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The aim of this paper is to study the following nonlinear elliptic problem

(1)

 −div(ν(x, u)|∇u|p−2∇u) = f(x, u,∇u) in Ω,

u = 0 on ∂Ω

on a bounded domain Ω ⊂ RN with N ≥ 3 and a Lipschitz boundary ∂Ω. The main novelty is that
the equation is driven by the degenerate p-Laplacian div(ν(x, u)|∇u|p−2∇u), for p ∈ (1,+∞), with
a weight generating degeneracy which in addition depends on the solution u. The reaction term
in the above equation depends on the solution u and on its gradient ∇u, which is often called a
convection term.

The structure that we admit for the weight ν entering problem (1) is of the form

(2) ν(x, t) = a(x)g(|t|) for a.e x ∈ Ω and for all t ∈ R,

with a positive function a ∈ L1
loc(Ω) and a continuous function g : [0,+∞)→ [a0,+∞), with a0 > 0.

In particular, ν : Ω×R→ R is a Carathéodory function (i.e., ν(x, t) is measurable in x for any fixed
t and is continuous in t for any fixed x). The leading operator of the equation in (1) is degenerate
because the ellipticity property can be lost since the part a(x) in the decomposition (2) can approach
zero or be unbounded. The part g(|u|) of the weight ν(x, t) can be unbounded from above.

We say a few words to motivate our approach based on truncation of the unbounded weight
ν(x, t). The fact that the weight ν(x, t) is unbounded from above in t with no control of the growth
for g(t) prevents to handle the problem directly. Furthermore, there is no available function setting
in which the equation can be fitted. In order to overcome this difficulty, we truncate the function
g(t), thus reducing the weighted problem to a manageable case for an operator theoretic treatment.

We seek the solutions to problem (1) in W 1,p
0 (a,Ω) which is the closure of C∞c (Ω) in the Banach

space W 1,p(a,Ω) consisting of all elements u ∈ Lp(Ω) with a(x)|∇u(x)|p integrable on Ω. Notice
that the degeneracy part a ∈ L1

loc(Ω) is incorporated in the definition of the underlying space. In
order to handle problem (1) we assume the following hypothesis from [DrabekKufnerNicolosi(1997),
page 26]:
(H1)

a−s ∈ L1(Ω) for some s ∈
(
N

p
,+∞

)
∩
[

1

p− 1
,+∞

)
.

In Section 1 it will be recalled that owing to condition (H1) there are the compact embeddings

W 1,ps
0 (Ω) ↪→↪→ Lr(Ω),(3)

with 1 ≤ r < p∗s for p∗s = Nps/(N − ps) if N > ps and p∗s = +∞ otherwise, where

ps =
ps

s+ 1
.(4)

The embeddings in (3) will be used to manage the nonlinearity f(x, u,∇u).
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The right-hand side f(x, u,∇u) of the equation in (1) is determined by a Carathéodory function
f : Ω×R×RN → R meaning that f(·, t, ξ) is measurable on Ω for each (t, ξ) ∈ R×RN and f(x, ·, ·)
is continuous on R × RN for a.e. x ∈ Ω. Next we identify the growth condition that f(x, u,∇u)
should satisfy.

For the sake of simplicity, we make the notational convention that for any real number r > 1 we
denote r′ := r/(r − 1) (the Hölder conjugate of r).

We assume that the nonlinearity f(x, t, ξ) satisfies the hypotheses:
(H2) There exist constants c1 ≥ 0, c2 ≥ 0, c3 ≥ 0, and α ∈ (p, p∗s) such that

|f(x, t, ξ)| ≤ c1a(x)
1
α′ |ξ|

p
α′ + c2|t|α−1 + c3 a.e. x ∈ Ω, ∀t ∈ R, ∀ξ ∈ RN .

(H3) There exist constants d1 ≥ 0 and d2 ≥ 0 with d1 + λ−1
1 d2 < a0, and a function σ ∈ L1(Ω)

such that

f(x, t, ξ)t ≤ d1a(x)|ξ|p + d2|t|p + σ(x) for a.e. x ∈ Ω, ∀t ∈ R, ∀ξ ∈ RN ,

where λ1 denotes the first eigenvalue of the (negative) degenerated p-Laplacian −∆a
p :

W 1,p
0 (a,Ω)→W 1,p

0 (a,Ω)∗ with the weight a ∈ L1
loc(Ω) (see (6)-(7) below).

Remark 0.1. Condition (H2) cannot be formulated without condition (H1) that provides the key
number p∗s associated with s. The interaction of hypothesis (H3) with the function g given in (2)
occurs only through the lower bound a0 of g.

A solution to problem (1) will be understood in the following weak sense.

Definition 0.2. We say that u ∈W 1,p
0 (a,Ω) is a weak solution to problem (1) if

(5)
∫

Ω

ν(x, u)|∇u|p−2∇u∇vdx =

∫
Ω

f(x, u,∇u)vdx

for all v ∈W 1,p
0 (a,Ω).

Under hypotheses (H1) and (H2) the integral in the right-hand side of (5) exists.
An essential step in our approach is to show that the set of solutions is uniformly bounded.

This property is much stronger than the boundedness of each solution with a constant depend-
ing on the solution itself as given for unweighted problems in [MarinoWinkert(2019)] (see also
[MarinoMotreanu(2020)]). In Theorem 2.2 below we develop a special Moser iteration adapted to
our degenerate setting with convection.

