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“A morte ogni uom su questa terra è sacro;
O presto o tardi ella s’aggiugne: e come

Uom può meglio morir, che osando impavido
Disfidar tanti orribili perigli
Pel cenere de’ padri, e per i templi
De’ patrii Numi

e per la dolce e tenera
Madre che in culla il carezzava al sonno,
E per la sposa che nutrisce al seno
Soavemente il caro figliuoletto [...] ?”

Canti di Roma antica, T. B. Macaulay
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UNIVERSITY OF PALERMO

Abstract
Department of Mathematics and Computer Sciences

Doctor of Philosophy

Some advancements on homogeneous spaces, star-covering properties and
selection principles

by Fortunato MAESANO

The aim of this work is to furnish results for the following three fields of research
in general topology.

(i) The classes of n-Hausdorff m-homogeneous and n-Urysohn m-homogeneous
spaces are studied. It is shown that, for every n > 2, there is no n-Hausdorff m-
homogeneous space, m > 1, and there exists a 3-Urysohn homogeneous space
which is not Urysohn. New upper bounds for the cardinality of n-Hausdorff
homogenous and n-Urysohn homogenoeous spaces are given and for any n-
Hausdorff space it is constructed an n-Hausdorff homogeneous extension whi-
ch is the union of countably many n-H-closed spaces.

(ii) Some recent properties defined by relative versions of star-covering proper-
ties are considered and it is proved that some of them are in fact character-
izations of the original property or, surprisingly, of known properties. Also
answers some questions posed in [Bal and Kočinac, 2020] and [Kočinac and
Singh, 2020] are given. Additionally some recent relative versions of Menger-
type property, called set strongly star Menger and set star Menger properties,
and the corresponding Hurewicz-type properties are considered, some exam-
ples distinguishing these properties are given. It is “easily" proved that the set
strong star Menger and set strong star Hurewicz properties lie between count-
able compactness and the property of having countable extent. A consistent
example of a set star Menger (set star Hurewicz) space which is not set strongly
star Menger (set strongly star Hurewicz) is given, moreover, answering some
questions posed in [Kočinac, Konca, and Singh, 2022] and [Singh, 2021], it is
proved that the product of a set star Menger (set star Hurewicz) space with a
compact space need not be set star Menger (set star Hurewicz).

(iii) The behaviour of selective separability properties in the class of Fréchet-Urysohn
spaces is studied. Two examples of mH-separable Fréchet-Urysohn (hence R-
separable) spaces which are not H-separable are contructed, the first one given
in ZFC is a countable Hausdorff space; the second, assuming (p = c), is a 0-
dimensional and α4 space. By a result of Barman and Dow, under PFA, the
product of two countable Fréchet-Urysohn spaces is M-separable. It is shown
that the hypothesis of PFA cannot be replaced by MA. In the last section it is
proved that in the Laver model, the product of any two H-separable countable
spaces is mH-separable.

HTTP://WWW.UNIPA.IT
http://department.university.com




ix

Acknowledgements
None of this would have been possible without the great work of Prof. Giovanni

Lo Faro whom I sincerely thank.

The dedication, the perseverance and the high amount of patience which my
co-tutor, Prof.ssa Maddalena Bonanzinga, dedicated to me weren’t second to her
knowledge and experience in the field of topology. I’ve been introduced in research
thanks to her, and she made me appreciate all the possible aspect of mathematics.
So i thank her for all these three years have been.

I would like to thank Prof. Lyubomyr Zdomskyy, which helped me a lot during
my (double) stay in Vienna and from which I learned lots of math and funny stuff.

I would like to thank Prof. Nathan Carlson, for his knowledge and the nice time
we spent togheter during his visit in Sicily; his presence was highly enjoyed.

I sincerely thank the Head of PhD School, Prof.ssa Mariacarmela Lombardo for
her high professionalism and disposability.

I would like to thank "National Group for Algebric and Geometric Structures,
and their Applications" (GNSAGA-INdAM) for supporting my research generously.





xi

CONTENTS

Declaration of Authorship iii

Abstract vii

Acknowledgements ix

Basic notions 1

Introduction 11

1 n-Hausdorff homogeneous and n-Urysohn homogeneous spaces 27
1.1 On the cardinality of n-Hausdorff and n-Urysohn homogeneous spaces. 29
1.2 A homogenous extension of an n-Hausdorff space . . . . . . . . . . . . 31

2 Some relative covering properties defined by stars 35
2.1 Some relative compact-type and Lindelöf type properties defined by

stars . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
2.2 Some relative Menger-type and Hurewicz-type properties defined by

stars . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3 Fréchet-Urysohn property and selective separability 59
3.1 A Hausdorff Fréchet-Urysohn space which is not H-separable in ZFC . 61
3.2 A Fréchet-Urysohn α4 space which is not H-separable under p = c . . . 63
3.3 Products of Fréchet-Urysohn spaces and M-separability . . . . . . . . . 67
3.4 Products of H-separable spaces in the Laver model . . . . . . . . . . . 78

Bibliography 85

Index 93





xiii

To my dearest sisters Nadia and Oriana, and my family.

To my grandpas, echoes of honesty and goodness in my life.

To Greta (this is the third thesis in which she accompanies me,
poor woman). You are here, supporting me through every day,

the easy ones, the hard ones and the extreme ones.

To my friends, my living house and home, Andrea and
Gabriele, Nanni and Gioele, and every other folk that I’m too

lazy to cite but knows I still appreciate and love.

To Davide, best of all colleagues and dear friend. Needless to
say, we will laugh again together.

To the colleagues of Vienna, Julia, Lukas and Omër, and to
Thilo.

To the colleagues of XXXVI cycle of Ph.D. course, Antonella
and Antonino. Thanks for the sweet memories we build

togheter.

To the other colleagues, Aldo, Alessandra, Carmelo C.,
Carmelo M., Emanuele, Ernesto and Guglielmo. Good luck to

everyone for your future.





1

BASIC NOTIONS

In this preliminary part several introductive notions are recalled. Undefined no-
tions can be found in [Blass, 2010], [Engelking, 1989], [Hodel, 1984] and [Jech, 2003],
where basic concepts can be further explored.

The acronyme "ZFC" will abbreviate "ZF+AC", the theory "ZF" obtained by the
following statement, known as Zermelo-Fraenkel axioms:

(0) Existence: "∃x(x = x)"

(I) Extensionality: "∀x ∀y[∀z(z ∈ x ↔ z ∈ y) → x = y]"

(II) Comprehension scheme: "∀x∀p∀y[∀u(u ∈ y ↔ (u ∈ x ∧ φ(u, p)))]" for a given
formula φ.

(III) Pairing: "∀x∀y∃z(x ∈ z ∧ y ∈ z)"

(IV) Union: "∀F∃U∀Y∀x[(x ∈ Y ∧ Y ∈ F ) → x ∈ U]"

(V) Power set: "∀X∃P∀z[(∀y(y ∈ z → y ∈ X)) → z ∈ P]"

(VI) Infinity: "∃x[∀z(z = ∅ → z ∈ x) ∧ ∀y ∈ x∀z(z = y ∪ {y} → z ∈ x)]"

(VII) Replacement scheme: "∀A∀p[∀x ∈ A∃!yφ(x, y, A, p) → ∃Y∀x ∈ A∃y ∈ Yφ(x, y, A, p)]"
for a given formula φ.

(VIII) Foundation: "∀x[∃y(y ∈ x) → ∃y(y ∈ x ∧ ¬∃z(z ∈ x ∧ z ∈ y))]"

with the addition of the Axiom of Choice , which states that every family F of disjoint
nonempty sets admits a set that intersects every its element in one point; in formula

(AC) "∀F [∀x ∈ F (x ̸= ∅) ∧ ∀x ∈ F∀y ∈ F (x = y ∨ x ∩ y = ∅) → ∃S∀x ∈
F∃!z(z ∈ S ∧ z ∈ x)]"

The greek letters λ, κ will always denote cardinal numbers and κ+ indicates the
smallest cardinal greater than κ; the letters α, β, γ, δ denote ordinal numbers and
α + 1 = α ∪ {α} will denote the successor ordinal of α. The symbol ℵ0 denotes the
smallest infinite cardinal and ℵ1 the first uncountable cardinal; the symbols ω and
ω1 represent the first infinite ordinal and the first uncountable ordinal respectively.
Of course ℵ1 = (ℵ0)+, and it is possible to define ℵn+1 = (ℵn)+ for all n ∈ ω.
The letters n, m will denote integers, whose set is denoted by N, which will often
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be identified with the elements of ω; for this reason the set of all finite sequences of
integers will be denoted by <ωω.

Let A be a set. By |A| it is denoted the cardinality of A, i.e., the least cardinal
isomorphic to A; moreover if κ is a cardinal, [A]≤κ is the collection of all subsets
of A of cardinality ≤ κ. Similarly, the sets [A]<κ, [A]≥κ, [A]>κ are defined, while
[A]κ = {B : B ⊆ A ∧ |A| = κ}.

The cardinality of the set of real numbers is 2ℵ0 , referred as continuum, and it will
be denoted with c .

Given a cardinal κ, the cofinality of λ is the cardinal c f (κ) = min{λ : ∃A ∈ [κ]λ :
sup(A) =

⋃
A = κ}; of course c f (κ) ≤ κ and if c f (κ) = κ, the cardinal κ is said to

be regular, otherwise singular.

For two sets A, B ∈ [ω]ω, the symbology A ⊂∗ B stands for A to be almost con-
tained in B, and means |B \ A| < ℵ0.

The set of all functions from ω to ω (equivalently, of all infinite sequences of
integers) will be denoted by ωω. Recall that for f , g ∈ ωω, f ≤∗ g means that
f (n) ≤ g(n) for all but finitely many n (and f ≤ g means that f (n) ≤ g(n) for all
n ∈ ω). A subset B ⊆ ωω is bounded if there is g ∈ ωω such that f ≤∗ g for every
f ∈ B. A subset D ⊆ ωω is cofinal if for each g ∈ ωω there is f ∈ D such that
g ≤∗ f . The minimal cardinality of an unbounded subset of ωω is denoted by b ,
and the minimal cardinality of a cofinal subset of ωω is denoted by d . The value of
d does not change if one considers the relation ≤ instead of ≤∗ [van Douwen, 1984,
Theorem 3.6].

