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Abstract
Decision tree learning is among the most popular and most traditional families of machine
learning algorithms. While these techniques excel in being quite intuitive and interpretable,
they also suffer from instability: small perturbations in the training data may result in big
changes in the predictions. The so-called ensemble methods combine the output of multiple
trees, which makes the decision more reliable and stable. They have been primarily applied
to numeric prediction problems and to classification tasks. In the last years, some attempts
to extend the ensemble methods to ordinal data can be found in the literature, but no concrete
methodology has been provided for preference data. In this paper, we extend decision trees,
and in the following also ensemble methods to ranking data. In particular, we propose a
theoretical and computational definition of bagging and boosting, two of the best known
ensemble methods. In an experimental study using simulated data and real-world datasets,
our results confirm that known results from classification, such as that boosting outperforms
bagging, could be successfully carried over to the ranking case.
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1 Introduction

In the 1980s, Breiman et al. (1984) developed Classification and Regression Trees
(CART) as alternative, non-parametric approaches to classification and regression. The tree-
structured predictors are obtained by recursively partitioning the data space into a set of
(usually) axis-parallel hyper-rectangles, with similar response values grouped together, so
that, in the end, the resulting groups are as homogeneous as possible with respect to the
considered response. The resulting decision trees suffer from high variance, i.e. the deci-
sion trees learned from different data samples drawn from the same distribution may be
quite different. In other words, the learned models are unstable, i.e. small perturbations in
the training set could cause large changes in the resulting predictors.

Breiman (1996) suggested to improve the stability of decision trees by learning an
ensemble of diverse trees whose predictions are combined. In particular, by repeatedly per-
turbing the training set, learning multiple decision trees from these perturbed sets, and
finally then combining their individual predictions into an overall prediction, it is possible to
improve the quality of the predictions over those obtained from individual single trees. The
general class of such predictors is called perturb and combine (P&C; see Breiman (1996)
for other examples of P&C procedures), and they in turn form a special case of what is
generally known as ensemble techniques in machine learning (Dietterich, 2000).

One of the best known P&C methods, bagging (Boostrap AGGregatING; Breiman 1996),
perturbs the training set several times using bootstrapping, a general statistical method in
which several (non-disjoint) training sets are obtained by drawing examples randomly, with
replacement, from a single base dataset (Efron, 1982). The multiple predictors, which are
learned from such bootstrap samples, are then combined by simple voting, in the case of
classification, or by averaging for regression. In each iteration, the bootstrap samples are
drawn with the same probability, which guarantees independent bootstrap training sets.
Bagging without replacement was proposed as “subagging = subsample aggregating” by
Bühlmann and Yu (2000, 2002) as a computational cheaper version of bagging (Bühlmann,
2003). Buja and Stuetzle (2006) analytically proved the equivalence of resampling with
and without replacement in Bagging. A comparison between bagging with or without
replacement can be found also in Friedman and Hall (2007).

As an alternative to bagging, Freund and Schapire (1996) and Freund and Schapire
(1998) proposed boosting, another P&C method which aims at a faster reduction of train-
ing set errors. The key idea is to learn the ensemble of predictors sequentially, so that each
predictor can focus on correcting the mistakes of the previous ones. This is obtained by
increasing the probabilities for sampling examples that have been misclassified in previous
iterations, so that they are more prevalent in subsequent iterations. Thus, unlike in bagging,
the samples used in the boosting iterations are clearly not independent. Breiman (1998)
considers boosting to be a special case of the class of arcing (adaptive resampling and com-
bining) classifiers, where units that have frequently been classified as incorrect have an
increased probability to be drawn in subsequent iterations.

Decision trees and ensemble methods have been widely applied to quantitative or quali-
tative response variables, in sociological, medical or psychological domains. For example,
Austin (2012) compare inferences on the effect of in-hospital smoking cessation counselling
on subsequent mortality in patients hospitalized with an acute myocardial infarction using
ensemble-based methods (bagged regression trees, random forests, and boosted regres-
sion trees) to directly estimate average treatment effects by imputing potential outcomes.
Stegmann et al. (2018) introduce nonlinear Longitudinal Recursive Partitioning (nLRP) and
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illustrate its use with empirical data from the kindergarten cohort of the Early Childhood
Longitudinal Study. Or again, recently, Grimm and Jacobucci (2020) improve the reliabil-
ity of splitting functions in the case of small data samples, and illustrate their performance
using data on depression and suicidal ideation from the National Longitudinal Survey of
Youth. In all these works decision trees and ensemble methods are applied in situations
where the outcome is a categorical or a continuous variable but, to our knowledge, there is
not much work in that area that allows to cope with ranking or preference data.