Next we focus on the existence of solutions to problem (1) in the sense of Definition 0.2. Our
existence result on problem (1) is formulated as follows.

Theorem 0.3. Assume that the weight ν : Ω × R → R has the structure in (2) with a positive
a ∈ L1

loc(Ω) satisfying the condition (H1) and a continuous function g : [0,+∞) → [a0,+∞) with
a0 > 0. Assume also that the Carathéodory function f : Ω × R × RN → R satisfies the conditions
(H2) and (H3). Then Problem (1) possesses at least a bounded weak solution u ∈W 1,p

0 (a,Ω) in the
sense of Definition 0.2.

The proof of Theorem 0.3 relies on the truncation of the weight ν(x, u) described in (2) in order
to drop the unboundedness from above of the part g(|u|). Specifically, we consider for any R > 0 an
auxiliary problem obtained by truncating the weight ν(x, u) in u from above R. We will be able to
apply to the truncated problem the main theorem for pseudomonotone operators. As a final step,
we take advantage of the boundedness of the solution set for (1) seeing that the solution of the
auxiliary problem is actually a solution of the original problem (1) provided R > 0 is sufficiently
large. By a detailed example we illustrate the applicability of our main result.
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There are very few papers focusing on problems of type (1). The general functional setting related
to the degenerate p-Laplacian is presented in the monograph [DrabekKufnerNicolosi(1997)] (see also
[Motreanu(2018)] for equations involving the unweighted p-Laplacian and convection terms). The
particular case of problem (1) for which g(|u|) ≡ 1 (i.e., the weight does not depend on the so-
lution u) was the object of [MotreanuTornatore(2021)] by using a completely different approach,
namely, the method of sub-supersolution. The nondegenerate problem corresponding to (1) was
investigated in [AvernaMotreanuTornatore(2016)] by means of the surjectivity theorem for pseu-
domonotone operators. Recently, the papers [Motreanu(2021), MotreanuNashed(2021)] deal with
degenerate (p, q)-Laplacian problems but where the weights do not depend on the solution u. Until
now the results regarding equation (1) driven by the degenerate p-Laplacian with a weight depend-
ing on the solution u has been considered only when f(x, u,∇u) = h(x, u) (i.e., without gradient
dependence) and with a growth up to order p − 1, that is |h(x, u)| ≤ c(1 + |u|p−1) for a constant
c > 0 (refer, e.g., to [DrabekKufnerNicolosi(1997), Theorem 3.5]).

The rest of the paper consists of the following material. Section 1 comprises the necessary
background regarding the weighted Sobolev spaces, degenerate p-Laplacian and pseudomonotone
operators. Section 2 shows that (1) admits only bounded solutions. Sections 3 and 4 study the
truncated problem. Section 5 contains the proof of our main result and the example.

1. Preliminaries

We start by recalling some facts about weighted Sobolev spaces and degenerate p-Laplacian that
will be used subsequently. For more insight we refer to [DrabekKufnerNicolosi(1997)]. Fix a real
number p ∈ (1,+∞), a positive function a ∈ L1

loc(Ω) and a bounded domain Ω ⊂ RN of Lebesgue
measure |Ω|, with N ≥ 3 and a Lipschitz boundary ∂Ω. We consider the weighted space

W 1,p(a,Ω) := {u ∈ Lp(Ω) ∩W 1,1
loc (Ω) :

∫
Ω

a(x)|∇u(x)|pdx <∞}

which is a Banach space endowed with the norm

‖u‖W 1,p(a,Ω) :=

(
‖u‖pLp(Ω) +

∫
Ω

a(x)|∇u(x)|pdx
) 1
p

, ∀u ∈W 1,p(a,Ω).

Notice that C∞c (Ω) ⊂ W 1,p(a,Ω). The space W 1,p
0 (a,Ω) is defined as the closure of C∞c (Ω) in

W 1,p(a,Ω) with respect to the norm ‖ · ‖W 1,p(a,Ω). Denote by W 1,p
0 (a,Ω)∗ the dual space of

W 1,p
0 (a,Ω).
The (negative) degenerate p-Laplacian with the weight a ∈ L1

loc(Ω) is the nonlinear operator
−∆a

p : W 1,p
0 (a,Ω)→W 1,p

0 (a,Ω)∗ defined by

〈−∆a
p(u), v〉 :=

∫
Ω

a(x)|∇u|p−2∇u∇vdx, ∀u, v ∈W 1,p
0 (a,Ω).(6)

The definition is meaningful since by Hölder’s inequality it holds∣∣∫
Ω
a(x)|∇u(x)|p−2∇u(x)∇v(x)dx

∣∣
≤
(∫

Ω
a(x)|∇u(x)|pdx

) p−1
p
(∫

Ω
a(x)|∇v(x)|pdx

) 1
p < +∞

for all u, v ∈ W 1,p(a,Ω). The mapping −∆a
p : W 1,p

0 (a,Ω) → W 1,p
0 (a,Ω)∗ in (6) is continuous and

bounded (in the sense that it maps bounded sets into bounded sets). The first eigenvalue of −∆a
p

is given by

(7) λ1 := inf
u∈W 1,p

0 (a,Ω), u 6=0

∫
Ω
a(x)|∇u|pdx∫

Ω
|u|pdx
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(refer to [DrabekKufnerNicolosi(1997), Lemma 3.1]).
An important embedding theorem for the space W 1,p