A family F ⊆ [ω]ω is said to have the strong intersection property, briefly SFIP,
if every finite subfamily of it has infinite intersection. A pseudointersection of a fam-
ily F ⊆ [ω]ω is an infinite set whose all but finite elements are contained in every
member of F . The smallest cardinality of any F ⊆ [ω]ω with SFIP but with no pseu-
dointersection is denoted with p .

The inequality ℵ1 ≤ p ≤ b ≤ d ≤ c holds in ZFC.

With "continuum hypothesis", briefly "CH", it is meant the following fact:

"Every infinite set of reals is either countable or in bijective correspondence with all the
reals"

The latter statement is tantamount to the equality ℵ1 = c (and therefore ℵ1 = p =
b = d = c). It is also possible to define the "generalized continuum hypothesis", briefly
"GCH", which is the statement

"κ+ = 2κ"

In particular this leads to the equality "ℵn+1 = 2ℵn ".

The symbol X will denote a non-empty topological space (X, τ), where τ is the
topology on X; its elements will be referred as points of the space.

The following properties are classicaly known in literature as separation axioms of
topological spaces. A topological space X is said to be
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• a T1 space if for every pair of distinct points x, y ∈ X there exist open subsets
U, V of X such that x ∈ U \ V and y ∈ V \ U.

• an Hausdorff space or T2 space if for every pair of distinct points x, y ∈ X there
exist open disjoint subsets U, V of X such that x ∈ U and y ∈ V.

• an Urysohn space or T2, 1
2

space if for every pair of distinct points x, y ∈ X there

exist open disjoint subsets U, V of X such that x ∈ U and y ∈ V.

• a regular space or T3 space if it is a T1 space and for every closed set C ⊆ X
and every point x ∈ X \ C there exist open disjoint subsets U, V of X such that
x ∈ U and C ⊆ V.

• a Tychonoff space or T3, 1
2

space if it is a T1 space and for every closed set C ⊆ X
and every point x ∈ X \ C there exist a continuous function f : X → [0, 1] such
that f (x) = 0 and f (C) = 1.

• a normal space or T4 space if it is a T1 space and for every pair of disjoint closed
sets C, D ⊆ X there exist open disjoint subsets U, V of X such that C ⊆ U and
D ⊆ V.

• a hereditarily normal space or T5 space if it is a T1 space and every its subset is
normal.

• a perfectly normal space or T6 space if it is a T4 space and every its closed subset
is the intersection of countably many open sets.

Unless specified, none of these axioms is assumed a priori.

A space X is said to be collectionwise Hausdorff provided that for every closed
and discrete subspace D of X there exists a disjoint family {Oa : a ∈ D} of open
neighbourhoods of points a ∈ D. Of course every collctionwise Hausdorff space is
Hausdorff.

A family U of open sets is a cover for a space X if
⋃U = X; a set V ⊆ U is a

subcover of U if
⋃ V = X. An open cover U is

• a γ-cover if it is infinite and the set {U ∈ U : x ∈ U} is finite for all x ∈ X;

• an ω-cover if it is infinite and every finite subset of X is contained in an element
of U .

Every γ-cover is an ω-cover. The class of all covers (resp. γ-covers, ω-covers) of a
topological space will be denoted by O (resp., by Γ and by Ω).

The following properties are known in literature as covering properties of topolog-
ical spaces. A set is countable when it is finite or has cardinality ℵ0. A space X is said
to be:

- compact, briefly C, if every its open cover admits a finite subcover.

- H-closed if it is Hausdorff and every its open cover admits a finite subfamily
whose union is a dense set; as an equivalent definition, it is an Hausdorff space
closed in every Hausdorff space in which it is contained.

- countably compact, briefly CC, if every its countable open cover admits a finite
subcover.
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- Lindelöf , briefly L, if every its open cover admits a countable subcover.

Of course every compact space is also Lindelöf and countably compact, and a space
is compact if and only if it is countably compact and Lindelöf.

A space X is said to be sequential if a subset of it is closed if and only if contains
all the limits of the sequences contained in it. A space X is said to be Fréchet-Urysohn,
briefly FU, if for every A ⊂ X and x ∈ A \ A there exists a sequence S ⊂ A \ {x}
converging to x.

Given a space X and an element x ∈ X, a family V ⊆ τ is a local π-base for x if for
every open neighbourhood U of x there exists V ∈ V such that V ⊆ U; if moreover
x ∈ V for all V ∈ V , the family V is said to be a local base for x . A space X said
to satisfy the first countability axiom, or to be a first-countable space if every point
admits a countable local base.

A family B of open sets is a base if for every point x ∈ X and open set U with
x ∈ U there exists B ∈ B such that x ∈ B ⊆ U; a π-base is a family C such that for
every open set V there exists C ∈ C with C ⊆ V. A space X is said to satisfy the
second countability axiom, or to be a second-countable space if it admits a countable
base.

Of course every second countable space is first-countable, every first-countable
space is Fréchet-Urysohn, and every Fréchet-Urysohn space is sequential.

A space is said to be zero-dimensional if it admits a base of clopen sets. Every
zero-dimensional space is Tychonoff.

A space X is said to be homogeneous if for every x, y ∈ X there exists a homeo-
morphism h : X → X such that h(x) = y .

A cardinal function is any function f assigning to every topological space X a
cardinal number f (X) in a way so, if X and Y are homeomorphic spaces, then
f (X) = f (Y). Let X be a space. The following cardinal functions are considered
multiplied by ω.

The π-character of a point x ∈ X is the smallest cardinality πχ(x, X) of local a
π-base for x, and the character is the smallest cardinality χ(x, X) of a local base for
x; then of course χ(x, X) ≤ πχ(x, X). The π-character of a space X is the caridinal
πχ(X) = sup{πχ(x, X) : x ∈ X} , and the character of X is χ(X) = sup{χ(x, X) :
x ∈ X}; then πχ(X) ≤ χ(X). A space X is first-countable if and only if χ(X) = ℵ0.

The π-weight of a space X, denoted by πw(X), is the least cardinality of a π-base
of X.

The density of a space X, denoted by d(X), is the smallest cardinality of a dense
subset of X . If d(X) = ℵ0, the space is said to be separable. Notice that d(X)πχ(X) =
πw(X).

The cellularity of a space X is the least cardinal c(X) such that every family of
pairwise disjoint open sets has cardinality lower or equal to c(X). If c(X) = ℵ0, the
space is said to have the countable chain condition property, or, briefly, to be a c.c.c.
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space.

The extent of a space X is the least cardinal e(X) such that every closed discrete
subset has cardinality lower or equal to e(X).

The Lindelöf degree of a space X is the least cardinal L(X) such that every open
cover admits a subcover of cardinality L(X). A space X is Lindelöf if and only if
L(X) = ℵ0.

The following properties are known in literature as selection principles for topo-
logical spaces. The notation below was used in [Scheepers, 1996] and [Just, Miller,
Scheepers, and Szeptycki, 1996]. Let X be a space and A, B be collections of families
of its subsets. Then:

• S1(A,B) denotes the following statement: for each sequence ⟨Un : n ∈ ω⟩ of
elements of A there exists a sequence ⟨Un : n ∈ ω⟩ such that for each n ∈ ω,
Un ∈ Un and {Un : n ∈ ω} ∈ B.

• S f in(A,B) denotes the following statement: for each sequence ⟨Un : n ∈ ω⟩ of
elements of A there exists a sequence ⟨Vn : n ∈ ω⟩ such that for each n ∈ ω,
Vn ∈ [Un]<ω and

⋃
n∈ω Vn ∈ B.

• U f in(A,B) denotes the following statement: for each sequence ⟨Un : n ∈ ω⟩ of
elements of A there exists a sequence ⟨Vn : n ∈ ω⟩ such that for each n ∈ ω,
Vn ∈ [Un]<ω and {⋃ Vn : n ∈ ω} ∈ B.

Selection principles were introudced to list a scheme properties of topological spaces
which work on an "input", often sequences of topological objects, and give an "out-
put", another topological object, selected in a way that depends on the principle.
Some selection principle define known properties: a space X is said to be:

• Rothberger, briefly R, if satisfies S1(O,O), i.e. , for every sequence ⟨Un : n ∈ ω⟩
of open covers there exists a sequence ⟨Un : n ∈ ω⟩ such that Un ∈ Un, n ∈ ω,
and {Un : n ∈ ω} ∈ O (see [Rothberger, 1938, Definition 1]).

• Menger, briefly M, if satisfies S f in(O,O), i.e. , for every sequence ⟨Un : n ∈ ω⟩
of open covers there exists a sequence ⟨Vn : n ∈ ω⟩ such that Vn ∈ [Un]ω,
n ∈ ω, and

⋃
n∈ω Vn ∈ O (see [Hurewicz, 1926, p. 402]).

• Hurewicz, briefly H, if satisfies U f in(O, Γ), i.e. , for every sequence ⟨Un : n ∈ ω⟩
of open covers there exists a sequence ⟨Vn : n ∈ ω⟩ such that Vn ∈ [Un]ω,
n ∈ ω, and

⋃
n∈ω Vn ∈ O (see [Hurewicz, 1927, p.196]).

The implications between the cited properties are summed up in the underlying
diagram.

R

C CC M L

H
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A space X is said to be metrizable if there exists a function d : X2 → R, defined metric
with the following properties

1. d(x, y) = 0 if and only if x = y for all x, y ∈ X;

2. d(x, y) = d(y, x) for all x, y ∈ X;

3. d(x, z) ≤ d(x, y) + d(y, z) for all x, y, z ∈ X;

and such that the topology generated frome the sets

B(x, r) = {y ∈ X : d(x, y) < r}

coincides with the one on the space. With abuse of notation we will call a metrizable
space a metric space. The space X is said to be complete if every Cauchy sequence
converges (see Engelking, 1989 for details). Every metrizable space is T6.

The set ωω can be endowed with the following topology: if s = ⟨am : m < n⟩, a
basic open set will be any set of the form

B(s) = {⟨bn : n ∈ ω⟩ : (∀m < n)(bm = am)}

The topological space obtained wil be referred as the Baire space. The Baire space is
separable and completely metrizable by the metric d : ωω × ωω → R defined by

d(⟨an : n ∈ ω⟩⟨bn : n ∈ ω⟩) = 1
2m+1 where m is the least integer for which an ̸= bn

Let X be a complete metric separable space. A set A ⊆ X is analytic if there exists
a continuous function f : ωω → X such that f (ωω) = A.

A family of sets A ⊂ [ω]ω is almost disjoint if the intersection of any two dis-
tinct elements is finite; if it is not included into to a strictly bigger family with this
property, A is said to be a maximal almost disjoint family, briefly a "mad" family.

