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Abstract
We propose an interferometric scheme for generating the totally antisymmetric state of N identical
bosons with N internal levels (generalized singlet). This state is a resource for various problems
with dramatic quantum advantage. The procedure uses a sequence of Fourier multi-ports,
combined with coincidence measurements filtering the results. Successful preparation of the
generalized singlet is confirmed when the N particles of the input state stay separate (anti-bunch)
on each multiport. The scheme is robust to local lossless noise and works even with a totally mixed
input state.

1. Introduction

Manipulation of entangled states is necessary to fully access the advantages of quantum technologies. For this
reason, great attention has been dedicated to classes of entangled states proven to be useful for quantum
information tasks, ranging from the simplest 2-qubit Bell states [1], to more complex classes of many-body
systems such as W states [2], GHZ states [3, 4], NOON states [5], Dicke states [6], and many more [7].

Crucially, quantum correlations characterizing such states must be protected from the detrimental action
of external noise to allow for their real-world exploitation. A plethora of techniques has been suggested to
achieve this goal, including decoherence-free subspaces [8, 9], structured environments with memory
effects [10–19], quantum error correction codes [20–23], dynamical decoupling and control techniques
[24–33], quantum repeaters [34–36], distillation protocols [37–42], and interferometric effects in systems of
identical particles [43–49]. These techniques can be applied to physical systems featuring a wide range of
inherent fragility to environmental noise. In particular, photons have a long coherence time, making them
suitable for long-distance communications between remote parties [50, 51]. However, there is a trade-off: as
photons interact little with each other directly, entangling them requires alternative methods such as
nonlinear multiphoton generation techniques (such as SPDC [52] and four-wave mixing [53, 54]), heralding
processes [55–61], or postselected measurements of identical photons spatially overlapping over detection
regions [62–64].

These techniques are typically employed in long-range communication scenarios, in which the resource
states prepared by the sender require protection during their propagation through noisy environments.
In [47, 48], the authors shift this viewpoint by proposing a protocol where the entangled resource is prepared
by the receiver after the environmental noise has affected the system. To this end, they devise a scheme to
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prepare maximally entangled states of two identical qubits which probabilistically succeeds regardless of the
initial state, that is, regardless of local particle-preserving noise previously acting on the system. This goal is
achieved by locally injecting white noise on the two qubits, which resets the system to the maximally mixed
state. The various components of the mixture interfere differently under the action of a beam splitter, with
bosonic particles in the singlet state staying separate (anti-bunching) and the ones in symmetric states
grouping together (bunching). This effect can then be exploited to postselect a pure Bell singlet state of two
identical bosons with coincidence measurements.

In the present work, we extend this protocol to N identical bosons with N internal levels and devise a
scheme to generate an N-partite singlet state from a maximally mixed state having one particle per mode.
The multipartite singlet state, which is antisymmetric under the exchange of any pair of particles, can be
exploited to solve communication tasks which have no known classical solution [65–67] and certify the
non-projective character of measurements [68]. Furthermore, entangled states of spatially distinguishable
particles can be used to simulate particle statistics of different types, a phenomenon which has been shown to
obey monogamous relations [69]. Finally, generalized singlet states are invariant under global rotations of
the internal levels and are characterized by a zero variance of the related pseudospin operator J2. This
property makes them potentially useful in quantum metrology, where they can be used to probe local fields
with enhanced performances [70].

The usefulness of generalized singlet states is hindered by the difficulty of obtaining them. To achieve
this, a method based on a sequence of quantum nondemolition (QND) measurements has been proposed
in [71]. This technique, already implemented with both cold [72] and hot [73] atomic ensembles, involves
postselection and allows for the preparation of a state approximating the generalized singlet. However, it does
not lead to an exact, pure generalized singlet state, not even when endowed with a feedback mechanism
implementing corrections between the measurements [74].

