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1. Introduction 

In El Salvador (C.A.), landslides are among the most destructive natural phenomena, 

which can cause mass fatalities and devastation in the built environment. They may occur 

either due to heavy rains (rainfall-induced landslides) or as a secondary effect of an 

earthquake (earthquake-induced landslides). Regarding the first trigger, the extreme rainfall 

events that frequently affect the Central American region are responsible for activating 

gravitational phenomena consisting of shallow and fast-moving flow landslides that may 

cause severe economic damage and fatalities. For the second category, large damages are 

controlled by shaking-related causes (roads and building collapse); however, a seismic event 

can produce several gravitational phenomena capable of causing more damage and victims 

than the earthquake itself, a situation that occurs in the country, often affected by high-

intensity phenomena. 

The intricate geodynamic context in which the small territory of El Salvador is located 

is characterized by the subduction of the Cocos plate under the Caribbean plate, through the 

Middle America Trench, with an estimated rate of about 7 cm/year. This active tectonic 

environment is responsible for the presence of several active volcanoes in the country, 

aligned in the direction of WNW-ESE, which have frequently erupted and deposited 

widespread and poorly consolidated tephra in many parts of the country. These lithologies, 

combined with acid pyroclastites and acid/basic effusive rocks, ensure that volcanic rocks 

represent 95% of the outcropping lithologies in the country. El Salvador is the smallest 

country in Central America but has the highest population density (310 inhabitants/km2). 

Indeed, the fertility of the soils around the active volcanoes has generated a situation in which 

much of the population lives in the areas in the proximity of the highest mountains. 

The combination of the geodynamic context, capable of generating moderate and 

strong earthquakes, steep slopes composed of weak volcanic rocks and the presence of the 

main population centres around them, combined with a warm and humid subtropical climate 

with heavy rainfalls, all create conditions for recurrent either earthquake- and rainfall-
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induced landslides in the country. Because of the destructive nature of these phenomena, in 

terms of damage to infrastructure and human lives, any hazard and risk assessment must 

include the hazard associated with earthquake- and rainfall-induced landslides. If a large-

scale study is to be carried out, it is necessary to analyze all the possible factors that are 

supposed to be predisposing factors in causing the gravitational phenomena. In fact, by 

studying these predictive factors, it is possible to recognize the most susceptible areas to the 

initiation of future gravitational phenomena following a specific trigger. 

The Italian Agency for Development Cooperation (AICS), the University of Palermo 

and the University of Chieti-Pescara (Italy) has financed the CASTES project, which is 

dedicated, among the many objectives of this program of international collaboration, to study 

the unstable seismic effects induced within the El Salvador territory, in order to produce 

approaches for preventing and reducing these catastrophes and recovering and 

reconstructing the affected areas, like the landslides susceptibility analysis. In fact, it is 

essential for land management and civil protection authorities to know the probability of a 

gravitational event occurring in a specific spatial unit of a definite area. Several 

methodologies can be used to generate susceptibility maps from landslides; nonetheless, 

indirect and quantitative are the most effective for the aim. 

This doctoral research aims to evaluate the combination of different susceptibility 

models using various combinations of inventories and variables to predict areas where 

earthquake-induction phenomena are most likely to occur. In fact, earthquake- and rainfall-

induction inventories will be used with different combinations, using variables typically 

applied for the rainfall-induced landslides susceptibility and dynamic seismic factors. 

The case studies of this thesis are related to the sectors affected by two intense 

earthquakes that occurred on 13th January (M 7.7) and 13th February (M 6.6) and the sectors 

affected by an extreme rain phenomenon of November 2009 following the combination of 

the Hurricane Ida and the low-pressure system event 96E. 
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The thesis work is divided as follows: 

- Chapters 2 and 3 are the theoretical section of the projects; Chapters 4, 5, 6 and 7 are 

the applications section. 

- In Chapter 2, the different types of landslides are analyzed. Subsequently, paragraphs 

related to the susceptibility to landslides to reduce the risk associated with such phenomena 

will be investigated. 

- In Chapter 3, the geodynamic context, the outcropping lithologies and the high 

susceptibility of the study areas to the manifestation of gravitational phenomena triggered 

both by extreme rainfall and seismic events are described. 

The following chapters correspond to the three main themes that will be analyzed in 

this thesis: 

- In Chapter 4, a methodology for producing a rainfall-induced susceptibility map is 

developed in an area affected by the combination of Hurricane Ida and the low-pressure 

system 96E event, which occurred in November 2009. This work was developed using 

MARS (Multivariate Analysis Regression Splines) statistical technique. The aim is to 

demonstrate the excellent predictive performance of the MARS stochastic model in 

predicting rainfall-induced susceptibility phenomena following extreme rainfall phenomena. 

- In Chapter 5, earthquake-induced landslide susceptibility output using different 

inventories and variables (both linked to seismic or extreme rain triggers) are presented and 

discussed to determine the best combination for assessing earthquake-induced landslide 

susceptibility maps. Two possible scenarios are analyzed, one in which most gravitational 

phenomena are known (75%) and another one in which only a reduced number of 

gravitational phenomena are known (5%), both in order to know the predictive abilities of 

the models applied for the prediction of the location of the remaining landslides. 

- In Chapter 6, earthquake-induced landslide susceptibility output are presented using 

rainfall-induction inventories for calibration and earthquake-induction inventories for 

validation by creating two models, one linked to predictive variables common to both types 

of triggers and one linked by the combination of the variables of the previous model and the 
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variables used exclusively for seismic triggers. This test was carried out because extreme 

rainfall events are frequent in Central America; however, the same is not expected for 

seismic phenomena, with relatively more significant return times. This relatively minor 

amount of earthquake-induction landslide inventories ensure that the earthquake-induction 

inventories and the related susceptibility maps are more complex to obtain than rainfall-

induction inventories/susceptibility maps. This study aimed to evaluate the possibility of 

matching the rainfall-induced susceptibility scores obtained from classic and static 

modelling with the expected seismic parameters to predict earthquake-induced landslides. A 

positive response could allow this type of map to be generated anywhere, even where no 

earthquake-induced landslide inventories are available. Due to the active geodynamic 

context and the passage of hurricanes and low-pressure systems, El Salvador is strongly 

affected by both trigger categories. 

- Finally, in Chapter 7, discussion and conclusions regarding the main objectives of 

the thesis are given. 

Below is a table showing the objective of the application chapters of this thesis, the 

inventories used for calibration and validation and the predictive variables used for each of 

the seven models elaborated (Tab. 1.1). 

  



 

5 

 

Table 1.1 - Input and output of the seven models produced in this thesis. 

 

Chapter and Title Inventory for 

Calibration 

Variables Inventory for 

Validation 

Result 

4: Mapping 

susceptibility to 

debris flows triggered 

by tropical storms: a 

case study of the San 

Vicente Volcano area 

 

 

Rainfall-induced 

landslides (75%) 

 

 

10 predictive variables 

 

 

Rainfall-induced 

landslides (25%) 

 

 

Rainfall-induced 

landslides 

susceptibility map 

 

 

 

 

 

 

 

 

5: Predicting 

earthquake-induced 

landslides by using a 

stochastic modelling 

approach which 

combines preparatory 

and triggering factors 

 

Rainfall-induced 

landslides 

(Scenario 1: 75%;  

Scenario 2: 5%) 

Model 1: 

Probability of 

occurrences of rainfall-

induced landslides by 

using 11 predictive 

variables (PSV) 

 

 

 

 

 

 

 

 

 

 

Earthquake-

induced landslides 

(Scenario 1: 25%;  

Scenario 2: 95%)  

Earthquake-induced 

landslides 

susceptibility map 

with features related to 

rainfall-induction 

landslides 

 

Earthquake-

induced landslides 

(Scenario 1: 75%;  

Scenario 2: 5%) 

 

Model 2: 

PSV; 2 Dynamic 

predictors (PGA, 

Epicentral distances) 

Earthquake-induced 

landslides 

susceptibility map 

with features related to 

rainfall-induction 

landslides 

Earthquake-

induced landslides 

(Scenario 1: 75%;  

Scenario 2: 5%) 

Model 3: 

11 Static predictors; 2 

Dynamic predictors 

(PGA, Epicentral 

distances) 

 

Earthquake-induced 

landslides 

susceptibility map 

 

Earthquake-

induced landslides 

(Scenario 1: 75%;  

Scenario 2: 5%) 

Model 4: 

PSV;  

11 Static predictors; 

2 Dynamic predictors 

(PGA, Epicentral 

distances) 

Earthquake-induced 

landslides 

susceptibility map 

with features related to 

rainfall-induction 

landslides 

6: Prediction of the 

spatial distribution of 

landslides generated 

from earthquake by 

using an approach 

which combines a 

rainfall-induced 

inventory and static 

with seismic 

parameters 

 

 

Rainfall-induced 

landslides (100%) 

 

Model Ida2009rain: 

10 Static predictors 

 

 

Earthquake-

induced landslides 

(100%) 

Earthquake-induced 

landslides 

susceptibility map 

Model 

Ida2009rain_pga_dist: 

10 Static predictors;  

2 Dynamic predictors 

(PGA, Epicentral 

distances) 

 

 

Earthquake-induced 

landslides 

susceptibility map 
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THEORETICAL SECTION 

 

2. Methodology 

This chapter discusses the theoretical aspect of landslides, the danger and risk 

associated with these phenomena and the possible risk mitigation. 

2.1. Landslides 

Landslides are among the most destructive natural processes, capable of causing death 

and destruction following their activation.  

Depending on the type and intensity of the trigger and the geo-environmental 

characteristics of the involved areas, gravitational phenomena can be produced with different 

distribution areas, densities and dimensions. Gravitational phenomena can be triggered by 

heavy rainfalls or as a secondary response to an earthquake. As for the first category, the 

rains increase the weight of involved lithologies and, concomitantly, a reduction in effective 

stresses, consequently reducing shear resistance. These factors increase the active forces 

compared to those resistant, resulting in the trigger of gravitational phenomena. As for the 

latter category, fatalities are controlled by shaking-related causes; however, seismic events 

can produce several gravitational phenomena capable of causing more damage and victims 

than earthquakes. 

Knowing the areas where gravitational phenomena can be triggered (or reactivated) is 

of fundamental importance to prevent infrastructure, housing and, consequently, human 

lives from being involved in its destructive action. After careful studies by geologists, it may 

be possible to prevent the construction of new buildings in some regions of the earth’s 

surface that may be located along the transport and/or accumulation area of landslides. In 

addition, where the site is inhabited, it is necessary that regular studies and monitoring are 

carried out to check its activation status. In fact, a landslide can be quiescent, and it should 

be possible to know its reactivation by studying precursor phenomena and indicators. 
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Therefore, the study of landslides is an indispensable instrument by which it is possible to 

safeguard the territory and, consequently, the artefacts and human lives.  

Identifying the characteristics of all types of landslides, and then the shape of the relief, 

the volumes involved, the speeds, the kinds of movement and the triggering causes is 

fundamental, and, given the specific type of gravitational phenomenon analyzed, it is 

necessary to carry out adequate monitoring and any appropriate work of intervention. 

It is essential to be aware of the direction in which the gravitational process will evolve 

to predict the possible occurrence of risk situations for people or infrastructure. For this 

reason, the concept of "activity" is introduced, whose conditions are defined in terms of state 

(temporal evolution), distribution (spatial evolution) and style (kinematic relations between 

different portions of the landslide area). The state of activity refers to the temporal evolution 

of the phenomenon, differing in the following levels: active and inactive. Landslides in 

inactivity are diversified as quiescent and stabilized (Tab. 2.1).  

Tab 2.1 – Activity state of landslides. 

 

Activity state Description 

Activated or reactivated if it is currently in motion. 

 

 

Inactivated 

quiescent if it moved the last time before the last season cycle but can be 

reactivated by its original causes. 

artificially 

or 

naturally 

stabilized 

if it moved the last time before the last season cycle but whether 

it has been protected from its original causes by resettlement or 

whether the gravitational phenomenon has run out naturally, 

that is, whether it is no longer affected by its original causes. 

 

The activity distribution describes in which direction the gravitational phenomenon is 

moving and allows to predict the type of instability evolution (Tab. 2.2). 
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Tab 2.2 – Activity distributions of landslides. 

 

Activity distribution Description 

Advancing the rupture surface extends in the direction of movement. 

Retrogressive the rupture surface extends in the direction opposite to the 

movement of the displaced material. 

Enlarging the rupture surface of the landslide extends in two or more 

directions. 

Diminishing the volume of displaced material is decreasing. 

Confined there is a scarp but no rupture surface visible at the foot of the 

displaced mass. 

Moving the displaced material continues to move without any visible 

change in the rupture surface and the volume of the ejected 

material. 

Widening the rupture surface extends into one or both flanks of the 

landslide. 

The activity style indicates how the different movement mechanisms contribute to the 

landslide. Depending on the activity style, a landslide is defined (Tab. 2.3): 

Tab 2.3 – Activity style of landslides. 

 

 

 

 

 

 

Activity style Description 

Complex exhibits at least two types of movement in sequence. 

Composite exhibits at least two types of movement simultaneously in 

different parts of the displacing mass. 

Successive phenomenon characterized by a movement of the same type of 

a previous and adjacent phenomenon. 

Single a single movement of displaced material. 

Multiple shows repeated development of the same type of movement. 
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2.2. Landslides classification 

During the last decades, many definitions of landslide have been enunciated. However, 

most of these presented imperfections and ambiguities, seeing the quantity and the 

heterogeneity of the possible gravitational phenomena in nature. Brunsden defined them as 

mass movements (Brunsden, 1984), distinguishing them from mass transport, as he felt that 

the gravitational process did not require a means of transportation different than gravity. 

However, this definition conflicts with the debris flow landslides and lateral spreads, because 

they depend, respectively, on the fluid conveying and the tangential forces, orthogonal to the 

acceleration gravity vector. Varnes (1978) defines landslides as a gravity-controlled, shallow 

or deep, fast or slow movement of material that can affect part or an entire mountainous 

relief. At last, Varnes, together with Cruden, define the word landslide as a movement of 

masses of rock, earth and debris along a slope (Cruden & Varnes, 1996). As for the 

classification of gravitational phenomena, many debates have been opened among the 

experts and different classifications have been presented. Among these, the classification of 

Desio (1973) proposes a classification based on the typology of movement, creating a 

classification of six types of gravitational phenomena. Hutchinson’s (1988) classification 

distinguishes gravitational phenomena into eight classes based on morphological 

differences, mechanisms, typology, and velocity of the material involved. In 1996, Cruden 

and Varnes created a classification based on the distinction of six types of landslide 

phenomena according to their type of movement; they also differentiated them according to 

the nature of the material involved, distinguishing them into three further classes. The latter 

classification is the most widely used in the field of geomorphology. 

2.2.1. Nature of material involved in landslides 

As for the nature of the material involved, Cruden and Varnes distinguish three types 

of materials, distinguishing between them according to their mechanical characteristics: 
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-  consistent materials: solid stone or metamorphic rocks, rigid materials with a 

stone behaviour, massive or stratified, which have high cohesion (between 5 and 10 MPa) 

and therefore have a significant mechanical strength;  

-  inconsistent materials: clastic deposits free of natural constraints, such as blocks, 

pebbles, gravel and sand; therefore equipped with low cohesion and low mechanical 

strength; 

-  pseudo-consistent materials: clayey rocks that behave like consistent materials 

under anhydrous conditions, while when they are saturated, they exhibit a behaviour similar 

to that of inconsistent materials. 

The material involved in the landslide movement is divided into rock, debris and earth 

(defined in the EPOCH project 1991-1993), which correspond, respectively, to consistent, 

inconsistent and pseudo-consistent materials; it was decided that soil and debris categories 

should be distinguished according to the particle size of the material involved in the 

movement (respectively < 2 mm and > 2 mm). 

2.2.2. Type of material involved in landslides 

There are five types of movement provided by the classification of landslides of 

Cruden and Varnes: falls, topples, slides (rotational and translational), lateral spreading and 

flows. To these types is added that of complex landslides, the combination of two or more 

types of landslides just mentioned. By crossing the two classification criteria described 

above, it is possible to arrive at an overall table of the different types of landslides provided 

by the classification of Cruden and Varnes (Tab. 2.4). 
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Tab 2.4 – The classification of landslides of Cruden and Varnes with the respective classes, generated by 

the type of movement and type of material involved. 

 

Type of movement Type of material involved 

Hard rock Dissolved rock 

Rock Debris Earth 

Falls Rock fall Debris fall Earth fall 

Topples Rock topple Debris topple Earth topple 

Slides Rotational Rock slide Debris slide Earth slide 

Translational 

Lateral spreading Rock spread Debris spread Earth spread 

Flows Earth flow Debris flow Earth flow 

Complex Phenomenon presenting two or more main types of 

movement in sequence 

The following paragraphs describe the five types of landslides according to the 

classification of Cruden and Varnes, as included within the study areas of this thesis, with 

particular attention to flows and slides, the most prevalent types in the study areas. 

2.2.3. Falls 

Falls are a type of landslide in which masses of rock, debris and/or earth detach from 

a topographic surface with a high slope, after a movement in the air, impact the foot of the 

slope, generating a propagation phenomenon dependent on different factors than those that 

generated the same detachment. When the hazard linked to collapse phenomena is analyzed, 

it will be necessary to study both the possibility that blocks will fall off and how the 

phenomenon will evolve. The first depends on the presence/absence of secondary fractures, 

the discontinuities' spacing and the lithological bodies' mass and volume. The latter depends 

on the morphology (concavity, convexity), the slope, the presence/absence of vegetation and 

the coefficient of mechanical absorption of lithologies located on the slope’s foot.  

The presence of secondary fractures in the blocks is a significant factor, as, at the time 

of impact, they can shatter into several parts of a smaller size. Among the predisposing 

factors of these phenomena, there are the height of the escarpment (the higher it is, the greater 

the kinetic energy at the moment of impact) and the mass (the block size dependent on the 



 

12 

 

gap spacing of discontinuities). Thanks to these two parameters, it would be possible to know 

how much kinetic energy corresponds to the moment of impact. 

2.2.4. Topples 

A topple is a type of landslide in which there is a rotation of rock prisms towards the 

outside of the slope, with a centre of rotation located at a point on foot or outside the prism 

itself. The kinematic evolutions can present both rapid evolutions in the case of 

homogeneous rigid rocks in the slope and controlled and slow (diachronic) evolutions in 

structures that contain rigid rocks above ductile rocks. In the latter case, there may also be a 

retro-rotation of the basal part and a forward rotation of the block's upper part involved, in 

which collapse phenomena may occur. 

2.2.5. Slides 

Slides are movements of a mass of rock, debris or earth that occur along a breaking 

surface or within a shear deformation band. These can be translational or rotational, 

depending on the shape of the breaking surface, and can be differentiated between 

rock/debris/earth slides, depending on the type of material involved. 

Rotational slides have a semicircular breaking surface with the concavity facing 

upwards and a rotation centre of a portion of the slope located outside its slope. This 

landslide occurs when the slope has a geometry to allow the development of a breaking 

surface capable of overcoming the resistance forces of the material that constitutes the slope. 

The radius of curvature depends on the mechanical characteristics of the material; the 

shape of the surface indicates the type of shear strength the material possesses. Indeed, that 

is a diagnostic indicator: a rotational slide affecting a side characterized by rigid material 

will have a wide slope area and a minimal accumulation area. In fact, the rupture surface 

must be deep to obtain a shear force that can overcome the shear strength and rise steeply 

towards the topographical plane. If a ductile lithology characterizes a landslide, it needs less 

lithostatic load for its trigger, presenting a relatively less steep breaking plane. 
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Translational slides mainly manifest along structural discontinuities such as 

stratification and fracture surfaces with a dip slope structure. Many phenomena of this type 

exploit mechanical discontinuity as sliding surfaces. The most widespread of these surfaces 

is the horizon separating the bedrock from the regolith, as the latter has higher permeability 

and infiltration than the first one.  

2.2.6. Lateral spreads 

Lateral spreads differ from previous gravitational phenomena since the breaking plane 

is horizontal and tangential forces are orthogonal to the acceleration gravity vector. They 

can occur either in contexts involving the entire relief with homogeneous lithology with the 

formation of double ridges and consequent graben, or in contexts with heterogeneous 

lithologies, where rigid rocks are superimposed on masses with ductile behaviour.  

2.2.7. Flows 

Flows are gravitational movements that occur mainly in loose soils and are evidenced 

by deformations of a plastic type of material. These movements present variable speeds in 

the landslide area. The rupture is manifested by loss of resistance due to a decrease in 

cohesion and/or an increase in neutral pressures. From a kinematic point of view, each 

lithological element before the landslide is connected to the others, presenting a cohesive 

force. At the moment of the trigger, the individual elements are divided, presenting an 

independent behaviour. 

Depending on the particle size of the dissolved rocks, the eventual channelling, the 

cohesion value and the water content in the landslide, there should be different types of flows 

(debris/mud/earth flows/avalanche). 

Debris flows are rapid mass movements characterized by a mixture of non-cohesive 

material, air and water that rapidly move downstream along impluvium lines (Brabb, 1984), 

usually gullies and first- or second-order channels. From a physical-mechanical point of 

view, debris flows are viscous fluids that are in an intermediate position between solid 
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transport and sediment-laden water floods. Debris flows can be initiated by debris slides or 

avalanches or rock falls occurring on open and steep slopes. Once the moving material 

reaches steep impluvium lines, these phenomena turn into debris flows. 

The definitions of landslides as phenomena in which only the force of gravity acts, 

contrast with this type of gravitational phenomenon. For this reason, Brunsden (1984) 

classifies them as intermediate phenomena between landslides and concentrated outflow 

processes.  

Debris flow can occur due to both cohesion losses and increased neutral pressures. In 

the first case, the water infiltrates and saturates the volume of lithology and the failure point 

of the slope occurs where the rupture of cohesion compromises the stability of the slope. As 

for the second case, a significant rise in groundwater level/infiltration occurs, leading to a 

consequent increase in neutral pressures with a resulting reduction in shear strength. Their 

activation depends on the inflow of water on the topographic surface, the infiltration capacity 

and the lithologies’ permeabilities.  

