10−2 s.

Figs. 4 and 5 report the results of the testing with m̄/m =
1.45 and with scheduling times of λ = 10−3 and λ = 10−2,
respectively. More precisely, Fig. 4 shows the DUIO always
better estimates the state and the disturbance, at least by an
order of magnitude. The resulting control is also much less
affected by the noise and can better cope with the disturbance.
Numerically, the integral time absolute error (ITAE) index
computed on the tracking error and the disturbance estimation
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Fig. 4. Raspberry PI 4 testing with λ = 10−3: results with noisy measures and a nominal mass m̄/m = 1.45. The DUIO always obtains better estimates of
the state and the disturbance, at least by an order of magnitude. The resulting control signal is also much less affected by the noise, better copes with the
disturbance, and achieves improved tracking performance.

Fig. 5. Raspberry PI 4 testing with λ = 10−2 the DESO-based benchmark is unable to correctly estimate and cope with the disturbance, which leads the
system to instability (see the diverging green line of the tracking error). On the contrary, our proposed DUIO-based solution allows still a nice transient
behavior and maintains stability.

TABLE III

ITAE INDEX COMPARISON FOR DUIO AND DESO-BASED APPROACHES,
RESPECTIVELY, WITH SAMPLING TIME λ = 10−3

error shows a clear superiority of the DUIO-based solution
over the benchmark one (cf., Table III). The total CPU uti-
lization, during the testing, for the two estimation and control
processes is always less than 12.7% with a mean value of
about 6.9%. Finally, Fig. 5 shows that when the scheduling
time is increased to λ = 10−2 s, the DESO-based benchmark
is unable to correctly estimate and cope with the disturbance,
which leads the system to instability (see the diverging green
line of the tracking error). On the contrary, our proposed
DUIO-based solution allows still a nice transient behavior and
maintains stability.

V. CONCLUSION

A robust lateral controller for self-driving racecars was
proposed using a delayed UIO. It showed robustness to

time-varying tire-road interface characteristics, wind gusts,
and model uncertainty. Its closed-loop asymptotic stability
was proven and its performance was compared to that of
a disturbance estimation and rejection technique, for which
only asymptotic boundedness was obtained. The solution
requires no a-priori knowledge of the boundedness or the
statistical properties of the system and measurement noises.
Testing results confirmed the superior performance of the
DUIO over a DESO, as expected from the literature [29].
Simulations further highlighted its superiority by showing that
the DUIO-based control generates smoother control signals for
the steering angle, leading to smaller and less spiky tracking
errors than those of the ADRC methodology.
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