In contrast to this, the technique we propose here allows for the probabilistic preparation of exact
multipartite singlet states. To do so, we relate the behavior of N identical particles injected in an N-port
interferometer to their symmetries, as dictated by the general suppression law reported in [75]. Subsequently,
we use the obtained insights to devise a scheme composed of a sequence of Fourier 2, . . . ,N− 1,N-port
interferometers interlaced with QND coincidence measurements performed on the related output modes. As
in [47, 48], the maximally mixed initial state guarantees that our procedure is robust under the action of
local noise acting on the N particles. Finally, we propose an implementation that employs postselection and a
specific initial state to prepare an N = 3 generalized singlet state without QND measurements.

2. Theoretical background

2.1. Generalized singlet state
The goal of this work is to design an interferometric procedure to prepare the generalized singlet state of N
spatially separated bosons with N internal levels

|AN⟩ :=
1√
N!

∑
π∈SN

sgn(π)
N∏

i=1

a†i,π(i)|Ω⟩, (1)

where sgn(π) is the sign of the permutation π from symmetric group SN, |Ω⟩ is the vacuum state, and a†ℓ,m
denotes the operator creating a boson with internal statem in spatial mode ℓ, so that (a†ℓ,m)

k|Ω⟩=
√
k!|k⟩ℓ,m.

Since we are mostly interested in states with exactly one particle in each mode, in the following we adopt the
shorthand notation |1⟩ℓ,m ≡ |m⟩ℓ. For example, |A2⟩= (|0⟩1|1⟩2 − |1⟩1|0⟩2)/

√
2 is the ordinary Bell singlet

state of two qubits, whereas for three qutrits we have |A3⟩= (|0⟩1|1⟩2|2⟩3 − |0⟩1|2⟩2|1⟩3 − |1⟩1|0⟩2|2⟩3+
|1⟩1|2⟩2|0⟩3 + |2⟩1|0⟩2|1⟩3 − |2⟩2|1⟩2|0⟩3)/

√
6. The interest in this class of states stems from their rotational

invariance, leading to applications in quantum protocols [65], and total antisymmetry, which brings these
bosonic states as close to fermionic properties as possible, for instance maximizing their antibunching
probability in interferometric experiments [69].

The systematic classification of the types of symmetries of N particles with d internal levels can be
achieved with representation theory [76]. One of its basic results states that the space of totally
antisymmetric states of N constituents with N internal levels is one-dimensional, that is, |AN⟩ is the unique
totally antisymmetric state of the considered system.
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2.2. Suppression law for anti-bunching
In order to prepare the generalized singlet state |AN⟩ given in equation (1), we consider the transformation of
the input state under a Fourier N-port given by

b†k,m =
N∑

ℓ=1

(UN)k,ℓ a
†
ℓ,m, (2)

where b† denotes the creation operator for the output mode and the matrix UN is given by

UN =
1√
N


1 1 1 . . . 1
1 ω ω2 . . . ωN−1

1 ω2 ω4 . . . ω2(N−1)

...
...

...
...

...
1 ωN−1 ω2(N−1) . . . ω(N−1)(N−1)

 (3)

for ω = e2π i/N. Since the state |AN⟩ has a single particle in each spatial mode, we would like to pin down the
conditions that an N-particle input state must satisfy in order to anti-bunch on the Fourier N-port.

Conveniently, in [75] Dittel et al provide a suppression law characterizing prohibited outcomes in
interferometric experiments for a class of multiports including Fourier N-ports. It is based on the properties
of the cyclic permutation π(1,2,...,N) defined by its action on creation operators π(1,2,...,N)a

†
i,j = a†π(1,2,...,N)(i),j

.

The results imply that the eigenstates |φ⟩ of the cyclic permutation π(1,2,...,N) that can anti-bunch when
transformed by UN need to obey (see appendix A)

π(1,2,...,N)|φ⟩= (−1)N−1 |φ⟩. (4)

To use this insight, let us note that a generic input state |ψin⟩ of N particles with N internal levels can
always be decomposed in the N-particle eigenbasis of π(1,2,...,N). Then, the condition (4) rules that |ψin⟩ can
anti-bunch when transformed by UN only if its projection onto the (−1)N−1-eigenspace of π(1,2,...,N) is
nonzero. We denote this eigenspace E(−1)N−1(π(1,2,...,N)) and define the related projection operator