Given a mad family A ⊂ [ω]ω, a pair of disjoint B, C ∈ [A]<c is said to be sep-
arated if there exists A ⊂ ω such that B ⊂∗ A and C ⊂∗ ω \ A for any B ∈ B and
C ∈ C.

Let A ⊂ [ω]ω be an almost disjoint family. Put Ψ(A) = ω ∪ A and topologize
Ψ(A) as follows: the points of ω are isolated and a basic neighbourhood of a point
a ∈ A takes the form {a} ∪ (a \ F), where F is a finite set. The space Ψ(A) is known
in literature as Isbell-Mrówka space or Ψ-space (see [Alexandroff and Urysohn, 1923]
for the first apparition, and [Mrówka, 1955, p. 105]).

Let X be a space. With Cp(X) will be denoted the space of continuous functions
from X to the real line R endowed with the topology of pointwise conergence,i.e.,
the one inherited from the space RX seen as a product.

Given a set A, a partial order R on A is a subset R ⊆ A × A such that a) if
(x, y), (y, z) ∈ R, then (x, z) ∈ R and b) (x, x) /∈ R for all x ∈ A; a linear order is a
partial order such that x < y or y < x for all x, y ∈ A, and a well order is a linear order
such that every subset of A admits a minimal element. Every set can be endowed of
the structure of well-ordered set assuming AC.

Given a nonempty set S, a filter on S is a family F of subsets of S such that
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(i) S ∈ F and ∅ ∈ F ;

(ii) if X, Y ∈ F , then X ∩ Y ∈ F ;

(iii) if X ∈ F and X ⊆ Y, then Y ∈ F .

A filter is an ultrafilter if has the following additional property

(iv) for every subset X of S, either X ∈ F or S \ X ∈ F .

An ultrafilter F on ω is a Pc-point if for any F ′ ∈ [F ]<c there exists F ∈ F such that
F ⊂∗ F′ for all F′ ∈ F ′.

Given an almost disjoint family A ⊂ [ω]ω, it is always possible to construct a
filter F (A), called dual filter of A, defined as follows

F (A) = {F : (∃A′ ∈ [A]<ω)(ω \ ∪A′ ⊂∗ F)}

A forcing notion is a triple P = (P ,≤, 1P ) where ≤ is a partial order of support P
and 1P is the maximal element of P with respect to ≤. Elements of P will be called
forcing conditions or just "conditions". With abuse of notation, the support of the forc-
ing notion will be always considered to be P instead of P . Two conditions p, q ∈ P,
are said to be compatible if there exists r ∈ P such that r ≤ p, q; otherwise it will said
that those are incompatible. A subset G ⊆ P is said to be a filter if a) every two of its
elements are compatible and b) if p ∈ G and p ≤ q, then q ∈ G. A set D ⊆ P is said
to be dense if for every p ∈ P there exists q ∈ D such that q ≤ p.

Given a set or a class M, the transitive closure of M is the set tc(M) =
⋃{⋃n(M) :

n ∈ ω}, where
⋃0(M) = M and

⋃n+1(M) =
⋃
(
⋃n M) for all n ∈ ω; M is said to be

transitive if x ∈ M implies x ⊆ M. Of course if M is transitive, then M = tc(M).

For a cardinal θ, the set Hθ will denote the set of all sets whose transitive closure
has cardinality less than θ:

Hθ = {x : |tc(x)| < θ}

its existence is guaranteed in ZF (even without power axiom), but to develope prop-
erties of it the assumption AC of is needed.

Let φ be a formula written in the language of set theory, and let M be a class or
a set; then M is said to be a model for φ if the formula φM obtained restricting the
quantifiers of φ just to the ones contained in M is true. In this case the notation

M |= φ

is used.

The latter concepts were remarked with the aim to understand the tool of forcing.
Let M be a countable transitive model of ZFC, briefly a CTM, and a formula φ. The
forcing method will be used to build a set N which will result in a model of ZFC + φ
that includes M. To descrive the process of building the new model via forcing, a
few more definitions are needed. Given a forcing notion P ∈ M, a filter G ⊆ P is
said to be P-generic over M if it intersects every dense D ⊆ P which belongs to M.
The existence of this kind of filter outside M is justifyied by the following result.

Lemma 1. [Jech, 2003, Lemma 2.4] Suppose M is a CTM and P ∈ M a forcing notion.
Then there are c-many P-generic filters over M that are not elements of M.
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A sketch of the forcing will now be summed up. Given a forcing notion P, a
P-name is defined recursively as follows:

- ∅ is a P-name

- a relation τ such that

(σ, p) ∈ τ if and only if σ is a P-name and p ∈ P

is a P-name.

If M is a CTM, we define

MP = {τ ∈ M : M |= ”τ is a P-name”}

A P-generic filter G over M, apart trivial cases, does not belong to M (see [Jech,
2003, Example 14.2]). The notion of P-names is used to build the model listed in the
following theorem.

Theorem 1. [Jech, 2003, Theorem 14.5] Let M be a transitive model of ZFC and P ∈ M a
forcing notion. Let G ⊆ M be a P-generic filter over M. Then there exists a transitive model
M[G] such that:

- M[G] is a model of ZFC

- M ⊆ M[G] and G ∈ M[G]

- the ordinal numbers in the new model are the same of the starting model

- if N is a transitive model of ZF such that M ⊂ N and G ∈ N, then M[G] ⊂ N

The model M[G] is called generic extension of M. Given a condition p ∈ P and a
formula φ, the symbology

p ⊩ φ

read as "p forces φ" will mean that for all P-generic filters G ⊆ P over M with p ∈ G,
the formula φ is true in M[G] (see [Kunen, 1980] for further details).

In this work the following notation will be used:

- given x ∈ M, the set x̌ = {(y̌, p) : y ∈ x ∧ p ∈ P} is a P-name for x.

- given a P-generic filter G ⊆ P over M, the set Ġ = {(p, p̌) : p ∈ G} is a P-name
for G.

both the definitions do not depend on the choiche of the generic filter.

Many intresting results in set theory (and topology) can be obtained by assuming
additional set-theoretical axioms in a ZFC model, like CH, or some relation between
cardinal characteristics. However, several set-theoretical axioms deal with forcing
notions, for which the statements can include known objects of this field of interest.

Two specific axioms will be recalled, with the aim of use in this thesis.

A forcing notion is said to have the countable chain condition property , or, briefly,
to be c.c.c., if every set of mutually incompatible elements is countable.

With "Martin’s Axiom", briefly "MA", it is meant the wollowing hypothesis:
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"Let P be a c.c.c. forcing notion and D a family of dense subsets of P with |D| < c. Then
there exists a D-generic filter F in P ."

This assertion was proven to be a weaker version of CH, but it was also proven the
existence of a ZFC model of MA+¬CH.

Given a infinite cardinal κ the following statement, known as MAκ, will be also
considered:

"Let P be a c.c.c. forcing notion and D a family of dense subsets of P with |D| < κ. Then
there exists a D-generic filter F in P ."

It was proven that MAℵ0 is true in ZFC and MAκ implies κ < c, so the axiom is
considered for ℵ1 ≤ κ < c. Of course MA implies MAκ for all ℵ1 ≤ κ < c.

A forcing notion is said to be proper if for every regular cardinal θ > 2|P|, every
countable transitive submodel M ≺ Hθ with P ∈ M and for every p ∈ M ∩ P and
every P-generic filter G ⊆ P over M there exists q ≤ p such that q ⊩ ”Ġ ∩ M is
P-generic over M".

With "Proper Forcing Axiom", briefly "PFA", it is meant the wollowing hypothesis:

"Let P be a proper forcing notion and D a family of dense subsets of P with |D| < c. Then
there exists a D-generic filter F in P ."

Since every c.c.c. forcing is proper, PFA is a stronger assumption than MA; more-
over a consequence of this axiom is the equality ℵ2 = 2ℵ0 .

It is possible to build new models by forcing "repeatedly"; such technique is
called iterated forcing: suppose that P is a forcing notion, M is a CTM and G ⊆ P

is a P-generic filter over M; the model M[G] can be used as the new starting model
and make the forcing work over a generic filter over M[G], in order to build an
extension of it. In this light, a P-name for a forcing notion is a triple of P-names
Q̇ = (Q̇, ≤̇Q, ˙1Q) such that:

- for some p ∈ P we have (1̇Q, p) ∈ Q̇

- 1P ⊩ ”1̇Q ∈ Q̇ ∧ (Q̇, ≤̇Q) is a partial order of with maximal element ˙1Q”

again, Q̇ will replace Q when speaking of the forcing notion. The forcing itaration
will produce a forcing notion, denoted by P ∗ Q̇, defined as follows:

- conditions are the pairs (p, q̇) such that p ∈ P and p ⊩ q̇ ∈ Q̇

- 1P∗Q = (1P, 1Q̇)

- (p1, q1) ≤ (p2, q2) ⇔ p1 ≤ p2 and p1 ⊩ q̇1 ≤ q̇2.

given a Q̇-generic filter H ⊆ Q̇ over M[G], this procedure will consent to force with
Q̇ to build a new model M[G ∗ H] = (M[G])[H].

The latter process, which consists in a two-step iteration, can be generalized to
a transfinite iteration: if α is an (infinite) ordinal, an α-stage iteration is a pair of se-
quences ⟨Pβ : β ≤ α⟩, ⟨Q̇γ : β < α⟩ such that for every β ≤ α the following
statements are true:
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- Pβ = (Pβ,≤β, 1β) is a forcing notion, whose forcing operation will be denoted
by ⊩β.

- Q̇β is a Pβ-name for a forcing notion (Q̇β,≤Q̇β
, 1Q̇β

).

- The conditions p ∈ Pβ are sequences ⟨q̇γ : γ < β⟩ such that every q̇γ is a name
for an element of Q̇γ; in particular 1β = ⟨1Q̇γ

: γ < β⟩.

- If p, p′ ∈ Pβ with p = ⟨q̇γ : γ < β⟩ and p′ = ⟨q̇′γ : γ < β⟩, then p ≤β p′ if and
only if ⟨q̇δ : δ < γ⟩ ⊩γ ”q̇γ ≤ q̇′γ” for all γ < β.

- If β + 1 ≤ α, then Pβ+1 = Pβ ∗ Q̇β

Let κ be a cardinal and α ≥ κ an ordinal. For a condition p ∈ Pα with p = ⟨q̇β : β <
α⟩, the support of p is the set supp(p) = {β < α : q̇β ̸= 1β}.