Preference data may be viewed as samples in which some subjects (voters, judges), char-
acterized by a set of features, indicate their preferences over a set of alternatives (items). In
many real-world cases, items may also receive the same preference by a judge, resulting in
rankings with ties. The goal is to learn a function that allows to rank these items according
to the predicted preferences of a new subject, given his or her characteristics. In preference
learning (Fürnkranz & Hüllermeier, 2011), this setting is referred to as label ranking, to
distinguish it from object ranking, a related but different scenario which does not involve
judges, but tries to predict a universal preference degree for items based on their charac-
teristics. A typical example is to learn to rank Web pages for a search result. Freund et al.
(2003) discuss a boosting approach for preference data in object ranking problems, but very
few works can be found in literature on label ranking problems.
Aledo et al. (2017), taking as a basis the Label Ranking Tree (LRT)-based algorithm pro-
posed by Hüllermeier et al. (2008) and described in (Cheng et al., 2009), design weaker
tree-based models which can be learnt more efficiently and show that bagging these weak
learners improves not only the LRT algorithm, but also the state-of-the-art competitors.
Werbin-Ofir et al. (2019) focus mainly on the aggregation problem and again used the LRT
label ranking base algorithm, which is based on the estimation of a Mallows model (Mal-
lows, 1957) in each node of the tree. They propose to apply voting rules, typically used in
the field of social choice, as the aggregation technique for label ranking ensembles. As they
found that there is no single rule that consistently outperforms all other voting rules and that
under different settings, different voting rules perform the best, they propose a novel aggre-
gation method for label ranking ensembles, the voting rule selector (VRS), which learns the
best voting rule to be used in a given setting. Both de Sá et al. (2017) and Zhou and Qiu
(2018) use random forests (Breiman, 2001) for ensemble formation, the former considering
label ranking trees (de Sá et al., 2015) as base classifiers, the latter using the top level in the
ranking as the class in decision tree construction. A key, non-trivial step in ranking trees is
to devise a procedure for aggregating the various rankings associated with all examples in
a node into a consensus ranking. To this end, de Sá et al. (2017) use the average ranking,
whereas Zhou and Qiu (2018) rely on Borda’s method. Dery and Shmueli (2020) propose
a boosting algorithm, BoostLR, quite similar to the one proposed in our paper. They use
LRT (Hüllermeier et al., 2008) as the base algorithm and weighted Borda’s count as aggre-
gation method. We will show in Section 4.2 how and why our proposal differs from Dery
and Shmueli (2020).

The purpose of this paper is to define, analytically and empirically, boosting and bagging
algorithms for rankings, with or without ties, and to evaluate these algorithms on real and
simulated data. We start with a brief description of ranking data and distances between
rankings in Section 2. Section 3 introduces decision trees and how they can be applied to
ranking data, describing the rank aggregation process. Section 4 shows how these ranking
trees can be used in bagging and boosting algorithms. Finally, in Section 5, we discuss a
real application and a simulation study, and, in the end, conclude with a brief conclusion.
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2 Ranking and Preference Data

Ranking and classification are frequently used in order to grade various experiences in our
lives. Grouping and ordering a set of elements is quite easy and meaningful. Examples
include rankings of football teams, universities, and countries.

A special case of ranking data constitutes preference data, where some individuals
(called judges) indicate their preferences over a set of alternatives (which, in the literature,
are also referred to as options, stimuli, or items) and are asked to order them from most to
least preferred.

2.1 Motivation

Preference data can be found as pairwise comparisons, when respondents are asked to select
the more preferred alternative from each pair of alternatives. Note that paired comparison
and ranking methods, especially when differences between choice alternatives are small,
impose lower constraints on the response behaviour than rating methods. Rounds et al.
(1978) say that “The method of paired comparisons . . . has been frequently applied in con-
junction with the law of comparative judgment to scaling psychological variables.”, and
they cite the seriousness of crimes, patients’ mental health, visual illusions, life goals, food
preferences etc. as examples of stimuli that have been scaled with these methods. Present-
ing the objects in pair to judges, and then producing paired comparison rankings, could
be the natural experimental procedure when the objects to be ranked are really similar and
the introduction of other items may be confusing (David, 1969). Of course, as the number
of stimuli increases, paired comparisons become exceedingly time-consuming and labori-
ous for the subjects, while directly ranking the stimuli involves less labour. A great deal
of data, in psychological research for example, can be considered the result of a choice
process (Maydeu-Olivares & Bockenholt, 2009), and if item and person characteristics are
available, appropriate statistical tools can be used to identify how respondents differ in their
perception and preferences for a set of choice options. Maydeu-Olivares and Bockenholt
(2005) stress that the methods of ranking and paired comparison play an essential role in the
measurement of preferences, attitudes, and values. They report two applications: in the first
one, a Spanish university wished to investigate career preferences among its undergradu-
ate psychology students. A pilot study was performed in which a sample of 57 psychology
sophomores was asked to express their preferences for four broad psychology career areas
(Academic, Clinical, Educational, and Industrial) using a ranking task. The second one has
the goal to model purchasing preferences for seven compact cars among Spanish college
students. In both examples, covariates may be included to explain individual differences in
the evaluation of choice alternatives.