Rupture fringes occur because the breaking surface does not correspond to a flat line, 

since the lithologies in the regolith are not homogeneous; therefore, there is a portion of 

lithology in which the state of cohesion loss or increase of neutral pressures that trigger the 

gravitational phenomena. 

In the initiating phase, the speed of such gravitational phenomena is remarkable (up to 

20 m/s), and adjacent debris flows can also flow into the same channel, thus increasing their 

speed and thus their erosive and destructive power. The deposition area is often located at 

the base of the slope, but it can also reach several kilometres from it, depending on the 

amount of water included in the phenomenon.  

The difference between this type of flow and the debris avalanche is that, for the first, 

the transport phase takes place in a channel, while the debris avalanche is manifested 

uniformly in the slope. Sometimes, slide debris can form instead of debris flow when the 

material does not disarticulate as for debris flow but tends to maintain its cohesion, therefore 

not generating a flow. However, if the soil’s disformity tends to lose cohesion due to the 
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various impacts with the morphology, it tends to become a debris flow. Another difference 

is their depth; slides involve relatively greater depths than a slope, while flows are more 

superficial phenomena involving the regolith.  

The earth flows have a characteristic shape in which there is a source of detachment 

upstream with a circular shape, a propagation zone, more reduced and narrower, with 

fractures of rupture and an accumulation zone, with a circular shape. The viscosity of the 

material is shown by the possible presence of radial fractures, which form only in the 

presence of even a minimum cohesion, while, in the absence of it, a deposition cone is 

formed in which the material is deposited uniformly. Earth flows, unlike debris flows, can 

also involve the clay substrate and not just the regolith. 

The mud flows have a longer shape, the cohesion of the material is lower than that of 

the earth flow, showing more similar kinematics to that of debris flow. 

In the category of rock flows, there is also sackung, located in an intermediate zone 

between the flow type and that of lateral expansion. Rock avalanches are rapid flows of 

coarse-grained rocks that develop on slopes with a high slope. Often, a rock avalanche can 

be generated as a secondary collapse event when the impacted blocks disintegrate during 

their descent downstream; in this case, it is called rock fall avalanche. 

2.3. Predisposing and triggering factors 

Landslides typically occur under a combination of complex geological conditions.  

All those actions that disturb the natural stability of a slope, modifying its stress 

regime, are the causes of gravitational phenomena. Such actions can be distinguished into 

predisposing and triggering causes. 

The predisposing factors create the conditions for the generation of gravitational 

phenomena. Finding the combination of predisposing factors is significant in studying and, 

therefore, reducing the associated risk. In fact, their predisposition depends on the lithology 

and permeability of the material involved, the geometry of the slope, the possible presence 

of vegetation, their mechanical strength characteristics, and their grain size. A gravitational 
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phenomenon is manifested thanks to several slope factors; in fact, the variation of the value 

of at least one of the elements described in Tab. 2.5 can trigger a landslide. 

Tab 2.5 – Parameters whose modification can determine the trigger of the landslide. 

 

The triggering factors are those that cause the alteration of natural balances, as, for 

example, extreme meteoric events, rapid melting of snow, accelerated erosion, erosion on 

the foot of the slopes by the action of water currents, earthquakes and rapid rise of the 

aquifer. 

The succession of extended dry periods with intense and concentrated rainy events is 

a triggering factor of landslides. This situation is manifested, with short return times, in El 

Salvador, as well as in other states of Central America that are in a tropical context, 

characterized by the alternation of the dry season with the wet one. High values of 

cumulative precipitation can determine the soil saturation and the aquifer's high stationing, 

representing a factor both predisposing and triggering the landslide movements that may 

involve the substrate. However, rains should not be considered an immediate trigger of a 

landslide; it is necessary to consider the water content that a slope can contain. In fact, as the 

water content increases, cohesion decreases progressively, which leads to exceeding a 

threshold in which there is the trigger of a gravitational phenomenon. For the same reason, 

the rains can trigger landslides even without an intense rainy phenomenon; the possible 

trigger depends on the state of saturation of the lithologies involved.  

Element Description 

Slope the gravity acting on the slope. 

Cohesion the intensity of the force that tends to keep the elements of the rock 

connected. Cohesion becomes null if the slope consists of inconsistent 

rocks, such as loose sand. In light of this, it can be stated that the slope 

is stable only if the inclination is equal to or less than the material’s 

resting angle (Earle, 2015). 

Friction the value of resistance offered by lithologies. 
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The anthropic activities, concerning the characteristics of the context in which they are 

carried out, can act both as triggers and as predisposing causes (e.g., improper agricultural 

use and management of the woods, pastoralism and extractive activity). 

The recurrent and intense seismic activity that affects the country of El Salvador can 

trigger, in conjunction with the most relevant events, the gravitational phenomena that 

present spatial distributions (both as regards the density of gravitational phenomena and the 

maximum distance at which they can be activated) which depends on the Magnitude. The 

topic will be dealt with in Chapter 3.2. 

2.4. The Landslide Risk 

The Risk is defined as the combination of three factors, corresponding to hazard, 

vulnerability and exposed value. Risk is the probability of damage, so the landslide risk is 

the probability of damage caused by a landslide. That is one of the main existing natural 

risks, capable of causing many fatalities and damage to artefacts yearly. Considering its 

definition, if at least one of these three factors has a zero value, it will equal the risk to null. 

Thus, for example, despite a large number of landslide phenomena, the risk in an area 

without artefacts and human lives, such as a desert area, is null. The risk is the result of the 

effects of a trigger on the territory and depends on the characteristics of the natural 

phenomenon, the strength of anthropic structures and the presence of people and activities.  

 

A fundamental component of the Risk formula is the hazard, which represents the 

probability that a specific event occurs in a given area. This component is one of the 

fundamental objects of applied geomorphology studies, in which geomorphologists try to 

estimate the future morphodynamic responses of the slope, classifying them in terms of 

energy and return time. “Any process or potential event that threatens a community's health, 

safety and well-being or any population's economy is considered a geological hazard” 

(USGS, 1977). According to this definition, an earthquake or landslide occurring in an 

uninhabited area does not constitute a geological hazard. In the UNESCO report of Varnes 
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(Varnes & IAEG, 1984), this concept is modified, and geomorphological hazard is defined 

as the "probability that a potentially destructive phenomenon occurs in a specific time and 

area". It was therefore decided to separate the landslide hazard into two factors: probability 

and intensity. Probability represents the possibility of the manifestation of an event; it varies 

from 0 to 1, where 0 indicates the impossibility of the event and 1 indicates the certainty of 

the event. The intensity is the magnitude, the energy, which is mechanical in gravitational 

phenomena. Thanks to these statements, it is possible to indicate that the landslide hazard is 

entirely independent of the presence of inhabited areas and infrastructure. 

 

Vulnerability is the attitude of a structure to suffer damage of a certain intensity 

following a landslide occurrence. Its value depends on the rate of the resource (a structure 

or an artefact that if damaged can cause economic and human loss, e.g., the value is very 

high in the case of a hospital or a school) and on the intrinsic resistance that presents the 

structure compared to the landslide phenomenon (e.g., characteristics of foundations).  

The work of the geologist, in this case, must be finalized on the knowledge of the 

possible reactivation of the phenomena that are currently quiescent and also be able to 

recognize a scenario of new activation. He must suggest all those works that can consolidate 

the structure or slope in such a way as to reduce the value of the vulnerability and, 

consequently, the value of risk. 

 

The exposed value represents the population and economic activities exposed to 

natural risk in a given area. The rate of the exposed value is expressed in monetary or 

numerical terms or in terms of the amount of units exposed to the risk. 

2.5. Methods to mitigate the Landslide Risk 

Recognizing the predisposing and triggering factors of landslides and the parameters 

for which an area is subject to high-risk values, it is essential to carry out interventions in 

order to mitigate the risk and monitor the slopes, in order to have information about possible 
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scenarios of new activation or reactivation of gravitational phenomena. For this purpose, the 

concept of Factor of Security (FoS) has been created to evaluate quantitatively the resistance 

of the slope against the action of natural or artificial forces that lead to its instability. 

The forces to be considered in the study of the equilibrium of a slope can be 

summarized in two components: breaking forces, responsible for the tangential stresses (or 

shear forces) and those opposite, which contribute to the shear resistance (or internal 

resistance) of the slope. The Factor of Safety can be defined through these two elements, 

expressed by the relationship between yield stress and working stress. When the acting 

forces are more significant than the resistant forces, the landslide is triggered; in these 

conditions, the value of the Factor of Safety is below the unit. On the contrary, positive 

values will indicate stability conditions. 

By referring to the numerator and denominator of the Factor of Safety, the following 

mechanisms of triggering a landslide can be identified: 

• An increase in cutting force, which can be caused by several factors such as seismic 

stress, increase in the load on the slope, increase in the specific gravity of the soil (as 

a result of the growth in the water content), increase in the slope acclivity (e.g., due 

to human interventions such as excavations at the base of the slope). 

• A decrease in the shear strength, that may depend on: a decrease in cohesion (due 

to physical, chemical or biological phenomena), an increase in neutral pressures (for 

meteoric events or for particular conditions in the area which determine a decrease 

of shear strenght) and the generation of seismic stresses. Shear strength is related to 

the friction force and is equal to the product of the tangent of the internal friction 

angle of a material for the normal load acting on it, where the latter factor is given 

by the difference between the lithostatic load and the neutral pressure. From this, it 

can be shown that the increase in neutral pressure leads to a decrease in the resistance 

factor. 
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To stabilize a landslide or to increase the Factor of Safety of a slope and, therefore, to 

mitigate the risk, interventions are needed to reduce the denominator and/or increase the 

numerator, so that this value would be as high as possible. These are basically distinguished 

in interventions that reduce the shear forces (e.g., re-profiling of the slope, poles and 

anchorages) and interventions that increase the material's shear strength characteristics (e.g., 

retaining structures and improvements in soil geotechnical characteristics and drainage). 

Knowing the type of landslide in the area under consideration is fundamental, as the 

interventions that tend to increase the Factor of Safety must be chosen according to the type 

of gravitational phenomenon. For example, a fall-type landslide will require the use of tools 

capable of constraining the block under consideration and rockfall nets, while a rotational 

sliding landslide will require interventions that tend to affect the saturation state and the 

stabilization of the landslide even below the breaking surface. 

 

In addition to carrying out fundamental interventions to increase the Factor of Security, 

it is necessary to evaluate the area's movements and know their spatial and temporal 

evolution. It is, therefore, necessary to control the kinematic trend of the slope through its 

monitoring; this is fundamental to proposing a forecast model of the phenomenon. In fact, 

careful and continuous monitoring can be valuable from the point of view of risk 

management in the field of civil protection. Monitoring means observing the variation of 

some signals that generate phenomena that are believed to be connected to the process being 

studied (such as a rainfall meter, which measures the amount of rain falling in a given unit 

of time), so study their precursors. 

The monitoring can be assumed as a work of mitigating the risk from landslides, since 

it works to identify the valuable precursors. Of course, to affirm the usefulness of a precursor, 

it must estimate the percentage of error with which it is giving a specific alarm. In fact, there 

is also necessary to consider the hazard associated with a false alarm, especially in economic 

terms. In this case, a type 1 error is generated, that is an alarm is given for a possible landslide 

when, in reality, it does not manifest itself, this is a false positive. That is a less severe error 
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than that of false negatives, the type 2 error, in which no alarm is given as a gravitational 

phenome is not expected when, in reality, this is manifested. 

Damage to landslides due to rainfalls and earthquakes are closely related to economic 

development and the ability to prevent and reduce disasters. Developed countries, indeed, 

have the economic and scientific resources to project and manage structures designed to 

contain blocks of rock and stop or divert both slow and rapid flows (Chen, 2006; Matthew 

Larsen and Wieczorek, 2006). They may also activate direct or indirect protection and alarm 

systems to favor a prompt and rapid general evacuation.  

Projecting effective defensive engineering structures and alarm systems requires 

knowing where landslides are more likely to occur. This information, which is also 

fundamental for land use planning aimed at mitigating landslide risk, is provided by 

landslide susceptibility maps.  

2.6. Landslide susceptibility 

Landslide risk can be mitigated by predicting where slope failures are most likely to 

occur. In fact, a landslide susceptibility map represents the relative probability of landslide 

occurrence for each spatial unit of a given area (Brabb, 1984; Conoscenti et al., 2016). 

Developing this output provides a practical and valuable tool to the authorities dealing with 

territory management and civil protection, as they indicate where new slope failures are more 

likely to occur in the future, thus showing areas where risk mitigation is a high priority.  

Landslides susceptibility differs from the hazard analysis as it does not provide the 

magnitude and return times, but generates a spatial assessment of the conditions of greater 

or lesser probability of occurrence of a landslide phenomenon.  

Several methodologies could be used to generate landslide susceptibility maps, 

however, the most effective for the purpose are the stochastic ones (Reichenbach et al., 2018; 

Carrara et al., 1986; Agnesi et al., 1983; Chung and Fabbri, 2003; 2008; Guzzetti et al., 1999; 

2005; 2006; Clerici et al., 2006; Conoscenti et al., 2008). These are characterized by high 

objectivity since they use statistical tools to determine the influence of the factors of 
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instability and, consequently, the link between the latter and the distribution of gravitational 

phenomena in a given area. The stochastic approach is based on the principle that “the past 

is the key to the future”; thus, triggering future landslides is more probable under the same 

environmental conditions that produced slope failures in the past. The statistical approach 

relies upon inventories of landslides and maps revealing the spatial variability of a set of 

environmental attributes. If predisposing causes are considered immutable in time, the only 

factors that change are the triggers. Only a study of the previous triggers can allow knowing 

what can occur in a slope following a comparable trigger.  

The first step for generating a landslide susceptibility map is to produce an inventory, 

which must refer to a specific trigger. For this purpose, analyzing aerial/satellite photos after 

a specific trigger is necessary to map the phenomena. To avoid including the gravitational 

phenomena that occurred with a previous trigger in the inventory, comparing the 

aerial/satellite photos with those previous trigger events is required. In fact, including 

antecedent phenomena, which occur with different triggers, involves an error that can 

compromise the final result.  

A valid inventory must represent every landslide through an identifying point or a 

polygon that encloses the whole phenomenon. Although no agreement exists on the best 

location of a point to identify a landslide, numerous recent studies have successfully adopted 

LIPs for landslide susceptibility zoning (Rotigliano et al., 2011; Lombardo et al., 2014; 

Cama et al., 2015). In case of debris flows, which are usually shallow, LIPs are expected to 

be even more suitable for identifying pre-failure conditions (Rotigliano et al., 2011, 2018). 

Subsequently, the landslides susceptibility study involves dividing the area into 

specific mapping units, distinguished from adjacent units according to defined 

characteristics and boundaries (Hansen, 1984; Carrara et al., 1995; Guzzetti et al., 1999). 

There are several mapping units; the selection depends on the available data, the research 

objective, the prediction images and the geomorphological proprieties. In this thesis, the 

mapping unit was realized using pixel-partition, then with cells with a size equivalent to 

those adjacent ones. Research (Rotigliano et al., 2012; Cama et al., 2017; Martinello et al., 
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2020) has shown that the pixel-partition gives excellent model performance when landslide 

initiation points need to be detected, as in the case of flow landslides, present in a high 

number in the analyzed territory following triggers of earthquakes or extreme rainfall events. 

The dependent variable reflects the presence or absence of landslide polygons or LIPs 

in a given location or mapping unit. 

In the study of landslide susceptibility, geo-environmental attributes should be chosen 

as independent variables (predictive variables) based on their supposed influence on the 

triggering mechanisms of the phenomenon. In fact, these act as proxies for the factors mainly 

controlling landslide occurrence in the study area and are expected to be predictors of the 

spatial distribution of the landslides included in the inventories (Costanzo et al., 2012).  

Understanding the connections between landslides and influencing factors is critical 

for susceptibility mapping studies; research about susceptibility mapping shows no 

systematic procedure or general agreement about influencing factors (Shao and Xu, 2022). 

Because these depend on the predisposing factors, it is more probable that the landslide 

manifests where the factors are more determinant for the production of gravitational 

phenomena (e.g., a fall landslide would occurs where the slope is higher). 

Since a landslide susceptibility map should be generated for all types of gravitational 

phenomena, it is necessary to select the common predisposing factors, those with the same 

relations of manifestation/absence of the gravitational phenomenon.  

Once a set of predictors is defined, a value for dependent (presence/absence of LIPs or 

polygon) and independent variables (continuous or categorical) is assigned to each of the 

mapping units (Rotigliano et al., 2012).  

Unlike geomorphological or heuristic methods, which strongly depend on the skill and 

experience of the operator, the stochastic approach is characterized by high objectivity, since 

it uses statistical tools to determine the influence of the instability factors and, consequently, 

the functional relationship between the latter and the distribution of gravitational phenomena 

in a given area (Verstappen, 1983). The statistical approach aims to achieve the best possible 

compromise between costs (money and time) and the reliability of the landslide 
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susceptibility models. The input data quality controls the landslide predictive models' 

accuracy and relative susceptibility maps.  

This thesis calculated the likelihood of landslide occurrences at each grid cell in the 

study areas using the Multivariate Adaptive Regression Splines (MARS; Friedman, 1991) 

statistical modelling technique. The statistical analyses were realized using R Studio 

software with the "earth" package (Milborrow, 2020). 

MARS is a non-parametric regression method that allows to model non-linear 

relationships between dependent and independent variables. This technique splits the range 

of the covariates into intervals, whose extreme values are called “knots”, and finds an 

optimal linear function between two consecutive knots, which is known as “basis function” 

(Gómez-Gutiérrez et al., 2015; Conoscenti et al., 2018; Garosi et al., 2018; Vargas-Cuervo 

et al., 2019).  

The MARS method has been successfully applied recently in some geomorphological 

studies (Gutiérrez et al., 2009, 2015; Conoscenti et al., 2018, 2020), but there are relatively 

few tests in the literature in the field of landslide susceptibility zoning (Gutiérrez et al., 2009, 

2015; Conoscenti et al., 2014, 2015, 2016, 2018; Garosi et al., 2018; Rotigliano et al., 2018; 

Rotigliano et al., 2019; Vargas-Cuervo et al., 2019). In fact, the statistical techniques most 

frequently used to map landslide susceptibility in the recent past have been: conditional 

analysis, discriminant analysis, logistic regression, artificial neural networks and 

classification and regression trees (Costanzo et al., 2012; Rotigliano et al., 2012; Clerici et 

al., 2006; Carrara et al., 2008; Van Den Eeckhaut et al., 2009; Costanzo et al., 2014; 

Lombardo et al., 2014; Cama et al., 2016).  

The MARS model is the result of the weighted sum of terms that include a basis 

function or a product of two or more basis functions. Mathematically, a MARS model is 

expressed as: 

𝑦 = 𝑓(𝑥) = 𝛼 +∑𝛽𝑖ℎ𝑖(𝑥)

𝑁

𝑖=1
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where 𝑦 is the dependent variable predicted by the function 𝑓(𝑥), 𝛼 is the constant, ℎ𝑖 

is the basis functions and 𝛽𝑖 its coefficients, 𝑁 is the number of basis functions. 

Modelling landslide susceptibility by using a statistical approach requires a validation 

procedure to measure the model's predictive skill. Without validation, the model is unusable 

and deprived of any scientific significance (Chung and Fabbri, 2003). 

The calibration subset of landslides (training subset) is exploited to produce a 

prediction model, while the validation subset (test subset) simulates future landslides which 

are exploited to measure the predictive skill of the model (Conoscenti et al., 2008). In this 

work, calibrations are made both within the same dataset (using a certain percentage for 

calibration and the remaining for validation) and an entire inventory as calibration and 

another different inventory for validation. This method verifies whether the training subset 

can predict test landslides. 

A susceptibility map is obtained with values from 0 to 1, indicating the probability of 

manifestation of gravitational phenomena. A summary of the procedure is shown in Fig. 2.1. 

  

 

Figure 2.1 – Procedure for obtaining a landslide susceptibility map. 
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The models’ performances are evaluated by preparing Receiver Operating 

Characteristic (ROC) curves and analyzing the Area Under the ROC Curve (AUC) values. 

ROC curves plot, across all possible cut-off values, sensitivity (or True Positive Ratio, TPR) 

against 1 - specificity (or False Positive Ratio, FPR). TPR is the ratio between the number 

of true positives (TP) (i.e. positives that were correctly classified) and the total number of 

positive cells. In contrast, FPR corresponds to the ratio between the number of false positives 

(FP) (i.e. negatives that were incorrectly classified as positive) and the total number of 

negative cells. AUC values close to 1 indicate the perfect discrimination ability of the model, 

whereas values close to 0.5 indicate no discrimination ability; values equal to or higher than 

0.7, 0.8 and 0.9 can be interpreted as acceptable, excellent or outstanding, respectively 

(Hosmer and Lemeshow, 2000). In order to evaluate the model’s performance by also using 

cut-off dependent metrics, an optimal cut-off value for the ROC curves should be calculated 

by using Youden's index (J) (Youden, 1950; Cama et al., 2017; Rotigliano et al., 2019; 

Conoscenti et al., 2020). This method allows finding the threshold that maximizes the sum 

of sensitivity and specificity. The value of J was used as a threshold to separate cells 

predicted as negatives and positives.  

The optimized cut-off allows binarization of the landslide susceptibility map; values 

below the cut-off value are predicted as negative (absence of landslide), while those above 

are predicted as positive (presence of landslide). By comparing the validation dataset with 

the binarized map, it is possible to evaluate the model's performance with a confusion matrix 

by calculating the amount of true positive (TP), true negative (TN), false positive (FP) and 

false negatives (FN). 

TP and TN represent correct predictions, in fact a pixel in a landslide is correctly 

predicted in the first case and a stable pixel is predicted as stable in the second case. In 

contrast, FP and FN represent type 1 and type 2 errors (Chapter 2.5). Indeed, TN represents 

an error in the production of maps of susceptibility from landslides, as predicted a specific 

pixels unstable while the analyzed pixel has not presented triggers of gravitational 

phenomena in the validation check. However, this is a less severe error than type 2 (FN), 
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which means that a pixel is predicted to be stable when, in reality, a landslide is triggered by 

comparison with the validation data. That is a serious problem as an alarm or evacuation 

signal may not be given incorrectly in an area rated stable. 