PE(−1)N−1(π(1,2,...,N)) :=
1

N

N∑
k=1

[
(−1)N−1

π(1,2,...,N)

]k
. (5)

The construction of this operator relies on the fact that the eigenvalues of π(1,2,...,N), i.e. ω = e2π i/N,

ω2, . . . ,ωN, have the property that
∑N

k=1ω
j k ≠ 0 only when ωj = 1. Because of that, the eigenvectors of

π(1,2,...,N) with an eigenvalue different than (−1)N−1 are going to vanish under PE(−1)N−1 (π(1,2,...,N)).

It is clear now that a necessary condition for a generic N-boson input state ρin to anti-bunch on a Fourier
N-port reads

Tr
[
ρinPE(−1)N−1(π(1,2,...,N))

]
̸= 0. (6)

3. Preparation of the generalized singlet states

3.1. Implementation of the eigenspace projector
Condition given by equation (6) can also be interpreted as an operational recipe for implementing a
projection into the eigenspace E(−1)N−1(π(1,2,...,N)). It consists in casting an input state composed of N
particles, one in each spatial mode, on a Fourier N-port followed by performing a coincidence measurement
on the output modes. In particular, this measurement can be realized by means of N quantum
non-demolition single particle detectors filtering out non-coincident detections, effectively implementing
the operator CN =

∑N−1
σ1,...,σN=0|σ1⟩1 . . . |σN⟩N⟨σ1|1 . . .⟨σN|N. Note that CN acts as identity on the subspace

with a single particle in each spatial mode, and as a null operator elsewhere. This constitutes the basic step of
our protocol.

3.2. Extraction of the singlet
Let us now consider a sequence of the above steps with the size of the Fourier multiport increasing from 2 to
N, definingMk :=

∏2
j=kCjUj (notice that the index in the product decreases to reflect the order of the
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operations). We are going to show that for an input state with a single d-level particle in each of N modes
we have

MN = eiϕN

2∏
j=N

PE
((−1)j−1)(

π(1,...,j)), (7)

where ϕN is an irrelevant global phase. By direct calculation one can verify that equation (7) is satisfied for
N = 2. Suppose now that it holds for any N< N ′, with N ′ > 2. Since equation (6) provides a necessary
condition for anti-bunching, we have supp(CN′UN′)⊆ Im(PE

((−1)N
′−1)

(π(1,...,N ′))
). Thus we have

MN′ = CN′UN′P
E
((−1)N

′−1)

(
π(1,...,N ′)

) 2∏
j=N ′−1

CjUj = eiϕN ′−1CN′UN′

2∏
j=N ′

PE
((−1)j−1)(

π(1,...,j)). (8)

But it can be shown (see appendix B) that

2∏
j=N ′

PE
((−1)j−1)(

π(1,...,j)) =
1

N ′!

∑
π∈SN′

sgn(π) π = PAd
N′
, (9)

where PAd
N′
is the projector onto the totally antisymmetric subspace of N ′ particles with d internal levels.

ThereforeMN′ = eiϕN ′−1CN′UN′PAd
N′
. It remains to be shown that any state from the totally antisymmetric

subspace is invariant under Fourier multiport UN′ and coincident detection CN′ . For the sake of simplicity
we restrict our attention to d= N ′ (see appendix C for the general case). The totally antisymmetric space is
then spanned by |AN′⟩. From equations (1) and (2) it follows that

UN′ |AN′⟩= 1√
N ′!

det(UN′A) |Ω⟩, (10)

where

A=


a†1,1 a†1,2 . . . a†1,N ′

a†2,1 a†2,2 . . . a†2,N ′

...
...

...
...

a†N ′,1 a†N ′,2 . . . a†N ′,N ′

 . (11)

But as det(UN′A) = detUN′ detA= (−1)N
′+1 detA we get that UN′ |AN′⟩= (−1)N

′+1|AN′⟩. Clearly the global
phase shift is irrelevant, and the fact that |AN′⟩ has a single particle in each mode ensures that it is not
affected by the coincidence measurement CN′ , concluding the proof of equation (7).