0 (a,Ω) holds under hypothesis (H1). To this
end, with s in hypothesis (H1) we set ps as in (4). Let us observe from (4) that ps ≥ 1 because
according to assumption (H1) we have s ≥ 1/(p − 1). It is also seen from (4) that ps < p and
ps/(p− ps) = s. Hence through Hölder’s inequality and hypothesis (H1) we find the estimate∫

Ω
|∇u(x)|psdx =

∫
Ω

(a(x)
ps
p |∇u(x)|ps)a(x)−

ps
p dx

≤
(∫

Ω
a(x)|∇u(x)|pdx

) ps
p

(∫
Ω
a(x)−

ps
p−ps dx

) p−ps
p ≤ ‖a−s‖

1
s+1

L1(Ω)‖u‖
ps

for all u ∈ W 1,p(a,Ω). This establishes the continuous embedding of W 1,p
0 (a,Ω) into the classical

(unweighted) Sobolev space W 1,ps
0 (Ω), thus

W 1,p
0 (a,Ω) ↪→W 1,ps

0 (Ω).(8)

We invoke the Rellich-Kondrachov embedding theorem that guarantees the compact embedding (3)
with 1 ≤ r < p∗s for the critical exponent p∗s (corresponding to ps) given by

p∗s :=


Nps
N−ps if N > ps,

+∞ if N ≤ ps.

The assumption s > N/p as postulated in condition (H1) results in p∗s > p. Consequently, there
holds the compact embedding

W 1,ps
0 (Ω) ↪→↪→ Lp(Ω).

Combining with (8) yields the compact embedding

W 1,p
0 (a,Ω) ↪→↪→ Lp(Ω).(9)

In particular, (9) ensures that

(10) ‖u‖ :=

(∫
Ω

a(x)|∇u(x)|pdx
) 1
p

, ∀u ∈W 1,p
0 (a,Ω),

is an equivalent norm on W 1,p
0 (a,Ω). Throughout the rest of the paper, the space W 1,p

0 (a,Ω) will
be endowed with the norm ‖ · ‖.

The space W 1,p
0 (a,Ω) is a uniformly convex Banach space. Indeed, from assumption (H1) it is

known that a−s ∈ L1(Ω) with s ≥ 1/(p− 1). This gives a−
1
p−1 ∈ L1(Ω) according to∫

Ω

a(x)−
1
p−1 dx =

∫
{a(x)<1}

a(x)−
1
p−1 dx+

∫
{a(x)≥1}

a(x)−
1
p−1 dx

≤
∫

Ω

a(x)−sdx+ |Ω| <∞.

Applying [DrabekKufnerNicolosi(1997), Theorem 1.3]) renders that W 1,p
0 (a,Ω) is uniformly convex,

so reflexive.
We mention a few things about the pseudomonotone operators. For more developments we refer

to [CarlLeMotreanu(2007), Chapter 2]. Let X be a Banach space with the norm ‖ · ‖ and its dual
X∗. We denote by 〈·, ·〉 the duality pairing between X and X∗, by → the strong convergence and
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by ⇀ the weak convergence. A map A : X → X∗ is called bounded if it maps bounded sets into
bounded sets. The map A : X → X∗ is said to be coercive if

lim
‖u‖→+∞

〈A(u), u〉
‖u‖

= +∞.

The map A : X → X∗ is called pseudomonotone if for each sequence {un} ⊂ X satisfying un ⇀ u
in X and lim supn→∞ 〈A(un), un − u〉 ≤ 0, it holds

〈A(v), u− v〉 ≤ lim inf
n→∞

〈A(un), un − v〉 for all v ∈ X.

The main theorem for pseudomonotone operators reads as follows (see, e.g., [CarlLeMotreanu(2007),
Theorem 2.99]).

Theorem 1.1. Let X be a reflexive Banach space. If the mapping A : X → X∗ is pseudomonotone,
bounded and coercive, then it is surjective.

2. Bounded solutions

We start with the estimate of the solution set in W 1,p
0 (a,Ω).

Lemma 2.1. Under assumptions (H1) and (H3), the set of solutions to problem (1) is bounded in
W 1,p

0 (a,Ω) with a bound depending on g only through its lower bound a0.

Proof. Acting on (5) with the test function v = u ∈W 1,p
0 (a,Ω) results in∫

Ω

ν(x, u)|∇u|p−2∇u∇udx =

∫
Ω

f(x, u,∇u)udx.

Hypothesis (H3), in conjunction with (2), (7) and (10), ensures that

a0‖u‖p ≤ (d1 + d2λ
−1
1 )‖u‖p + ‖σ‖L1(Ω).

Taking into account that d1 + d2λ
−1
1 < a0, the conclusion follows.�

�

Our result on bounded solutions to problem (1) establishes that under the imposed hypotheses
the solution set of problem (1) is uniformly bounded.

Theorem 2.2. Assume that conditions (H1), (H2) and (H3) are fulfilled. Then there exists a
constant C > 0 such that for each weak solution u ∈W 1,p

0 (a,Ω) to problem (1) it holds the uniform
estimate ‖u‖L∞(Ω) ≤ C. The constant C depends on g only through its lower bound a0.

Proof. Let u ∈ W 1,p
0 (a,Ω) be a weak solution to problem (1). We can write u = u+ − u−, where

u+ = max{u, 0} (the positive part of u) and u− = max{−u, 0} (the negative part of u). We have to
show that u+ and u− are both uniformly bounded by a constant independent of u. We only provide
the proof for u+ because in the case of u− one can argue similarly.