 Each row of the matrix represents the instances in an actual class, while each column 

represents the instances in a predicted class, or vice-versa (both versions can be found in the 

literature). Thanks to this table is effortless to know if the system foresees if each 

landslide/non-landslide event is assessed as a gravitational phenomenon or not. Thanks to 

the obtained values it is possible to evaluate the sensitivity and the specificity. The first one 

is the true positive rate, defined as TP/(TP+FN) and refers to the probability of a positive 

test, conditioned on truly being positive. The latter is the true negative rate, defined as 

TN/(TN+FP) and refers to the probability of a negative test, conditioned on truly being 

negative. A summary of the procedure after the optimized cut-off generation is shown in 

Fig. 2.2. 

 

Figure 2.2 –  The production of an optimized cut-off allows binarising the landslide susceptibility map 

to generate a confusion matrix that evaluates the susceptibility model's predictive ability generated. 
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APPLICATIVE SECTION 

 

3. Geomorphological hazards in El Salvador 

With an area of just over 21,000 km2, El Salvador is the smallest country in Central 

America. It is situated on the Pacific coast and is bordered by Guatemala (East) and 

Honduras (North and West). The intricate geodynamic context in which El Salvador is 

located is characterized by the convergence of the Cocos plate with the Caribbean plate, 

through the Middle America Trench, with a rate of about 7 cm/year (Dewey and Suárez, 

1991). This active tectonic environment is responsible for several active volcanoes in the 

country, aligned in the direction of WNW-ESE, which have frequently erupted and deposited 

widespread and poorly consolidated tephra in many parts of the country (Jibson et al., 2004). 

These lithologies, combined with acid pyroclastites, volcanic ashes and acid and basic 

effusive rocks, ensure that volcanic rocks represent 95% of the outcropping lithologies in 

the country (Fig. 3.1). 

Figure 3.1 - Location and geological setting of the study area. El Salvador is located in Central America, 

where the Cocos Plate is subducted beneath the Caribbean Plate into the Middle American Trench (a); the 

geological setting of El Salvador, mainly characterized by volcanic outcropping rocks formed by the volcanoes 

chains (b). 

(a) 

(b) 
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The combination of the geodynamic context, responsible for medium and high 

earthquakes, steep slopes due to rugged volcanic ranges, incoherent rocks and a subtropical 

climate characterized by heavy storms, cause a high probability of earthquake- and rainfall-

induced landslides occurrence in most of the country. The consequences of these 

gravitational phenomena are devastating for the country, which is the smallest country in 

Central America but the one with the highest population density (310 inhabitants/km2). 

Indeed, the fertility of the soils around the volcanoes, oriented WNW-ESE due to the tectonic 

assessment (Bommer et al., 2002) and, most recently, to the production of geothermal 

energy, has generated a situation in which a large part of the population lives in the areas of 

the country most susceptible to the gravitational phenomena. This situation has meant that 

almost half of the Salvadoran population lives a few kilometres from the volcanic buildings 

of Santa Ana and Izalco, San Salvador, San Vicente and San Miguel (Major et al., 2004), 

thus increasing the elements at risk and, consequently, the consequences of the damage 

caused by landslides that are triggered by volcanic reliefs. As a confirmation, El Salvador 

has the highest ratio between the destroyed houses and the affected risks of Central America 

(Quesada-Román and Campos-Durán, 2022). 

3.1.  Extreme rainfall events 

The extreme rainfall events that frequently affect the country are responsible for 

activating gravitational phenomena consisting in shallow and fast-moving flow landslides 

that may cause severe economic damage and even victims.  These landslides are related to 

the outcropping of unconsolidated material on steep slopes, which can be rapidly moved by 

gravity and travel hundreds of meters to several kilometres from its origin (Crone et al., 

2001).  

Dramatic examples of their destructive potential in America are given by the disasters 

that occurred in Vargas (Venezuela), which caused about 15,000 victims in December 1999  

(Larsen and Wieczorek, 2006; Larsen 2008), or in the mountainous regions of Rio de Janeiro 

(Brazil), in January 2001, where numerous debris avalanches and debris flows triggered by 
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an extreme rain event lasting two days caused around 1,500 victims (Avelar et al., 2013; 

Hungr et al., 2014). 

Regarding El Salvador, since most population centres are located close to volcanoes, 

mainly consisting of inconsistent rocks, the risk is very high and civil protection institutions 

cannot give adequate notice to the population during extreme rainfall events. The short time 

between the extreme rainfall events, indeed, creates a situation in which the time for the 

alarm is reduced. In this case, a fundamental step is to provide sufficient advance to restrict 

the displacement of civilians and stop commercial activities, as well preventing future 

construction in the most susceptible areas. In fact, the country, as well as much of Central 

America, is often affected by the action of the passage of tropical storms and hurricanes that 

have caused several damages down the ages. Among them, Hurricane Mitch, which occurred 

on November 1998, caused devastation in Honduras, Nicaragua and El Salvador. During the 

event, 61 h of continuous rain generated 787 mm of rainfalls that caused the death of 374 

Salvadorans (Hellin et al., 1999). Hurricane Stan, occurred on October 2005, caused 69 

fatalities in El Salvador, rapid debris flows and floods that involved 300 communities, with 

54,000 people forced to leave their homes after 500 mm of rainfalls (USAID, 2005). This 

event has joined to the destruction that occurred following the eruption of the volcano of 

Santa Ana, manifested a few days earlier, which also caused debris flows and lahars (USGS, 

2005). 

During the 7th and 8th of November 2009, most of El Salvador was struck by the 

simultaneous action of Hurricane Ida and the low-pressure system 96E. Hurricane Ida has 

been evolving since 4th November 2009 as a tropical depression in the southern-western 

sector of the Caribbean Sea and increased its strength until it evolved to tropical storm grade 

on 7th November while crossing Nicaragua’s coast. It arrived at the stage of a second-level 

hurricane on the 8th, then shifted northward to the Gulf of Mexico and the Caribbean Sea, 

returning to the tropical storm grade and then depression on the 9th, until its total 

disappearance on the 12th of November. At the same time, the low-pressure system 96E 

from the eastern Pacific Ocean arrived in El Salvador territory (Avila and Cangialosi, 2009). 
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This event caused heavy rainfall between the 7th and 8th. The combined action of these two 

events resulted in about 350 mm in 24 h in an area of about 400 km2 located between 

Ilopango Lake and San Vicente Volcano.  

As a consequence, floods and thousands of landslides occurred in this area, causing 

about 200 victims, huge damage to infrastructures and buildings, with an economic loss 

estimated to be approximately a quarter of a billion dollars (Avila, 2009b.). These landslides, 

mostly debris flows, seriously affected the villages of Verapaz and Guadalupe, located in the 

north-western sector of the study area (Figures 3.2 and 3.3).  

 
Figure 3.2 - An area hit by a debris flow in Verapaz after the simultaneous action of Hurricane Ida and the low-

pressure system 96E. Photo by Yuri Cortez, 9th November 2009.  

AFP/Getty Images, https://volcano.si.edu/volcano.cfm?vn=343070. 
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Figure 3.3 - These two false color images generated by the ASTER on NASA's TERRA show the area 

under examination before (a) and after (b) the event of 7th and 8th November 2009. The images were prepared 

with artificial colors to distinguish the vegetation (in red) from the bare ground (in grey). Based on data from 

the NASA/GSFC/METI/ERSDAC/JAROS, and U.S./Japan ASTER Science Team, NASA Earth Observatory 

image by Robert Simmon https://earthobservatory.nasa.gov/images/41365/landslides-on-volcan-de-san-

vicente. 
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The government is increasingly accepting the importance of preventing these 

phenomena, which will continue to manifest due to the geographical context. In fact, 

between the 10th and 11th of October 2022, El Salvador, Guatemala and Nicaragua were 

affected by Hurricane Julia, which started as a category one hurricane with winds higher 

than 140 km/h. The event gradually decreased its speed to 65 km/h near Nicaragua, when 

it was downgraded to a tropical storm event. This event was able to cause numerous 

fatalities in the affected countries and numerous debris flows. The civil protection 

authorities of Guatemala have reported the loss of at least thirteen people, four missing 

and eleven injured due to the gravitational and flooding phenomena that occurred 

following the rains. The government of El Salvador, now habituated to events of this 

intensity that manifest with short return times, has trained 19,000 people (including 

soldiers, police, firefighters, tactical operative teams, rescue teams and employees of the 

MOP (Ministry Public Work of El Salvador) and the DOM (National Directorate of Public 

Works)) to: build barricades and temporary tents to accommodate refugees and evacuated 

people in areas less susceptible to landslides and floods, save people at risk, avoid 

displacement of people and raise awareness of the inhabitants. Ambulances were also set 

up to bring up to 1,000 people to the nearest hospital at the same time. The government 

also provided early warning to limit the damage as much as possible. Unfortunately, 

despite this operational framework, El Salvador has reported the deaths of ten people, 

including five soldiers who expired after a wall collapsed where the refugees were, while 

they did their defence work. However, without these proceedings, the victims and the 

damage would certainly have been more significant, consistent with those following the 

previous extreme events. 

Due to the continuous occurrence of these hazardous events, the country must 

continue to increase the efficiency of the production of susceptibility maps from 

landslides, monitoring systems and development of emergency plans. All these tools must 

be used for risk mitigation. 
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3.2. Earthquakes 

An earthquake is a natural process with a high destructive potential, which frequently 

causes considerable economic damage due to damage to buildings and infrastructure but, 

above all, loss of life. However, some processes resulting from the earthquake, such as 

landslides (earthquake-induction landslides), can be even more destructive than the seismic 

phenomenon. That is due to the passage of the mechanical waves through the lithologies, 

which takes place through a transfer of forces. As a result, the waves passing through 

lithologies close to the collapse conditions, increase the value of tangential forces and/or 

increase neutral pressures, resulting in a decrease in effective stresses and shear strength of 

the material, thus triggering the landslide phenomena.  

Landslides usually occur during or shortly after a seismic event and have different 

spatial distributions according to slope gradient, lithology, earthquake magnitude and 

hypocentral and epicentral distances (Agnesi et al., 1982, 1983; Carrara, 1986). 

         Research shows a correlation between earthquake intensity and landslide occurrence; 

Keefer (1984) identified a critical Richter Magnitude of 4.0 and observed that the area 

affected by gravitational phenomena grows progressively up to 500,000 km2 for an 

earthquake having a magnitude of 9.2. 

In fact, Keefer, in 1984, considered 40 historical earthquakes chosen to sample many 

climatic, geologic, and seismic settings in Earth's major seismic regions. These earthquakes, 

which have magnitudes from 5.2 to 9.5, occurred between 1811 and 1980 that triggered 

thousands of landslides grouped by kinematics: falls, slides and lateral spreading. Keefer did 

not take into account the lithology involved in landslides. Thirty years later, Martino et al. 

(2014) used the Italian Database of co-seismic instability phenomena to compare Keefer’s 

study worldwide with the recent one. They considered 166 earthquakes over the  1908-2012 

period to reduce the scatter in data. They did not group the landslides by kinematics but 

considered the lithologies involved. They examined a minimal number of volcanic rocks. 

They all traced curves in a graph (Fig. 3.4) where on the abscissa there is the Magnitude of 

the considered earthquakes and on the ordinates the maximum distance of the landslides 
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from the source (that is, the maximum epicentral distance). From these graphs, it can be 

pointed out that Keefer’s curves are all higher than Martino’s one. 

 

Figure 3.4 – The curves produced by Keefer (1984) and Martino et al. (2014) show the relationship 

between the maximum distance for the manifestation of gravitational phenomena and the Magnitude. 

However, these correlations may present exceptions. A landslide indeed could be 

initiated even by a weak shaking if the failure of a slope is imminent before the seismic event 

or if the involved material includes weakly cemented and/or incoherent rocks. Volcanic 

rocks, widely distributed across the country, are among these lithologies, as they are usually 

characterized by higher mobility than non-volcanic rocks due to differences in material 

properties such as granularity, collapsibility and water content (Legros, 2002; Hayashi and 

Self, 1992). These geological conditions can significantly increase the frequency of 

gravitational phenomena triggered and the areas affected by landslides compared to areas 

that experienced comparable magnitudes (Bommer et al., 2002; Jibson et al., 2004).  
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The complex geodynamic context in which El Salvador is located (convergent 

structure characterized by the interaction between the Cocos Plate and the Caribbean Plate), 

added to the lithological characteristics of the outcropping rocks (e.g., ignimbrites, acid and 

basic effusive rocks, acid pyroclastites and volcanic ash) create a situation in which high-

magnitude seismic phenomena occur, causing thousands of gravitational phenomena and 

resulting in many fatalities and enormous economic damage. 

During the last century, many seismic phenomena have been manifested (Table 3.1), 

and the number of victims has been different in relation to the Magnitude, the hypocentral 

depth and the distance of the epicenter from the main inhabited centres.  

Table 3.1 – Major seismic phenomena (M > 5.7) that have occurred in El Salvador since 1917. 

Data 

(Y/M/D) 
M

w
 Fatalities 

2001-02-13 6.6 315 

2001-01-13 7.7 944 

1986-10-10 5.7 3,000 

1982-06-19 7.2 43 

1965-05-03 6.5 125 

1951-05-06 6.2 400 

1936-12-19 6.1 200 

1919-04-28 5.9 100 

1917-06-07 6.5 1,050 

The continuous uncontrolled increase of the suburbs of the cities, with structures often 

inadequate to withstand seismic shocks, has raised the number of casualties. This data can 

be seen from the correlation between increased mortality trends in seismic events and the 

growth in the size of population centres by comparing several aerial and satellite photos of 

the last forty years. 

Bommer et al. (2002) report that the country is experiencing earthquakes from two 

major seismic sources. The first source of seismicity originates deep earthquakes in the 

Benioff-Wadati zones of the subducted Cocos plate beneath the Caribbean plate, 

characterized by relatively high magnitude values (surface wave magnitude Ms and moment 

magnitude Mw often with values > 6.0), capable of involving large areas of El Salvador.  

The territory is also geologically influenced by the interaction of the tectonic plates of the 
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Pacific and North America; however, the main seismic activity has been interpreted as the 

result of activity driven by the convergence between the Cocos and Caribbean plates (White, 

1993). 

Numerous seismic phenomena with this genesis were witnessed in the last century; 

many were particularly destructive and dramatically impacted the country. Among them, the 

September 1915 event, Ms 7.8, caused destruction in the country's western area, while the 

earthquake of Ms 7.3 occurred in June 1982 caused 49 victims and hundreds of earthquake-

induced landslides. The last seismic event belonging to this seismic source was the event 

that took place on 13th January 2001, in which the country was hit by a violent earthquake, 

belonging to the first source of seismicity, at a depth of 60 km with 7.7 Mw. This event 

caused thousands of gravitational phenomena, causing 844 fatalities and 5,565 injured, with 

the destruction of over 100,000 buildings. Besides the difference in magnitude values, the 

discrepancies in damage and fatalities between this event and the one of 1982 are only in the 

increase of the elements at risk, which has led to an expansion of the neighbourhoods, which 

continued to increase more towards the flanks of volcanoes, as witnessed by the difference 

between the urban areas in the topographical maps of the country dating back to the year 

1981 and aerial photos of 2010.  

 

 The second source of seismicity is a zone of upper-crustal earthquakes that coincides 

with the volcanoes array, orientated WNW-ESE (Bommer et al., 2002); these intraplaque 

earthquakes occur at relatively lower hypocentral depths. Since the main Salvadoran cities 

are located just along the volcanoes' alignment, it is not hard to figure out the catastrophic 

consequences of the seismic events that can occur, often with more significant damage than 

seismic phenomena with genesis in Benioff-Wadati zones. Among the most significant 

events in the last century with this genesis, there are the earthquake of 8th June 1917 (Ms 

6.7), which caused 101 victims, the 20th December 1936 (Ms 6.1) event that resulted in more 

than 200 victims and the 10th October 1986 event (Ms 7.5), which caused more than 1,500 

fatalities. On 13th February 2001, El Salvador experienced a further intense earthquake, 
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which more destroyed the country. This event, belonging to the second source of seismicity, 

was of 6.6 Mw, with a hypocentre placed at 10 km depth, resulting in 315 fatalities and 3,399 

injured caused by ground-shaking and landslides (Fig. 3.5). Nearly 45,000 homes were 

destroyed and 16,000 seriously damaged. This earthquake affected areas comparable to those 

affected by the 1936 event, with the same genesis. Once again, the increased risk factors 

have led to more damage and victims. 

Figure 3.5 – Major seismic phenomena of the last century including January and February 2001 events. 

 

There are several doubts about whether these two seismic sources are related. 

However, Lomnitz et al. (2001) and Bommer et al. (2002) reported that normal faulting 

subduction earthquakes in Central America tend to be followed by either large thrust events 

or shallow intraplate events within four years. This trend can also be observed in El Salvador, 

where earthquakes belonging to the second type of seismic genesis have occurred even after 

a month, as in the case of the earthquakes of 2001. 
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To mention additional examples of this trend, Bommer et al. (2002) cite 1915 

subduction earthquakes, 1932 and 1982, followed by 1917, 1936 and 1986 intra-crustal 

earthquakes, respectively. 

Because of the destructive power of these phenomena, in order to mitigate the risk, it 

is necessary, also for this type of phenomenon, to foresee the regions where landslides are 

most likely to take place, concerning what has happened in the past. This information is 

given from the landslide susceptibility analysis.  

3.3. Susceptibility studies in El Salvador 

In El Salvador, studies on landslide risks and susceptibility analysis are relatively 

recent. Indeed, the National Government and the local authorities did not investigate this 

issue during the whole period of the civil war, which took place between 1980 and 1992. 

With the end of this event, the continuous occurrence, with short return times, of extreme 

events of rainfalls, together with the continuous scientific progress of the 90s, led to the 

foundation by the Government of the SNET (Servicio Nacional de Estudios Terriroriales), 

an institution dedicated to the analysis of the country's natural risks. After an initial phase, 

in which only possible scenarios of future eruptions by the many active volcanoes were 

analyzed, the events of extreme rainfall that occurred in the late 1990s and the destructive 

seismic phenomena of 13th January and 13th February of 2001 have shifted the focus to the 

scenarios of susceptibility, danger and risk associated with seismic shocks and correlated 

earthquake-induced landslides. As a result of these destructive earthquakes, scientific studies 

were carried out (Bommer et al., 2002, Jibson et al., 2004, Evans et al., 2004; Bent et al., 

2004; Rolo et al. 2004) that perfectly reported the damage associated with the seismic events 

and the earthquake-induction landslides triggered as a consequence. These works have been 

constructive from the perspective of post-event reports, also showing the lithologies more 

affected by gravitational phenomena. However, they do not present the inventory of all the 

manifested gravitational phenomena, showing only a limited number of the present ones by 
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analyzing only the most affected areas and the more significant gravity phenomena within 

them. 

The first approach to the risk associated with these phenomena was carried out by 

Major et al. (2004), in which the debris flows hazard near the volcanoes of San Salvador, 

San Vicente and San Miguel were investigated due to their high probability of triggering 

landslides that could reach the inhabited centres. This study was carried out through conoid 

analysis to estimate the average volume of debris flows that could trigger in the future, thus 

generating a susceptibility map. 

In 2004, some Central American civil protection authorities, including MARN 

(Ministerio de Medio Ambiente y Recursos Naturales), located in El Salvador, used the 

Mora-Vahrson heuristic method (1994). That classifies the risks of landslides in seismically 

active tropical areas. The model receives five input factors divided into two groups: 

susceptibility by passive elements (slope, lithology, soil moisture) and susceptibility by 

active elements (seismic intensity and rainfall intensity). For each factor, an inflation index 

is defined for a given site and, when combined with a specific weight, a relative threat level 

is obtained through multiplication and summation of the indices. The efficiency of the 

methodology is confirmed by some studies (Castillo et al., 2011; Quesada and Feoli-

Boraschi, 2018); however, the authors recommend that this methodology be applied on a 

scale not larger than 1:50,000 due to the difficulty of obtaining detailed information from 

lithology, altitude and meteorology. This method does not use inventories.  

Further studies on the susceptibility and hazard of landslides in El Salvador include 

Garcia Rodriguez et al. (2008, 2010) evaluated the probability of occurrence of earthquake-

induced landslides at the regional scale, using Multivariate Logistic Regression (MLR) and 

Artificial Neural Network (ANN) technique using the retro-propagation learning algorithm. 

These studies were carried out by grouping the seismic phenomena of January and February 

2001 in a single landslides inventory, mapping phenomena through polygons and using a 

spatial resolution of 100-m pixels for both dependent and independent variables, conditioned 

by the resolution of the input data. The results obtained in the Receiver Operating 
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Characteristics (ROC) curves show a high concordance, with values close to 1, testifying to 

near perfection of the model's performance, showing a high concordance between the 

inventory of landslides and the area estimated high susceptibility. However, the lack of 

validation on a dataset of earthquake-induced events provides issues, making the work 

impossible to confirm. In fact, in prediction modelling, the essential component is to validate 

the prediction results (Chung and Fabbri, 2003); without this, the prediction model and 

image have hardly any scientific significance.  

A study by Kopačková and Šebesta (2007) was also conducted to generate a 

susceptibility map from landslides. In this case, a rainfall-induced susceptibility map was 

produced following the generation of an inventory of 363 landslides in an area affected by  

Hurricane Mitch in 1998. That was obtained by multivariate analysis using rasters 

extrapolated from a DEM, a geological map of the study area, and a land use map. Also in 

this specific case, a percentage of the dataset was not used for validation, making the work 

of low validity.  

Recently, thanks to international cooperation projects that have led to a collaboration 

with the MARN by the University of Palermo (RIESCA and CASTES project), studies have 

been carried out on the susceptibility of landslides induced as a result of both extreme and 

not extreme phenomena but still destructive. Among these, the work of Rotigliano et al. 