A partial order (T ,≤) is said to be a tree if the set {s ∈ T : s ≤ t} is well-ordered
by ≤; the elements of a tree are called nodes. If s, t ∈ T are nodes and s ≤ t, then s is
said to be a predecessor of t, and t is said to be a successor of s. The forcing iteration
⟨Pα, Q̇α : β < α⟩ will said to have < κ-support if |supp(p)| < κ for all p ∈ Pα; if
κ = ℵ1, it is said to be a countable support iteration, if κ = ℵ0, it is said to be a finite
support iteration.

In [Laver, 1976, pp. 155-156], the following procedure to build a model is de-
scribed. The Laver forcing is the set of all trees p ⊆ <ωω in which there is a par-
ticular node sp ∈ p, called stem, that is the maximal node which is comparable to
all the other nodes and if sp ≤ t, then t has infinitely many successors in p. The
Laver model is obtained from forcing ℵ2-many times the laver forcing on a countable
support, starting from a model of GCH. In particular, this model holds the equality
b = c = ℵ2, hence imples ¬CH.

Let F be a filter on ω. It is possible to consider a forcing poset (MF ,≤F , 1F )
defined as follows:

• The support is the set

MF = {(s, F) ∈ [ω]<ω ×F : max(s) < min(F)}

• Let (s, F), (t, G) ∈ MF . Then

(s, F) ≤F (t, G) ⇔ F ⊆ G, t ⊆ s, max(t) < min(s \ t) and s \ t ⊆ G

• Consequently, 1F = (∅, ω).

Forcing with MF provides a generic subset X ∈ [ω]ω such that X ⊂∗ F for all F ∈ F .
This forcing notion is usually called Mathias forcing associated with F .
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INTRODUCTION

The aim of this thesis is to give new results in the following three areas of general
topology: the classes of n-Hausdorff homogeneous and n-Urysohn homogeneous
spaces, covering properties and selection principles defined by stars, and selective
separability properties in Fréchet-Urysohn spaces.

In the Chapter 1 the classes of n-Hausdorff homogeneous and n-Urysohn m-
homogeneous spaces are studied. It is shown that, for every n > 2, there is no
n-Hausdorff m-homogeneous space, m > 1, and there exists a 3-Urysohn homo-
geneous space which is not Urysohn. New upper bounds for the cardinality of n-
Hausdorff homogenous and n-Urysohn homogenoeous spaces are given and for any
n-Hausdorff space it is constructed an n-Hausdorff homogeneous extension which
is the union of countably many n-H-closed spaces. The original results of this the-
sis presented in Chapter 1 are contained in [Bonanzinga, Giacopello and Maesano,
2023].

The n-Hausdorff and n-Urysohn properties were recently introduced in [Bo-
nanzinga, 2013, p. 1] and [Bonanzinga, Cammaroto, and Matveev, 2011, p. 441]
respectively, with the aim to generalize Hausdorff and Urysohn spaces. Intuitively
in a Hausdorff space it is always possible to separate two points by open disjoint
sets; the n-Hausdorff property generalize this concept, seprating n-many point by
open sets whose intersection is empty. The same can be said for the Urysohn and
n-Urysohn properties just applying the disjoint condition to the closure of the open
sets instead.

It is intresting to study the behaviour of these new separation axioms with re-
spect of classical topics of the general topology:

- while the Hausdorff property is productive, in [Bonanzinga, Stavrova, and
Staynova, 2016, Theorem 15] it is stated that the product of m-many n-Hausdorff
space is at most (m · n)-Hausdorff, and [Bonanzinga, Stavrova, and Staynova,
2017, Example 3.2] proves the existence of a 3-Hausdorff, T1, compact and first-
countable space whose square is not 3-Hausdorff but 5-Hausdorff instead.

- every infinite Hausdorff space contains an infinite closed discrete subspace, as
per [Ginsburg and Sands, 1979, Theorem 1]; [Bonanzinga, 2013, Proposition
21] shows that n-Hausdorff spaces keep the same property;
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- Several bounds on the cardinality of n-Hausdorff and n-Urysohn spaces were
proved, in order to generalize classical results in literature; see [Bonanzinga
and Pansera, 2014] , [Bonanzinga, Cuzzupé, and Pansera, 2014] , [Bonanzinga,
Stavrova, and Staynova, 2016] , [Bonanzinga, Stavrova, and Staynova, 2017],
[Gotchev, 2017] and [Bonanzinga, Carlson, and Giacopello, 2023].

Roughly speaking, the cardinality of a space indicates how many elements it does
contain; a cardinal bound is a way to give an approximation of this number of points
for a space with good enough topological properties. Finding upper and lower car-
dinality bounds for topological spaces is one of the most recurrent topic of research.
This thematic is strictly connected to the study of cardinal functions in topology. A
cardinal function is any function defined from the class of topological spaces to the
cardinals which maps homeomorphic spaces in the same cardinal. The first studies
of cardinal functions date back on 1920, thanks to the russian school of topology, and
received a further boost fourty years later.

The cardinal functions were introduced both as a tool to prove when two spaces
are not homeomorphic, and to give (more elegant) proofs of cardinality bounds of
spaces which verify not just "countable" topological properties. The cardinal func-
tions consent to generalize known results about "countable" topological properties,
as Lindelöf and separability, to the "uncountable" case.

The first problem about the cardinality of topological spaces was posed in [Alexan-
droff and Urysohn, 1923]:

Question 1. Does every first countable compact topological space have cardinality ≤ c?

A positive answer was given in [Arhangel’skii, 1969], where the author proved
the following result

Theorem 2. [Arhangel’skii, 1969, Theorem 1] A first countable compact space has cardinal-
ity ≤ c.

This was just the first of many results in this field of research, widely analyzed
by many authors. In the same article the author generalize the previous result using
cardinal functions

Theorem 3. [Arhangel’skii, 1969, Theorem 3] Let X be a Hausdorff space. Then |X| ≤
2L(X)χ(X).

The definitions of n-Hausdorff space and n-Urysohn space were given by the
following new cardinal functions.

Definition 4. [Bonanzinga, 2013, p. 1] Let X be a space. The Hausdorff number H(X)
(finite or infinite) of X is the least cardinal number κ such that for every subset A ⊆ X
with |A| ≥ κ there exist open neighbourhoods Ua, a ∈ A, such that

⋂
a∈A Ua = ∅. A

space X is said n-Hausdorff, n ≥ 2, if H(X) ≤ n.

In [Gotchev, 2014, Definition 1], indipendently from Definition 4 , the cardinal
function called “non Hausdorff number” was introduced.

Definition 5. [Bonanzinga, Cammaroto, and Matveev, 2007, p. 441] Let X be a space.
The Urysohn number U(X) (finite or infinite) of X is the least cardinal number κ such
that for every subset A ⊆ X with |A| ≥ κ there exist open neighbourhoods Ua,
a ∈ A, such that

⋂
a∈A Ua = ∅. A space X is said n-Urysohn, n ≥ 2, if U(X) ≤ n.
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A recurring problem in general topology is to prove a certain known cardinal
inequality assuming weaker hypothesis or changing the cardinal functions involved
with ones whose values are lesser. In this sense, in [Bonanzinga, 2013] the author
proved first that 3-Hausdorff and T1 are indipendent properties and then presented
the following generalization of Theorem 3:

Theorem 6. [Bonanzinga, 2013, Corollary 34] Let X be a T1 space such that H(X) is finite.
Then |X| ≤ 2L(X)χ(X).

Many other generalizations of Arhangel’skii inequality were proved using n-
Urysohness instead of Hausdorffness or Urysohness. Hence it is clear how these
axioms can be useful in the field of cardinal bounds for topological spaces. Sev-
eral bounds on the cardinality of n-Hausdorff and n-Urysohn spaces are contained
in [Bonanzinga and Pansera, 2014] , [Bonanzinga, Cuzzupé, and Pansera, 2014] ,
[Bonanzinga, Stavrova, and Staynova, 2016] , [Bonanzinga, Stavrova, and Staynova,
2017], [Gotchev, 2017] and [Bonanzinga, Carlson, and Giacopello, 2023].

Chronologically, the notion of homogeneous space belongs to the first half of XX
century: a space is said to be homogeneous if for every pair of its points there exists
a homeomorphism which maps one into the other; this class of spaces was widely
analyzed in topology and set theory with many intresting results, as the following
one

Theorem 7. [van Mill, 2003, Theorem 3.6] There exists a compact space with countable π-
weight and uncountable character which is homogeneous under MA+¬CH but not so under
CH.

In the first part of the Chapter 1 a systematic study of n-Hausdorff and n-Urysohn
homogeneous spaces starts. Several results and examples distinguishing these topo-
logical properties are given.

The study of the cardinalities of homogeneous spaces started one year later than
the Arhangel’skii’s result (Theorem 3); the same author proved the following.

Theorem 8. [Arhangel’skii, 1970, Consequences group 2] Let X be a compact homogeneous
space. If X is sequential, then |X| ≤ c.

From then, the area of cardinality bounds for homogenous spaces started to grew,
collecting many elegant results. Recall the following important theorem in the the-
ory of cardinal boundings

Theorem 9. [Hajnal and Juhász, 1967, Theorem 5] Let X be a Hausdorff space. Then
|X| ≤ 2c(X)χ(X).

Adding the homogeneity to the hypothesis, it was possible to prove the following

Theorem 10. [Carlson and Ridderbos, 2008, Theorem 2.3] Let X be a Hausdorff homoge-
neous space. Then |X| ≤ 2c(X)πχ(X).

This is in fact a better estimate in the class of homogeneous spaces since the π-
character is less or equal to the character.

In [Bonanzinga, 2013], in the light of Theorem 9, the author proved the following

Theorem 11. [Bonanzinga, 2013, Corollary 54] Let X be a 3-Hausdorff space. Then |X| ≤
22c(X)χ(X)

.
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Then in [Bonanzinga, 2013, Question 55] the author asked if |X| ≤ 2c(X)χ(X) holds
for every n-Hausdorff space X, with n ≥ 2. In [Gotchev, 2017] the author, using
the cardinal function called “non Hausdorff number" introduced in [Gotchev, 2014,
Definition 2.4] independently from definitions above, gave a positive answer to the
previous question.

Upper bounds on the cardinality of n-Hausdorff homogeneous and n-Urysohn
homogeneous spaces are presented in paragraph 1.1. Motived by Theorem 10, the
following question was considered.