Our first goal is to prove that

u+ ∈ Lr(Ω), ∀r ∈ [1,+∞).(11)

To this end we insert in (5) the test function v = u+ukph ∈ W
1,p
0 (a,Ω), where uh := min{u+, h}

with arbitrary constants h > 0 and k > 0, thus obtaining∫
Ω

ν(x, u)|∇u|p−2∇u∇(u+ukph )dx =

∫
Ω

f(x, u,∇u)u+ukph dx.(12)
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By means of (2), the left-hand side of (12) can be estimated from below as∫
Ω

ν(x, u)|∇u|p−2∇u∇(u+ukph )dx(13)

=

∫
Ω

a(x)g(|u|)|∇u|p−2∇u(ukph ∇(u+) + kpu+ukp−1
h ∇(uh))dx

≥ a0

[∫
Ω

a(x)ukph |∇(u+)|pdx+ kp

∫
{0<u<h}

a(x)ukph |∇(u+)|pdx

]
.

Through Young’s inequality, for any ε > 0 and a constant c(ε) > 0 we get∫
Ω

a(x)
1
α′ |∇u|

p
α′ ukph u

+dx =

∫
Ω

(a(x)
1
α′ |∇u|

p
α′ u

kp
α′
h )(u

kp
α

h u+)dx(14)

≤ ε
∫

Ω

a(x)ukph |∇(u+)|pdx+ c(ε)

∫
Ω

ukph (u+)αdx.

Let us note that ∫
Ω

ukph (u+)dx ≤
∫

Ω

ukph (u+)αdx+ |Ω|.

Then, if ε > 0 is sufficiently small, we derive by (12), (13), (14) and hypothesis (H2) the bound∫
Ω

a(x)ukph |∇(u+)|pdx+ kp

∫
{0<u<h}

a(x)ukph |∇(u+)|pdx(15)

≤ b0
(∫

Ω

ukph (u+)αdx+ 1

)
,

with a constant b0 > 0. It also holds∫
Ω

a(x)ukph |∇(u+)|pdx+ kp

∫
{0<u<h}

a(x)ukph |∇(u+)|pdx(16)

=
1

(k + 1)p

∫
{u>h}

a(x)ukph |∇(u+)|pdx+
kp+ 1

(k + 1)p

∫
{0<u<h}

a(x)|∇(uk+1
h )|pdx

≥ kp+ 1

(k + 1)p

∫
Ω

a(x)|∇(ukhu
+)|pdx.

As a result, (15) and (16) imply
kp+ 1

(k + 1)p
‖ukhu+‖p ≤ b0

(∫
Ω

ukph (u+)αdx+ 1

)
.(17)

Hölder’s inequality using α > p and Sobolev embedding theorem jointly with (8) lead to∫
Ω

ukph (u+)αdx ≤M
∫
{(u+)α−p≤M}

(ukhu
+)pdx

+

(∫
{(u+)α−p>M}

(u+)αdx

)α−p
α (∫

Ω

(ukhu
+)αdx

) p
α

≤M‖ukhu+‖pLp(Ω) + C‖ukhu+‖p
(∫
{(u+)p

∗
s−p>M}

(u+)αdx

)α−p
α
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for any M > 0, with a constant C > 0 independent of M . Notice that

lim
M→+∞

∫
{(u+)p

∗
s−p>M}

(u+)αdx = 0.

Therefore, choosing M > 0 large enough, (17) and the Sobolev embedding theorem entail

‖ukhu+‖Lp∗s (Ω) ≤ b1(k + 1)
(
‖ukhu+‖pLp(Ω) + 1

) 1
p

,(18)

with a constant b1 = b1(k, u) > 0 depending on k and u (note that u ∈W 1,p
0 (a,Ω) is fixed).

Now assertion (11) results from (18) by means of a bootstrap argument. Namely, let k1 > 0 be
given by (k1 + 1)p = p∗s. It follows from (18) that uk1h u

+ ∈ Lp∗s (Ω) because u ∈ Lp∗s (Ω). Inductively,
setting (kn + 1)p = (kn−1 + 1)p∗s, we construct a sequence kn → +∞ with uknh u+ ∈ Lp∗s (Ω). Letting
h→ +∞, Fatou’s lemma ensures u+ ∈ L(kn+1)p∗s (Ω) for all n, which establishes (11).

Next, on the basis of (11), we prove that there exists a constant K > 0 such that

‖u+‖Lr(Ω) ≤ K, ∀r ≥ 1,(19)

with K independent of the solution u of (1). In this connection, we rely on Lemma 2.1. More
precisely, we return to (17) and fix q ∈ (p, α) satisfying

(α− p)q
q − p

< p∗s,(20)

which is possible because α < p∗s according to (H2). Due to (11), we are able to use Hölder’s
inequality getting for any k > 0 the estimate∫

Ω

ukph (u+)αdx =

∫
Ω

(u+)α−p(ukhu
+)pdx

≤
(∫

Ω

(u+)
(α−p)q
q−p dx

) q−p
q
(∫

Ω

(ukhu
+)qdx

) p
q

≤ C‖ukhu+‖pLq(Ω),

where C > 0 is a constant that does not depend on the solution u of (1). The independence of
C with respect to the solution u is a consequence of Lemma 2.1 and the continuous embedding
W 1,p