Preference data are typical of marketing analyses, but also of political and social choices
science surveys and, more generally, of behavioural studies (staff selections, policy alterna-
tives assessment, etc.). The primary aim of market segmentation, for example, is to identify
relevant groups of consumers that can be addressed efficiently by marketing or advertising
campaigns. But, as Müllensiefen et al. (2018) have observed, the issue whether consumer
groups can be identified from background variables, that are not brand-related, and particu-
larly how much personality vs socio-demographic variables contribute to the identification
of consumer clusters is very important to address. Indeed, “the term ‘psychographics’
describes the collection of data on variables that reflect consumer personality, attitudes, per-
sonal values, lifestyle and other psychological constructs in order to identify and describe
subpopulations of consumers and ultimately to inform marketing processes” (Müllensiefen
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et al., 2018). Moreover, the authors underline how “personality information can be gathered
indirectly from online data such as Facebook likes, Twitter profiles, musical preferences or
spending behaviour. Thus, unlike other psychographics measures, personality has become a
layer of information that can be obtained from various sources, especially online informa-
tion, and that has proven to be useful for predicting a broad variety of outcome measures,
such as substance use, political attitudes, or purchase satisfaction”.

In the last two decades, reasoning with and learning of preferences has received increased
attention in the machine learning (Fürnkranz & Hüllermeier, 2011) and artificial intelligence
(Rossi et al., 2011) literature.

Consequently, many models have been proposed able to cope with ranking data, when
respondent-specific variables are available, and several of them focused specifically on
decision tree models. Some of the best known include the distance-based tree models pro-
posed by Lee and Yu (2010), decision trees with ad-hoc impurity functions suggested by Yu
et al. (2010) and multivariate trees for rankings based on distance measures of D’Ambrosio
(2008).

2.2 Rankings

Formally, a ranking of m items, labeled (1, . . . , m), is a mapping a from the set of items
{1, . . . , m} to the set of ranks {1, . . . , m}. When all items are ranked in m distinct ranks,
a complete ranking or linear ordering (Cook et al., 1986) is observed. A ranking a is,
therefore, one of the m! possible permutations of m elements, representing the preference
ordering of one particular judge for the items involved. But if a judge fails to distinguish
between two or more objects and he/she assigns equal importance to them, a tied ranking
or weak ordering is obtained. Moreover, rankings may not be complete: partial rankings
occur when only a specific subset of q < m objects are ranked by judges, while incomplete
rankings occur when judges freely rank different subsets of m objects (Cook et al., 1986).
It is worth noting that different types of orderings will generate different sample spaces of
rankings. With m items there are m! possible complete rankings, but this number increases
when ties are allowed (for the universe cardinality in the presence of ties, we refer to Good
(1980) and Marcus (2013). The size of the universe of all possible rankings with ties, Sm, is
equal to the following quantity:

Sm =
m∑

r=0

r!
{
m

r

}
,

where
{
m
r

}
states the Stirling number of the second kind, indicating the number of all

possible ways to partition a set of m objects into r non-empty subsets, i.e.
{
m
r

} =
1
r!

∑r
i=0(−1)i

(
r
i

)
(r − i)m (D’Ambrosio et al., 2017).

Zhou et al. (2014) propose a taxonomy of label ranking algorithms, where label ranking
studies a mapping from instances to rankings over a finite number of predefined labels,
in other words ranking data. They mention four subtypes of label ranking: (a) Multiclass
classification, (b) Multilabel classification, (c) Label ranking and (d) Multilabel ranking.
Case a is when each instance is associated with a single label: this is equivalent to say
that in a ranking we are interested only to the first (top-1) position. Case b is when we are
interested only in a subset of the labels, that share the same importance: that is to say that
we are interested only to the top-k positions, equally ranked. Case c corresponds to a linear
ranking — all items are ranked and without ties. Case d, finally, is a typical top-k or what we
have called partial ranking (Hall & Schimek, 2012; Sampath & Verducci, 2013; Svendova
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& Schimek, 2017). All these types can be handled in the framework of this paper. Further
details on Label Ranking can be found in Vembu and Gärtner (2010).

2.3 Distances Between Rankings

A natural desiderata is to group subjects with similar preferences together. To this end, it
is necessary to measure the spread between rankings through dissimilarity or distance mea-
sures, where a distance d between two rankings is a non-negative value, ranging from 0 to
Dmax, where 0 is the distance between a ranking and itself. Many different distance func-
tions between rankings have been proposed in the literature (Marcus, 2013), often defined
as functions of the m × m score matrix (aij ) (defined for the generic ranking a), whose
elements are defined as:

aij =
⎧
⎨

⎩

1 if i is preferred to j,

0 if i is tied to j or i = j,

−1 if j is preferred to i.

Kemeny & Snell (1962) introduced a metric defined on linear and weak orders, known as
Kemeny distance (or metric), which satisfies the constraints of a distance measure suitable
for rankings. Cook et al. (1986) later generalized Kemeny distances to the framework of
partial orders.

In this work, we consider the possibility of ties; therefore, we assume that the geo-
metrical space of preference rankings is the generalized permutation polytope (Heiser &
D’Ambrosio, 2013; D’Ambrosio et al., 2017), for which the natural distance measure is the
Kemeny distance. It is defined as follows:

dK(a, b) = 1

2

m∑

i=1

m∑

j=1

|aij − bij |, (1)

where aij and bij are the generic elements of the m × m score matrices associated with a

and b

Each distance between orderings is in a one to one correspondence to a proper correlation
coefficient, through the linear transformation c = 1 − 2 d

Dmax
(Emond & Mason, 2002). The rank correlation coefficient τx corresponding to the

Kemeny-Snell distance is defined as (Emond & Mason, 2002)

τx(a, b) =
∑m

i=1
∑m

j=1a
′
ij b

′
ij

m(m − 1)
, (2)

where a′
ij and b′

ij are the generic elements of the m × m score matrices associated with a

and b respectively, assuming now that the value is equal to 1 if the item i is preferred to or
tied with the item j , −1 if item j is preferred over i, and 0 if i = j .