Question 12. Is |X| ≤ 2c(X)πχ(X) true for every homogeneous space X such that H(X) is
finite?

The following partial answers to the previous question are given:

Theorem 13. (Theorem 1.1.6) Let X be a 3-Hausdorff homogeneous space. Then |X| ≤
22c(X)πχ(X)

.

Theorem 14. (Theorem 1.1.8) Let X be an n-Hausdorff homogeneous space, with n ≥ 2.
Then

|X| ≤ 22..
.2

c(X)πχ(X)

where the power is made (n − 1)-many times.

Theorem 15. (Theorem 1.1.13) Let X be a n-Hausdorff quasiregular homogeneous space,
n ≥ 2. Then |X| ≤ 2c(X)πχ(X) .

Also, the following result gives a positive answer to Question 12 if H(X) is re-
placed by U(X).

Theorem 16. (Theorem 1.1.14) Let X be an n-Urysohn homogeneous space, where n ≥ 2.
Then |X| ≤ 2c(X)πχ(X).

A Hausdorff space is said to be H-closed if it is closed in every Hausdorff space
in wich it is contained. The first appearence of the notion of H-closed spaces can be
found in the already cited article [Alexandroff and Urysohn, 1923]. It was proved in
[Porter and Woods, 1987, Theorem (n)] that every Hausdorff space can be embedded
in a H-closed space which is the "larger" possible. In [Basile, Bonanzinga, Carlson,
and Porter, 2019] the authors, in order to formulate an analougous result for the
n-Hausdorff spaces, introduced the following property.

Definition 17. [Basile, Bonanzinga, Carlson, and Porter, 2019, Definition 6] Let n ≥ 2.
An n-Hausdorff space X is called n-H-closed if X is closed in every n-Hausdorff space
Y in which X is embedded.

In the same article the authors obtained the following result

Theorem 18. [Basile, Bonanzinga, Carlson, and Porter, 2019, Theorem 4] Let n ∈ ω,
n ≥ 2. An n-Hausdorff space can be densely embedded in an n-H-closed space.

In [Carlson, Porter, and Ridderbos, 2012], the following is proved

Theorem 19. [Carlson, Porter, and Ridderbos, 2017, Theorem 2.3] Let X be a Hausdorff
space. Then X can be embedded in a homogeneous space that is the countable union of H-
closed spaces.
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Generalizing the previous result, in the paragraph 1.2, for any n ≥ 2 and for any
n-Hausdorff space, it is presented an n-Hausdorff homogenous extension which is
the countable union of n-H-closed spaces.

Theorem 20. (Theorem 1.2.12) Let n ≥ 2, X be an n-Hausdorff space. Then X can be
embedded in an homogeneous space that is the countable union of n-H-closed spaces.

Using this result an example of n-Hausdorff homogeneous space which is not
n-Urysohn, for every n ≥ 2 is given.

Example 21. (Example 1.2.13) An example of an n-Hausdorff, homogeneous, not n-Urysohn
space which is the countable union of n-H-closed spaces, for every n ≥ 2.

The Chapter 2 is devoted to the study of relative versions of some compact-type
and Lindelöf-type covering properties and Menger-type and Hurewicz-type selec-
tion principles defined by stars. The original results of this thesis presented in Chap-
ter 2 are contained in [Bonanzinga and Maesano, 2022] and [Bonanzinga, Giacopello
and Maesano, 2023].

Given a space, it is possible to find the "position" of a subset of it in terms of
its topological properties: from a general property P of the whole space it is pos-
sible to formulate a relativizaton Prel. with respect of a subset in such a way that,
when the subset coincide with the entire space, then Prel. coincides with P . Every
global property can be relativized in several ways: the way to classify the possible
variations is always trying to generalize known theorems, valid for the general prop-
erty, to selected relative ones. First studies on relativizations theory are contained in
[Arhangel’skii, 1989]; subsequent investigation can be found in [Arhangel’skii and
Hamdy, 1989] and [Arhangel’skii, 1996].

Definition 22. Let X be a space, A a subset of it and V a family of open sets. The
star of A with respect of V is the set st(A,V) =

⋃{A ∈ V : A ∩ M ̸= ∅}; if x ∈ X,
the star of the one-point set {x} with respect to V is denoted by st(x,V) instead of
st({x},V). Furthermore, st1(M,V) = st(M,V) and for every n ∈ ω, stn+1(M,V) =
stn(st(M,V),V).

The notion of star of a set with respect of a given family of subsets belongs to
the first era of research in geometry: according to [Aull and Lowen, 1997, p. 528],
"this idea of ’starring’ occurs prominently in the 1910 work of E.H. Moore", hence
the origin of this concept is at least this ancient. The concept of star is part of the
definition of developement, first used in [Chittenden and Pitcher, 1919], which was
used to prove several criteria for the metrizability of topological spaces, for example
[Bing, 1951, Theorem 10] and in the proof of [Stone, 1960, Theorem 1] which consists
in an elegant version of the well-known [Moore, 1935, Theorem 12] (see [Section 5.4,
Engelking]). Stars are also used with different terminology in the theory of simplicial
complexes. Another application of stars is a characterization of paracompactness, a
weaker form of compactness, exposed in [Stone, 1948]. Hence, stars can be used in
arguably any topological context.

The first classes of compact-type and Lindelöf-type properties defined by stars
were given in [Fleischman, 1970] , [Ikenaga and Tani, 1980], [Ikenaga, 1983] and
[Matveev, 1984] using many different terminologies. Later the article [van Douwen,
Reed, Roscoe, and Tree, 1991] collected and extended the works from authors and
gave impulse to this field of research. Many details on compact-type and Lindelöf-
type properties defined by stars can be found in [Matveev, 1998].
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New results in the theory of star-covering properties are contained in [Bonanzinga
and Maesano, 2021], [Kočinac, 2023] and [Basile, Bonanzinga, Maesano, and Shak-
matov, 2023].

Recall the following classical star-covering properties.

Definition 23. A space X is

• strongly star-compact, briefly SSC, if for every open cover U of the space X,
there exists a finite subset F of X such that st(F,U ) = X [Fleischman, 1970,
Definition 5];

• star-compact, briefly SC, if for every open cover U of the space X, there exists a
finite subfamily V of U such that st(

⋃ V ,U ) = X [Sarkhel, 1986].

• strongly star-Lindelöf , briefly SSL, if for every open cover U of the space X, there
exists a countable subset C of X such that st(C,U ) = X [Ikenaga, 1990].

• star-Lindelöf , briefly SL, if for every open cover U of the space X, there exists a
countable subfamily V of U such that st(

⋃ V ,U ) = X [Ikenaga, 1983].

In the paragraph 2.1, recent and new relative versions of the star-covering prop-
erties above are analyzed and distinguished by counterexamples.

Definition 24. (Definitions 2.1.7 and 2.1.13) A subset A of a space X is

• relatively∗ SSC in X if for every family U of open sets in X such that A ⊆ ⋃U ,
there exists a finite subset F of A such that st(F,U ) ⊃ A ;

• relatively∗ K-SC in X if for every family U of open sets in X such that A ⊆ ⋃U ,
there exists a compact subset K of A such that st(K,U ) ⊃ A

• relatively∗ SC in X if for every family U of open sets in X such that A ⊆ ⋃U ,
there exists a finite subfamily V of U such that st(

⋃ V ,U ) ⊃ A;

• relatively∗ SSL in X if for every family U of open sets in X such that A ⊆ ⋃U ,
there exists a countable subset F of A such that st(F,U ) ⊃ A;

• relatively∗ SL in X if for every family U of open sets in X such that A ⊆ ⋃U ,
there exists a countable subfamily V of U such that st(

⋃ V ,U ) ⊃ A;

Using the following notions the following relative star-covering properties are
considered

Definition 25. (Definitions 2.1.9, 2.1.14 and 2.1.16) A space X is

• set strongly star-compact, briefly set SSC, if every nonempty subset A of X is
relatively∗ SSC in X [Kočinac, Konca, and Singh, 2022, Definition 3].

• set star-compact, briefly set SC, if every nonempty subset A of X is relatively∗

SC in X [Kočinac, Konca, and Singh, 2022, Definition 3].

• set K-star-compact, briefly set K-SC , if every subset A of X is relatively∗ K-SC
in X.

• set strongly star-Lindelöf, briefly set SSL, if every nonempty subset A of X is
relatively∗ SSL in X [Kočinac and Singh, 2020, Definition 5].
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• set star-Lindelöf, briefly set SL, if every nonempty subset A of X is relatively∗

SL in X [Kočinac and Singh, 2020, Definition 5].

It is proved that some of the previous relative compact-type properties coincide
with countable compactness under the appropriate separation axiom; indeed the
following results are presented.

Proposition 26. (Proposition 2.1.10) If X is a Hausdorff space, then the following properties
are equivalent:

(i) X is CC

(ii) X is set SSC

(iii) X is SSC

Corollary 27. (Corollary 2.1.12) If X is a regular space, then the following properties are
equivalent:

(i) X is CC

(ii) X is set SSC

(iii) X is SSC

(iv) X is set SC

An analogous result is presented for the Lindelöf-type properties.

Proposition 28. (Corollary 2.1.19) If X is a collectionwise Hausdorff space, then the fol-
lowing properties are equivalent:

1. e(X) = ℵ0

2. X is set SSL

3. X is set SL

4. X is SSL.

It is presented a Tychonoff collectionwise Hausdorff SL space which is not SSL,
hence SL property cannot be added to the previous list (Example 2.1.20). It is also
presented the following result, where a stronger hypothesis consents to add SL in
the list of equivalent affirmations.

Corollary 29. (Corollary 2.1.21) If X is a normal collectionwise Hausdorff space, then the
following properties are equivalent:

1. e(X) = ℵ0

2. X is set SSL

3. X is set SL

4. X is SSL

5. X is SL.
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Several examples are presented: a T1 set SC not K-SC space (Example 2.1.15), a
Tychonoff SSL not set SL (Example 2.1.23) and a T2 K-SC not set SL space (Example
2.1.24).

It is proved the following result

Proposition 30. (Corollary 2.1.28) Every c.c.c. space is set SL

and as an application of it, a Tychonoff set SL (in fact separable) non SSL space is
obtained (Example 2.1.29).

In [Bonanzinga, 1998] the a-st-L and h-cl-a-st-L properties were introduced, both
weakenings of the Lindelöf property. These properties were introduced in relation
to the acc property formulated in [Matveev, 1994]. In this work, the vicinance of
a-st-L and h-cl-a-st-L to the set SSL property is studied (Proposition 2.1.34).