0 (a,Ω) ↪→ L
(α−p)q
q−p (Ω) that follows from (8) and (20). Again from Lemma 2.1 we see that the

obtained constant C des not depend on g except for its lower bound a0.
Inserting the preceding inequality into (17) and taking into account the integrability of any power

of u+ according to (11), by Fatou’s lemma it turns out

‖u+‖L(k+1)p∗s (Ω) ≤ b
1
k+1 (k + 1)

1
k+1

(
‖(u+)k+1‖pLq(Ω) + 1

) 1
(k+1)p

,(21)

with a constant b > 0 independent of the solution u and whose dependence with respect to g occurs
through its lower bound a0. Since the sequence (k+1)

1√
k+1 is bounded, (21) gives rise to a constant

c > 0 such that

‖u+‖L(k+1)p∗s (Ω) ≤ b
1
k+1 c

1√
k+1

(
‖(u+)k+1‖pLq(Ω) + 1

) 1
(k+1)p

.(22)

Without loss of generality we may suppose that ‖(u+)k+1‖pLq(Ω) > 1 (otherwise (19) follows).
Accordingly, (22) amounts to saying that

‖u+‖L(k+1)p∗s (Ω) ≤ C
1√
k+1 ‖u+‖L(k+1)q(Ω)(23)
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with a constant C > 0 independent of k and of the solution u and for which the dependence on
g reduces to the dependence on a0. At this point, we again implement the Moser iteration with
(kn + 1)q = (kn−1 + 1)p∗s posing (k1 + 1)q = p∗s. Then (23) renders

‖u+‖L(kn+1)p∗s (Ω) ≤ C
∑

1≤i≤n
1√
ki+1 ‖u+‖L(k1+1)q(Ω), ∀n ≥ 1.(24)

Letting n → ∞ in (24) provides (19) because the series converges and kn → +∞ as n → ∞ (note
p∗s > q).

Finally, passing to the limit as r →∞ in (19), the uniform boundedness of the solution set of (1)
is achieved. A careful reading of the proof shows that the dependence of the uniform bound C on
g arises just through the lower bound a0 of g. This completes the proof. � �

Remark 2.3. In comparison to the results in [MarinoMotreanu(2020), MarinoWinkert(2019)] ad-
dressing bounded solutions for problems with full dependence on the gradient of the solution, we
emphasize that Theorem 2.2 establishes that the whole solution set of problem (1) is (uniformly)
bounded in L∞(Ω), which is an improvement even for unweighted problems. In line with this, we
can prove that every solution of (1) belongs to L∞(Ω) under a growth condition weaker than (H2),
namely, there exist constants a1 ≥ 0, a2 ≥ 0, and a3 ≥ 0 such that

|f(x, t, ξ)| ≤ a1a(x)
p∗s−1

p∗s |ξ|
p(p∗s−1)

p∗s + a2|t|p
∗
s−1 + a3 for a.e. x ∈ Ω, ∀t ∈ R, ∀ξ ∈ RN .

We also remark that in [DrabekKufnerNicolosi(1997), Theorem 3.5] it is proven the uniform bound-
edness for the solution set of an equation of type (1) with a right-hand side of the form h(x, u) (so,
independent of the gradient ∇u) and exhibiting a growth of order p− 1 in u.

3. Truncated weight and associated operator

For any number R > 0 we consider the following truncation of the weight ν(x, u) in problem (1):

νR(x, t) = a(x)gR(|t|), ∀(x, t) ∈ Ω× R,

where

(25) gR(t) =

{
g(t) if t ∈ [0, R]
g(R) if t > R

The next proposition focuses on the properties of the degenerate p-Laplacian associated to the
truncated weight νR(x, u).

Proposition 3.1. Given R > 0, let AR : W 1,p
0 (a,Ω)→W 1,p

0 (a,Ω)∗ be defined by

(26) 〈AR(u), v〉 =

∫
Ω

νR(x, u)|∇u|p−2∇u∇vdx, ∀u, v ∈W 1,p
0 (a,Ω).

Then the following assertions hold:
(i) AR is well defined and bounded;
(ii) AR has the S+ property, that is, any sequence {un} ⊂W 1,p

0 (a,Ω) with un ⇀ u in W 1,p
0 (a,Ω)

and

lim sup
n→∞

〈AR(un), un − u〉 ≤ 0(27)

satisfies un → u in W 1,p
0 (a,Ω).

(iii) AR is continuous.
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Proof. (i) By (2), (25), the continuity of g and Hölder’s inequality, we have

∣∣∣∣∫
Ω

νR(x, u)|∇u|p−2∇u∇vdx
∣∣∣∣ ≤ ∫

Ω

νR(x, u)|∇u|p−1|∇v|dx

=

∫
{|u|≤R}

a(x)g(|u(x)|)|∇u|p−1|∇v|dx+

∫
{|u|>R}

g(R)a(x)|∇u|p−1|∇v|dx

≤ max
t∈[0,R]

g(t)

∫
Ω

a(x)|∇u|p−1|∇v|dx

≤ max
t∈[0,R]

g(t)

(∫
Ω

a(x)|∇u|pdx
) p−1

p
(∫

Ω

a(x)|∇v|pdx
) 1
p

= max
t∈[0,R]

g(t)‖u‖p−1‖v‖.

for all u, v ∈W 1,p
0 (a,Ω). The operator AR in (26) is thus well defined and bounded.