(2018), in which maps of landslide susceptibility are made with both BLR and MARS in the 

Ilopango Caldera area, showed a better predictive ability for debris flow phenomena for the 

latter technique, although the first was the one most used for the purposes until then. In 

addition, Rotigliano et al. (2019) also studied two different rainfall-induced landslides 

events, both on Ilopango, studying predictive performances using a dataset of landslides 

generated by a non-extreme rainfall event of 2003 and validating it with an inventory of 

landslides generated by the extreme event generated by the combination of the Hurricane 

Ida and the low-pressure system event 96E of 2009 and vice versa (thus using forward and 

backward chrono-validations, in addition to self-validation models), showing that all of the 
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tested models produced broadly acceptable AUC values, even as a loss in the predictive 

performance from self-validation to chrono-validation was observed. 

The work presented in Chapter 4, extracted and re-elaborated from an article by 

Mercurio et al. (2021) published in the Earth journal (MDPI) 

(https://doi.org/10.3390/earth2010005), produced a susceptibility map from rainfall-induced 

landslides in the San Vicente volcano area following the 2009 Ida/96E event.  

In work presented in Chapter 5, the susceptibility from earthquake-induced landslide 

is carried out using earthquake- and rainfall-induction inventories with different types of 

predictive variables, both static (categorical and continuous), which can be used both for the 

analysis of the susceptibility of the landslide-induced and earthquake-induced, if the 

predisposing factors are considered as the same for both types of triggers, together with the 

use of variables that can only be used for this type of triggers, such as Peak Ground 

Accelerations and epicentral distances. 

Chapter 6 presents an analysis of earthquake-induced landslide susceptibility using an 

inventory generated by rainfall-induction events and static and dynamic predictive variables. 
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4. Mapping susceptibility to debris flows triggered by tropical storms: a case study 

of the San Vicente Volcano area 

Chapter constructed from: Mapping Susceptibility to Debris Flows Triggered by 

Tropical Storms: A Case Study of the San Vicente Volcano Area (El Salvador, CA) - 

Mercurio, C.; Martinello, C.; Rotigliano, E.; Argueta-Platero, A.A.; Reyes-Martínez, M.E.; 

Rivera-Ayala, J.Y.; Conoscenti, C.  [https://doi.org/10.3390/earth2010005] – published on 

“Earth” MDPI journal. 

4.1. Introduction 

In El Salvador, landslides are among the most destructive natural processes, capable 

of causing fatalities and destruction. Among the possible triggers, these can manifest as a 

response to extreme rainfall events. In this study, an inventory of landslides that occurred in 

San Vicente (central sector of El Salvador) were prepared, following a combination of events 

that hit El Salvador in November 2009, when most of the country was hit by the passage of 

Hurricane Ida and low-pressure system 96E event. Most of the landslides that occurred in 

this sector can be classified as debris flows (Chapter 2.2.7). Following heavy rains, these 

phenomena can reach high velocities that may further increase if different debris flows can 

flow into the same channel. The deposition fan is often located at the base of the slope but 

can also reach several kilometres from it. For this reason, this type of landslide is extremely 

hazardous in the San Vicente area, where the base of the volcano slopes is densely populated 

and crossed by major transportation routes. 

This work aims to predict the spatial distribution of the landslides that occurred in the 

San Vicente area by using the MARS statistical modelling technique (Friedman, 1991) to 

generate a landslide susceptibility map. The model's performance will be evaluated by using 

confusion matrices and also preparing ROC curves and analyzing the values of the resulting 

AUC.  
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4.2. Materials and Methods 

4.2.1. Study Area 

The study area, which extends for 287 km2, is located along the slopes of the San 

Vicente Volcano, El Salvador (Figure 4.1). 

Figure 4.1. Location of the study area. This is located in the central sector of El Salvador, Central America 

(a); within the area under study (b) there are three towns: Guadalupe, Verapaz and San Vicente (c). 

The San Vicente volcano, also known as Chichontepec (in the indigenous language 

nahuat it means “the mountain of the two breasts” for its double summit), is one of the 

twenty-two volcanoes of the volcanic arc of El Salvador and is situated next to the town of 

San Vicente (hence the name), located about 50 km east of the capital city San Salvador. 

This composite stratovolcano is the second-highest volcano (2,182 m) and one of the most 
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significant volcanos in the country (also with San Salvador, San Miguel, Ilopango, Santa 

Ana, Izalco and Conchaguita). 

Although San Vicente has not erupted in the past 1,700 years, powerful hot springs 

and geothermal developments located on the volcano's north side suggest that past eruptions 

are youthful enough and that the volcanic system maintains residual heat from magmatic 

sources. Thus, the volcano should be considered active and likely to erupt again (Major, 

2001).  

Predicting the style of future eruptions is difficult due to poorly known eruptive 

history; however, based on past eruptive activity, future eruptions might involve the 

emplacement of lava flows and the growth and collapse of small-volume lava domes. In 

addition, the collapse of lava domes might generate pyroclastic flows and surges that might 

travel several kilometres over the volcano’s base. 

However, possible future eruptions do not represent the main problem of the volcano, 

as the main current risk in the area is given by the manifestation of massive debris flows. 

Due to a tropical-humid climate regime, with an average annual rainfall of about 1,500 

mm and average annual temperatures between 21°C and 32°C, the slopes of San Vicente 

volcano experience intense physical-chemical degradation with consequent lowering of the 

level of cohesion of the rocks, also favoured by the pyroclastic and ashy nature of the 

outcropping materials. This climatic and geological setting favours the occurrence of 

numerous gravitational phenomena, such as debris flows, involving weathered pyroclastic 

materials which cover steep slopes. This type of landslides, which can destroy or damage 

everything in their paths through burial or impact, occurred many times in Central America, 

causing enormous economic damages and, above all, death. An example is that of 1934, in 

which an impressive debris flow on the north side of San Vicente destroyed the village of 

Tepetitan (Major, 2001). 
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4.2.2. Mapping strategy 

Mapping the landslides triggered by heavy rainfalls in a tropical area, where vegetation 

recovers rapidly, such as that of San Vicente, requires aerial/satellite images taken not long 

after the event. The landslides archive used in this study was prepared by analyzing high-

resolution remote sensing imagery dated 11/21/2009 (mm/dd/yyyy), thus only two weeks 

after the combined action of Hurricane Ida and 96E low-pressure system, and freely 

available in Google Earth. Each slope failure was identified through a Landslide 

Identification Point (LIP; (Costanzo et al., 2014)), located at the highest point of the landslide 

crown line.  

4.2.3. Environmental variables 

As seen in Chapter 2.6, landslide susceptibility zoning requires adopting a mapping 

unit technique, which allows dividing the study area into portions with specific properties 

and distinguishing each unit from adjacent ones according to clear and definable boundaries 

(Guzzetti et al., 1999). In this study, grid cells were used as mapping units. These divide the 

territory into regular squares of predefined size and are usually preferred when working with 

raster data. The size of the cells was set to 10 m, based on the horizontal resolution of the 

available Digital Elevation Model (DEM), which was employed to derive most of the 

predictor variables. This resolution of the input data has been demonstrated to produce 

landslide susceptibility models with good predictive performance (Cama et al., 2016). For 

all the selected independent variables, a value or a category was assigned to each cell. As 

regards the dependent variable, which reflects the presence or absence of a LIP within a 

mapping unit, a binary value was given to each cell (0: absence; 1: presence). 

In this study, ten environmental attributes were selected as predictive variables of the 

mapped landslides, based on their presumed influence on the triggering mechanism and on 

the availability of data: GEO (lithology), USE (land use), LCL (landform classification), 

SLO (slope), ELE (elevation), PRC (profile curvature), PLC (plan curvature), TWI 

(topographic wetness index), NORTH ( Northness), EAST (Eastness). All the variables, with 
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the exception of GEO and USE, were derived from the 10-m resolution raster DEM available 

for the area by using QGIS and SAGA GIS (Conrad et al., 2015) software. GEO, USE and 

LCL are categorical variables whereas all the others are continuous. 

Geology (GEO) = The lithology layer was prepared on the basis a regional geological 

map at a scale of 1: 100,000 (Weber et al., 1975), which was modified and improved using 

field checks. The study area is characterized by seven lithological units that can be 

distinguished based on their different physic-chemical characteristics (Figure 4.2). 

 

 

Figure 1.2 - Geological map of the study area. 

In the area of the San Vicente volcano, the outcropping rocks are intermediate and 

basic effusive rocks with alternations of pyroclastites (geo.1). Moving eastward from the 

crater, large outcroppings of intermediate basic effusive rocks and subordinate pyroclastites 

(geo.3) can be observed, alternating with acid pyroclastic rocks, volcanic epiclastites and 

volcanic epiclastites and pyroclastites with locally effusive basic-intermediate rocks (geo.6 

and geo.7) in the western sector of the area. In the northern sector, where the localities of 

San Vicente (north-eastern sector of the area), Guadalupe and Verapaz (north and north-
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western sector) are located, there is a strong presence of acidic pyroclastites and subordinate 

volcanic epiclastites and effusive acid rocks, or lithologies belonging to the Tierra Blanca, a 

member of the San Salvador formation (geo.4). All these deposits are highly weathered and 

may favour the triggering of debris flows following extreme rainfall events. 

As shown in Table 4.1, the lithology class with the most significant extent is that of 

hard soil, i.e. acid pyroclastic rocks and volcanic epiclastites; this class contains almost half 

of the identified landslides. 

 
 Table 4.1 - The seven lithological classes are shown with their corresponding descriptions and the 

percentage value of the presence of each class compared to the total area. 

 

Land use (USE) = The land use raster map includes eleven classes and was created by 

rasterizing the CORINE Land Cover shapefile, which was prepared by using satellite images 

dated 2002. Most of the investigated territory is characterized by crops of different natures, 

whereas only about 3% of the area is characterized by anthropogenic structures (Table 4.2).  

Landform classification (LCL) = This variable was extracted by using an automated 

procedure that recognizes landforms on a gridded elevation distribution. Table 2 reveals that 

open slopes (lcl.5) are the most frequent class. 

  

COD TYPE DESCRIPTION % presence of the factor 

in the area 

geo.1 Soft rocks intermediate basic effusive rocks and subordinate pyroclastites 23.00% 

geo.2 Hard rocks intermediate basic effusive rocks and subordinate pyroclastites 20.84% 

geo.3 Medium 

rocks 

acid effusive and acid intermediate rocks 0.80% 

geo.4 Very soft 

soil 

Tierra Blanca: acidic pyroclastites and subordinate volcanic 

epiclastites and acid effusive rocks 

 

17.25% 

geo.5 Soft soil Quaternary sedimentary deposits 0.91% 

geo.6 Hard soil acid pyroclastic rocks, volcanic epiclastites 29.77% 

geo.7 Medium 

soil 

volcanic epiclastites and pyroclastites, locally effusive basic-

intermediate rocks 

7.42% 
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Table 4.2 - Percentage frequency distribution of land use (left) and landform classifications (right). 

 

 Slope (SLO) = This variable represents the steepness of the ground measured as a 

percentage. 

Elevation (ELE) = The altitude above sea level of each cell corresponds to the value 

of the DEM. 

Profile curvature (PRC) = This variable reflects the geometry of the surface in the 

direction of the maximum incline of the slope. Positive cell values indicate an upward 

convexity of the surface, while negative values indicate a downward concavity; a value of 0 

indicates the absence of concavity/convexity and, therefore, a constant slope steepness. 

Plan curvature (PLC) = This variable reflects the curvature measured perpendicular 

to the direction of the maximum slope, thus reflecting the curvature along the contour lines. 

Positive and negative values indicate a convex and a concave surface, respectively, while a 

value of 0 indicates the absence of concavity/convexity at the cell along contour lines. Profile 

and plan curvature, which reflect flow acceleration/deceleration and flow 

convergence/divergence across the land surface, respectively, can also be used to identify 

areas of activation and propagation of landslides (Ohlmacher, 2007). 

COD TYPE % 

presence of 

the factor  

COD TYPE % 

presence of 

the factor  

use.1 Urban areas 3.13% lcl.0 Streams 4.86% 

use.2 Woods 5.05% lcl.1 Midslope drainages 7.88% 

use.3 Annual crops 17.61% lcl.2 Upland drainages 0.59% 

use.4 Mixed crops 20.11% lcl.3 Valleys 5.39% 

use.5 Permanent crops 45.96% lcl.4 Plains 18.21% 

use.6 Wetlands 0.00% lcl.5 Open slopes 42.47% 

use.7 Mangroves 0.00% lcl.6 Upper slopes 7.12% 

use.8 Minings 0.00% lcl.7 Local ridges 0.41% 

use.9 Pastures 1.73% lcl.8 Midslope ridges 8.98% 

use.10 Rivers 0.24% lcl.9 High ridges 4.08% 

use.11 Shrub vegetations 6.18%    
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Topographic wetness index (TWI) = This variable is calculated as ln(As/tanβ), 

where  As is the specific contributing area and β is the local slope angle. TWI should reflect 

soil saturation and, thus, is expected to control the spatial distribution of debris flows.  

Northness (NORTH) and Eastness (EAST) = These two variables were computed by 

applying cosine and sine transformations of slope aspect expressed in radians. The slope 

aspect may influence the spatial distribution of landslides, as it can reflect the difference in 

exposure to solar radiation temperature, humidity and type and density of vegetation cover. 

Northness ranges between 1, if the aspect is north, and -1, if the aspect is south, with 0 

associated to slopes facing east or west. Accordingly, eastness is in the range 1 (east) – -1 

(west), with 0 indicating either north or south slope aspect. 

Since the employed modelling technique requires excluding multicollinearity among 

covariates, the Variance Inflation Factor (VIF) was calculated for the selected continuous 

predictors. This metric allows measuring the degree of correlation between predictors. 

Predictors with VIF values equal to or higher than 10 indicate multicollinearity (Allison, 

1999; Hair et al., 2010; Keith, 2014). VIF values were calculated by using the R package 

"usdm" (Naimi, 2015).  

4.2.4. Modelling technique 

Multivariate Adaptive Regression Splines (MARS; (Friedman, 1991)) was used as 

modelling technique of landslide susceptibility.  

In this paper, MARS models were prepared by using the “earth” package (Milborrow, 

2020) of the R software. The “evimp” function of the “earth” package was used to estimate 

the importance of each of the selected predictors (Rotigliano et al., 2019). This was evaluated 

according to the number of model subsets that include the variable or a category, in the case 

of categorical variables (i.e., GEO, USE, LCL). The higher the number is, the more 

significant the contribution of the variable/category is. 
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4.2.5. Calibration and validation of the models 

In this work, MARS models were calibrated and validated by using different random 

samples extracted from the landslide archive (Chung and Fabbri, 2003). This approach 

requires that the random selection of learning and test samples is repeated many times, in 

order to assure that the validation results, and related conclusions, are not produced by 

chance. Estimating the variability of the model’s performance allows for evaluating the 

robustness of the modelling approach, whereas the average values of the performance 

metrics can be employed to reveal the overall predictive ability. To this aim, 100 datasets 

were created by randomly selecting the 25% of positive cells (cells intersecting LIPs) and 

the same number of negative cells (cells not intersecting LIPs). Then, each of the 100 

datasets was randomly divided into a training and a test group, both with the same number 

of positive and negative cells, containing 75 and 25% of the LIPs, respectively. Finally, a 

MARS model was calibrated and validated on each of the datasets, thus obtaining 100 

measures of the model’s performance. 

The predictive skill of the models was evaluated by preparing, for each of the 100 

models’ run, a ROC curve and by calculating the AUC curve. In order to evaluate the 

model’s performance by using also cut-off dependent metrics, an optimal cut-off value for 

the 100 ROC curves was calculated by using Youden's index (J) (Youden, 1950; Cama et 

al., 2017; Rotigliano et al., 2019; Conoscenti et al., 2020).  

4.2.6. Landslide susceptibility map 

The 100 MARS replicates allowed to calculate for each of the cells of the study area 

an average value of probability of debris flow occurrence. These values, which vary in the 

range between 0 and 1, were classified into four levels (low, moderate, high and very high) 

and employed to produce a final debris-flow landslide susceptibility map. The optimal cut-

off value J was used as a limit between moderate and high susceptibility levels. Two other 

Youden’s indexes, Jlow and Jhigh, calculated for the cells with probability lower and higher 
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than J, respectively, were employed to separate low/moderate and high/very high 

susceptibility levels. 

4.3. Results 

4.3.1. Landslide inventory 

The visual analysis of the Google Earth images dated 11/21/2009 and available for the 

study area allowed to identify of 5,609 LIPs relative to the debris flows triggered by the 

paroxysmal event that happened on 7th and 8th November 2009 (Figure 4.3).  

 

Figure 4.3 - Map of the 5,609 LIPs identified in the study area. 

LIPs are mainly located in the study area's northern, western, and north-western 

sectors, as well as in the slopes of the San Vicente volcano. Almost half (i.e., 2,753) of the 

LIPs are located over the hard soil unit (Figure 4.4), which includes acid pyroclastic rocks 

and volcanic epiclastites, is the class with the greatest areal extension (Table 4.1). The 

second highest frequency of LIPs (i.e., 979) is observed for the Tierra Blanca unit, which 

includes acidic pyroclastites and subordinate volcanic epiclastites and acid effusive rocks. 
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The class geo.1 (intermediate basic effusive rocks and subordinate pyroclastites), which is 

the second largest lithological unit, hosts 612 LIPs, representing around 11% of the LIPs’ 

inventory. 

 

Figure 4.4 - Spatial distribution of the 5,609 LIPs over the lithological map. 

Figure 4.5 shows the relative frequency distributions [%] of the selected predictors 

calculated over the entire study area and only on the pixels intersecting one or more LIPs 

(i.e. positive pixels). Different distributions of a predictor observed in the entire area and 

where LIPs occur are expected to indicate a relationship between the spatial variability of 

that predictor and the LIPs’ positions. On the other hand, similar distributions should suggest 

no correlation between predictor and target variable. The distributions of elevation share the 

same centre but that observed on positive pixels is clearly less dispersed, indicating that 

pixels in the range 500–600 m asl are more likely to host a LIP. The slope frequency 

distribution observed on positive pixels is centred at a higher steepness than that observed 

on the entire area, reflecting that debris flows are more likely to start on pixels with slope 

angle between 10° and 30°. Frequency distributions of northness and eastness reflect the 
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distribution of the LIPs over the study area (Figure 4.5), which occur more frequently on 

slopes facing east and north. Frequency distributions of plan and profile curvature calculated 

on the entire dataset and on positive pixels appear very similar, whereas those of TWI are 

differently skewed revealing that LIPs occur more frequently at low to moderate values and 

thus on the middle and upper portions of the slopes. Frequency distributions of USE and 

LCL show small to moderate differences, whereas those of GEO indicate that hard soil 

(geo.6) is the lithology class most prone to debris flows and soft (geo.1) and hard (geo.2) 

rocks are the most stable.  
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Figure 4.5 - Relative frequency distributions [%] of the selected predictors calculated over the entire 

study area and only on the pixels intersecting one or more LIPs. 
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4.3.2. Calibration and validation of the models 

Calibration and validation of MARS models were performed by using all the selected 

environmental variables as predictors. The Variance Inflation Factor (VIF), indeed, which is 

below the threshold of ten for all the independent continuous variables, revealed no strong 

correlations among them (Table 4.3).  

 

Table 4.3 - Variance Inflation Factor values calculated for the seven continuous variables. 

 

 

 

 

 

 

 

 

 

 

The dataset employed to calibrate and validate the debris flows predictive models 

includes 2,794,399 pixels of 10 m, which cover the entire study area. 4,975 of these pixels 

host one or more LIPs and are classified as “positive cells”. The remaining 2,789,424 pixels 

are classified as “negative cells”. The first step of the validation procedure consisted in 

preparing 100 random samples, including 1,244 pixels (25% of the total positive cases) and 

the same number of negative cases. Then, each of the 100 samples was split into a training 

and a test subset, both balanced in terms of positive and negative cases and including 75% 

and 25% of the 1,244 pixels, respectively.  

Figure 4.6 shows 100 ROC curves, each revealing the fit of a MARS model to a test 

subset, as well as the average ROC curve. The latter achieves an AUC value of 0.80, which 

reflects excellent predictive performance of the MARS models. Moreover, the standard 

deviation of the 100 AUC values, which is equal to 0.01, demonstrates the robustness of the 

procedure to changes of the learning and validation samples.  

The average ROC curve was employed to calculate Youden’s index J, which is equal 

to 0.46 and represents the optimal cut-off value allowing to maximize of the sum of 

VARIABLES VIF 

ELE 1.308 

PLC 1.491 

PRC 1.276 

SLO 2.013 

TWI 2.205 

NORTH 1.003 

EAST 1.035 



 

57 

 

sensitivity and specificity. This value was employed to calculate an average confusion matrix 

for all the 100 random samples of 2,488 pixels, with a 1:1 ratio of positive-to-negative 

instances, as well as for the entire dataset, which has a high prevalence of negative pixels 

(Table 4.4).    

Table 4.4 - Validation results for the balanced and all-area MARS models. 

 

Sensitivity of the 100 model runs (balanced models) and that calculated for the average 

probability values computed for all the pixels of the area (all-area model) is 0.79 and 0.80, 

respectively, demonstrating a good predictive skill of event pixels; on the other hand, 

specificity values are 0.66 and 0.67, respectively, thus reflecting a lower ability of the MARS 

models to detect true negatives. The accuracy of the balanced models (0.73) is substantially 

higher than that achieved by the all-area model (0.67), due to the very high number of false 

positives (FP) predicted over the entire dataset. Positive predictive value (PPV) and negative 

predictive value (NPV), which are calculated as TP / (TP + FP) and TN / (TN + FN), are 

0.70 and 0.76 for the balanced models, whereas they are 0.00 and 0.99 when computed on 

the entire study area. The values of PPV and NPV calculated for all-area model reflect the 

high number of FP and the high ratio of TN to FN, respectively. 