This shows that the generalized singlet state of N identical bosons with N levels can be probabilistically
distilled from an arbitrary initial state ρin with a single particle per mode by acting on it with a sequence of
Fourier 2−, . . . ,N-ports and selecting only the results which anti-bunch at every step (see figure 1 for a pictorial
representation of the setup for N = 3). The procedure we just described can be seen as a filtering scheme
where the generalized singlet component of the input state ρin is probabilistically distilled. Its success
probability ps = Tr [|AN⟩⟨AN|ρin] depends on the overlap of the initial state with the generalized singlet, in
particular being null when there is none.

It should be stressed that the coincidence measurements Cj must be nondemolitive, as the particles
emerging from a Fourier multiport are later cast onto the next one. Such measurements can be implemented
with nonabsorbing detectors [77–79]. This requirement does not hold for the last measurement (following
the Fourier N-port), which can be realized using standard single particle detectors in a postselected
implementation [47, 48, 63, 64, 80].

3.3. Robustness to local depolarizing noise
As previously stated, we want to distill the generalized singlet state in a way which is robust to the action of
lossless local noise acting on the initial state. To do so, we start with an arbitrary state ρN of N identical
bosons with N internal levels occupying one spatial mode each. Following the idea introduced in [47, 48], we
act on each particle with local externally-activated depolarizing noise, obtaining the N-body maximally
mixed state ρdep =

⊗N
j=1 ρj, where ρj is the Werner state ρj =

1
N

∑N−1
k=0 |k⟩j⟨k|j of the particle in the jth mode

with internal level k. This operation has a double role: first of all, it resets the system to the known state
ρin = ρdep, thus making the obtained result independent of the original state ρN , of the characteristics of the

4
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Figure 1. Procedure for the preparation of the N= 3 bosonic generalized singlet state |A3⟩. Three identical bosons localized on
distinct modes are subjected to arbitrary local noise (LN) and subsequently depolarized (DN). Later on, two of them are cast onto
a beam splitter U2. Two single-particle non-absorbing detectors perform a coincidence measurement on the output modes,
selecting only the anti-bunched results. The three particles are then injected into a tritter U3. Three single-particle detectors
perform a final coincidence measurement on the output, collecting only the anti-bunched states. The last step can be done either
with QND detectors or with absorbing detectors via postselection. Part of the scheme enclosed in a dashed box can be replaced
with a heralded generation of the singlet state |A2⟩.

noisy environments acting on the constituents prior to the depolarization, and on the interaction time
between them. Secondly, it ensures that the state ρin injected in the setup has a nonzero overlap with the
generalized singlet, guaranteeing that the probability of extracting |AN⟩ is non-zero. Indeed, ρdep can always
be expressed in a diagonal form on a NN-dimensional orthonormal basis which includes |AN⟩. Therefore, the
proposed preparation technique is deemed to be robust, although it succeeds with probability

ps = Tr
[
|AN⟩⟨AN|ρdep

]
= 1/NN. (12)

3.4. Alternative realizations with specific initial states
In the suggested implementation, robustness to noise is obtained in exchange for a low success rate and the
requirement of QND measurements. Nonetheless, these two drawbacks can be mitigated when a free choice
of the initial state is allowed. This is the case, for example, of a preparation occurring immediately after the
state initialization, or when the noise affecting the system between the source and the implementation of our
scheme is negligible. In these scenarios, for instance, the preparation of N spatially separated bosons in the
product state |0⟩1|1⟩2 . . . |N− 1⟩N would guarantee an enhanced success probability of ps = 1/N!.