(ii) Let {un} ⊂W 1,p
0 (a,Ω) be a sequence as required. First, we note by Hölder’s inequality that

∫
Ω

gR(|un|)a(x)(|∇un|p−2∇un − |∇u|p−2∇u)∇(un − u)dx

≥ a0

∫
Ω

a(x)(|∇un|p−2∇un − |∇u|p−2∇u)∇(un − u)dx

≥ a0

∫
Ω

a(x)|∇un|pdx+ a0

∫
Ω

a(x)|∇u|pdx

−a0

∫
Ω

(a(x)
p−1
p |∇un|

p−1
p )(a(x)

1
p |∇u|)dx

−a0

∫
Ω

(a(x)
p−1
p |∇u|

p−1
p )(a(x)

1
p |∇un|)dx

≥ a0‖un‖p + a0‖u‖p − a0

(∫
Ω

a(x)|∇un|pdx
) p−1

p
(∫

Ω

a(x)|∇u|pdx
) 1
p

−a0

(∫
Ω

a(x)|∇u|pdx
) p−1

p
(∫

Ω

a(x)|∇un|pdx
) 1
p

= a0(‖un‖p + ‖u‖p − ‖un‖p−1‖u‖ − ‖u‖p−1‖un‖)

= a0(‖un‖ − ‖u‖)(‖un‖p−1 − ‖u‖p−1).
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By (26), (10) and the preceding inequality, we obtain

〈AR(un)−AR(u), un − u〉(28)

=

∫
Ω

gR(|un|)a(x)(|∇un|p−2∇un − |∇u|p−2∇u)∇(un − u)dx

+

∫
Ω

(gR(|un|)− gR(|u|))a(x)|∇u|p−2∇u∇(un − u)dx

≥ a0(‖un‖ − ‖u‖)(‖un‖p−1 − ‖u‖p−1)

+

∫
Ω

(gR(|un|)− gR(|u|))a(x)|∇u|p−2∇u∇(un − u)dx.

The assumptions un ⇀ u in W 1,p
0 (a,Ω) and (27) imply

lim sup
n→∞

〈AR(un)−AR(u), un − u〉 ≤ 0.(29)

We also have

lim
n→∞

∫
Ω

(gR(|un|)− gR(|u|))a(x)|∇u|p−2∇u∇(un − u)dx = 0.(30)

Indeed, through Hölder’s inequality and the boundedness of {un} in W 1,p
0 (a,Ω) (note that un ⇀ u),

there is a constant C > 0 such that∣∣∣∣∫
Ω

(gR(|un|)− gR(|u|))a(x)|∇u|p−2∇u∇(un − u)dx

∣∣∣∣
≤ C

(∫
Ω

|gR(|un|)− gR(|u|)|
p
p−1 a(x)|∇u|pdx

) p−1
p

.

Then (30) is achieved by applying Lebesgue’s dominated convergence theorem on the basis of the
continuity of g and the strong convergence un → u in Lp(Ω).

Combining (28), (29) and (30) we are led to limn→+∞ ‖un‖ = ‖u‖. The space W 1,p
0 (a,Ω) is

uniformly convex (see Section 1), whence un → u in W 1,p
0 (a,Ω).

(iii) Let un → u in W 1,p
0 (a,Ω). Proceeding as in (28), we infer that

|〈AR(un)−AR(u), v〉|

≤
∣∣∣∣∫

Ω

gR(|un|)a(x)(|∇un|p−2∇un − |∇u|p−2∇u)∇vdx
∣∣∣∣

+

∣∣∣∣∫
Ω

(gR(|un|)− gR(|u|))a(x)|∇u|p−2∇u∇vdx
∣∣∣∣

≤ max
t∈[0,R]

g(t)

(∫
Ω

a(x)
∣∣|∇un|p−2∇un − |∇u|p−2∇u

∣∣ p
p−1 dx

) p−1
p

‖v‖

+

(∫
Ω

|gR(|un|)− gR(|u|)|
p
p−1 a(x)|∇u|pdx

) p−1
p

‖v‖

for every v ∈ W 1,p
0 (a,Ω). Arguing as in part (ii), we arrive at AR(un) → AR(u) in W 1,p

0 (a,Ω)∗,
which establishes the desired conclusion. �
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4. Operator formulation for the auxiliary problem

Corresponding to the truncation in (25), we state the auxiliary problem

(31)

 −div(νR(x, u)|∇u|p−2∇u) = f(x, u,∇u) in Ω,

u = 0 on ∂Ω.

Our approach to study problem (31) is based on the theory of pseudomonotone operators. In
this respect, we introduce a Nemytskii-type operator by

〈N (u), v〉 =

∫
Ω

f(x, u(x),∇u(x))v(x)dx for all u, v ∈W 1,p
0 (a,Ω).(32)

Lemma 4.1. Assume that conditions (H1) and (H2) hold. Then the map N : W 1,p
0 (a,Ω)→ Lα

′
(Ω)

in (32) is well defined, continuous and bounded.

Proof. Assumption (H2) in conjunction with (32) yields

|〈N (u), v〉| ≤
∫

Ω

(c1a(x)
1
α′ |∇u|

p
α′ |v|+ c2|u|α−1|v|+ c3|v|)dx, ∀u, v ∈W 1,p

0 (a,Ω).