The central section of the paragraph 2.1 is devoted to answering problems posed
in [Kočinac and Singh, 2020] and [Bal and Kočinac, 2020].

In [Kočinac and Singh, 2020], the author introduce the set version of the acc prop-
erty, called set acc. In this work it is proved that the set property in fact concides with
the original property.

Theorem 31. (Proposition 2.1.39) A space X is acc if and only if is set acc.

In [Aurichi, 2013] the author define the following property.

Definition 32. [Aurichi, 2013, Definition 2.1]A space X is selectively c.c.c. if for every
sequence (An : n ∈ ω) of maximal cellular open families in X, there is a sequence
(An : n ∈ ω) such that for each n ∈ ω, An ∈ An, and

⋃
n∈ω An is dense in X.

Later, the authors of [Bal and Kočinac, 2020] defined the selective star-c.c.c. prop-
erty, and, in [Kočinac and Singh, 2020], the authors introduced the set version of the
latter property, called set selective star-c.c.c. . In fact set selective star-c.c.c. and
selective star-c.c.c. are equivalent, as the following shows

Proposition 33. (Proposition 2.1.46) A space X is selectively star-c.c.c. if and only if is set
selectively star-c.c.c. .

The previous proposition answer in the negative [Kočinac and Singh, 2020, Prob-
lem 2] about the existence of a selectively star-c.c.c. not set selectively star-c.c.c.
space.

In [Kočinac and Singh, 2020] the authors prove that every set SSL space is set se-
lectively 2-star-c.c.c. , and in [Bal and Kočinac, 2020] it is proved that every Lindelöf
space is selectively star-c.c.c. . Since set SSL and the property to have countable
extent are equivalent, both the results are improved by the following one

Theorem 34. (Theorem 2.1.51) Every space with countable extent is selectively star-c.c.c. .

A classic problem in general topology is to study the behavior of the topological
properties with respect the (Tychonoff) product; typical questions are: the product
of two spaces with a property P has the property P? If a space has the property P ,
what properties must a second space possess so that the product of the two spaces
has the property P?

Regarding the compact spaces, it is well-known that the product of any number
of it remains compact. This is shown in the following classical result:
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Theorem 35. [Tychonoff, 1935] Let {Xs}s∈S a family of non-empty spaces. The product
∏s∈S Xs is compact if and only if Xs is compact for every s ∈ S.

The same fact does not hold for the Lindelöf nor for the countably compact
spaces: in [Sorgenfrey, 1947] it is proved the existence of a Lindelöf space the square
of which is not Lindelöf and in [Novák, 1949] it is proved the existence of two count-
ably compact Tychonoff spaces whose product is not countably compact.

However, those last two properties are preserved in the product with a compact
space, as the following two classical results state

Theorem 36. [Engelking, 1989, Theorem 3.8.10] The product of a Lindelöf space with a
compact space is Lindelöf.

Theorem 37. [Smirnov, 1951] The product of a countably compact space with a compact
space is countably compact.

In [Fleischman, 1970] the author proved that the product of a SSC space with a
compact space is SSC ; later in [van Douwen, Reed, Roscoe, and Tree, 1991] the same
was proved for SC spaces instead of SSC, and, in the same article, that the product
of a SL space with a compact space is SL while the product of a SSL space with a
compact space need not be SSL.

The last section of the paragraph 2.1 will be devoted to the study of the product
of set SSL spaces with compact ones, leading to the following result

Proposition 38. (Proposition 2.1.56) The product of a T1 set SSL space with a compact
space is set SSL.

It is pointed out that set SSC (resp. set SC) property is not productive and it is
preserved in the Hausdorff (resp. regular) product with compact spaces.

In [Scheepers, 1996] the author proposed the first systematic study of selection
principles, which included many covering properties defined indipendently in the
early years of 1900. Let X be a space and A, B be collections of families of its subsets.
Then:

• S1(A,B) denotes the following statement: for each sequence ⟨Un : n ∈ ω⟩ of
elements of A there exists a sequence ⟨Un : n ∈ ω⟩ such that for each n ∈ ω,
Un ∈ Un and {Un : n ∈ ω} ∈ B.

• S f in(A,B) denotes the following statement: for each sequence ⟨Un : n ∈ ω⟩ of
elements of A there exists a sequence ⟨Vn : n ∈ ω⟩ such that for each n ∈ ω,
Vn ∈ [Un]<ω and

⋃
n∈ω Vn ∈ B.

• U f in(A,B) denotes the following statement: for each sequence ⟨Un : n ∈ ω⟩ of
elements of A there exists a sequence ⟨Vn : n ∈ ω⟩ such that for each n ∈ ω,
Vn ∈ [Un]<ω and {⋃ Vn : n ∈ ω} ∈ B.

Denote by O (resp., by Γ, by Ω, by D) the class of all the open covers (resp. γ-
covers, ω-covers, dense subsets) of a space. Some selection principle define known
properties: a space X is said to be:

• Rothberger, briefly R, if satisfies S1(O,O) [Rothberger, 1938, Definition 1].

• Menger, briefly M, if satisfies S f in(O,O), [Hurewicz, 1926, p. 402].
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• Hurewicz, briefly H, if satisfies U f in(O, Γ) [Hurewicz, 1927, p.196].

This was the first work on this thematic, subsequently followed by [Just, Miller,
Scheepers, and Szeptycki, 1996], [Scheepers, 1997] and other "Combinatorics of Open
Covers", for a total of eleven papers written by Scheepers. Following this concept,
in [Kočinac, 1999] and [Bonanzinga, Cammaroto, and Kočinac, 2004] the authors ap-
plied the notion of star to this already-existing structure and permitted to formulate
new star topological properties and study them from a combinatorial perspective.

The following principles were defined:

• S∗
f in(A,B) denotes the following statement: for each sequence ⟨Un : n ∈ ω⟩ of

elements of A there exists a sequence ⟨Vn : n ∈ ω⟩ such that for each n ∈ ω,
Vn ∈ [Un]<ω and

⋃
n∈ω{st(V,Un) : V ∈ Vn} ∈ B.

• U∗
f in(A,B) denotes the following statement: for each sequence ⟨Un : n ∈ ω⟩ of

elements of A there exists a sequence ⟨Vn : n ∈ ω⟩ such that for each n ∈ ω,
Vn ∈ [Un]<ω and {st(

⋃ Vn,Un) : n ∈ ω} ∈ B.

• SS∗
f in(A,B) denotes the following statement: for each sequence ⟨Un : n ∈ ω⟩

of elements of A there exists a sequence ⟨Fn : n ∈ ω⟩ of finite subsets of X such
that {st(Fn,Un) : n ∈ ω} ∈ B.

A space is said to be

• strongly star-Menger, briefly SSM, if satisfies SS∗
f in(O,O) [Kočinac, 1999, Defi-

nition 1.4].

• star-Menger, briefly SM, if satisfies S∗
f in(O,O) [Kočinac, 1999, Definition 1.4].

• strongly star-Hurewicz, briefly SSH, if satisfies SS∗
f in(O, Γ) [Bonanzinga, Cam-

maroto, and Kočinac, 2004, p. 81].

• star-Hurewicz, briefly SH, if satisfies U∗
f in(O, Γ) [Bonanzinga, Cammaroto, and

Kočinac, 2004, p. 81]

The paragraph 2.2 is devoted to the study of recent relative versions of aforesaid
selection principles, first introduced in [Kočinac, Konca, and Singh, 2022].

Definition 39. (Definition 2.2.3) A space X is

• set strongly star-Menger , briefly set SSM, if for each nonempty subset A of X
and for each sequence (Un : n ∈ ω) of collection of open sets of X such that
A ⊂ ⋃Un for every n ∈ ω, there exists a sequence (Fn : n ∈ ω) such that Fn,
n ∈ ω, is a finite subset of A and A ⊂ ⋃

n∈ω st(Fn,Un) [Kočinac, Konca, and
Singh, 2022, Definition 4].

• set star-Menger , briefly set SM, if for each nonempty subset A of X and for
each sequence (Un : n ∈ ω) of collection of open sets of X such that A ⊂ ⋃Un
for every n ∈ ω, there exists a sequence (Vn : n ∈ ω) such that Vn, n ∈ ω, is
a finite subset of Un and A ⊂ ⋃

n∈ω st(
⋃ Vn,Un) [Kočinac, Konca, and Singh,

2022, Definition 4].
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• set strongly star-Hurewicz (briefly, set SSH) if for each nonempty subset A ⊆ X
and for each sequence (Un : n ∈ ω) of collection of open sets of X such that
A ⊆ ⋃Un for every n ∈ ω, there exists a sequence (Fn : n ∈ ω) such that Fn,
n ∈ ω, is a finite subset of A and ∀x ∈ A, x ∈ st(Fn,Un) for all but finitely
many n ∈ ω [Kočinac, Konca, and Singh, 2022, Definition 5].

• set star-Hurewicz (briefly, set SH) if for each nonempty subset A ⊆ X and for
each sequence (Un : n ∈ ω) of collection of open sets of X such that A ⊆ ⋃Un
for every n ∈ ω, there exists a sequence (Vn : n ∈ N) such that Vn, n ∈ ω, is a
finite subset of Un and ∀x ∈ A, x ∈ st(

⋃ Vn,Un) for all but finitely many n ∈ ω
[Kočinac, Konca, and Singh, 2022, Definition 5].

In [Sakai, 2014, Example 3.1], using [Matveev, 2002, Theorem 1], it is proved that
the extent of a Tychonoff SM (in fact SC) space can be arbitrarily large; Theorem
2.2.8 shows that the extent of a regular set SM space cannot exceed c; this result can
be used to construct Example 2.2.10: a Tychonoff space which distinguish SM and
set SM properties (in fact it distinguishes SC and set SC, and also SH and set SH
properties).

Motivated by the results in [Sakai, 2014], the following is proved.

Proposition 40. (Propositions 2.2.11 and 2.2.12) Every set SL (set SSL) space of cardinality
< d is set SM (set SSM).

By the previous proposition it is obtained a characterization of set SSM property.

Corollary 41. (Corollary 2.2.13) Let X be a T1 space of cardinality less than d. The following
affirmations are equivalent:

1. X is set SSM

2. e(X) = ℵ0.

In [Sakai, 2014] it is proved the proposition below

Theorem 42. [Sakai, 2014, Proposition 2.9] The following statements are equivalent.

1. ω1 = d;

2. if X is a regular SSM space, then e(X) ≤ ℵ0.