The possibility to choose the initial state also allows to avoid relying on nonabsorbing detectors in
specific scenarios, opening the path for realistic experimental implementations. Consider, for example,N = 3
qutrits in the initial state |ψin⟩= |A2⟩⊗ |2⟩. The implementation of the Fourier 2-port (beam splitter) can
now be avoided, reducing our setup to a single tritter: indeed, it can be easily checked that C3U3|ψin⟩= |A3⟩,
so that the generalized singlet state is distilled with probability ps = |⟨A3|ψin⟩|2 = 1/3. Similarly, we can allow
for the third qutrit to be depolarized as in the robust approach (see figure 1), obtaining
ρin = |A2⟩⟨A2| ⊗ 1

3

(∑2
k=0|k⟩3⟨k|3

)
and preparing |A3⟩ with probability ps = Tr [|A3⟩⟨A3|ρin] = 1/9. Crucially,

the QND measurement C3 can be substituted in both cases by a postselection carried out with standard
single-particle detectors. The preparation of such initial states only requires the ability to entangle 2 qutrits in
a Bell singlet-like state and to eventually depolarize a third one, a challenge which could be tackled, for
example, with frequency-bin manipulation techniques [81], thus making the preparation of the bosonic
generalized singlet of 3 qutrits an experimentally feasible task. In principle, a natural extension of this
method could also be used to produce an (N+ 1)-partite generalized singlet out of the N-partite one
obtained in a heralded way [61].

We point out that the N = 3 singlet, prepared in the suggested way, can still be used as a resource in suited
experiments where the final destructive measurements are performed after the action of the unitaries
(operations) implementing the quantum protocol of interest. This technique with deferred measurements is
typically used in quantum photonic experiments where the final single-photon detectors absorb the photon
qubit. Such postselection-based experiments can be found, for example, in references [63, 64], where
quantum teleportation [63] and quantum phase discrimination [64]protocols are realized exploiting
entangled photons whose state preparation requires single-particle localized measurements and
indistinguishability. Moreover, it has been shown that postselection on events characterized by a single
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particle per mode does not induce spurious nonclassical correlations [82]. Because of that, the postselected
totally antisymmetric state obtained with our method can, for instance, be used in tests of Bell nonclassicality.

Another path leading to a ready-to-use implementation of the above scheme to generate |A3⟩ consists in
encoding both the external and the internal degrees of freedom in spatial modes, extending the dual-rail
encoding of qubits [83] to a qudits scenario. In reference [58], the authors propose an heralded scheme to
prepare Bell states of single photons in dual-rail encoding. This technique can be used to prepare the Bell
singlet state |A2⟩ with success probability 2/27. This is subsequently cast on a tritter together with an
additional photon, before the coincidence postselection is carried out. An experimental implementation of a
tritter realized in integrated optics is reported, e.g. in [84]. The whole process requires 5 initial single photons
and 9 spatial modes, resulting in a resources demand within the reach of integrated photonics platforms such
as the general-purpose single-photon-based quantum computing device discussed in [85].

4. Conclusions

We have introduced a theoretical protocol to probabilistically prepare the totally antisymmetric state |AN⟩ of
N distinct bosons with N internal levels. This state finds potential applications in quantum information
protocols [65–67], simulating fermionic antibunching with bosons [69], certifying the non-projective
character of measurements [68], and in quantum metrology [70].

The scheme, which generalizes the one devised in [47, 48] to many-body systems, employs a sequence of
Fourier multiports with the number of ports ranging from 2 to N, interlaced with coincidence measurements
distilling the results where one constituent per mode is found. The measurements, which have to be
insensitive to the internal degree of freedom, must preserve the detected particles and are thus required to be
nondemolitive. This does not hold for the last coincidence count, which can be deferred and realized with
standard absorbing detectors via postselection [63, 64, 80]. We stress that the emergence of the generalized
singlet from the proposed setup is merely due to the interference effects between the identical constituents
generated by the Fourier multiports, as discussed in [47, 48]. Therefore, our work supports the perspective of
identicality as a potential quantum resource.

The success probability depends on the overlap between the initial state and the generalized singlet, as the
latter has been shown to be the only state to satisfy the necessary condition to anti-bunch under the proposed
setup. This property has been used to propose a feasible scheme where the N particles are initially externally
depolarized, leading to a maximally mixed state which always has nonzero overlap with the generalized
singlet. This strategy also allows one to ignore the previous history of the system, including the initially
prepared state and the eventual local interaction of the N particles with lossless noisy environments. This
feature enables our scheme to successfully prepare the generalized singlet state even when the setup is
implemented far from the particles source, assuming no particle losses. In this sense, the proposed protocol is
robust against local noise acting prior to the externally-induced depolarization.