MODELS N° PIXELS CUT-OFF POSITIVE 

CASES 

NEGATIVE 

CASES 

TP FP TN FN 

Balanced 2,488 0.46 1,244 1,244 985 417 827 259 

All-area 2,794,399 0.46 4,975 2,789,424 3,992 933,454 1,855,970 983 

MODELS ACCURACY SENSITIVITY SPECIFICITY PPV NPV AUC   

Balanced 0.73 0.79 0.66 0.70 0.76 0.80   

All-area 0.67 0.80 0.67 0.00 0.99 0.81   
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The AUC value (0.80) achieved by the all-area model, also reported in Table 4.4, 

indicates, in accordance with the classification proposed by Hosmer and Lemeshow (Hosmer 

and Lemeshow, 2000), the excellent ability of the predictive model to discriminate between 

observed presences and absences. 

Figure 4.6 - ROC curves processed using the MARS method in the study area. 

 

Figure 4.7 displays the relative importance of the predictor variables assessed by using 

the nsubsets criterion (Conoscenti et al., 2016; Rotigliano et al., 2019; Martinello et al., 

2020). Slope is the most important independent variable, followed by three classes of GEO 

(i.e. geo.1, geo.2 and geo.7) and LCL (i.e. lcl.3, lcl.4 and lcl.5), and by ELE, which achieve 

a relative importance higher than 30%. 
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     Figure 4.7 - Relative importance of the predictor variables. Thicker lines and bigger circles indicate 

importance higher than 30%. 

4.3.3. Landslide susceptibility map 

This results in the final debris flow susceptibility map, obtained by averaging the 

probability values calculated by the 100 MARS model runs for each of the 2,794,399 pixels 

of the study area. MARN and municipalities have provided this map, which now uses as 

cartography for susceptibility to rainfall-induced landslides for the municipalities of San 

Vicente, Verapaz and Guadalupe (Mendez Alfaro, 2022) (Fig. 4.8). 

The map was created by classifying the probability values into four levels, according 

to the optimal cut-off value J (0.46) and the subsequent two different Youden's indexes 

(equal to 0.25 and 0.7, respectively) calculated to discriminate very low/low and high/very 

high susceptibility levels. The “degree of fit” between the susceptibility map and the spatial 

distribution of the LIPs is shown in Figure 4.9. The latter reveals that the frequency of the 

probability classes decreases from the lowest to the highest levels, whereas the frequency of 

LIPs shows an inverse trend achieving the highest value in the highest susceptibility class. 
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Figure 4.8 - Debris flows susceptibility map of the study area. Created by Mercurio et al. (2021) and 

modified from Mendez Alfaro (2022) and now used for the municipalities of Guadalupe, Verapaz and 

Tepetitan. 

 

Figure 4.9 - Relative frequency distributions of the debris flow susceptibility levels (solid outline) and of 

the LIPs (dotted outlines) calculated for the four levels.  
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4.4. Discussion and Conclusions 

In this experiment, susceptibility to debris flow initiation in the area of the San Vicente 

volcano was evaluated by preparing an inventory including thousands of landslides triggered 

by heavy rainfalls due to Hurricane Ida and the 96E low-pressure system (November 2009) 

and by modelling the relationship between the location of these landslides and the spatial 

variability of a set of environmental variables by using MARS as modelling technique.  

The validation of the MARS models, which was performed on 100 random samples of 

pixels, revealed an overall excellent ability to predict the debris flows that occurred in the 

San Vicente area, as attested by an average AUC value equal to 0.80. Moreover, the very 

low standard deviation of AUC values (0.01) demonstrated the robustness of the modelling 

procedure, which achieved very similar performance when changing the learning and 

validation samples. The cut-off dependent metrics, which were calculated by applying 

Youden’s index as a threshold to discriminate between pixels predicted as positives and 

negatives, revealed a different ability of the models to identify the event (sensitivity = 0.79) 

and stable (specificity = 0.66) cells. This difference in performance reflects a relatively low 

number of false negatives, on the one hand, and a high number of false positives on the other. 

The number of false positives increases proportionally when the model is applied to the 

entire study area (i.e. all-area model). This data indicates that the model tends to overestimate 

the susceptibility to debris flows in the area of San Vicente. However, it is worth noting that 

an excess of false positives constitutes a less serious prediction error than that due to a large 

number of false negatives. In fact, while landslides could occur in the future in pixels 

erroneously predicted as unstable, those pixels that have been considered stable and where 

landslides have occurred, constitute an irreversible error. Besides, in light of the 

geomorphological setting of the area and its high exposure to severe rainfall-triggering 

events, false positive cases are to be considered as potential future initiation points. 

The ability of MARS to predict debris flow source sites in the San Vicente area is very 

similar to that measured in the Ilopango Caldera, El Salvador (Rotigliano et al., 2018, 2019), 

by using an inventory of landslides also triggered by Hurricane Ida and the 96E low-pressure 
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system (AUC = 0.81-0.82; Std. dev. = 0.006). The performance of MARS observed in this 

study is even slightly better than that evaluated by Vargas et al.  (2019) in Mocoa (Colombia) 

with debris flows triggered by a heavy rainfall event, where the average AUC was 0.78, but 

with a very low standard deviation (0.007). As regards the threshold-dependent metrics, 

similar values of sensitivity (0.84) and specificity (0.66) were found in the area of the 

Ilopango Caldera by Rotigliano et al. (2018, 2019). The specificity values also found in these 

previous studies indicate that future research should address the issue of the high number of 

false positives generated by the MARS model. 

The evaluation of the importance of the predictor variables revealed that slope angle 

(SLO) and elevation (ELE) are the most important continuous predictors, whereas, among 

the categorical variables, three classes of lithology (GEO) and landform classification (LCL) 

achieved a high relative importance (> 30%). The analysis of the importance of the variables, 

which was based on the nsubsets criterion, partially confirms what can be inferred from the 

comparison of the variables’ relative frequency distributions observed on the entire area and 

on the positive pixels (Fig. 4.7). These distributions are, indeed, somewhat different for SLO 

and ELE, but also for TWI, EAST and NORTH, which instead exhibited low importance (< 

20%). Based on the high density of LIPs, we would have expected high importance of the 

lithology category geo.6 (hard soil), whose relative contribution to the MARS models is, 

however, very low. 

A strong relationship between landslide locations and slope angle variability and 

elevation was also found in other landslide susceptibility studies that employed MARS as 

modelling techniques (Rotigliano et al., 2018; Vargas-Cuervo et al., 2019). As regards the 

Ilopango Caldera area, Rotigliano et al. (2019) calculated high importance of elevation and 

terrain ruggedness index. The latter variable is usually strongly correlated with slope 

steepness; thus, it is possible to infer that the importance of the continuous predictors of 

debris flows is somewhat similar in the two areas of El Salvador. On the other hand, the 

analysis of the importance of the categorical variables revealed different results, as GEO and 



 

63 

 

LCL exhibited low importance in the Ilopango Caldera area, whereas a relatively strong 

relationship was found between some of the USE classes and the location of debris flows. 

Based on the results obtained in this experiment, the following conclusions can be 

drawn for the area of San Vicente volcano: 

- MARS is able to predict the locations of debris flows with excellent accuracy 

(AUC = 0.80) by using as predictors a set of environmental variables that can be 

extracted from available thematic maps and a DEM with 10-m horizontal 

resolution; 

- The ability of MARS to predict the spatial distribution of debris flows is stable 

when changes of the learning and validation samples are performed (AUC Std. 

dev. = 0.01); 

- The cut-off dependent metrics revealed that MARS models produce a large number 

of false positives and thus their ability to identify stable cells is moderate 

(specificity = 0.66); 

- MARS exhibits in the San Vicente area the same predictive skill as that achieved 

in other study areas located in El Salvador and Colombia; 

- MARS modelling revealed that slope angle, elevation, lithology and landform 

classification are the most important predictors of the debris flows that occurred in 

the study area. 

 

The modelling procedure described in this paper allows for preparing debris flow 

susceptibility maps using data typically available on a large scale. These maps may help land 

planners and environmental agencies to adopt actions to mitigate landslide risk and avoid 

severe damages or even casualties caused by their occurrence in urbanized areas. At the same 

time, the obtained susceptibility model and map optimized for detecting the initiation points 

for future debris flow phenomena are the basis for the now-running step of this research 

aimed at implementing a propagation routing algorithm to produce a full predictive scenario. 
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5. Predicting earthquake-induced landslides by using a stochastic modelling 

approach which combines preparatory and triggering factors 

Chapter constructed from: Predicting earthquake-induced landslides by using a 

stochastic modelling approach which combines preparatory and triggering factors: a case 

study of the coseismic landslides occurred on January and February 2001 in El Salvador – 

Mercurio, C., Martinello, C., Argueta-Platero, A. A., Azzara, G., Rotigliano, E., and 

Conoscenti, C (presented at 10th IAG International Conference on Geomorphology (ICG) 

https://doi.org/10.5194/icg2022-543, 2022a). 

5.1. Introduction 

On 13th January 2001, El Salvador was hit by an intense earthquake (M 7.7) which, 

both the soil shaking and the thousands of coseismic landslides generated, caused 844 

fatalities, 5,565 injured and the destruction of over 100,000 buildings. The areas most 

affected by this seismic phenomenon correspond to the south-western and south-eastern 

sectors of the country (e.g., San Salvador, Santa Tecla, Comasagua, La Libertad and 

Usultan). The country, still injured by the seismic event, precisely a month later, on 13th 

February 2001, was affected by a further intense earthquake of M 6.6 which added fatalities 

and destruction in the country. This event caused 315 victims and thousands of gravitational 

phenomena in the central sector of El Salvador (Fig. 3.5, Chapter 3.2). Since the main 

population centres are located just along the volcanoes' alignment, the phenomenon has 

caused catastrophic consequences.  

There are types of landslides that have a greater predisposition to earthquake-induction 

than others (Keefer; 1984); the minimum magnitude of activation depends, in addition to the 

lithological characteristics, also from the initial conditions of the involved slopes. In fact, if 

a specific area is in conditions close to instability, even a slight seismic event would be 

sufficient to generate a landslide. The gravitational phenomena triggered by the two 

earthquakes of 2001 caused devastating effects on the country, often affecting very intense 

seismic phenomena (twelve earthquakes above M 6.0 in the last century). Indeed, along the 
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Cordillera del Bálsamo, In Las Colinas and Las Barrioleas, two massive gravitational 

phenomena caused almost 1,000 deaths (Abate et al., 2014). 

The main aim of this chapter is to evaluate the ability of rainfall- and earthquake- 

induced landslide susceptibility models to predict the geographical distribution of the 

coseismic slope failures that occurred in 2001 events. The experiment was performed in 

fourteen sectors of El Salvador, accounting for a total extent of 396.97 km2. Eight of these 

sectors (91.85 km2) were strongly hit by the January earthquake, whereas most of the 

landslides triggered by the February earthquake occurred in the other six sectors (305.72 

km2). The modelling strategy was based on both rainfall- and earthquake-triggered landslide 

susceptibility models. The first model was calibrated by using the inventory of 5,609 

(Chapter 4.3) landslides triggered on November 2009, by the combined action of Hurricane 

Ida and the low-pressure system 96E, in a sector extending 287 km2 along the slopes of the 

San Vicente Volcano, El Salvador (Mercurio et al., 2021). The rainfall-triggered model, 

which was trained by using only static independent variables, was applied to all fourteen 

study areas to verify its ability to predict the position of the coseismic landslides that 

occurred on January and February 2001. On the other hand, the earthquake-induced landslide 

predictive models were calibrated by using both static and dynamic variables, the latter 

reflecting the intensity of ground shaking. In order to estimate the predictive skill of the 

models and the goodness of fit of the susceptibility models, the results will be evaluated 

thanks to the AUC value.  
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5.2. Materials and Methods 

5.2.1. Study areas 

This work was performed in 14 areas along the volcanic chain (Fig. 5.1), which were 

among the areas most affected by the two intense earthquakes occurred in the first two 

months of 2001.  

 

Figure 5.1 - Location of the fourteen study areas: sectors 1-3 and 4-8 are located in the south-eastern and 

south-western areas of El Salvador and were affected by the earthquake of 13th January 2001, sectors 9-14 are 

located in the central area of the country and were affected by the earthquake of 13th February 2001. 

The first eight study areas, numbered from 1 to 8, were selected because of the high 

number of landslides triggered by the January 2001 earthquake. Sectors 1 to 3 are in the 

south-western part of the country, close to the San Salvador volcano, whereas sectors 4 to 8 

are located in the southern-eastern portion of El Salvador. Sectors from 9 to 14 are placed in 

the south-central part of the country and were selected because they were close to the 

February 2001 earthquake epicenter and strongly affected by coseismic landslides. Table 5.1 
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reports the extent, average and standard deviation of altitude and slope angle, and the main 

outcropping lithology of the 14 study areas. 

Table 5.1. This table reports for each area, the extent, average and standard deviation of altitude and slope 

angle, and the main outcropping lithology. Lithology classes: GEO1 soft rocks (intermediate basic effusive 

rocks and subordinate pyroclastites) GEO2 hard rocks (intermediate basic effusive rocks) GEO3 medium rocks 

(acid effusive and acid intermediate rocks) GEO4 very soft soils (Tierra Blanca: acidic pyroclastites, 

subordinate volcanic epiclastites and acid effusive rocks) GEO5 soft soils (Quaternary sedimentary deposits) 

GEO6 hard soils (acid pyroclastic rocks, volcanic epiclastites) GEO7 medium soils (volcanic epiclastites and 

pyroclastites, locally effusive basic-intermediate rocks). 

 

The sectors under consideration contain different: areal extensions (in a range from 

about 2.6 to 155 km2), average elevation (from about 78 to 1.039 m), average slopes (from 

about 3 to 25°) and different types of lithological classes present, thus showing a wide 

heterogeneity. 

Most of the landslides' activation of both the 2001 earthquakes corresponds to 

thousands of shallow debris flows/avalanches and rotational slides (Chapters 2.2.7 and 2.2.5, 

respectively), but there are also numerous falls in rock and debris (Chapter 2.2.3), according 

Sector Area [km2] Altitude [m a.s.l.] Slope angle [°] Two main lithology classes 

Mean Std.dev. Mean Std.dev. 

1 15.41 577.73 64.19 15.10 11.22 GEO7 

(83.92%) 

GEO2 

(15.39%) 

2 2.31 1039.00 50.69 25.17 10.02 GEO2 

(84.42%) 

GEO7 

(15.58%) 

3 23.89 975.86 70.16 14.71 12.96 GEO7 

(42.38%) 

GEO4 

(26.70%) 

4 3.98 286.16 41.14 20.51 10.71 GEO7 

(100.00%) 

- 

5 2.66 287.80 31.01 16.38 9.41 GEO7 

(98.44%) 

GEO1 

(1.56%) 

6 3.89 1008.35 85.91 12.11 9.23 GEO1 

(72.80%) 

GEO7 

(27.20%) 

7 8.29 862.50 70.54 11.05 8.79 GEO1 

(50.97%) 

GEO7 

(49.03%) 

8 31.42 78.34 22.40 3.29 4.28 GEO7 

(95.32%) 

GEO5 

(1.81%) 

9 155.32 618.41 122.58 24.23 12.43 GEO7 

(30.17%) 

GEO6 

(27.98%) 

10 5.32 685.48 28.97 16.46 12.00 GEO6 

(56.19%) 

GEO4 

(41.14%) 

11 13.79 781.87 74.31 16.09 10.14 GEO2 

(51.69%) 

GEO6 

(31.39%) 

12 34.80 699.61 51.11 16.30 10.01 GEO2 

(10.39%) 

GEO6 

(73.24%) 

13 87.65 833.88 365.10 17.93 13.55 GEO4 

(36.26%) 

GEO1 

(31.78%) 

14 8.84 266.62 39.17 5.12 5.55 GEO6 

(90.25%) 

GEO2 

(8.57%) 
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to Cruden & Varnes's classification of landslides (1996). Moreover, both earthquakes 

triggered a few large and deep landslides that were highly damaging.  

 

El Salvador is in a tropical-humid climate system, characterized by a dry season from 

November to April and a wet season from May to October, where about 75% of annual 

precipitation falls. The earthquakes of 2001 occurred in the first two months of the year, thus 

during the dry season, confirmed by the study of precipitation data recorded close to the 

study areas. Furthermore, gauge stations showed cumulative precipitation in the 12 months 

preceding the earthquakes of 2001 lower than the annual average of the same gauge stations 

in the 29 years before the earthquakes (Tab. 5.2). 

 

Table 5.2 - Precipitation in the 12 months preceding the seismic events of 2001 and the average annual 

precipitation in the period 1971-1999 in the 14 areas under consideration. 

 

Sector 1 2 3 4 5 6 7 8 9 10 11 12 13 14 

Rainfall 

[mm] 

Mar 2000- 

Feb 2001 

  

 

1166 

 

 

1614 

 

1614 

 

1571 

 

1571 

 

1571 

 

1571 

 

1571 

 

1632 

 

1632 

 

1632 

 

1632 

 

1632 

 

1632 

Average 

rainfall 

[mm] 1971-

1999 

 

1657 

 

1847 

 

1847 

 

1650 

 

1650 

 

1650 

 

1650 

 

1650 

 

1836 

 

1836 

 

1836 

 

1836 

 

1836 

 

1836 

 

In addition, also by studying the monthly data in detail, it was also observed that 

November 2000 was the last month that experienced rainfall, which was lower than the 

average, and the following months until the earthquakes of 2001, unlike the averages of 

previous years, were without rains. These data suggest that the water's content has not been 

decisive in the genesis of gravitational phenomena, a situation that could have increased the 

extension, the amount and the damage of landslides due to a possible increase in volume 

weight and decrease in the cohesion of soils and outcropping rocks. 

 

 



 

69 

 

5.2.2. Mapping strategy 

Landslide inventories are valuable tools for investigating slopes' morphological 

evolution and analyzing the dynamics following determinant triggers that caused 

gravitational phenomena. These have to be referred to a specific event to know the 

phenomena following a specific trigger, so excluding the gravitational phenomena that 

occurred before or after. The presence or absence of a gravitational phenomenon within a 

selected mapping unit performs the function of a dependent variable in landslide 

susceptibility analysis carried out by stochastic and empirical models. It turns out that their 

completeness is decisive in the accuracy of a model's results (Galli et al., 2008; Steger et al., 

2016, 2017; Rotigliano et al., 2018; Martinello et al., 2022). In fact, for the lack of several 

landslides, an error is made that compromises the performance of the statistical model. Since 

the 2001 landslide inventories available to date are incomplete, as they present only the main 

gravitational phenomena, it has been found suitable to create a complete inventory, 

attempting to include their entirety.  

To prepare the earthquake-induced landslide inventory after the two main shocks 

occurred on 13th January and 13th February 2001, aerial photos were obtained by the CNR 

(Centro Nacional de Registros de El Salvador - Instituto Geográfico y del Catastro 

Nacional). Regarding the January earthquake, 136 aerial photos were taken, covering 91.85 

km2, while 313 aerial photos covering 305.72 km2 were taken during the February 

earthquake (Fig. 5.2).  Recognizing and mapping landslides in tropical areas, where 

vegetation recovers rapidly, requires aerial/satellite images taken not long after the event 

(Mercurio et al., 2021).  

These aerial photos were obtained the following days of both earthquakes, when 

displaced materials had not yet been removed (Fig. 5.3). In fact, the photos related to the 

first event were obtained on 17th January, those related to the second event on 19th February. 
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Figure 5.2 - The eight and six sets of aerial photos were used for the study areas of January and February 

2001 seismic events. 

 

 

Figure 5.3 – Two examples of aerial photos obtained by CNR. A sector related to the photos of the CNR 

associated with the event of January 2001 (a), it is possible to observe a complex phenomenon (rotational 

sliding + flow) that will be argued in Chapter 5.2. (b) A sector related to the CNR photos associated with the 

February 2001 event. There are numerous rotational sliding phenomena and debris flow/avalanche. 
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The aerial photos, taken at different heights on each aerial path, so with varying lengths 

and widths for each path, were carried out in the most seismically affected areas, 

corresponding to sectors in the eastern and western parts of the country in the case of the 

January earthquake and to the central sector in the case of the February earthquake, thus not 

presenting areas of study intersection between the two events.  

First, the manual georeferencing of all the 449 aerial photos was realized, then the 

polygons were manually mapped, taking care to map all the gravitational phenomena 

contained, as the eventual lack of phenomena can compromise the final result. Then, the 

LIPs were extrapolated with an automatic process carried out on QGIS software; in fact, they 

were automatically placed at the highest points of the landslide polygons. A valid inventory 

must represent every landslide through an identifying point or a polygon that encloses the 

whole phenomenon. In this study, since we wanted to analyze the susceptibility of the 

landslide linked to its positions of initiation, we decided to use an inventory characterized 

by points. Although there is no agreement on the best position of a point allowing to identify 

of a given landslide and the conditions which triggered its specific slope failure, several 

recent studies have successfully adopted LIPs to identify pre-failure conditions, positioning 

it in the crown of the landslide (Rotigliano et al., 2011; Lombardo et al., 2014; Cama et al., 

2015; Rotigliano et al., 2018, 2019). 

In order to avoid errors in the mapping and including gravitational phenomena in the 

inventory that have been triggered in a previous seismic or rainy event, satellite images from 

ESA (European Space Agency) 10-m satellite resolution SPOT-4 prior to the 2001 events 

were analyzed and the landslides that were not generated by that specific trigger were 

removed. In addition, in the areas where the aerial photos were taken in February, SPOT-4 

satellite images of 21st January were also analyzed in order to assess if, among the landslides 

mapped in February, there are phenomena belonging to the trigger of the previous month 

and then to know if the mapped phenomena are of new initiation or reactivation of the 

previously seismic event. Previous events that have not been reactivated must be removed 

from the inventory as they are unrelated to that trigger. 
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5.2.3. Dependent and independent variables   

Indirect and quantitative methods are the most effective among the several 

methodologies used to generate a susceptibility map from landslides. These are characterized 

by high objectivity since they use statistical tools to determine the influence of the factors of 

instability and, consequently, the connections between the latter and the distribution of 

gravitational phenomena in a given area. In the field of geomorphology, the primary 

hypothesis of quantitative statistical methods is that landslides that have occurred in the past 

can reactivate in the future under the same conditions that generated them in the past, both 

in the same area and in zones with similar geological characteristics. Due to this statement, 

it would be possible to assign a predictive character to gravitational phenomena through the 

regression functions that connect the past and present landslide conditions (dependent 

variable) to a series of predictors or instability factors (independent variables). The 

techniques used to assess landslide susceptibility must find the best possible compromise 

between the accuracy and reliability of the forecast models. The quality of the input data is 

necessary to obtain an output equivalent as possible to reality. 