The list of equivalent affirmations will be enlareged in this work; in fact the fol-
lowing result will be given

Theorem 43. (Theorem 2.2.16) The following statements are equivalent

1. ω1 = d;

2. if X is a regular SSM space, then e(X) ≤ ℵ0;

3. for regular spaces of cardinality less than < d, set SSM and SSM are equivalent
properties.

4. for regular spaces of cardinality < d, set SSL and SSL are equivalent properties.

5. every closed subspace of a regular (set) SSM space X such that |X| < d is (set) SSM.
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A consistent example of a Tychonoff set SM non set SSM space will be exopsed.
Using this example, a partial answer to [Kočinac, Konca, and Singh, 2022, Problem
1] is given.

In [Kočinac, 1999] the author proved that the product of a SM space with a
compact space is SM. Using [Bonanzinga and Matveev, 2001, Lemma 2.3], Matveev
noted that assuming ω1 < d, if X = Ψ(A) with |A| = ω1 and Y is a compact space
such that c(Y) > ℵ0, then the product X × Y is not SSL, hence not SSM; therefore he
gave a consistent example of a not SSM space which is the product of a SSM space
and a compact space.

In the last part of the chapter, the following questinos are considered.

Question 44. (Kočinac, Konca, and Singh, 2022) Is the product of a set SSM space with a
compact space a set SSM space?

Question 45. (Kočinac, Konca, and Singh, 2022) Is the product of a set SM space with a
compact space a set SM space?

A partial answer to Question 44 and a positive answer to Question 45 are pre-
sented.

Proposition 46. (Corollary 2.2.29) The T1 product of a set SSM space with cardinality less
than d and a compact space is set SSM.

Example 47. (Example 2.2.30) There exists a set SM space X and a compact space Y with
c(Y) > ℵ0 such that X × Y is not set SM.

Analogous results are obtained for the classes of set SSH and set SH spaces.

The Chapter 3, the last of this work, pertains the study of the selective separa-
bility properties: M-separability and H-separability. In the first two paragraphs of
this chapter, Fréchet-Uryson property in countable spaces is distinguished from H-
separability by two examples. The first example (paragraph 3.1) is an Hausdorff
space without isolated points and it is contructed in ZFC; the second example (para-
graph 3.2) is obtained under the assumption (p = c), and is a zero-dimensional α4
space. In paragraph 3.3, the non-productivity of M-separable property is obtained
under some set-theoretical axiom stronger than MA; lastly, in paragraph 3.4, it is
proved that the product of countable H-separable spaces is mH-separable in the
Laver model. The original results of this thesis presented in Chapter 3 are contained
in [Bardyla, Maesano and Zdomskyy, 2023].

Selective separability properties were first introduced in [Scheepers, 1999], ap-
plying the selection principles S1 and S f in to the family D of the dense subsets of a
space, in order to prove the following results :

Theorem 48. [Scheepers, 1999, Theorem 13] Let X be a separable metric space. The follow-
ing affirmations are equivalent

• X satisfy S1(Ω, Ω)

• Cp(X) satisfy S1(D,D)

Theorem 49. [Scheepers, 1999, Theorem 35] Let X be a separable metric space. The follow-
ing affirmations are equivalent
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• X satisfy S f in(Ω, Ω)

• Cp(X) satisfy S f in(D,D)

By [Just, Miller, Scheepers, and Szeptycki, 1996, theorems 3.8 and 3.9], this is
equivalent to say that every finite power of a metric separable space X satisfies a
selection principle if and only if the space of realvalued continuous function Cp(X)
satisfies a corresponding selective separabilty property.

In [Bella, Bonanzinga, Matveev, and Tkachuk, 2008], the authors studied in depth
S f in(D,D), calling this property selective separability , and proved the following in-
teresting results

Proposition 50. [Bella, Bonanzinga, Matveev, and Tkachuk, 2008, Proposition 2.3.(1)]
Given a space X, if πw(X) = ℵ0, then X is selectively separable.

Proposition 51. [Bella, Bonanzinga, Matveev, and Tkachuk, 2008, Proposition 2.4] A com-
pact space X is selectively separable if and only if πw(X) = ℵ0.

Theorem 52. [Bella, Bonanzinga, Matveev, and Tkachuk, 2008, Theorem 2.26] Suppose X
is selectively separable and πw(Y) = ℵ0. Then X × Y is selectively separable.

Also the following questions were posed

Question 53. [Bella, Bonanzinga, Matveev, and Tkachuk, 2008, Problem 3.7] Suppose that
X and Y are selectively separable spaces. Must X × Y be selectively separable?

Question 54. [Bella, Bonanzinga, Matveev, and Tkachuk, 2008, Problem 3.8] Suppose that
X = A ∪ B and the spaces A and B are selectively separable. Must X be selectively separa-
ble?

In [Bella, Bonanzinga, and Matveev, 2009] the selective separable property was
renamed as M-separability, and, in analogy with Menger, Hurewicz and Rothberger
selection principles, the following definitions were given

Definition 55. [Bella, Bonanzinga, and Matveev, 2009]A space X is said to be

• H-separable if for every sequence ⟨Dn : n ∈ ω⟩ of dense subsets of X, there are
finite sets Fn ⊂ Dn, n ∈ ω, such that every nonempty open set of X meets all
but finitely many Fn.

• R-separable if for every sequence ⟨Dn : n ∈ ω⟩ of dense subsets of X, there
points xn ∈ Dn, n ∈ ω, such that {xn : n ∈ ω} is dense in X.

The following question was posed

Question 56. [Bella, Bonanzinga, and Matveev, 2009, Question 34] Does there exists a
ZFC example of M-separable space which is not H-separable?

In [Gruenhage and Sakai, 2011] the authors gave a positive answer to Question
54.

Theorem 57. [Gruenhage and Sakai, 2011, Theorem 2.2] The finite union of selectively
separable spaces is selectively separable

In the proof of the latter result, the following lemma was crucial
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Lemma 58. [Gruenhage and Sakai, 2011, Lemma 2.1] A space is M-separable if and only
if for every decreasing sequence ⟨Dn : n ∈ ω⟩ of dense subsets of X, there are finite sets
Fn ⊂ Dn, n ∈ ω, such that

⋃{Fn : n ∈ ω} is dense in X.

In the view of this result, the authors introduced the following properties (with
different terminology), which consist in some weaker forms of the selective separa-
bility properties mentioned above

Definition 59. [Gruenhage and Sakai, 2011, Definition 2.6]A space X is said to be

• mH-separable if for every decreasing sequence ⟨Dn : n ∈ ω⟩ of dense subsets of
X, there are finite sets Fn ⊂ Dn, n ∈ ω, such that every nonempty open set of
X meets all but finitely many Fn.

• mR-separable if for every decreasing sequence ⟨Dn : n ∈ ω⟩ of dense subsets of
X, there points xn ∈ Dn, n ∈ ω, such that {xn : n ∈ ω} is dense in X .

In the same article the following problem is posed.

Question 60. [Gruenhage and Sakai, 2011, Question 2.10 (1)] Is there a mR-separable
(resp., mH-separable) space which is not R-separable (resp., H-separable)?

The class of Fréchet-Urysohn spaces is one of the most studied not just in topol-
ogy, but even in analysis: a space is said to be Fréchet-Urysohn, briefly FU, if every
point in the closure of a set admits a sequence converging to it which is included
into the set.

The authors of [Barman and Dow, 2011] expressed their surprise upon discover-
ing the following result

Theorem 61. [Barman and Dow, 2011, Theorem 2.9] A separable FU space is M-separable.

This result was improved later in the same year.

Corollary 62. [Gruenhage and Sakai, 2011, Corollary 4.2] A separable FU space is R-
separable.

It is proved in this work that H-separability behaves differently; the following
result is presented in paragraph 3.1

Theorem 63. (Theorem 3.1.1) There exists a countable Hausdorff FU space X without iso-
lated points which is not H-separable.

This answers positively both questions 56 and 60 (in fact countable FU spaces are
mH-separable by [Gruenhage and Sakai, 2011, Lemma 2.7(2) and Corollary 4.2]).

The behaviour of the productivity of FU property under ZFC and set-theoretical
assumptions was widely analyzed during XX century: it was proved that FU prop-
erty is not inherithed in the product of compact FU spaces and countable FU spaces
(see [Gruenhage, 1978], [Simon, 1980] and [Tamano, 1986] for some interesting re-
sults). Motivated by the search of an additional property that would allow the prod-
uct of FU spaces to keep FU property, in [Arhangel’skii, 1972] the author introduced
the following definitions.

Definition 64. [Arhangel’skii, 1972, p. 267] Given a space X and x ∈ X, denote by Γx the
set of all A ∈ [X \ {x}]ω which converge to x. A point x ∈ X has the property:
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(α1) if for each ⟨Sn : n ∈ ω⟩ ∈ [Γx]ω, there is S ∈ Γx such that Sn ⊂∗ S for all n ∈ ω;

(α2) if for each ⟨Sn : n ∈ ω⟩ ∈ [Γx]ω, there is S ∈ Γx such that Sn ∩ S is infinite for all
n ∈ ω;

(α3) if for each ⟨Sn : n ∈ ω⟩ ∈ [Γx]ω, there is S ∈ Γx such that Sn ∩ S is infinite for
infinitely many n ∈ ω;

(α4) if for each ⟨Sn : n ∈ ω⟩ ∈ [Γx]ω, there is S ∈ Γx such that Sn ∩ S ̸= ∅ for infinitely
many n ∈ ω.

A space X is an αi space, where i ∈ {1, 2, 3, 4}, if it is an αi space at each x ∈ X.

In paragraph 3.2 it is proved an improvement of Theorem 63 under a strong
equality of cardinal characteristics of continuum.

Theorem 65. (p = c) There exists a countable zero-dimensional α4 FU space without
isolated points which is not H-separable.

Since every αi-property imply the next one, Proposition 3.2.4 shows that it is not
possible to obtain an example of a countable zero-dimensional FU space without
isolated points endowed with α1 or α2 property which is not H-separable.

In the second decade of XXI century several results were obtained using set-
theoretical assumptions in the problem of the productivity of FU countable (hence
M-separable) spaces. Using two different complementary assumptions, the follow-
ing two results were given.

Theorem 66. [Barman and Dow, 2011, Theorem 2.24] (CH) There exist two countable FU
spaces whose product may not be M-separable.

Theorem 67. [Barman and Dow, 2012, Theorem 3.3] (PFA) The product of two countable
FU spaces is M-separable.