With the suggested realization, the success probability is found to scale as 1/NN. Nonetheless, alternative
initial states can be employed to provide higher success rates when the presence of noise is low enough to
avoid resorting to the external depolarization. This occurs, for example, when our scheme can be applied
immediately after the preparation of the initial state. Although our findings further point out the relevance
QND detectors might have for quantum information protocols, we have shown that specific
experimentally-achievable initial states can be used to obtain generalized singlet states without relying on
nonabsorbing detectors. Looking for initial states exploitable to generate high-dimensional generalized
singlet states with current technology is surely a direction which is worth of further investigation. Moreover,
in [48] the proposed scheme was shown to distill pure N = 2 NOON states when applied to two identical
fermions. It would thus be interesting to work out its generalization to multipartite fermionic systems.
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Appendix A. Symmetries and suppressed events

In this section we briefly review the suppression law which led to the equation

π(1,2,...,N)|φ⟩= (−1)N−1 |φ⟩. (A.1)

reported in the main text.
In [75] the authors derive a general suppression law for any pure initial state |ψin⟩ of identical bosons

distributed over n spatial modes subjected to a unitary mode-mixing evolution. The particles are further
characterized by an internal degree of freedom |I⟩, with I ∈ {1,2, . . . ,d}. Such a suppression law is ultimately
found to be strictly related to the permutation symmetries of the initial state |ψin⟩. In particular, |ψin⟩ is
characterized by themode occupation list r⃗= (r1, . . . , rn) describing the number rj of particles occupying the

jth mode. To such an input configuration is associated themode assignment list d⃗(⃗r) = (d1(⃗r), . . . ,dN(⃗r)),
where N is the total number of particles and dα(⃗r) ∈ {1, . . . ,n} specifies the mode occupied by the αth

particle. Since the constituents are identical, the ordering in d⃗(⃗r) is irrelevant and here assumed to be given in
increasing order of the spatial modes. Let us now consider a permutation P of the n spatial modes which
leaves |ψin⟩ invariant except for a real phase φ, that is,

|ψin⟩
P−→ eiφ|ψin⟩. (A.2)

Notice that P leaves the internal degree of freedom unaffected. We proceed by computing the eigenvectors of
P and the related eigenvalues λ1,λ2, . . . ,λn. Arranging the eigenvectors as columns, we build the matrix A
and the unitary evolution matrix U= AΣ, where Σ is an arbitrary diagonal unitary matrix accounting for
eventual local phase operations on the output modes. We then focus on the output distribution given by the
mode occupation list s⃗ and the related mode assignment list d⃗(⃗s). Finally, we build the vector Λ⃗(⃗s) :=
(λd1 (⃗s), . . . ,λdN (⃗s)). The suppression law derived in [75] states that the probability of getting the output
distribution s⃗ by evolving the input distribution r⃗ via U is zero if

ΠN
α=1Λα (⃗s) ̸= eiφ. (A.3)

In particular, we notice that equation (A.3):

(i) depends on the input distribution r⃗ and the internal input configuration (|I1⟩, . . . , |IN⟩) characterizing
|ψin⟩ by means of Λ⃗(⃗s), which is given by the eigenvalues of the permutation P which satisfies
equation (A.2);

(ii) depends on the output distribution s⃗ via Λ⃗(⃗s);
(iii) does not depend on the internal output configuration;
(iv) provides a necessary, but not sufficient condition to obtain the distribution s⃗ evolving |ψin⟩ via U, that is,

ΠN
α=1Λα(⃗s) = eiφ.

Since we are interested in the suppression law for anti-bunching, we set s⃗= (1,1, . . . ,1︸ ︷︷ ︸
N times

) and

d⃗(⃗s) = (1,2, . . . ,N), obtaining Λ⃗(⃗s) = (λ1,λ2, . . . ,λN) for which equation (A.3) returns

N∏
j=1

λj = eiφ. (A.4)
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In the main text, we consider the unitary evolution matrix

UN =
1√
N


1 1 1 . . . 1
1 ω ω2 . . . ωN−1

1 ω2 ω4 . . . ω2(N−1)

...
...