As for the binary dependent variable, which involves the presence or not of the LIP 

within the selected mapping unit, a binary value has been assigned to each cell (0 = negative, 

absence; 1 = positive, presence). 

As for the independent variables, in this work, eleven predictive variables have been 

selected that are supposed to affect the rainfall and earthquake-induction trigger phenomena: 

Aspect (ASP), Catchment Area (C_AR), Convergence Index (C_IND), Downslope Curvature 

(D_CUR), Elevation (ELE), Geology (GEO), Normalized Difference Vegetation Index 

(NDVI), Slope (SLO), Topographic Positioning Index (TPI), Topographic Wetness Index 

(TWI) and Upslope Curvature (U_CUR). Two additional dynamic predictive variables have 

been added to the subsequent earthquake-induction susceptibility analysis, the Peak Ground 

Accelerations (PGA) values, obtained from the rasterization of a shapefile obtained from the 

USGS Shakemap and the distances from the epicenter (DIST) related to their specific seismic 

trigger, obtained from the elaboration of a raster of distances from the coordinates of the 
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seismic triggers. These variables are considered predisposing factors for initiating 

gravitational phenomena after an earthquake. All variables are continuous except for GEO, 

which is a categorical variable. The variables used are shown in Table 5.3. 

Table 5.3 - Independent variables used in rainfall- and earthquake-induction landslide susceptibility 

applications. 

 

Independent variable Application for 

rainfall-/eartquake-

induction landslide 

susceptibility 

 (Y: yes, N: no) 

Type References 

ASP Aspect Y/Y Static Geospatial Data Abstraction Library 

QGIS 

C_AR Catchment Area Y/Y Static SAGA GIS 

C_IND Convergence Index Y/Y Static SAGA GIS 

D_CUR Downslope 

Curvature 

Y/Y Static SAGA GIS 

ELE Elevation Y/Y Static 10-m DEM resampled from a 5-m 

DEM from ESA 

DIST Epicentral Distance N/Y Dynamic USGS website 

GEO Geology Y/Y Static Geological map from Weber et al. 1975 

(modified) 

NDVI Normalized 

Difference Vegetation 

Index 

Y/Y Dynamic Terra/MODIS Satellite NASA 

PGA Peak Ground 

Acceleration 

N/Y Dynamic USGS Shakemap 

SLO Slope Y/Y Static Geospatial Data Abstraction Library 

QGIS 

TPI Topographic 

Positioning Index 

Y/Y Static Geospatial Data Abstraction Library 

QGIS 

TWI Topographic Wetness 

Index 

Y/Y Static SAGA GIS 

U_CUR Upslope Curvature Y/Y Static SAGA GIS 

 

5.2.4. Modelling technique 

In order to assess predictive model accuracy, landslide susceptibility processing 

requires initial model calibration and subsequent validation (Chung and Fabbri, 2003). As 

pixel-cell partition is largely and effectively employed in landslide susceptibility mapping, 

this strategy was employed in our experiment. That is made with regular squares of 

predefined size, thanks to a DEM with a resolution that must be suitable for the investigation. 
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For this work, a 10-m cell DEM was employed, resulting from the resampling of a 5-m cell 

DEM of the European Space Agency (ESA). This cell size was selected aiming to find a 

compromise between spatial resolution and computation time needed to train and test the 

models (Cama et al. 2016). In fact, works (Conoscenti et al. 2015; Garosi et al. 2018) have 

demonstrated the effectiveness of pixel-based models resulting from 10-m cell DEM.  

 To this aim, the study areas were divided into 7,096,231 10-m grid cells, 

corresponding to the pixels of the employed DEM. This dataset includes 6,464 positive and 

7,089,890 negative cells. The likelihood of landslide occurrences at each 10-m grid cell of 

the study area was calculated using Multivariate Adaptive Regression Splines (MARS; 

(Friedman, 1991)) as modelling technique. The statistical analyses were realized using R 

Studio software with the "earth" package (Milborrow, 2020). 

5.2.5. Calibration and validation strategy  

 In this study, landslide predictive models were calibrated and validated using five 

datasets, which correspond to the LIPs contained in the fourteen study sectors (JAN, FEB 

and JF), in the area of the San Vicente (SV) volcano and in the intersection between the latter 

and sectors 9 and 13 (FSE), the sectors are shown and described in Figure 5.4 and Table 5.4. 

 Table 5.4 - Datasets used to calibrate and validate the landslide predictive models. 

Dataset code Area Trigger    Landslides date 

SV San Vicente (Mercurio et al., 2021) Rainfall Nov 2009 

JAN Sectors 1 to 8 Earthquake Jan 2001 

FEB Sectors 9 to 14 Earthquake Feb 2001 

JF Sectors 9 to 14 Earthquake Jan 2001 

FSE Intersections between FEB and SV areas Earthquake Feb 2001 
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Figure 5.4 - Locations of the datasets used for the landslide susceptibility applications. 

These datasets are matrices where rows correspond to the pixels of a specific area, 

while columns report the values of the dependent and independent variables calculated for 

each pixel. The dataset of rainfall-triggered landslides (i.e., SV) includes only static 

predictors, whereas those of the coseismic landslides (i.e., JAN, FEB, JF and FSE) can report 

the values of both static and dynamic independent variables, depending on the model used.  

Indeed, the MARS predictive models were prepared using different calibration datasets or 

sets of predictors (Table 5.5).  

The models named M1 were trained with the dataset SV, which includes rainfall-induced 

landslides and static independent variables. The M1 model, calibrated with the SV dataset, 

was then transferred to all fourteen study sectors of El Salvador, calculating a probability 

(PSV) of landslide occurrence for each pixel of these areas. The values of PSV were then 

employed as a new predictor when training the models M2 and M4. The M2, M3 and M4 

models were calibrated with the earthquake-induced landslides of January and February 
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2001. The predictor variables PSV, PGA and DIST were used in the M2 models, whereas 

the M3 and the M4 models include all the selected predictors, with the latter also using PSV 

as an independent variable. 

Table 5.5 – Inventories for calibrations, variables and inventories for validations used in M1, M2, M3, 

M4 models.  

 

 

 

 

 

 

 

 

The predictive ability of the M1 models was evaluated by comparing the PSV values 

and the presence or absence of coseismic landslides in the datasets JAN, FEB, JF and FSE.   

Calibration and validation of the MARS models consisted of the following steps. First, 

ten subsets from each dataset were randomly selected, including all the event cells and the 

same number of non-event cells. The subsets of cells extracted from the SV dataset were 

used to train ten M1 models. Second, two calibration samples from the ten subsets of all the 

datasets were extracted excluding SV, by randomly selecting the 75% and the 5% of the 

event cells, respectively. The remaining event cells (25% and 95%, respectively) were 

included in the validation samples. Both calibration and validation samples were completed 

by randomly picking the same number of non-event cells. This second step thus produced 

twenty calibration and twenty validation samples extracted from the datasets JAN, FEB, JF 

and FSE. The two ratios of event/non-event cells were chosen in order to evaluate the 

predictive performance of the MARS models under two different scenarios: the first one, in 

which the positions of a large part (i.e. 75%) of the earthquake-induced landslides are 

 

Area/Inventory for Calibration 

Model 

M1 M2 M3 M4 

SV (rainfall-induction) X    

JAN, JF, FEB (earthquake-induction)  X X X 

                          

 Variables 

PSV X X  X 

Static Predictors   X X 

PGA, DIST  X X X 

 

Area/Inventory for Validation 

 

JAN, JF, FEB, FSE (earthquake-induction) X X X X 
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known; the second scenario that simulates the situation just after the earthquake occurrence 

when only a very small part (i.e. 5%) of the landslides had been identified.  

The probability of landslide occurrence was calculated for each cell of the validation 

samples by averaging the score obtained from the ten MARS model runs (one for every 

calibration sample). This strategy was applied to increase the stability of the landslide 

predictions and mitigate the rare-events issue (Heckmann et al., 2014; Van Den Eeckhaut et 

al., 2012; Vargas-Cuervo et al., 2019). For all the validation samples, the ROC curve was 

prepared by comparing the average MARS score and the value (0:absence; 1:presence) of 

the dependent variable of each pixel. Then, the AUC curves were calculated, thus obtaining 

ten values for the prediction of the datasets JAN, FEB, JF and FSE obtained from the models 

M1 to M4. The Wilcoxon signed-rank test was employed to identify significant differences 

between the models' predictive skill performance, by setting the significance level at 0.01. 

5.3. Results 

5.3.1. The 2001 earthquake-induced landslide inventories 

The JAN inventory was obtained following eight sets of aerial photos taken a few days 

after the earthquake of 13th January 2001, which correspond to inhabited areas that have 

experienced the most significant damage due to the seismic shaking and the consequent 

triggered earthquake-induction landslides, mainly corresponding to debris flows, rotational 

slides and earth and rock falls. These correspond to sectors with higher PGA values than 

adjacent zones (blue polygons in Fig.5.5).  

The resulting study area (sectors 1 to 8, counted from West to East, are respectively: 

Armenia, Comasagua, Santa Tecla, S.Agustin, S.Francisco Javier, Berlin, Santiago De Maria 

and Usultan) is 91.85 km2, corresponding to 1,260,811 10-m pixels.  

The inventory consists of 997 LIPs, placed in 997 10-m pixels. The percentage of 

positive cells, compared to the total of the pixel of the study area, is equal to 0.079%, while 

the cells containing the landslides are 9,556, for a total pixel amount of 0.76%.  
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As mentioned, inventories must be related to a specific trigger. Landslides in the 9-14 

sectors (counted from West to East, are respectively: Ilopango south and Rio Jiboa, S. Cruz 

Michapa, Cojutepeque, El Rosario, San Vicente and Tecoluca; red polygons in Fig. 5.5) 

could have been triggered already after the 13th January event, despite relatively lower PGA 

values than in the January areas. Since there were no aerial photos available, it was decided 

to analyze the area using satellite photos. An essential step to the aim was to find a satellite 

photo taken after the January and before the February events and compare it with a previous 

satellite photo to verify that these were exclusive phenomena of January 2001. Satellite 

photos were found for this purpose from ESA 10-m satellite resolution SPOT-4 of 21st 

January that allowed to map the phenomena of January (Fig. 5.6).  

 

Figure 5.5 - PGA values and LIPs related to the seismic event of M 7.7 of 13th January 2001 in the 14 

study areas. 

These landslides also needed to analyse the subsequent landslides mapped in February 

in sectors 9-14 to verify if the landslides of the following month are reactivations or if there 
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are phenomena of the previous month that have not reactivated in February, to the aim to 

remove them from the subsequent February inventory. 

 

Figure 5.6 – Landslides triggered by 13th January event and mapped in sectors 9-14. 

These landslides were added to an inventory called JF, consisting of 123 LIPs between 

sectors 9 and 14. These are placed in 123 10-m cells, for a total of 0.002% of the LIPs 

compared to the area under examination. When landslide pixels are analyzed, it turns out 

that the pixels in which the landslides are located are 11,42, corresponding to 0.2% of the 

area.  

If JAN and JF inventories are merged, the percentage of the LIPs and landslide pixels 

in relation to the total area (sectors 1 to 14) are significantly reduced (0.017 and 0.30, 

respectively) due to the low PGA values within sectors 9 to 14. However, the landslides 

triggered in these sectors, despite being about 1/10 compared to those of the inventory JAN, 

are in a more significant number of pixels occupied by landslides (Tab. 5.6). The reason is 

the high slopes characterized by thick deposits of poorly consolidated, late Pleistocene and 

Holocene Tierra Blanca rhyolitic tephras erupted from Ilopango caldera, an area particularly 

susceptible to the initiation of gravitational phenomena (Rotigliano et al., 2018, 2019). 

Indeed, in that region, the January earthquake resulted in a reduced number of debris flows 

and rotational slides, which, however, have massive surface extensions, also demonstrated 
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by the number of gravitational phenomena that have an area > 10,000 m2, which are 

respectively two and twenty-two in the JAN and the JF inventory sectors. Despite the modest 

number, the two gravitational phenomena generated the most fatalities and damage, both 

located in sector 3 (Las Colinas neighbourhood of Santa Tecla, just west of the capital San 

Salvador). One of these is a complex landslide (rotational slide + earth flows) of about 

200,000 m3, where about 585 people lost their life. This landslide (Fig. 5.7), sadly became 

famous all over the world for the devastation it has generated, is a phenomenon about 800 

m long, 150 m wide with a 50 m high escarpment activated on the north side of El Balsamo 

Ridge, composed by the andesitic cinders and some interbedded tephra of the El Balsamo 

Formation ( Bommer et al., 2002). The second event, located at a distance of approximately 

2,5 km from the first landslide, is a debris flow about 1,500 m long that also started from the 

north side of El Balsamo Ridge and has reached and destroyed a sector of the Carrera 

Panamericana, the most crucial road in the country, which connects the capital with the 

western part of El Salvador. The highway interruption has hindered the arrival of aid, 

creating enormous damage to the population.  

The absence of small landslides in sectors 9 to 14 compared to that of sectors 1 to 8 

(41.42%) is related to the different resolution sizes of the tools used for mapping, as 

phenomena with an extension less than 100 m2 can be undetectable in a satellite analysis 

with a 10-m resolution (Tab. 5.6). 
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    Figure 5.7 - An example of 

assembly of six aerial photos related 

to gravitational phenomena 

triggered by the earthquake of 

January 2001 (a); among the 

numerous landslides there is a large 

debris flow on the left that 

demolished a fragment of the Pan-

American highway and the complex 

phenomenon of rotational slide + 

flow (b). 
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Table 5.6 - Amounts and characteristics of the gravitational phenomena of landslides belonging to sectors 

1 to 14 related to the January earthquake (LIP = Landslide Identification Point, LAND = landslide). 

Sector Area 

(km2) 

N° 

LIPs 

%  

LIPs 

 

N° LAND 

areas < 100 

m2 ; (%) 

N° LANDs 

areas 100-

1,000 m2 ; 

(%) 

N° LANDs 

areas 1,000-

1,0000 m2 ; 

(%) 

N° LANDs 

areas > 

10,000 m2 ; 

(%) 

LANDs 

areas 

average 

m2 

% 

LANDs 

1 15.41 245 0.10 84 (34.29) 143 (58.37) 18 (7.35) 0 (0) 297.69 1.24 

2 2.31 128 0.52 67 (52.34) 57 (44.53) 4 (3.13) 0 (0) 190.91 3.16 

3 23.89 296 0.10 107 (36.15) 159 (53.72) 28 (9.46) 2 (0.68) 870.79 1.45 

4 3.98 67 0.07 38 (56.72) 29 (43.28) 0 (0) 0 (0) 145.82 0.39 

5 2.66 43 0.15 27 (62.79) 14 (32.56) 2 (4.65) 0 (0) 151.94 0.74 

6 3.89 8 0.02 1 (12.50) 6 (75.00) 1 (12.50) 0 (0) 328.59 0.19 

7 8.29 17 0.01 1 (5.88) 16 (94.12) 0 (0) 0 (0) 267.09 0.06 

8 31.42 193 0.05 88 (45.60) 103 (56.37) 2 (1.04) 0 (0) 116.19 0.31 

JAN  

(Sectors 1-8) 

91.85 997 0.08 413 (41.42) 527 (52.86) 55 (5.52) 2 (0.20) 407.13 0.76 

9 155.32 93 0.0025 0 (0) 19 (20.43) 55 (59.14) 19 (20.43) 8,744.50 0.27 

10 5.32 1 0.0018 0 (0) 0 (0) 0 (0) 1 (100) 19,571.39 0.44 

11 13.79 23 0.0136 0 (0) 8 (34.78) 15 (65.22) 0 (0) 2,079.28 0.35 

12 34.80 0 0 0 (0) 0 (0) 0 (0) 0 (0) 0 0 

13 87.65 6 0.004 0 (0) 1 (16.67) 3 (50.00) 2 (33.33) 10,263.87 0.05 

14 8.84 0 0 0 (0) 0 (0) 0 (0) 0 (0) 0 0 

JF  

(Sectors 9-14) 

305.72 123 0.002 0 (0) 28 (22.77) 73 (59.34) 22 (17.89) 7,660.25 0.20 

JAN + JF 

(Sectors 1-14) 

397.57 1,120 0.017 413 (36.88) 555 (49.56) 128 (11.42) 24 (2.14) 3,585.67 0.30 

The seismic phenomenon of the 13th February triggered additional thousands of 

landslides in the country's central sector (Fig. 5.8).  

 

Figure 5.8 - PGA values and LIPs related to the seismic event trigger of M 6.6 of 13th February 2001 in 

the FEB study areas. 
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Aerial photos were taken a few days after the event in areas different from those of the 

previous month, relating to the areas that suffered the most significant damage, 

corresponding to sectors with high PGA values (9 to 14). The possible landslides related to 

these areas that were also present in the inventory of JF should have been removed, except 

for those landslides that have been reactivated. The comparison with Figure 5.6 showed that 

all landslides related to the January event were reactivated (Fig. 5.9) with enlarging and 

widening phenomena (Tab. 2.1); therefore, no gravitational phenomenon mapped in 

February was removed. 

 

Figure 5.9 – Union of the aerial photos of February in a sector corresponding to that controlled in Figure 

5.6, related to the phenomena that occurred following the 13th January event. 

The resulting landslides were particularly considerable in areas characterized by thick 

deposits of rhyolitic tephras slightly consolidated belonging to the Tierra Blanca Formation 

following eruptions from the Ilopango Caldera. As a result, in the FEB inventory, the 

mapped LIPs were 5,371, placed in 5,344 pixels. The percentage of positive cells compared 

to the study area, characterized by 5,835,420 cells, equals 0.092%. The extent of the 

landslide cells is 123,488 pixels, 2.12% of the study area. This seismic event triggered 

similar landslides to the previous month, but their distribution is different. In fact, the 

landslides belonging to the FEB inventory are more significant and, even covering a lower 

spatial range, have a higher density than those of the JAN inventory (Tab. 5.7). 
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Table 5.7 - Amounts and characteristics of the gravitational phenomena of landslides belonging to sectors 

9 to 14 related to the February earthquake (LIP = Landslide Identification Point, LAND = landslide). 

 

 

The reasons are the magnitude value, the epicentral distance and the hypocentral depth. 

Indeed, all offshore areas with a high Magnitude value and focal depths greater than 30 km 

have strong seismic shocks enough to trigger landslides that extend over larger areas 

compared to shallow earthquakes (Keefer, 1984). This situation can also be seen in the 

January 2001 earthquake, characterized by relatively deep genesis, where MMI (Modified 

Mercalli Intensity) and PGA decreased their values from the hypocentre to a greater distance 

compared to the February 2001 earthquake, wherein these values declined rapidly. In 

addition, the slow decay of PGA values with the epicentral distance in seismic sources 

belonging to the deep and offshore genesis leads to an origin of gravitational phenomena in 

larger areas, unlike earthquakes belonging to the most superficial genesis, in which 

landslides are densely concentrated around the hypocenter. That is also evidenced by the 

number of gravitational phenomena between the two earthquakes and the distance at which 

the aerial photos were taken. The equivalent number of positive cells to the number of 

gravitational phenomena of landslides belonging to the January inventory shows that the 

spatial density of phenomena is lower than that of landslides referred to the February 

inventory, where several positive cells contain more than one LIP. 

Sector Area 

(km2) 

N° 

LIPs 

%  

LIPs 

 

N° LANDs 

areas < 100 

m2 ; (%) 

N° LANDs 

areas 100-

1,000 m2 ; 

(%) 

N° LANDs 

areas 1,000-

1,0000 m2 ; 

(%) 

N° LANDs 

areas > 

10,000 m2 ; 

(%) 

LANDs 

areas 

average 

m2 

% 

LANDs 

9 155.32 3650 0.10 427 (11.70) 2,145 (58.77) 955 (26.16) 123 (3.37) 1,694.63 2.47 

10 5.32 186 0.33 32 (17.20) 119 (63.98) 34 (18.28) 1 (0.54) 789.50 4.68 

11 13.79 279 0.16 91 (32.62) 151 (54.12) 37 (13.26) 0 (0) 554.75 1.58 

12 34.80 209 0.06 6 (2.87) 144 (68.90) 57 (27.27) 2 (0.96) 1,093.83 1.16 

13 87.65 1029 0.07 172 (16.72) 563 (54.71) 267 (25.95) 27 (2.62) 1,500.60 1.56 

14 8.84 18 0.02 8 (44.44) 10 (55.56) 0 (0) 0 (0) 126.75 0.08 

FEB (Tot 9-14) 305.72 5,371 0.092 736 (13.70) 3,132 (58.31) 1,350 (25.13) 153 (2.85) 1,538.26 2.12 
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The areas affected by earthquakes, and then the areas where the landslides were 

mapped, are shown in Fig. 5.10 using graphs constructed by Keefer (1984) and Martino et 

al. (2014). 

 

Figure 5.10 - The curves produced by Keefer (1984) and Martino et al. (2014) show the relationship 

between the maximum distance for the manifestation of gravitational phenomena and the Magnitude. The 

gravitational phenomena related to the seismic phenomena of January (JAN, JF) and February (FEB) have 

been placed. 

The graph shows that the landslides belonging to the inventories related to JAN and 

JF are between 37 and 123 km away from the epicenter.  

Since the seismically-induced landslides belonging to the January event were 

generated by an earthquake of M 7.7, they appear to be beyond the Martino’s et al. (2014) 

curve, who have not studied earthquake-induced landslides > M 7.3 as it was the maximum 

Magnitude recorded in Italy. Regarding Keefer’s curve, the January landslides are reliable 

with the data obtained from his work and appear to be under the "slide"  and “flow” curves. 