Using Hölder’s inequality and (10), one obtains the estimate

|〈N (u), v〉| ≤ c1‖u‖
p
α′ ‖v‖Lα(Ω) + c2‖u‖α−1

Lα(Ω)‖v‖Lα(Ω) + c3‖v‖L1(Ω)(33)

for all u, v ∈ W 1,p
0 (a,Ω). Hence N (u) ∈ Lα

′
(Ω) whenever u ∈ W 1,p

0 (a,Ω), due to the density of
W 1,p

0 (a,Ω) in Lα(Ω). Moreover, it is clear from (33) that N : W 1,p
0 (a,Ω)→ Lα

′
(Ω) is bounded.

Consider the Banach space

Lp(a,Ω) := {u : Ω→ R measurable :

∫
Ω

a(x)|u(x)|pdx <∞}.

It is seen from (32) that the mapping N can be expressed as the composition N = Na ◦ Γa,
where Γa : u ∈ W 1,p

0 (a,Ω) 7→ (u,∇u) ∈ Lα(Ω) × Lp(a,Ω)N and Na : (v, (v1, ..., vN )) ∈ Lα(Ω) ×
Lp(a,Ω)N 7→ f(x, v, v1, ..., vN ) ∈ Lα′(Ω). The continuity of the mapping Γa readily follows from
the definition of the space W 1,p

0 (a,Ω). The continuity of the mapping Na is the direct consequence
of Krasnoselskii’s theorem for weighted spaces (refer to [DrabekKufnerNicolosi(1997), Theorem 1.1]
applied for the weights therein w0 = 1 and w1 = · · · = wN = a). Therefore the mapping N is
continuous. �

Corresponding to an R > 0, we introduce the mapping AR : W 1,p
0 (a,Ω)→W 1,p

0 (a,Ω)∗ as

AR = AR −N ,(34)

with the operators AR : W 1,p
0 (a,Ω) → W 1,p

0 (a,Ω)∗ in (26) and N : W 1,p
0 (a,Ω) → Lα

′
(Ω) in (32).

The mapping AR is well defined because Lα
′
(Ω) ⊂W 1,p

0 (a,Ω)∗.

Remark 4.2. One has that u ∈ W 1,p
0 (a,Ω) is a (weak) solution to problem (31) if and only if it

solves the equation AR(u) = 0 with AR given in (34).

Proposition 4.3. Assume that the weight ν : Ω × R → R has the structure in (2) with a positive
a ∈ L1

loc(Ω) satisfying condition (H1) and a continuous function g : [0,+∞) → [a0,+∞) with
a0 > 0. If f : Ω × R × RN → R is a Carathéodory function satisfying condition (H2), then the
operator AR : W 1,p

0 (a,Ω)→W 1,p
0 (a,Ω)∗ in (34) is bounded and pseudomonotone for every R > 0.
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Proof. By Proposition 3.1 and Lemma 4.1 it is known that the mapping AR : W 1,p
0 (a,Ω) →

W 1,p
0 (a,Ω)∗ is bounded.
Let us show that AR : W 1,p

0 (a,Ω)→W 1,p
0 (a,Ω)∗ is a pseudomonotone operator. To this end, let

un ⇀ u in W 1,p
0 (a,Ω) and

lim sup
n→∞

〈AR(un), un − u〉 ≤ 0.(35)

There holds

lim
n→∞

〈N (un), un − u〉 = 0(36)

as can be noticed from Lemma 4.1 since

|〈N (un), un − u〉| ≤ ‖N (un)‖Lα′ (Ω)‖un − u‖Lα(Ω)

and un → u in Lα(Ω) (refer to the compact embedding of W 1,p
0 (a,Ω) into Lα(Ω) and that N (un)

is bounded in Lα
′
(Ω)).

On the basis of (34) and (36), we note that (35) reduces to (27). We are thus enabled to
apply Proposition 3.1 (ii) obtaing the strong convergence un → u in W 1,p

0 (a,Ω). In view of the
continuity of the maps AR : W 1,p

0 (a,Ω)→ W 1,p
0 (a,Ω)∗ and N : W 1,p

0 (a,Ω)→ Lα
′
(Ω) for which we

address to Proposition 3.1 (iii) and Lemma 4.1, we infer that AR(un)→ AR(u) in W 1,p
0 (a,Ω)∗ and

〈AR(un), un〉 → 〈AR(u), u〉, thus AR : W 1,p
0 (a,Ω)→W 1,p

0 (a,Ω)∗ is pseudomonotone. � �

We turn our attention to show that the operator AR : W 1,p
0 (a,Ω) → W 1,p

0 (a,Ω)∗ in (34) is
coercive.

Proposition 4.4. Assume the weight ν : Ω × R → R is as in Proposition 4.3 and that the
Carathéodory function f : Ω × R × RN → R fulfills the condition (H3). Then the operator
AR : W 1,p

0 (a,Ω)→W 1,p
0 (a,Ω)∗ is coercive for every R > 0, which reads as

(37) lim
‖u‖→∞

〈AR(u), u〉
‖u‖

= +∞.

Proof. The proof is carried out by making use of hypothesis (H3) that implies

〈AR(u), u〉 =

∫
Ω

νR(x, u)|∇u|pdx−
∫

Ω

f(x, u,∇u)u dx

≥ a0

∫
Ω

a(x)|∇u|pdx−
∫

Ω

(d1a(x)|∇u|p + d2|u|p + σ(x))dx

≥ (a0 − d1 − d2λ
−1
1 )‖u‖p − ‖σ‖L1(Ω), ∀u ∈W 1,p

0 (a,Ω).

In the last inequality we have used the variational characterization (7) of the first eigenvalue λ1 of
−∆a

p as well as the definition of the norm in (10). Since p > 1 and d1 + λ−1
1 d2 < a0, we infer that

(37) holds true. �

Now we are able to prove the solvability of auxiliary problem (31).