...
...

...
1 ωN−1 ω2(N−1) . . . ω(N−1)(N−1)

 , (A.5)

with ω = e2π i/N. Its columns are the eigenvectors of the cyclic permutation π(1,2,...,N), whose eigenvalues are

λj = ω1−j = e−
2π i
N (1−j), j = 1, . . . ,N. (A.6)

The LHS of equation (A.4) is equal to
∏N

j=1ω
1−j = e

2π i
N

∑N
k=1(1−k) = (−1)N−1, so that a necessary condition

for a state |ψin⟩ to anti-bunch under UN is given by equation (A.1).

Appendix B. Proof of equation (9)

Here we provide a proof of the relation

2∏
j=N

PE
((−1)j−1)(

π(1,...,j)) =
1

N!

∑
π∈SN

sgn(π) π (B.1)

reported in the main text.
Equation (B.1) holds for N = 2; indeed, from the definition

PE(−1)N−1(π(1,2,...,N)) :=
1

N

N∑
k=1

[
(−1)N−1

π(1,2,...,N)

]k
(B.2)

it follows that

PE−1(π(1,2)) =
1

2

(
11−π(1,2)

)
=

1

2

∑
π∈S2

sgn(π) π. (B.3)

Let us now assume that equation (B.1) also holds for all N< N ′. We have

2∏
j=N ′

PE
((−1)j−1)

(π(1,...,j)) = P
E
((−1)N

′−1)

(
π(1,...,N ′)

)
 2∏
j=N ′−1

PE
((−1)j−1)(

π(1,...,j))

 (B.4)

=
1

N ′

N ′∑
k=1

[
(−1)N

′−1
π(1,...,N ′)

]k  1

(N ′ − 1)!

∑
π∈SN ′−1

sgn(π)π

 (B.5)

=
1

N ′!

N ′∑
k=1

 (−1)N
′−1︸ ︷︷ ︸

sgn
(
π(1,...,N ′)

) π(1,...,N ′)


k  ∑

π∈SN ′−1

sgn(π)π

 (B.6)

=
N ′∑
k=1

∑
π∈SN ′−1

sgn
(
πk(1,...,N ′)π

)
πk(1,...,N ′)π =

1

N ′!

∑
π∈SN′

sgn(π) π. (B.7)

The last step follows from the fact that both the symmetric group SN ′−1 and the cyclic group ⟨π(1,...,N ′)⟩ are
subgroups of SN′ and

|SN ′−1⟨π(1,...,N ′)⟩|=
|SN ′−1||⟨π(1,...,N ′)⟩|
|SN ′−1 ∩ ⟨π(1,...,N ′)⟩|

= (N ′ − 1)!N ′ = |SN′ |, (B.8)

where SN ′−1 ∩ ⟨π(1,...,N ′)⟩= {1N′} is the identity permutation of N ′ elements.
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Appendix C. Invariance of the totally antisymmetric states

Here we demonstrate that any state |Ψ⟩ from the totally antisymmetric subspace given by the projector
PAd

N
= 1

N!

∑
π∈SN

sgn(π)π with d⩾ N is invariant (up to a global phase) under the action of an arbitrary
unitary followed by a coincidence measurement on the output modes, that is,

CNU|Ψ⟩= eiϕ|Ψ⟩. (C.1)

A generic state |Ψ⟩ in the totally antisymmetric subspace given by PAd
N
can be written as

|Ψ⟩=
∑

S∈PN([d])

cS |AS
N⟩, (C.2)

where PN([d]) is the family of sets of cardinality N over the set [d] = {1, . . . ,d}, |AS
N⟩ denotes an N-partite

N-level singlet state corresponding to the choice S ∈ PN([d]) of N out of d levels, and cS are coefficients such
that

∑
S∈PN([d])

|cS |2 = 1. Each generalized singlet state |AS
N⟩ associated to the choice S = {s1, s2, . . . , sN} can

be written in terms of the determinant of a matrix of creation operators as

|AS
N⟩=

1√
N!

detAS |Ω⟩, (C.3)

where

AS =


a†1,s1 a†1,s2 . . . a†1,sN
a†2,s1 a†2,s2 . . . a†2,sN
...