The landslides induced by the M 6.6 earthquake in February 2001 can be compared with 

both Keefer’s and Martino’s curves and include values below both curves.  
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The lack of additional aerial photos at greater distances than those available makes 

more difficult to understand at what maximum distance the landslides were triggered; 

however, the results obtained show consistency with all the curves. In fact, these results do 

not mean that gravitational phenomena related to the January event did not occur before or 

after these values. In fact, the data are located only in the investigated areas, having a gap of 

information in the fields before and after such values. There is, however, the presence of the 

Pacific Ocean in the first 20 km away from the epicenter and the presence of slopes with low 

or null slopes up to 33 km away. As for the inventory FEB, there are phenomena from the 

epicenter up to 24 km, a distance beyond which there is no information about any landslides. 

There is to report of the presence of a sharp decline of gravitational phenomena in sector 14, 

corresponding to the area of Tecoluca, placed between 20 and 24 km, where the gravitational 

phenomena mapped are only eighteen, showing that the distribution of landslides related to 

the event is at the end phase. This sector, together with sector 12, corresponding to the area 

of Tecoluca, are those with a lower number of gravitational phenomena than their total area. 

These sectors confirm the relationship between the relatively high values of PGA and the 

number of landslides.  

Further confirmation of the importance of PGA and the epicentral and hypocentral 

distances in the distribution and number of landslides can be seen in the case of the 1,986 

intra-crustal earthquake event, which caused more than 1,500 casualties and 100,000 

homeless due to different locations where the earthquakes occurred. In fact, the epicenter of 

1986 occurred near the Salvadoran capital, dissimilar to 2001, which occurred in an 

uninhabited area between Lake Ilopango and Jiboa River (Fig. 5.11).  
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Figure 5.11 - An example of an aerial photo related to gravitational phenomena triggered by the 

earthquake of February 2001. An area around the 6.6 M epicenter is shown, where there are the manually 

mapped polygons of landslides and their relative LIPs, located in the crown of the landslides. 

 

As mentioned, events of this type with low hypocentral depth decrease their PGA and 

MMI values very quickly away from the hypocenter. As a result, the February 2001 

earthquake did not affect the capital, the locality with the highest population density.  

Along the Jiboa River, which flows from the eastern shore of Lake Ilopango to the 

Ocean to the south, there have been hundreds of rotational slides and debris flows, mainly 

of Tierra Blanca (GEO4) (Baum et al., 2001), which created a natural dam along the 

watercourse. Indeed, a landslide of 12 million cubic meters blocked about 700 m of the 

course with debris, forming a 60 m deep lake about 2 km long. A spillway 20 m deep and 

100 m long was constructed to control the lake's size and depth and decrease its maximum 

volume, reducing the possible catastrophic failure of the unstable landslide dam. To date, 

despite the inconsistent nature of the material of which the material is composed, the 

Epicenter 
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landslide dam is stable. However, it is not excluded that spillway erosion may occur in years 

when rainfall can be higher than the average (Jibson; 2004). 

5.3.2. The Ida/96E 2009 inventory  

The SV inventory, elaborated by Mercurio et al. (2021), is characterized by the LIPs 

that have been mapped in an area of 287 km2 along the slopes of the San Vicente Volcano 

area following the combined event of Hurricane Ida and the low-pressure system 96E of 7th 

and 8th November 2009 (Chapter 4). This intense event of rainfall-induction triggered 5,609 

gravitational phenomena following 350 mm in 24 h in an area of about 400 km2 located 

between Ilopango Lake and San Vicente Volcano. Following this event, numerous and 

extensive debris flows have caused fatalities and massive damage, with an estimated 

economic loss of approximately a quarter of a billion dollars (Avila, 2009a). The FSE 

inventory (Fig. 5.12) is generated as a result of the intersection of the areas of study from 

rainfall-induction (SV) and earthquake-induction (JAN+FEB).  

Figure 5.12 - LIPs related to the seismic event trigger M 6.6 of 13th February 2001 in the intersection between 

FEB and SV study areas (FSE). 
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The obtained result is an area of 107 km2 that includes the entirety of sector 13 and the 

12.5% of sector 9, both within the FEB study areas. It consists of 1,587 LIPs. 

5.3.3. Calibration and validation of the MARS predictive models 

Inventories and variables used on M1, M2, M3 and M4 models are shown in Fig.5.13a. 

The predictive skill of the models measured on the validation samples of the datasets JAN, 

FEB, JF and FSE are revealed by the boxplots of Fig. 5.13b. These reflect for each model 

and dataset the variability and skewness of the ten AUC values calculated by applying the 

calibration and validation strategy described in section 2.6. The skewness display, for each 

group of ten AUCs, their first quartile (Q1), median and third quartile (Q3), the minimum 

and maximum values within 1.5 times the interquartile range (IQR) above Q3 and below Q1 

and eventually outliers outside 1.5 of IQR. Moreover, Table 5.8 shows the average and 

standard deviation values of the AUC groups. 
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Figure 5.13 –  (a) Inventories for calibrations, variables and inventories for validations used in M1, M2, 

M3, M4 models. (b) The Predictive skill of the M1, M2, M3 and M4 models, measured on the validation 

samples of the datasets JAN, FEB, JF and FSE for both scenarios (Scenario 1: test rate 25%; Scenario 2: test 

rate: 95%). 
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Table 5.8 - Average and standard deviation values of the AUC for all four models used in both scenarios 

(Scenario 1: test rate 25%; Scenario 2: test rate: 95%). 

 

 

5.4. Discussion and Conclusions 

In this work, four different models were produced (M1 to M4), generated with the 

calibration of rainfall-induction inventories related to the Ida/96E event of November 2009 

(M1) and earthquake-induction inventories related to earthquakes of January and February 

2001 (M2-M3-M4). Two different calibration-validation strategies were used, 

corresponding to two different scenarios. Scenario 1 requires 3/4 of the landslides to be used 

for calibration of the different inventories used in the models and the remaining 1/4 for 

validation on earthquake-inducted landslides. This scenario is used most for producing 

susceptibility models from landslides (e.g., Clerici et al., 2006; Van Den Eeckhaut et al., 

2012; Costanzo et al., 2014; Martinello et al., 2020; Mercurio et al., 2021). Scenario 2 

includes the calibration of only 5% of the gravitational phenomena (rainfall- or earthquake-

induced landslides inventories, depending on the model), using the remaining 95% of LIPs 

referred to earthquake-induction phenomena for the validation. The models differ according 

to the independent variables used to assess their effectiveness. The following steps for each 

model can be drawn based on the analysis employed in this experiment.  

First, the M1 models were generated using nine predictive variables elaborated by a 

10-m cell DEM, rasterization of a country geological map and of the NDVI values, all 

referred to as the SV area, for a total of eleven variables. The results obtained through the 

Scenario 1 

AUC_JAN_ 

mean 

AUC_JAN_ 

sd 

AUC_FEB_ 

mean 

AUC_FEB_ 

sd 

AUC_JF_ 

mean 

AUC_JF_ 

sd 

AUC_FSE_ 

mean 

AUC_FSE_ 

sd 

M1_25 0.711 0.027 0.658 0.008 0.789 0.043 0.679 0.020 

M2_25 0.723 0.013 0.687 0.008 0.880 0.042 0.731 0.020 

M3_25 0.749 0.020 0.732 0.007 0.895 0.019 0.763 0.017 

M4_25 0.787 0.017 0.780 0.010 0.958 0.020 0.825 0.012 

Scenario 2 

 

AUC JAN 

mean 

AUC JAN  

sd 

AUC FEB 

mean 

AUC FEB 

sd 

AUC_JF 

mean 

AUC JF 

sd 

AUC_FSE_ 

mean 

AUC FSE  

sd 

M1_95 0.703 0.009 0.655 0.004 0.808 0.019 0.683 0.006 

M2_95 0.685 0.008 0.684 0.004 0.809 0.015 0.704 0.006 

M3_95 0.717 0.007 0.720 0.005 0.855 0.015 0.742 0.007 

M4_95 0.729 0.004 0.768 0.004 0.889 0.015 0.788 0.004 
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MARS analysis have allowed generating of a forecast map of the areas where it is most likely 

that rainfall-induction gravitational phenomena in the SV (PSV) area are triggered. Through 

the static predictive variables defined throughout the country, the model has been used as an 

independent variable and has been validated with the remaining 25% / 95% of LIPs related 

to the earthquake-induced phenomena. The resulting AUC values ranging from 0.66 for the 

model applied to FEB (therefore not yet acceptable, as the value is < 0.7) up to the more than 

acceptable values, referred to area JF, of 0.78. 

Subsequently, earthquake-induction inventories were used for the remaining models, 

using 75% / 5% of the LIPs. The M2 model used PSV as an independent variable along with 

PGA and DIST seismic parameters. Following validation of the remaining earthquake-

induction LIPs, there is a slight increase in average AUC values ranging from 0.69 for FEB 

to 0.88 for JF.  

M3 models include the eleven and the two dynamic predictors, without including the 

presence of variables related to the Ida/96E event of 2009. The obtained earthquake-induced 

susceptibility model presents mean AUC values ranging from 0.73 (acceptable) for FEB to 

0.90 (outstanding) for JF, showing the excellent predictive ability of earthquake-induction 

phenomena. 

The M4 model was built using all the independent variables available. The result is a 

further improvement of the earthquake-induced landslide susceptibility model with mean 

AUC values ranging from 0.78 (almost-excellent) for FEB to 0.96 (outstanding) for JF. 

The excellent results obtained by the M4 model permit saying that if all the selected 

independent variables are used, then both those related to the rainfall-induction (PSV) and 

the earthquake-induction (static and dynamic predictive variables), excellent prediction 

results can be obtained in areas where future earthquake-induction phenomena can occur. In 

fact, it is noted that the earthquake-induction landslide susceptibility model created with only 

earthquake-induction variables has excellent predictive capabilities. However, if the 

characteristics related to rainfall-induction susceptibility maps are added, the model 
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improves its performance, testified by the value of AUC obtained after validation on all four 

datasets available.  

AUC values in the second scenario never vary more than 0.069 compared to the first 

one, with an average difference equal to 0.026, thus showing exceptional predictive 

performance. In addition, Scenario 2 models have much lower standard deviation values 

than the first scenario, showing excellent model stability. 

This situation often happens immediately after a seismic or rainfall trigger, where only 

the main gravitative phenomena are initially mapped. It has also manifested in these two 

seismic phenomena, in which the inventories that until now were available are insufficient 

since they contain even less than 1/5 of the landslides mapped in this work. The reason was 

that the gravitational phenomena were mapped quickly to produce rapid reports for civil 

protection authorities and were not subsequently integrated with the remaining landslides. 

The excellent results obtained following this test suggest that, if only some of the landslides 

triggered by an earthquake are known, it is possible to use the approach proposed in this 

study to identify those sites where the other landslides are more likely to have occurred 

following a seismic phenomenon. Indeed, all the classic predictors used in this analysis 

would remain the same, excluding NDVI values, which can be obtained quickly from 

NASA's MODIS (Moderate Resolution Imaging Spectroradiometer) website. The additional 

independent variables to be generated are those related to the dynamic parameters obtained 

following an earthquake. In fact, it will be required to produce only the rasters linked to PGA 

and epicentral distances, readily available online immediately after an earthquake from the 

USGS website. Indeed, PGA maps can be obtained by rasterizing the shapefile via the USGS 

shakemap website, while epicentral distances can be generated thanks to the knowledge of 

the epicenter coordinates, creating a map linked to the distances from the point.  

Partial mapping is never ideal in producing landslide susceptibility maps; however, the 

results obtained in the second scenario allow us to propose that a rapid generation of an 

earthquake-landslide susceptibility map induced immediately after a seismic event is 

possible.  
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These outputs obtained can be helpful both for the most affected areas of future 

gravitational phenomena following earthquakes with triggers comparable to those of January 

and February, and for the planning of post-aid events, in the situation in which a small 

number of LIPs are produced with ten ready-made variables and three variables that can be 

generated quickly after the event (NDVI of the month and PGA and epicentral distances of 

the seismic event). 

The historical investigation of the seismic phenomena that occurred in the last century 

has shown a high number of earthquakes that testify to the continuous activity of the 

subduction of the Cocos Plate beneath the Caribbean Plate, capable of generating severe 

offshore earthquakes and resulting intraplate phenomena in a relatively short time. This 

condition must reflect that the whole country must be prepared for both types of scenarios, 

as, despite their differences in density and spatial distribution of landslides, they are capable 

of causing destruction and fatalities.  
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6. Prediction of the spatial distribution of landslides generated from earthquake by 

using an approach which combines a rainfall-induced inventory and static with 

seismic parameters 

Chapter constructed from: Prediction of spatial distribution of landslides generated 

from rainfalls and earthquakes by using an approach which combines static with seismic 

para-meters: a test in El Salvador –Mercurio, C., Martinello, C., Azzara, G., Argueta 

Platero, A. A., Manno, G., Cappadonia, C., Conoscenti, C., and Rotigliano, E. (presented at 

EGU General Assembly 2022; https://doi.org/10.5194/egusphere-egu22-6449, 2022b) 

6.1. Introduction 

The main aim of this Chapter is to evaluate the ability of rainfall-induced landslide 

susceptibility models to predict the geographical distribution of the coseismic slope failures 

that occurred on 13th February 2001 seismic event. The experiment was performed in a 

sector of El Salvador where landslides occurred both as a result of the seismic phenomena 

of February 2001 and extreme rainfall phenomena related to the Ida/96E event of November 

2009. 

6.2. Material and methods 

6.2.1. Study area 

This work is concerned with predicting the position of the areas most susceptible to 

the manifestation of coseismic landslides by using characteristics related to both the 

phenomena of rain- and earthquake-induction through a rainfall-induced gravitational 

phenomena inventory as calibration input. In order to evaluate the predictive capabilities of 

the landslide susceptibility model using information related to both types of triggers, the test 

must be applied in an area that has been affected by the manifestation of both triggers. El 

Salvador, affected by both types, is an excellent test for this purpose. 

As for the seismic trigger, the inventories JAN and FEB were selected, using their 

intersection with the other trigger event. 
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As the event related to the landslides triggered following extreme rainfall events, an 

area of study related to the Ida/96E event located around the Ilopango Caldera was used for 

the aim. This sector was chosen because it was located at the intersection of  FEB study areas 

(together with the SVstudy area of Chapter 5.2.2, which has not been selected for this test); 

no inventory at our disposal intersects the areas of JAN (sectors 1-8, Chapter 5.2.1). This 

inventory comes from an article about a case study of the creation of rainfall-induced 

susceptibility models using different and heterogeneous inventories, named “Investigating 

Limits in Exploiting Assembled Landslide Inventories for Calibrating Regional 

Susceptibility Models: A Test in Volcanic Areas of El Salvador” made by Martinello, 

Mercurio, Cappadonia, Hernández Martínez, Reyes Martínez, Rivera Ayala, Conoscenti, 

Rotigliano, and published in the MDPI’s Journal Applied Sciences in June 2022. 

As a result, the corresponding intersection zone corresponds to the southern and 

southern-eastern sectors of the Ilopango Caldera, with an extension equal to 33,87 km2 (Fig. 

6.1).  

Figure 6.1 – Study area of this work (yellow polygons). That is located at the intersection of the FEB 

(red polygons) and the 2009 Ida/96E study areas (green polygon). 
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The area of Ilopango has been subject to the effect of the earthquake of 13 February 

2001, as shown in Chapter 5.2.1, where it is possible to consider that the Peak Ground 

Accelerations related to the event of February are higher than those of January, resulting in 

a significantly greater number of damages than those manifested the month before. The 

number of triggered gravitational phenomena also confirms this data. In fact, in January, in 

the JF sector (landslides occurred in January related to the February aerial photo sectors, 

obtained following mapping of satellite images by the SPOT-4 satellite), the landslides are 

997 against the 5,631 related to the FEB inventory (Tab. 5.6 and 5.7). 

The earthquake of 13th February 2001 occurred during the dry season (from November 

to April). The analysis of the rain gauges clearly shows no abnormal rain events in the 

months before the earthquake (Fig. 6.2).  

Figure 6.2 – Graph of the cumulative rains of the 12 months preceding the seismic event of February 

2001 compared to the average rainfall, in the same area, in the interval 1971-1999. 
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The rainfall was lower than the average monthly rainfall of the period analyzed 

between 1971 and 1999, showing that the content of the water has not been decisive in the 

genesis of gravitational phenomena. In fact, the gauge stations of Ilopango Airport and 

Cuscatlan bridge, the closest to the study area, show that November 2000 was the last month 

that had rains (average of 24.7 mm), since December, January and February were completely 

dry. That means that there has been no physical-chemical degradation of the inconsistent 

volcanic outcrops, which, in the event of rain, would have led to a further decrease in 

cohesion, causing a more significant number and/or extent of gravitational phenomena 

following an earthquake. Through the analysis of the monthly averages, it is also possible to 

find out that, in the months of November, the average of monthly rains is equal to 58 mm, 

so the combined Ida/96E event of November 2009 caused about six times more rains than 

the November averages. 

The area affected by the landslide has a high susceptibility and hazard and, in most 

areas, a null risk dictated by the absence of the exposed value (Chapter 2.4). However, as 

shown in Chapter 5.2.2, along the Jiboa River, which flows from the eastern shore of Lake 

Ilopango to the Ocean to the south, there have been hundreds of rotational slides and debris 

flows, mainly of Tierra Blanca, which generated a natural dam along the watercourse, which 

could have resulted in catastrophic consequences due to the potential failure of the unstable 

landslide dam. In addition, landslides are a significant cause of disruption to rescue lines in 

mountainous areas (Bird & Bommer, 2004), restricting, in this way, access to affected areas, 

causing delays in search and lack of rapid rescue (Nowicki et al., 2018). These factors lead 

to high rates of the exposed value, increasing the risk of landslides and leading to the need 

for risk mitigation. 

6.2.2. Mapping strategy 

As seen in Chapter 2.6, producing a landslide inventory is one of the foremost essential 

steps for generating a valuable landslide susceptibility map. The preparation of any 
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susceptibility map requires at least the availability or recognition of a landslide inventory 

which has to be related to a specific trigger (both seismic or extreme rainfall events).  

The landslides selected for the analysis of landslide susceptibility related to this work 

are obtained in an area of intersection between the areas where gravitational phenomena 

related to the earthquake of February 2001 and the Ida/96E event of November 2009 

occurred.  

The dataset belonging to the seismic trigger of February 2001 was obtained following 

mapping from aerial photos obtained a few days after the earthquake by CNR and carried 

out in the most affected areas, corresponding to the higher PGA and MMI values obtained 

due to the seismic event (Chapter 5.1.2). The whole inventory (FEB), distributed over an 

area of about 305 km2, consists of both 5,371 manually mapped landslide polygons and 

Landslide Identification Points (LIPs) located at the highest point of gravitational 

phenomena. 

As the event related to the landslides triggered following the event Ida/96E, an 

inventory related to the area of the Ilopango Caldera was obtained from an inventory from 

Martinello et al. (2022). This inventory contains 43,867 LIPs in an area of about 367 km2. 

These LIPs inventories were mapped through Google Earth orthophotos, in the first time 

window available, after the November 2009 trigger event. In fact, since vegetation in tropical 

zones is recovering rapidly, gravitational phenomena must be mapped shortly after the 

triggering event (Mercurio et al., 2021). 

As for the 2001 seismic inventory, apart from the LIPs, landslide polygons were also 

available; however, these were not employed since the inventories of the 2009 rain event 

presented exclusively LIPs. This choice was made to have the same type of identification of 

the trigger in order to carry out better analysis and comparison between the outputs produced. 

All inventories used for this work contain their respective LIPs in the crown of the 

landslides. In fact, even though there is no agreement on the best location of a point 

permitting to identify of the conditions which triggered a specific slope failure, several recent 

studies have successfully adopted LIPs on the top of the phenomena to identify pre-failure 
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conditions (Rotigliano et al., 2011; Lombardo et al., 2014; Cama et al., 2015; Rotigliano et 

al., 2018, 2019).  

This study analyses the landslide susceptibility relative to the intersection between the 

FEB area of the seismic event of February 2001 and those related to the heavy rainfall of 

November 2009. The final result is an intersection area of 33.87 km2 in which there are 1,612 

LIPs related to the earthquake of 2001 (Fig. 6.3 and 6.5) and 9,176 LIPs related to the 

extreme rainfall event of 2009 (Fig. 6.4 and 6.5). 

Figure 6.3 – Study area (yellow polygons) with the 1,612 LIPs related to the earthquake event of 13th 

February 2001. 
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Figure 6.4 – Study area (yellow polygons) with the 9,176 LIPs related to Ida/96E event of November 

2009. 

Figure 6.5 – Study area with the LIPs related to both seismic and extreme rainfall events. 
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6.2.3. Dependent and independent variables 

In landslide susceptibility analysis made with stochastic approaches, it would be 

possible to assign a predictive character to gravitational phenomena through the regression 

functions that connect the past and present landslide conditions (dependent variable) to a 

series of predictors or instability factors (independent variables). 

As for the binary dependent variable, as for the studies shown in Chapters 4 and 5, 

which involve the presence or not of the LIP within the selected mapping unit, a binary value 

has been assigned to each cell (0 = negative, absence; 1 = positive, presence). 

As for the independent variables, ten predictive factors, that are supposed to behave as 

predisposing factors to both earthquake- and rainfall-induction trigger phenomena 

activations have been selected: ASP (aspect), ELE (elevation), GEO (lithology), LCL 

(landform classification), PLC (plan curvature), PRC (profile curvature), SLO (slope), SPI 

(stream positioning index),  TWI (topographic wetness index) and USE (land use). These 

variables derive from the 10-m DEM through the application of tools belonging to QGIS 

and SAGA GIS software, except for GEO and USE, which, respectively, derived from the 

rasterization of a lithologic map, modified from an original geological map of the country 

made by Weber et al. (1975) and composed by seven classes (Table 4.1) and the rasterization 

from a CORINE Land Cover remote survey carried out in 2002 and composed by eleven 

classes (Table 4.2). All variables are continuous except for USE, LCL and GEO, which are 

categorical variables. The following variables were selected since they were considered 

predisposing factors for both the gravitational phenomena that occurred after the earthquake 

of February 2001 and following the low-pressure system event Ida/96E of November 2009. 