3 Decision Trees for Rankings

As discussed above, preference rankings can be considered as indicators of individual
behaviours of a set of individuals, the judges. In the case of preference data, we also have
characteristics of the individuals available, so that an important task is the identification
of profiles of respondents (or judges) which exhibit a similar behaviour, i.e. which show
similar preference rankings.
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3.1 Decision Trees

Decision tree learning is a very popular data analysis technique, which has been indepen-
dently discovered in statistics and machine learning (Murthy, 1998). The CART algorithm
(Breiman et al., 1984), which we already briefly introduced in Section 1, starts from the root
node that contains the whole learning sample, and uses a recursive partitioning algorithm to
create a tree where each node t represents one set of the partition.

At each node, data are divided by choosing a split, among all possible splits, so that the
resulting child nodes are the “purest”, where pureness is meant in terms of homogeneity
(with respect to the response) of observations in the same node. The homogeneity of child
nodes is measured by a so-called impurity function i(t), a generic function satisfying the
following three properties: (a) it is minimum when the node is pure, i.e. when all data points
associated with this node have the same response; (b) it is maximum when the node is the
most impure; (c) its value does not change if items are renamed. Specifically, a splitting
criterion is based on the reduction in impurity resulting from the split s of node t , with the
best split chosen as the one maximizing the impurity reduction

Δi(s, t) = i(t) − pLi(tL) − pRi(tR),

where pL and pR are given by the proportions of units in node t assigned to the left child
node tL and to the right child node tR , respectively, at the sth split.

3.2 Impurity Functions for Ranking Data

The key issue in adapting conventional univariate classification trees to the multivariate case
is the generalization of the definition of the impurity function. In order to avoid the problems
caused by the multivariate role of the ranking vector, following Sciandra et al. (2015) and
Plaia and Sciandra (2019), the set of preferences are hereby valued as a unique multivariate
structure. More precisely, the ranking process of m items can be seen as a permutation
function from {1, . . . , m} into {1, . . . , m}. Assigning a label to each permutation (with or
without ties) obtained by a set of distinct items, the ranking vector can be uniquely identified
by its label that can play the role of a response variable. This strategy enables us to work
with the classical univariate CART methodology.

For a better understanding of our strategy, consider the following illustrative example: for
ranking 4 items without ties, there are overall 4! permutations. The first permutation could
represent the ranking 〈1, 2, 3, 4〉, the second another ranking such as 〈2, 1, 3, 4〉, the third
one 〈1, 2, 4, 3〉 and so forth. If we assign to each ranking the corresponding label “first”,
“second”, “third” etc., the multivariate problem of rankings reduces to a univariate one,
where the labels “first”, “second”, “third”, . . . represent the response variable, assuming
that each one is in a one to one correspondence with a permutation.

However, the impurity function should represent the fact that some rankings are more
similar to each other than others. For example, the ranking 〈1, 2, 3, 4〉 is quite similar to the
ranking 〈1, 2, 4, 3〉 (only the order of the last two items in the ranking is reversed), but quite
different from 〈4, 3, 2, 1〉 (where all preference pairs are inverted). Thus, when the impurity
is evaluated on ranking data, the impurity function i(t) can be suitably modified as:

i(t) =
∑

a,b ∈ t : a �=b

d(a, b), (3)

where d is a distance measure between orderings a and b, the sum being extended over all
the pairs of orderings in node t . A decrease in node impurity at each step will be evaluated
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according to all covariates and respective split points, and the best among them is chosen.
Piccarreta (2010) suggests an impurity function based on dissimilarities, without propos-
ing specific distances for preference data. In order for the impurity function to take into
account the ordinal nature of rankings, following Sciandra et al. (2015), we propose to use
the Kemeny distance dK(a, b) as defined in (1). Therefore, the base classifier Cf (.) we will
use as the main ingredient of our bagging and boosting procedure is the tree-based method
for ranking data introduced by Sciandra et al. (2015) and Plaia and Sciandra (2019).

3.3 Rank Aggregation

Once the tree has been grown, we need to assign a class label or a class ranking to each
leaf node. To this end, we need to compute a so-called consensus ranking, i.e. the ranking
that mostly agrees with all the rankings in the node (D’Ambrosio et al., 2015a). Among the
pool of several consensus ranking measures proposed in the literature, the median ranking
will be used in this paper. The median ranking in a node is defined as the ranking that
has the minimum sum of the distances to all rankings in the node. Equivalently, it is the
ranking that maximizes the average rank correlation coefficient τx (2) between itself and
the other rankings in the node (D’Ambrosio & Heiser, 2016). In other words, we look for
the candidate, within the universe of the permutations with replacement of m elements Sm,
that maximizes the rank correlation coefficient (2) or, conversely, minimizes the average
Kemeny distance (1). It has been shown, as stated by Zhou and Qiu (2018), that the Kemeny
optimal aggregation is the best compromise ranking.