Theorem 4.5. Assume that the weight ν : Ω × R → R has the structure in (2) with a positive
a ∈ L1

loc(Ω) satisfying the condition (H1) and a continuous function g : [0,+∞) → [a0,+∞) with
a0 > 0. If f : Ω×R×RN → R is a Carathéodory function satisfying the conditions (H2) and (H3),
then problem (31) has a weak solution uR ∈W 1,p

0 (a,Ω) for every R > 0.
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Proof. We are going to apply Theorem 1.1 to the operator AR : W 1,p
0 (a,Ω) → W 1,p

0 (a,Ω)∗ in (34)
with any fixed R > 0. Proposition 4.3 entails that this operator is bounded and pseudomonotone,
whereas by Proposition 4.4 it is coercive. Therefore it is allowed to apply Theorem 1.1, which
provides a solution uR ∈ W 1,p

0 (a,Ω) for the operator equation AR(uR) = 0. Invoking Remark 4.2,
uR represents a weak solution to equation (31). The proof is complete. �

5. Proof of Theorem 0.3 and example

Proof of Theorem 0.3. Theorem 2.2 ensures that the entire set of solutions of problem (1) is
uniformly bounded, that is, there exists a constant C > 0 such that ‖u‖L∞(Ω) ≤ C for all weak
solutions u ∈ W 1,p

0 (a,Ω) to problem (1). The truncated problem (31) satisfies exactly the same
hypotheses, and with the same coefficients, as the original problem (1) with gR in place of g. It is
essential to note that the inequality d1 + λ−1

1 d2 < a0 assumed in hypothesis (H3) is independent of
R > 0. Consequently, Theorem 2.2 applies to the truncated problem (31) involving the truncation
gR and produces the same uniform bound C > 0 for the solution set of (31) with any R > 0.
Actually, the statements of Theorem 2.2 and Lemma 2.1 show that the uniform bound C > 0 for
the solution set depends on the function g only through the lower bound a0 of g, which is the same
for each truncation gR as seen from (25). In particular, we have that the solution uR ∈ W 1,p(a,Ω)
to problem (31) provided by Theorem 4.5 satisfies the estimate ‖uR‖L∞(Ω) ≤ C whenever R > 0.

Now choose R ≥ C. Then the estimate ‖uR‖L∞(Ω) ≤ C and (25) imply

gR(|uR(x)|) = g(|uR(x)|) for all x ∈ Ω,

hence due to (2),

νR(x, uR(x)) = ν(x, uR(x)) for all x ∈ Ω.

It follows that the solution uR ∈W 1,p(a,Ω) to the auxiliary problem (31) is a bounded weak solution
to the original problem (1), which completes the proof of Theorem 0.3. �

We illustrate by an example the applicability of Theorem 0.3.

Example 5.1. Consider on the unit open ball B = {x ∈ R3 : |x| < 1} the Dirichlet problem:

(38)


−div( a0

|x|
1
2
e|u| 1

|∇u|
1
3
∇u) = c1

|x|
1
5

u
1+u2 |∇u|

5
6 + c|u| 12 + c0 in B,

u = 0 on ∂B,

with constants a0 > 0, c1 ≥ 0, c ≥ 0, and c0 ≥ 0, satisfying a0 > c1 + λ−1
1 (c+ c0), where λ1 stands

for the first eigenvalue of −∆a
p with p = 5/3 and a(x) = 1/|x| 12 ∈ L1(B). Our goal is to apply

Theorem 0.3 with g(t) = a0e
t for t ≥ 0 and

f(x, t, ξ) =
c1

|x| 15
t

1 + t2
|ξ| 56 + c|t| 12 + c0

for (x, t, ξ) ∈ (B \ {0})× R× R3. To this end, we choose

s = 3 ∈
(
N

p
,+∞

)
∩
[

1

p− 1
,+∞

)
=

[
3

2
,+∞

)
.

Since a(x)−s = |x| 32 ∈ L∞(B), it follows that condition (H1) is verified.
We find that

ps =
ps

s+ 1
=

5

4
and p∗s =

Nps
N − ps

=
15

7
.
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Hence it is allowed to take α = α′ = 2 ∈ ( 5
3 ,

15
7 ). Then, noting that |x| 14 ≤ |x| 15 in B, we get

|f(x, t, ξ)| ≤ c1

|x| 14
|ξ| 56 + c(|t|+ 1) + c0 = c1a(x)

1
α′ |ξ|

p
α′ + c2|t|α−1 + c3

for (x, t, ξ) ∈ (B \ {0})× R× R3, with c2 = c and c3 = c+ c0. Hypothesis (H2) is thus fulfilled. In
the same way, we infer that

f(x, t, ξ)t ≤ c1

|x| 12
(|ξ| 53 + 1) + c(|t| 53 + 1) + c0(|t| 53 + 1) = d1a(x)|ξ|p + d2|t|p + σ(x)

for (x, t, ξ) ∈ (B \ {0}) × R × R3, with d1 = c1, d2 = c + c0, and σ(x) = c1

|x|
1
2

+ c + c0 ∈ L1(B).

Thanks to the assumption a0 > c1 + λ−1
1 (c+ c0), hypothesis (H3) is satisfied, too. We are thus in a

position to apply Theorem 0.3 to problem (38) ensuring the existence of a bounded weak solution.
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