Subsequently, two additional continuous variables relating exclusively to the 

earthquake of February 2001 were prepared. Among the potential variables that are thought 

to have been decisive in the occurrence of the phenomenon, the observed PGA values (PGA) 

and distances from the earthquake's epicenter (DIST) were chosen. PGA values in each 10 

m-cell DEM were generated thanks to the rasterization of the shapefile that was made 

available by the USGS ShakeMap (Worden et al., 2020). That is a product of the USGS 
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seismic hazard prevention program, in conjunction with regional seismic systems (Wald et 

al., 2005). ShakeMaps provide near-real-time maps of ground movement and earthquake 

intensity after significant seismic phenomena. These maps are made available, easily 

accessible and free of charge by the official website of the USGS and can be used by 

governments, civil protection authorities and any other public and private figure for scientific 

and future planning purposes concerning what happened in the past earthquakes. The 

epicentral distances variable was obtained by developing a raster containing the distance 

values (in meters) from the epicenter coordinates obtained from the USGS ShakeMap 

website. 

6.2.4. Modelling technique 

The probability of landslide occurrence at each 10 m grid cell within the study area 

was calculated using the Multivariate Adaptive Regression Splines statistical modelling 

technique (MARS; Friedman 1991) by using the R software with the earth package 

(Milborrow; 2020).  

Two different models of prediction of gravitational phenomena triggered by seismic 

events are carried out; one through the use of ten static variables, the other through the use 

of the same ten variables and the two seismic parameters. The final result is that each 

10x10m-cell will contain the continuous or categorical value of each of the ten/twelve rasters 

used as an independent variable. Then, each of the predictive variables was analyzed to see 

if they had any correlations between two or more of them. In order to avoid collinearity 

problems, the Variance Inflation Index (VIF) has to be < 10 (Heckmann et al., 2014; Jebur 

et al., 2014; Bui et al., 2015; Conoscenti et al., 2016), excluding any variables with higher 

values.  

Both models were validated by splitting 100 random samples of event and non-event 

10- m pixels into training and test subsets. 

The predictive skill of the models was evaluated by preparing, for each of the 100 

models’ run, a ROC curve and by calculating the AUC curve. In order to evaluate the 
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model’s performance by also using cut-off dependent metrics, an optimal cut-off value for 

the 100 ROC curves was calculated by using Youden's index (J) (Youden, 1950; Cama et 

al., 2017; Rotigliano et al., 2019; Conoscenti et al., 2020), which is the threshold that 

optimizes the sum between the sensitivity and the specificity. 

6.2.5. Calibration and validation strategy 

In order to assess the predictive capabilities of a model and hence its performance, 

calibration and validation are required. There are different types of calibration and 

validation; for example, these can be done with the same inventory, using a certain 

percentage selected for calibration and then the remaining percentage for validation. In this 

case, the model's final result may be affected by the size of the calibration and validation 

dataset (Brenning, 2005; Vorpahl et al., 2012; Vargas-Cuervo et al., 2019). However, 

calibration may also be performed with the entirety of a specific inventory that may be used 

to validate another entire different one. In the latter case, the validations can be either spatial, 

then carried out in another area (belonging to the same trigger event) with comparable geo-

environmental characteristics or temporal if the validation is carried out in the same 

calibration area following a different trigger. The present work deals with verifying a 

forecast map of phenomena following a rainfall event to predict the areas where it is most 

likely that there will manifest earthquake-induction landslides in the future. As a matter of 

fact, a calibration of precipitation-induction phenomena and a chrono-validation of 

earthquake-induction phenomena in the same areas is carried out. 

Differences in temporal validations between models trained under normal or extreme 

event triggered landslide scenarios have been examined in other articles (Rotigliano et al., 

2019); however, a case where a rainfall-induction inventory could foresee areas where 

earthquake-induction landslides may occur has not yet been presented. 
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6.3. Results 

6.3.1. Calibration and validation of the MARS predictive models 

The main aim of this study was to evaluate the ability of rainfall-induced landslides 

susceptibility models to predict the geographical distribution of the coseismic slope failures 

that occurred in February 2001, using a backward chrono-validation. 

The intersection between the areas where both events occurred, in which landslide 

inventories are kept for each trigger, have been divided into 403,058 10-m grid cells, 

corresponding to the pixels of the employed DEM. This dataset includes 8,816 positive cells 

(pixels that contain at least one LIP) and 394,242 negative cells (pixels not intersecting any 

LIP), 2.19% and 97.81% compared to the study area, respectively. In order to investigate the 

task of the research, the following susceptibility models were prepared and validated (Tab. 

6.1).  

Table 6.1 – Inventories and independent variables used for the two models. 

 

For both models (IDA2009rain and IDA2009rain_pga_dist), the presences/absences 

in each 10-m cell of all the 9,176 LIPs referring to the rainfall-induction event of November 

2009 were used for the calibration, while the dataset referred to the 1,612 LIPs has been used 

entirely and exclusively for the validation. Both models were validated by splitting 100 

random samples of event and non-event 10- m pixels into training and test subsets. 

The IDA2009_rain model was tested to recognize the earthquake-induced landslides, 

according to a time/trigger partition scheme, by using the ten static predictive variables. The 

resulting AUC mean value is 0.7, showing an acceptable performance of earthquake-

Model Inventory for 

Calibration 

Predictive variables Inventory for 

Validation 

IDA2009rain 2009 Ida/96E 

LIPs 

10 Static variables 2001 earthquake 

LIPs IDA2009rain_pga_dist 10 Static + 2 Dynamic 

variables (PGA, DIST) 
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induction landslide prediction (Fig. 6.6). In addition, the standard deviation for the obtained 

AUC values is calculated to assess the stability of the model. 

 

Figure 6.6 – ROC curves processed for the model IDA2009rain using the MARS method in the study 

area. 

The average ROC curve was employed to calculate Youden’s index J, which is equal 

to 0.47 and represents the optimal cut-off value, allowing to maximise of the sum of 

sensitivity and specificity. This value was employed to calculate an average confusion matrix 

(Tab. 6.2). The values below J value are predicted as negative (absence of landslide), in 

contrast, those above are predicted as positive (presence of landslide), thus making the 

susceptibility map output from landslide with binarized values. By comparing the validation 

dataset with the binarized map, it is possible to evaluate the model's performance with a 

confusion matrix by calculating the amount of true positive (TP), true negative (TN), false 

positive (FP) and false negatives (FN). 
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Table 6.2 – AUC values (mean and standard deviation), confusion matrix and sensitivity and specificity 

obtained following the application of the Ida2009rain model. 

 

Model AUC 

mean 

AUC 

sd 

TP TN FP FN Sensitivity Specificity 

Ida2009rain 0.7 0.02 1,203 231,341 164,349 387 0.76 0.58 

Subsequently, an IDA2009rain_pga_dist  model was obtained by combining the 2009 

inventory with the ten static predictive variables and the observed PGA and epicentral 

distances (DIST), both related to the 13th February 2001 event, to observe a better or worse 

forecast of earthquake-induction phenomena following the addition of seismic parameters 

to the base model. An improvement in the model's predictive performance is obtained, 

demonstrated by the AUC mean value of 0.75, showing that the addition of seismic 

parameters to a model trained by rainfall events-induction leads to an improvement in the 

predictive performance of landslides induced by seismic phenomena (Fig. 6.7). 

 

Figure 6.7 – ROC curves processed for the model IDA2009rain_pga_dist using the MARS method in 

the study area. 
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Also for this model, the average ROC curve was employed to calculate Youden’s index 

J, which is equal to 0.47. This value was employed to calculate an average confusion matrix 

(Tab. 6.3).  

Table 6.2 – AUC values (mean and standard deviation), confusion matrix and sensitivity and specificity 

obtained following the application of the Ida2009rain model. 

 

6.4. Discussion and Conclusions  

In this chapter, the predictive capacity of seismic-induction landslides has been 

evaluated using a landslide susceptibility model (IDA2009rain) based on a rainfall-induction 

inventory and ten static predictive variables, by adopting the MARS technique. 

Subsequently, any improvement/worsening of predictive capabilities through the 

susceptibility model was evaluated IDA2009rain_pga_dist. The difference between the two 

models is in the total of independent variables used, corresponding to ten static variables, 

described in Cap. 6.2.3, and the same ten variables with the addition of two dynamic 

variables, corresponding to the values of PGA and DIST, both referred to the event of 13th 

February 2001. An improvement in the predictive performance of the second model 

compared to the first is obtained, from a value of 0.7 to 0.75. 

The improvement of the AUC value of the second model is confirmed by the increase 

of the values of Sensitivity and Specificity, which, in turn, depend on the values of TP, TN, 

FP, and FN. In fact, the increase in TP and the decrease in FN leads to an increase in 

Sensitivity (defined as TP/(TP+FN)), while the increase in TN values and the decrease in 

FN FP values leads to an increase in Sensitivity (defined as TN/(TN+FP)). The increase of 

TP and TN and the decrease of the values of FP and FN is an essential point in the 

characteristics of a model, since it decreases the error. As seen in Chapter 2.5, FP represents 

Model AUC 

mean 

AUC 

sd 

TP TN FP FN Sensitivity Specificity 

Ida2009rain_pga_dist 0.75 0.01 1,241 252,287 143,403 349 0.78 0.64 
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a "type 1 error", in which one predicts how a pixel falls when it does not manifest. It is a less 

serious error than the FN, a "type 2 error" in which a pixel is predicted as negative while a 

landslide has occurred. 

 In addition to the performance improvement of the second model compared to the 

first, there is also a decrease in the standard deviation value, testifying to better model 

stability. 

The return times of extreme rain phenomena are shorter than those of earthquakes. 

That is evidenced by the extreme rainfall events and the number of earthquakes in the 

country in the last century. As a result, earthquake-induction landslide inventories and 

associated susceptibility maps are more complex to obtain than those acquired due to 

rainfall-induction phenomena. The results from this research suggest the possibility of 

coupling the susceptibility scores obtained from static modelling to the expected mechanical 

shaking for the earthquake-induced susceptibility assessment. Indeed, the approach 

proposed in the study, which to be valid had to be tested in an area where both types of 

triggers occurred, shows that a model calibrated on extreme rainfall events, recurring in the 

country due to its geographical position in a tropical sector, can acceptably predict the areas 

where gravitational phenomena of seismic origin may occur. The addition of typically 

seismic parameters, used as additional predictive variables, also increases the performance 

of the earthquake-induction landslide prediction model.  These results allow proposing to 

use this methodology where inventories and susceptibility maps related to gravitational 

phenomena originating from seismic triggers are missing to provide valid outputs to civil 

protection authorities. 
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7. Conclusions  

Since the high vulnerability of the territory of El Salvador, the high landslide hazard, 

occurring as a result of extreme rain and earthquake phenomena and the high rate of exposed 

values involved, the risk associated to gravitational phenomena is very high. In fact, El 

Salvador is affected both by extreme rain events due to its geographical position in a tropical 

setting and also by intense earthquakes that occur due to the complex geodynamic context 

characterized by the presence of more tectonic plates and the lithology of the outcropping 

volcanic rocks (pseudo-inconsistent and inconsistent). The presence of the main population 

centres around the active volcanoes, generated due to the geodynamic context, makes the 

country at high risk due to the proximity to the areas most susceptible to landslides (mainly 

debris flow/avalanches, falls in debris and rocks and slides). Since the associated high risk, 

it is essential to carry out an analysis of the areas that may be most susceptible to the 

manifestation of gravitational phenomena, in order to know the areas to be evacuated, in 

which to carry out landslide mitigation work and those in which to send aid first following 

such phenomena. 

The case studies that have been analyzed have been that of extreme rainfall generated 

by the combination of hurricane Ida and the low-pressure 96E event, which occurred in 

November 2009 (Chapters 3.1 and 4) and the two seismic phenomena that occurred in the 

first two months of 2001, with a magnitude of 7.7 and 6.6 (Chapter 3.2, 5 and 6). Both types 

of phenomena have caused numerous victims. A study of these phenomena and a generation 

of maps of susceptibility serves to limit, as much as possible, the damage caused by future 

phenomena and to provide output to civil protection agencies. Numerous studies have shown 

the effectiveness of stochastic methods (statistical, indirect and objective) for producing 

susceptibility maps from landslides. The method used in this work was the MARS technique 

(Multivariate Analysis Regression Splines), which demonstrated its effectiveness for the 

objective in numerous works. 

In Chapter 4, a study was carried out to produce a susceptibility map from a rainfall-

induced landslides in an area that has been particularly affected by gravitational phenomena 



 

111 

 

(especially debris flow). This corresponds to an area of 287 km2, where San Vicente, 

Guadalupe, Tepetitan and Verapaz towns are located. 5,609 Landslide Identification Points 

(LIPs) were used as inventory, using 75% of calibration phenomena that were validated with 

the remaining 25% in order to evaluate the predictive capabilities of the statistical model 

used. The models were validated by splitting 100 random samples of event and non-event 

10 m pixels into training and test subsets. The average model has provided excellent 

predictive performances, testified by the AUC value of 0.80. In addition, it shows a high 

stability of the model, demonstrated by the standard deviation value of 0.01. 

When using Youden’s index as a probability threshold to discriminate between pixels 

predicted as positives and negatives, MARS exhibits an almost-excellent (Hosmer and 

Lemeshow, 2000) ability to identify the True Positives (TP), testified by the value of 

Sensitivity (True Positive Rate, refers to the probability of a positive test, conditioned on 

truly being positive) equal to 0.79. However, as already happened in further works carried 

out in volcanic areas of El Salvador, MARS exhibits a moderate ability to identify True 

Negative (TN), testified by the value of Specificity to 0.66. The final result made it possible 

to produce a rainfall susceptibility map with high predictive capabilities, transmitted and 

received by MARN (Ministerio de Medio Ambiente y Recursos Naturales), which now uses 

it as the official map for the metropolitan areas of Guadalupe, Tepetitan and Verapaz. 

 

Chapter 5 aimed to create earthquake-induced landslide susceptibility maps related to 

two seismic phenomena that occurred in the first two months of 2001 (M 7.7, offshore at a 

depth of 60 km and 6.6, onshore at a depth of 10 km respectively), have caused thousands 

of gravitational phenomena (mainly debris flow and avalanches, slides and rock and debris 

falls). Both 2001 earthquakes triggered similar landslides, but their distribution varied 

because of different earthquake source parameters due to the magnitude value, the epicentral 

distance and the hypocentral depth (Keefer, 1984; Martino et al., 2014). In fact, events with 

deeper hypocenters can trigger landslides at a greater distance than events with lower 

hypocentral depths, although the latter can generate more high-density phenomena (Keefer, 
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1984). The objective was to predict the areas most affected by seismic-induction phenomena 

using two different scenarios: the first one in which a calibration with 3/4 of the landslides 

is carried out with which the objective is to predict the remaining 1/4 and a second scenario 

in which only 5% is known, therefore a minimal amount of gravitational phenomena, in 

order to predict the remaining 95%. That condition often occurs after earthquakes, in which 

only significant events are mapped to produce rapid reports for environmental management 

authorities. Four different landslide susceptibility models have been created, using both the 

rainfall-induction inventory generated in San Vicente in 2009 (M1) and the earthquake-

induction inventories related to the events of 2001 (M2, M3, M4). All models used have 

been validated with the remaining percentage of earthquake-induction landslides. The 

predictive variables used in each model were different, intending to see the predictive 

capabilities after adding or removing sets of predictive variables. The best predictive 

performance model (M4) achieved acceptable to outstanding predictions of earthquake-

induction landslides (depending on the dataset used) using landslides susceptibility map 

from rainfall-induction landslides, Static Predictors and PGA and Epicentral Distances. In 

fact, it is demonstrated that using only earthquake-induced landslides to predict earthquake-

induction scenarios is partial. Indeed, if characteristics from the rainfall-induction analysis 

are added, the earthquake-induced susceptibility model improves its performance. The 

scenario in which only a tiny amount of gravitational phenomena are foreseen has also 

shown an excellent predictive ability of gravitational phenomena. The excellent results 

obtained following this test suggest that, if only some of the landslides triggered by an 

earthquake are known, it is possible to use the approach proposed in this study to identify 

those sites where the other landslides are more likely to have occurred following a seismic 

phenomenon. In this way, it would be enough to generate only the rasters of NDVI, PGA 

and Epicentral Distances, easily available and generated online. Partial mapping is never 

ideal for producing landslide susceptibility maps; however, the results obtained in the second 

scenario suggest that it is possible to quickly generate an earthquake-induced susceptibility 

map immediately after a seismic event. 
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Since the tropical geographical context in which El Salvador is located, the extreme 

rainfall phenomena exhibit relatively shorter return times than earthquakes. That means that 

earthquake-induction inventories and their related earthquake-induced landslide 

susceptibility maps are more difficult to obtain than those related to rainfall-induction 

landslides. Therefore, if it would be possible to figure out how to generate earthquake-

induced susceptibility models using rainfall-induced inventories, which are relatively easier 

to find, it might be possible to generate more earthquake-induced susceptibility maps. To 

carry out this test and assess its validity, it is necessary to study an area affected by both 

types of triggers. For this reason, in Chapter 6, the aim was to create an earthquake-induced 

landslide susceptibility map from an inventory of rainfall-induction landslides, carrying out 

the analysis in a sector of the country affected by both types of triggers, corresponding to 

the south and south-eastern sector of the Ilopango Caldera. In fact, this sector of the country 

was hit by both the earthquake of February 2001 and the event Ida/96E of 2009. Using the 

inventory of earthquake-induced landslides of 2001 and an inventory derived from the article 

from Martinello et al. (2022), it was possible to carry out the analysis through two models. 

For both models, the presences/absences in each 10-m cell of all the 9,176 LIPs referring to 

the rainfall-induction event of November 2009 were used for the calibration, while the 

dataset referred to the 1,612 LIPs has been used entirely and exclusively for the validation. 

These models differ according to the variables used. The first model (Ida2009rain) has 

ten common predictive variables for both rainfall and earthquake induction, while the second 

model (Ida2009rain_pga_dist) uses the same variables as the previous model with the 

addition of two dynamic variables (Peak Ground Accelerations and Epicentral Distances), 

relating exclusively to the earthquake-induction trigger. 

The Ida2009rain model achieved an average AUC value of 0.70, testifying to the 

model's acceptable (Hosmer and Lemeshow, 2000) predictive capability. However, in the 

Ida2009rain_pga_dist model, obtained with the addition of the two dynamic variables to 

those used in the previous model, an improvement in predictive performance is obtained, 
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evidenced by the AUC value of 0.75. In addition to the value of AUC, there is an 

improvement also in the sensitivity and specificity values, testifying to an upgrade in the 

predictive ability of True Positives and Negatives. AUC values are lower than the excellent 

and outstanding values obtained in Chapter 5. That is because an earthquake-induced 

landslide susceptibility map is generated from a rainfall-induced landslide inventory, not 

from earthquake-induced landslides. However, the results are more than acceptable (Hosmer 

and Lemeshow, 2000). Since it is possible to generate earthquake-induction susceptibility 

maps by combining rainfall-induction landslide inventories with seismic parameters, it 

would be possible to produce earthquake-induction landslide susceptibility maps 

everywhere, even when seismic-induction inventories are missing. 

Table 7.1 shows the results obtained for the applications made in Chapters 4, 5 and 6.  
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Table 7.1 – Inventories, variables and results obtained for each of the seven models used in this thesis. 

 

Chapter  Inventory for 

Calibration  

Variables Inventory for 

Validation 

Results 

4 
Rainfall-induced 

landslides (75%)  

10 predictive variables Rainfall-induced 

landslides (25%) 

Excellent prediction of rainfall-

induced landslides using MARS  

 

 

 

 

 

 

 

5 

Rainfall-induced 

landslides  

(Scenario 1: 75%;  

Scenario 2: 5%);  

Model 1: 

Probability of 

occurrences of rainfall-

induced lanslides by 

using 11 predictive 

variables (PSV) 

 

 

 

 

 

 

 

 

 

Earthquake-

induced landslides 

(Scenario 1: 25%; 

Scenario 2: 95%) 

 

 

 

Acceptable to Outstanding 

predictions of earthquake-induced 

landslides using landslides 

susceptibility map from rainfalls-

induction landslides, Static 

Predictors and PGA and Epicentral 

Distances.  

The use of only earthquake-induced 

landslides to predict earthquake-

induction scenarios is partial. 

Indeed, if we add information from 

the rainfall-induction analysis the 

earthquake-induced susceptibility 

model improves its performance. 

Scenario 2 models (95% validation) 

also performed very well. 

Earthquake-

induced landslides 

(Scenario 1: 75%;  

Scenario 2: 5%); 

Model 2: 

PSV;  

2 Dynamic predictors 

(PGA, Epicentral 

distances) 

Earthquake-

induced landslides 

(Scenario 1: 75%;  

Scenario 2: 5%); 

 

 

Model 3: 

11 Static predictors;  

2 Dynamic predictors 

(PGA, Epicentral 

distances) 

Earthquake-

induced landslides 

(Scenario 1: 75%;  

Scenario 2: 5%); 

 

 

Model 4: 

PSV;  

11 Static predictors; 

2 Dynamic predictors 

(PGA, Epicentral 

distances) 

 

 

 

6 

 

 

 

 

 

Rainfall-induced 

landslides 

(100%); 

 

 

 

Ida2009rain: 

10 Static predictors 

 

 

 

 

 

 

 

Earthquake-

induced landslides 

(100%) 

Improving performances predicting 

earthquake-induced landslides 

when PGA and Epicentral Distances 

are added to the rainfall-induced 

landslides susceptibility model. 

Since it is possible to generate 

earthquake-induction susceptibility 

maps by combining rainfall-

induction landslide inventories with 

seismic parameters, it would be 

possible to produce earthquake-

induction landslide susceptibility 

maps even where seismic-induction 

inventories are missing 

Ida2009rain_pga_dist: 

10 Static predictors; 2 

Dynamic predictors 

(PGA, Epicentral 

distances) 
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