A key problem with this approach is that the naı̈ve computation of the median ranking is
computationally prohibitive, as it essentially involves the evaluation of (in the worst case)
m! different candidate rankings. Thus, for an efficient computation of the median ranking,
we use a branch and bound algorithm proposed by Amodio et al. (2016), implemented in
the R package ConsRank (D’Ambrosio et al., 2015b). Emond and Mason (2002) suggested
the initial branch and bound algorithm to find the solution in a consensus ranking problem.
Concerning the Kemeny approach, D’Ambrosio et al. (2015a), D’Ambrosio et al. (2015b)
and Amodio et al. (2016) proposed two accurate algorithms (QUICK and FAST) for identi-
fying the median ranking when treating with linear, weak and partial rankings. The authors
showed that the QUICK and FAST algorithms are equivalent to Emond and Mason’s branch
and bound, but ensure an impressive time-saving from a computational point of view, by
starting with a “good” initial solution. The solution they come up with is optimal but might
not find all the solutions in case of multiple solutions.

4 Ensemble Methods for Ranking Data

“The idea of ensemble learning is to build a prediction model by combining the strengths
of a collection of simpler base models”. (Hastie et al., 2009, ch. 16). It is well known that,
by aggregating many decision trees for a categorical or continuous outcome, using meth-
ods like bagging, random forests, and boosting, the predictive performance of trees can be
substantially improved (James et al., 2013). This is true with ranking data as well, as demon-
strated by Dery and Shmueli (2020) who report (Figs. 3 and 4) the average improvements
of ensemble methods over a single decision tree. Comparable enhancements are shown in
our paper and will be illustrated more deeply in Section 5.

In this paper, we form ensembles using ranking trees as building blocks, in order to
construct more powerful prediction models than a single tree. Ensemble learning can be
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broken down into two tasks: developing a population of base learners (in our case decision
trees) from the training data, and combining them to form the composite predictor. We will
first discuss the first point, before we show in Section 4.3 the way we aggregated the trees.
We briefly outline the main difference between bagging and boosting, the ensemble methods
we are going to work with. Bagging (Section 4.1) learns decision trees for many datasets
of the same size, randomly drawn with replacement from the training set. Thereafter, a
proper predicted ranking is assigned to each unit. Boosting on the other hand (Section 4.2)
combines classifiers, iteratively created from weighted versions of the learning sample, with
weights adaptively modified, iteration by iteration, so that previously misclassified rankings
have a higher probability of being selected in subsequent iterations. The final predicted
rankings are computed by weighted combination of the intermediate rankings of the iterative
process.

4.1 Bagging for Ranking Data

The simplest implementation of the idea of generating quasi-replicate training sets is
bagging (Breiman, 1996), which is briefly summarized in Algorithm 1.

In a few words, several training datasets Tb of the same size are sampled at random, with
replacement, from the training set. Each Tb is used to train a decision tree Cb(.), leading to
multiple predicted rankings Cb(xi) for each data point xi . A final ranking prediction ŷi =
Cf (xi) is assigned to each unit xi through the consensus ranking process briefly described
in Section 3.3 and detailed in Section 4.3. Combining multiple classifiers decreases the
expected error by reducing the variance. More classifiers in the ensemble typically lead
to a greater reduction of the error (at least on the training set). The procedure allows to
determine which covariates are important and discriminant: the covariates’ importance can
be estimated by averaging over their importance in each of the b trees.

4.2 Boosting for Rankings

Boosting also repeatedly uses a base learning algorithm on differently weighted versions of
the training data, leading to a sequence of classifiers that are finally combined. However,
unlike bagging, which always gives identical weights to all data points, boosting creates
weighted versions of the learning sample. The example weights are adaptively adjusted at
each iteration so that previously misclassified items are sampled with a higher probability.
The final predictions are obtained by weighting the results of the iteratively produced pre-
dictors based on their observed error rate. There are many versions of boosting algorithms,
but arguably the most frequently used is AdaBoost.M1 (Freund & Schapire, 1996), which
we will adapt to ranking data in the following.
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The AdaBoost.R algorithm (Algorithm 2) is described as follows. A weight w1(i) = 1/n

is initially assigned to each observation in the training set T of size n (step1). The weights
wb can be interpreted as probabilities for the corresponding example being included into
the training set Tb for the bth iteration of the algorithm, in which a base classifier Cb(.) is
trained on Tb. The classifiers Cb(.) are subsequently applied to each example in the training
sample leading to a predicted ranking for each item ỹb

i = Cb(xi) (steps 3 and 4). The
ranking error eb of the ranking tree Cb(.) is estimated based on the distance between each
predicted ranking ỹb

i and its real value yi (step 5)

eb =
n∑

i=1

wb(i)

[
1 − τx(ỹ

b
i , yi) + 1

2

]
. (4)

An observation with a high value of

(
1 − τx(ỹb

i ,yi )+1
2

)
, i.e. a low value of τx(ỹ

b
i , yi), is

poorly predicted.
Based on the errors eb, a factor αb is computed for updating the weights wb(i) (step 6).