...
...

...

a†N,s1 a†N,s2 . . . a†N,sN

 . (C.4)

A generic unitary operator U acting on the N spatial modes transforms the creation operators into
u†k,m =

∑N
ℓ=1(U)k,ℓ a

†
ℓ,m, so that

U|AS
N⟩=

1√
N!

det(UAS) |Ω⟩. (C.5)

Since det(UAS) = detUdetAS = eiθ detAS for some real θ, we get that U|AS
N⟩= eiθ|AS

N⟩. Therefore, from
equation (C.2) it follows

U|Ψ⟩=
∑

S∈PN([d])

cSU|AS
N⟩= eiϕ|Ψ⟩. (C.6)

This means that |Ψ⟩ is, up to a global phase, invariant under any unitary operator acting on the N spatial
modes. Equation (C.1) follows from the fact that each |AS

N⟩ is a state of N particles occupying N distinct
spatial modes, so that it is left invariant by a QND coincidence measurement on the output modes:
CN|AS

N⟩= |AS
N⟩.

Notice that the invariance of the totally antisymmetric state under arbitrary unitaries ensures that our
scheme can use any unitary that leads to the same suppression laws as UN. These include the unitaries U ′

N

resulting from the application of local phases to the input/output modes of the Fourier multiport,
U ′ = DUND ′, where D, D ′ are diagonal unitary matrices.

ORCID iDs

Matteo Piccolini https://orcid.org/0000-0003-2785-4527
Marcin Karczewski https://orcid.org/0000-0002-9120-3377
Andreas Winter https://orcid.org/0000-0001-6344-4870
Rosario Lo Franco https://orcid.org/0000-0002-3281-0935

9

https://orcid.org/0000-0003-2785-4527
https://orcid.org/0000-0003-2785-4527
https://orcid.org/0000-0002-9120-3377
https://orcid.org/0000-0002-9120-3377
https://orcid.org/0000-0001-6344-4870
https://orcid.org/0000-0001-6344-4870
https://orcid.org/0000-0002-3281-0935
https://orcid.org/0000-0002-3281-0935


Quantum Sci. Technol. 10 (2025) 015013 M Piccolini et al

References

[1] Nielsen M A and Chuang I L 2010 Quantum Computation and Quantum Information (Cambridge University Press)
[2] Dür W, Vidal G and Cirac J I 2000 Phys. Rev. A 62 062314
[3] Greenberger D M, Horne M A and Zeilinger A 1989 Going beyond Bell’s theorem Bell’s Theorem, Quantum Theory and

Conceptions of the Universe (Springer) pp 69–72
[4] Mermin N D 1990 Am. J. Phys. 58 731–4
[5] Lee H, Kok P and Dowling J P 2002 J. Mod. Opt. 49 2325–38
[6] Dicke R H 1954 Phys. Rev. 93 99
[7] Polino E, Valeri M, Spagnolo N and Sciarrino F 2020 AVS Quantum Sci. 2 024703
[8] Zanardi P and Rasetti M 1997 Phys. Rev. Lett. 79 3306
[9] Lidar D A, Chuang I L and Whaley K B 1998 Phys. Rev. Lett. 81 2594
[10] Mazzola L, Maniscalco S, Piilo J, Suominen K A and Garraway B M 2009 Phys. Rev. A 79 042302
[11] Bellomo B, Lo Franco R, Maniscalco S and Compagno G 2008 Phys. Rev. A 78 060302
[12] Lo Franco R, Bellomo B, Maniscalco S and Compagno G 2013 Int. J. Mod. Phys. B 27 1345053
[13] Xu J S, Li C F, Gong M, Zou X B, Shi C H, Chen G and Guo G C 2010 Phys. Rev. Lett. 104 100502
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