Following Freund and Schapire (1998),

αb = ln((1 − eb)/eb). (5)

The weights wb(i) are updated after each iteration so that, at step b + 1, the observations
xi that were misclassified by the classifier Cb(xi) have their weights increased, whereas
the weights are decreased for those that were classified correctly. The new weight for the
(b + 1)th iteration (step 7) is

wb+1(i) = wb(i) exp αbτx(i), (6)

normalized to sum to one.
This procedure ensures that the bigger the distance between the ranking associated with

an observation and the original ranking, the higher is the probability that this observation
is resampled in the new iteration (Alfaro et al., 2013). Thus, the sequence of trees tries to
focus more on examples that are hard to predict. The α value can be interpreted as a local
iteration-specific learning rate, calculated as a function of the error made in each iteration.
Moreover, this value is also used in the final decision rule, giving more importance to the
trees that made a lower error.
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The iterative procedure continues until the stopping criterion (i.e. αb > 0.5) fires, or the
maximum number of trees is reached. It is important to consider that fitting the training data
too well can lead to overfitting, which increases the risk on future predictions (Hastie et al.,
2009). We will return on this point in Section 5.

The importance of individual covariates can be estimated as a weighted average of their
importance in each of the B trees, with weights αb given by (5).

4.3 Rank Aggregation and Test Error Measurement

For making a final prediction, both, bagging and boosting, use rank aggregation to com-
bine the predictions of the individual ranking trees. Recall that in each iteration b, we have
obtained a tree Cb(.), which predicts a ranking ỹb

i for a given example xi .
In our experiments, we will evaluate our ensembles after each iteration, i.e. we have to

compute an aggregated ranking ŷib and an aggregated error err(b) after each iteration b.
The aggregated ranking for a generic ith observation at the bth iteration, ŷib, will then be
obtained as

ŷib = arg max
yi∈Sm

b∑

k=1

αkτx(ỹ
k
i , yi), with b = 1, 2, . . . , B, (7)

where αk , the weight related to the kth tree, is computed as in (5) for boosting, and αk = 1
in the case of bagging. The process is illustrated in Table 1, where the ith column shows
the predictions, weights, and errors of the ith tree Ci(.). The values in the last column
correspond to the final lines of Algorithms 1 and 2.

Once each unit has been assigned a final ranking tree by tree, the error assigned to each
sequence of trees {1, . . . , b} is computed as

err(b) = 1 − τx(b) + 1

2
, with b = 1, . . . , B, (8)

where τx(b) = 1
n

∑n
i=1τx(ŷib, yi) is the average of τx of the bth tree over all the units in an

example set T .
Before looking at the experimental results, we want to underline how and why our

AdaBoost.R differs from Dery & Shmueli’s (2020) BoostLR. First, the base classifier we
use is the one introduced by Sciandra et al. (2015) and Plaia and Sciandra (2019), whereas

Table 1 Predictor matrix

Weights α1 α2 . . . αb . . . . . . αB

Trees C1(.) C2(.) . . . Cb(.) . . . . . . CB(.)

1 ŷ11 ŷ11 . . . ŷ1b . . . . . . ŷ1B

2 ŷ21 ŷ22 . . . ŷ22 . . . . . . ŷ2B

. . . . . . . . . . . . . .

. . . . . . . . . . . . . .

. . . . . . . . . . . . . .

n ŷn1 ŷn2 . . . ŷnb . . . . . . ŷnB

Error err(1) err(2) . . . err(b) . . . . . . err(B)
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Dery and Shmueli (2020) use LRT proposed by Hüllermeier et al. (2008). BoostLR uses a
transformation of Kendall’s τb coefficient to compute the “loss” (i.e. the factor multiplied
by wb(i) in our (4)) for each training example: actually, the true transformation from a “cor-
relation” to a distance is the one we use in our (4). Moreover, Emond and Mason (2002)
have criticized τb because of its problematic way of handling ties — the all ties ranking has
an undefined distance to any other ranking — and instead propose a refined version, τx (2),
which fixes the problem assuming a different score matrix, with a′

ij equal to 1 (and not to
0) if the item i is tied with the item j .

Finally, Dery and Shmueli (2020) aggregate the weak models’ outputs using weighted
Borda, while, coherently with the previous steps in our algorithm, we use again a function
of τx , now weighted with αb, as shown in (7). Critiques to Borda’s method can be found in
Amodio et al. (2016).

5 Experimental Results

In order to evaluate the performance of the ensemble methods described in Section 4 we
performed a simulation study (Section 5.1) and applied the method to three real datasets
(Section 5.2).

5.1 Simulation Experiments

Following D’Ambrosio and Heiser (2016), we considered a predictor space (X1, X2), were
X1 and X2 were generated according to continuous uniform distributions, with X1 ∼
U(0, 10) and X2 ∼ U(0, 6), which was partitioned into five regions as shown in Fig. 1.
The number of datapoints (of 4 items) within each sub-partition was determined by: i) ran-
domly drawing from a normal distribution N(10, 2), ii) dividing them by their summation,
iii) multiplying by the true sample size (n = 200, n = 500).
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ABCD
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Fig. 1 Theoretical partition of the predictor space (X1, X2) with 4 items
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The rankings (datapoints) within each sub-partition were generated from a Mallows
Model (Mallows, 1957), which is one of the first probability models proposed for rank-
ings and frequently used in both theoretical and applied studies. It is an exponential model
defined by a central permutation σ0 and a dispersion parameter θ . When θ > 0, σ0 repre-
sents the mode of the distribution, i.e. the permutation that has the highest probability. The
σ0 values for our simulation studies are shown in Fig. 1. The probability of any other rank-
ing decays exponentially with increasing distance to the central permutation. The dispersion
parameter controls the steepness of this decline. Assuming that σ is a generic ranking, the
probability for this ranking is given by

Pr(σ ) = exp(−θd(σ, σ−1
0 ))

ψ(θ)
,

where d is a ranking distance measure and ψ(θ) is a normalization constant. In our sim-
ulation, we generated rankings assuming the Kemeny distance and varying the dispersion
parameter θ , according to three different level of noise (low with θ = 2, medium with θ =
0.7 and high with θ = 0.4). Considering two levels for the sample size (n = 200, n = 500)

the experimental design, hence, counts 3 × 2 = 6 different scenarios. Figure 2 shows one
of the six datasets considered in our experiment (corresponding to θ = 2 and n = 500).

We applied the two ensemble methods defined in Section 4 to all six scenarios, fixing
the number of trees B to 100, the depth of each tree to 4 (see Fig. 4 for different depths) and
considering a training sample T of 2/3 of the observations. R code (R Core Team, 2020)
was used for both the simulations and the application to real data, by opportunely modifying
available functions in the R packages Consrank (D’Ambrosio et al., 2015b) and adabag
(Alfaro et al., 2013).

Figure 3 compares boosting and bagging performances in all the simulated scenarios,
plotting the error err(b) (8) vs. the number of trees b, both in the training and in the test set.
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Fig. 2 Empirical partition of the predictor space, generating high homogeneous groups of rankings (θ = 2),
with n = 500. A specific colour is assigned to the generated rankings. For instance, yellow is the colour
associated with the modal ranking ADCB of the bottom-left sub-partition but, because of the heterogeneity
among rankings, other colours, hence other rankings, are present, too
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Fig. 3 Bagging and boosting for all the simulated scenarios with 100 trees: different levels of homogeneity
among the rankings, θ = (0.4, 0.7, 2), and two sample sizes, n = (200, 500)

The starting point of each graph is the error corresponding to the first tree (x-axis), therefore
the plot shows the improvement by the bagging/boosting algorithms computed both on the
training (2/3 of the observations) and on the test (1/3 of the observations) samples.

Looking at the errors produced by boosting, the methodology is able to perform very
well when there is a high level of heterogeneity among the rankings (θ = 0.4). Expectedly
the performances for n = 200 are worse than for n = 500. The training error and the
test error for n = 500 seem to converge after approximately 20 trees. In particular, it was
enough stopping the procedure at B = 100 trees, since the errors showed to be quite stable.
Stopping at B = 100 trees we also avoid overfitting, that, as known, can affect boosting:
looking at the top-right plot in Fig. 3, for example, we can observe that the boosting training
error (green line) keeps going down, while the corresponding test error (blue line) starts to
increase.
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Fig. 4 Boosting built up for each simulated dataset, using two levels of splitting for the trees (2 and 4)

Finally, we also see that bagging always performs worse than boosting. It is important to
highlight that, even if a depth-4 tree could seem too small for a Bagging procedure, due to
the cardinality of the universe of all possible rankings with ties, even a small tree (depth 4,
i.e. 5 leaves) causes a non-negligible variability in the predicted rankings ỹb

i along with the
trees. Just as an example, considering θ = 0.7 and n = 200 (i.e. left-middle plot in figure
3, which considers only depth 4 trees), the τx computed on the B = 100 predicted values
for each of the n = 200 units

τx(i) = 1

B

B∑

b=1

τx(ỹib, yi)

ranges from 0.55 to 0.86. This means that even using small tree produces high variability.
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Fig. 5 Boosting and bagging applied to Vehicle dataset

In order to verify if the procedure is sensitive to the number of splits in each tree, i.e. to
its depth, we consider boosting with two different tree depths (2 and 4 respectively). The
results are shown in Fig. 4. It becomes clearer, going from θ = 0.4 to θ = 2, that the mean
error computed using depth 4 (both in the training and in test sets) tends to be lower than
that with depth 2. These results confirm the ones by Zhou and Mentch (2021), who found
that depending on the signal-to-noise ratio of the underlying data, having smaller trees can
be more beneficial to the ensemble predictions.

5.2 Real Data Applications

The first dataset is a multi-class data set (Fig. 5) from the UCI repository1. The dataset
“vehicle” originally contains 946 units, 18 explanatory variables and four items useful for
classification tasks. As the original dataset is only for classification, we followed the pro-
cedure proposed by Hüllermeier et al. (2008) to turn it into a ranking dataset: first a Naı̈ve
Bayes classifier is trained to estimate the probabilities for each class label, and then this pre-
dictd ranking is used as the target ranking for the ranking prediction task. We randomly split
the data in 2/3 training and 1/3 test instances and learned trees with a maximum depth of 4.

Figure 5 compares the outcomes obtained applying boosting and bagging to the data for
up to 350 trees. Again, boosting shows a better performance, while the error becomes stable
after about 100 trees.

We also consider two more real datasets, which have also been used in previous works (de
Sá et al., 2018; Werbin-Ofir et al., 2019; Dery & Shmueli, 2020). The datasets GermanElec-
tions2005 and GermanElections2009 contain socio-economic information from regions of
Germany and their respective electoral results. The 413 records correspond to the adminis-
trative districts of Germany, which are described by 39 covariates, such as age and education
of the population, economic indicators (e.g. GDP growth, percentage of unemployment),

1https://archive.ics.uci.edu/ml/machine-learning-databases/statlog/vehicle/
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Fig. 6 Boosting applied to German Elections datasets: err(b)

indicators of the labour workforce in different sectors such as production, public service,
etc. In terms of the outcome, de Sá et al. (2018) transformed the election results of the
five major political parties for the federal elections in 2005 and 2009 into rankings of five
items: CDU (conservative), SPD (centre-left), FDP (liberal), Green (centre-left) and Left
(left-wing). Because of the better performance of boosting over bagging, observed both in
the simulation study and in the previous example, we consider only boosting, limiting the
number of trees B to 100 with a maximum depth of 4.

Figure 6 shows how the error varies — starting from the first tree — in both the datasets:
it is interesting to observe that in 1 case, after about 15 iterations, the test error increases,
i.e. on the 2005 data we seem to have a strong problem with overfitting.

We also measured τx(b) = 1
n

∑n
i=1 τx(ŷib, yi) for all the trees: Fig. 7 shows the average

of τx of the bth tree over all the units in an example set T (both training or test): as expected,
τx(b) performance is specular to err(b)’s one.
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Fig. 8 Variable Importance at intermediate and final step for 2009 German Elections dataset

As explained in Section 4.2, the procedure allows to determine which covariates are
important and discriminant: covariates’ importance can be computed averaging over their
importance resulting in each of the B trees, with weights α given by (5). Figure 8 shows the
variable relative importance at some steps in the procedure (i.e. after 1, 10, 50, 75 and 100
trees). It is interesting to notice how the relative importance of each variable can change
along the iterations: for example the importance of the variable Unemploy, the most impor-
tant covariate at the beginning, has substantially decreased at the end of the process (i.e. at
100 trees).

6 Conclusion

In this paper, we adapted two ensemble methodologies, boosting and bagging, to ranking
data to improve the prediction performance of single decision trees. Both algorithms com-
bine the predictions of multiple decision trees, in particular the distance-based trees for
ranking data proposed by Plaia and Sciandra (2019). These trees consider the Kemeny dis-
tance (Kemeny & Snell, 1962) as a measure of impurity in the splitting process, and its
related rank correlation coefficient τx (proposed by Emond & Mason (2002)) for identifying
the median ranking in the final nodes. As stated by Zhou and Qiu (2018), rank aggrega-
tion can be obtained by optimizing different rank distance measures, but it has been shown
that the Kemeny optimal aggregation is the best compromise ranking. However, finding a
Kemeny optimal aggregation is NP-hard even with four items, therefore, we use two algo-
rithms QUICK and FAST (D’Ambrosio et al., 2015a; Amodio et al., 2016) for quickly
approximating the median ranking. The same rank correlation coefficient τx is used to com-
pute the final aggregated ranking over the predictions of every single tree. τx also represents
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the main ingredient both in computing the error err(b) associated with each tree and the fac-
tor αb (only in the boosting algorithm) to update the weights of each item in the bootstrap
procedure.

We implemented both algorithms in R, and applied them to simulated data and real cases.
The simulation study shows that boosting can perform very well when there is a high level
of heterogeneity (θ = 0.4) among the rankings, and its performance improves with the
sample size. Moreover, depth-4 boosting outperforms depth-2 boosting with a high level
of heterogeneity (θ = 0.4), while they behave similarly with a low level of heterogeneity
(θ = 2). Bagging performs worse than boosting in all the simulated scenarios, and its error
decreases when the heterogeneity decreases, independently on the sample size n. The results
on real datasets were in line with the results of the simulation study. Both algorithms also
allow to determine which covariates are significant and discriminant, by averaging over
their importance in each of the b trees, with weights αb in case of boosting.

An interesting research direction would be to improve the scalability of the algorithms
with respect to the number of items. And in this direction, the introduction of weights, both
to give different importance to some positions—say the top-positions—or to items—some
items could be more relevant than others—could help (Garcı́a-Lapresta & Pérez-Román,
2010; Kumar & Vassilvitskii, 2010; Can, 2014; Plaia et al., 2021): both these types of
weights could help reduce the size of the universe of rankings to explore to find the consen-
sus, the most computer intensive step of the proposed procedures. Indeed, the distance-based
trees for ranking data proposed by Plaia and Sciandra (2019) already implement position
weights, even if not considered in the algorithms presented in this paper, and we are now
studying how item weights can be considered. Both solutions could be then considered as
base decision trees within the bagging and boosting algorithms proposed in this paper.
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