It is worth noting that the proof given by the authors provides a stronger result:
their argument proves that, under PFA, the product of two countable FU space is in
fact mR-separable.

Theorem 67 motivates the contents of paragraph 3.3. It is presented the following
set-theoretical assumption

Definition 68. (Definition 3.3.1) Let τ0 be a topology on ω turning it into a space
homeomorphic to the rationals Q. Define (∗Q) to stand for the following statement:

MA + there exists a mad family A ⊂ [ω]ω such that:

(1) every disjoint pair A′,A′′ ∈ [A]<c is separated;

(2) Every A ∈ A is either closed discrete or a convergent sequence in
⟨ω, τ0⟩.

Consider the statement (∗Q) without (2). This weaker statement was proved to
be consistent with ℵ2 = c (with different terminology) in [Dow and Shelah, 2012,
Theorem 2.1]. In this work this last result is extended (Theorem 3.3.7), showing the
consistency of (∗Q). This assumption will be used to prove the main result of the
paragraph 3.3.
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Theorem 69. (Theorem 3.3.9) (∗Q) There exist two countable regular (hence zero-dimensional)
FU spaces without isolated points whose product is not M-separable.

As a consequence of this result, MA is not sufficient to prove Theorem 67, and
hence that the same result cannot be obtained by assumptions on cardinal character-
istics of the continuum.

The productivity of selective separability properties was recently investigated
in several classical models of the set-theory. In [Repovš and Zdomskyy, 2020] it is
proved that in the Miller model the product of every M-separable space of functions
Cp(X), where X is metrizable and separable, with an M-separable countable space
Y is M-separable. In [Repovš and Zdomskyy, 2018] it is proved that in the Laver
model the product of any two H-separable spaces is M-separable.

Following this approach, in the last paragraph of the chapter it is proved the
following improvement of the result in [Repovš and Zdomskyy, 2018].

Theorem 70. (Theorem 3.4.4) In the Laver model, the product of two countable H-separable
spaces is mH-separable.
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CHAPTER 1

n-HAUSDORFF HOMOGENEOUS
AND n-URYSOHN

HOMOGENEOUS SPACES

All the new contributions obtained by the author of the thesis included in this chap-
ter are contained in the article [Bonanzinga, Carlson, Giacopello and Maesano, 2023].

Definition 1.1. [Hausdorff, 1914]A space X is said to be homogeneous if for every x, y ∈
X there exists a homeomorphism h : X → X such that h(x) = y.

Definition 1.2. [Bonanzinga, 2013, p. 1] Let X be a space. The Hausdorff number H(X)
(finite or infinite) of X is the least cardinal number κ such that for every subset A ⊆ X
with |A| ≥ κ there exist open neighbourhoods Ua, a ∈ A, such that

⋂
a∈A Ua = ∅. A

space X is said n-Hausdorff, n ≥ 2, if H(X) ≤ n.

Definition 1.3. [Bonanzinga, Cammaroto, and Matveev, 2007, p. 441] Let X be a space.
The Urysohn number U(X) (finite or infinite) of X is the least cardinal number κ such
that for every subset A ⊆ X with |A| ≥ κ there exist open neighbourhoods Ua,
a ∈ A, such that

⋂
a∈A Ua = ∅. A space X is said n-Urysohn, n ≥ 2, if U(X) ≤ n.

Of course, with |X| ≥ 2, X is Hausdorff (resp. Urysohn) if and only if H(X) = 2
(resp. U(X) = 2).

In [Bonanzinga, 2013], examples of (n + 1)-Hausdorff spaces which are not n-
Hausdorff, for every n ≥ 2, and an example of a space X such that H(X) = ω
and H(X) ̸= n, for each n ≥ 2, are given. Also, in [Bonanzinga, Cammaroto,
and Matveev, 2007] examples of Hausdorff (n + 1)-Urysohn spaces which are not
n-Urysohn were given for every n ≥ 2. Recall moreover that examples of (n +
1)-Urysohn spaces which are not n-Urysohn are presented in [Bonanzinga, Cam-
maroto, and Matveev, 2011].

Definition 1.4. [Carlson, Porter, and Ridderbos, 2017, Definition 3.1] A space X is 2-
homogeneous if for every x1, x2, y1, y2 ∈ X there exists a homeomorphism h : X → X
such that h(x1) = y1 and h(x2) = y2.
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In general it is possible give the definition of n-homogeneous space for any n.
Notice that 1-homogeneity coincides with the definition of homogeneity. Of course,
if a space is n + 1-homogeneous, then it is m-homogeneous for every m = 1, ..., n.

In the following Theorem 1.11 proves that n-Hausdorff, n > 2, non Hausdorff
spaces are not m-homogeneous, m > 1, and give an example (Example 1.13) of a
3-Urysohn homogeneous non Urysohn space.

Definition 1.5. [Engelking, 1989] A space is said to be hyperconnected (or nowhere
Hausdorff ) if the intersection of any two nonempty open sets is nonempty.

Definition 1.6. [Engelking, 1989] A space is said to be nowhere Urysohn if the intersec-
tion of the closures of every pair of nonempty open sets is nonempty.

Proposition 1.7. [Bonanzinga, Giacopello, M., Carlson, 2023, Proposition 2.1] A non
Hausdorff 2-homogeneous space is hyperconnected.

Proof. Let X be a non Hausdorff 2-homogeneous space. Suppose that there are two
nonempty open subset V1 and V2 of X such that V1 ∩ V2 = ∅. Fix two points y1 ∈ V1
and y2 ∈ V2. Since X is not Hausdorff there exist two points x1, x2 ∈ X such that for
every open neighbourhood U1 of x1 and U2 of x2, one has that U1 ∩ U2 ̸= ∅. Define
the homeomorphism h : X → X such that h(x1) = y1 and h(x2) = y2. Of course
h−1(V1) ∩ h−1(V2) ̸= ∅. Pick a point x ∈ h−1(V1) ∩ h−1(V2), then h(x) ∈ V1 ∩ V2, a
contradiction.

Proposition 1.8. [Bonanzinga, Giacopello, M., Carlson, 2023, Proposition 2.2] A non
Urysohn 2-homogeneous space is nowhere Urysohn.

Proof. The proof is similar to the one of Proposition 1.7. One just needs to consider
that if h : X → X is a homeomorphism, then h(A) = h(A) for each A ⊆ X.

The following proposition follows directly from the definition.

Proposition 1.9. [Bonanzinga, Giacopello, M., Carlson, 2023, Proposition 2.3] A space X
is hyperconnected if and only if for every finite A ⊆ X, |A| = n, n ≥ 2, and for every choice
of neighbourhoods Ua, a ∈ A,

⋂
a∈A Ua ̸= ∅.

By Proposition 1.9 one can easily show the following.

Proposition 1.10. [Bonanzinga, Giacopello, M., Carlson, 2023, Proposition 2.4] Let n ≥ 2.
Any n-Hausdorff space is not hyperconnected.

Theorem 1.11. [Bonanzinga, Giacopello, M., Carlson, 2023, Theorem 2.5] There is no n-
Hausdorff non Hausdorff m-homogeneous space for every n > 2 and every m > 1.

Proof. It follows directly from propositions 1.10 and 1.7.

The following example shows that there exist 3-Hausdorff homogeneous spaces.

Example 1.12. [Bonanzinga, Giacopello, M., Carlson, 2023, Example 2.6] A countable 3-
Hausdorff homogeneous space.

Consider the space X of natural numbers with the topology generated by the
base {{n, n + 1} : n is even}. X is a 3-Hausdorff homogeneous space. △

Note that the space in the previous example is a homogeneous space which is
not 2-homogeneous.

The analogues of Proposition 1.10 and Theorem 1.11 for n-Urysohn spaces do not
hold, as the following example shows.
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Example 1.13. [Bonanzinga, Giacopello, M., Carlson, 2023, Example 2.7] A 3-Urysohn
homogeneous space which is not Urysohn.

Consider the well known “irrational slope space", also called Bing’s Tripod space
(see [Steen and Seebach, 1978, Example 75]). This space is n-homogeneous, n ≥ 1
[Banakh, Banakh, O., and Stelmakh, 2021], and 3-Urysohn. △

Examples 1.12 and 1.13 give examples of an (n + 1)-Hausdorff homogenous non
n-Hausdorff space, and of an (n + 1)-Urysohn homogenous non n-Urysohn space
for n = 2. Note that the space of Example 1.12 is 3-Urysohn, and the construction
can be generalized to obtain (n+ 1)-Urysohn non n-Hausdorff spaces for each n ≥ 2.
This shows that even in the class of homogeneous spaces (n + 1)-Hausdorff (resp.,
(n + 1)-Urysohn) spaces need not be n-Hausdorff (resp., n-Urysohn), with n ≥ 2.
In the last part of the chapter, for any n ≥ 2 and for any n-Hausdorff space, it is
presented an n-Hausdorff homogenous extension which is the countable union of
n-H-closed spaces. Using this result it is possible to construct the Example 1.2.13,
giving an n-Hausdorff homogeneous space which is not n-Urysohn, for every n ≥ 2.

In [Bonanzinga, 2013], the author gives an example of an ω-Hausdorff space
which is not n-Hausdorff for every n ≥ 2. A countable ω-Hausdorff homogeneous
space which is not n-Hausdorff for every n ≥ 2 is now presented.

Example 1.14. [Bonanzinga, Giacopello, M., Carlson, 2023, Example 2.10] There is a
countable T1 hyperconnected (hence not n-Hausdorff for every n ≥ 2) space, which is ω-
Hausdorff and homogeneous.

In [Bonanzinga, Stavrova, and Staynova, 2017], the following space is constructed.
Let X = Z × Z and B = {Uj,k, Vj,k : j, k ∈ Z} is the subbase for the topology, where

Uj,k = {(x, y) ∈ Z2 : x > j or y > k}

Vj,k = {(x, y) ∈ Z2 : x < j or y < k}.

This is a T1 hyperconnected, hence not n-Hausdorff space for every n ≥ 2 which is
ω-Hausdorff, homogeneous, first countable, Lindelöf. △

1.1 On the cardinality of n-Hausdorff and n-Urysohn homo-
geneous spaces.

In [Carlson and Ridderbos, 2008], the authors proved the following result.

Theorem 1.1.1. [Carlson and Ridderbos, 2008, Theorem 2.3] Let X be a homogeneous Haus-
dorff space. Then |X| ≤ 2c(X)πχ(X).

Question 1.1.2. [Bonanzinga, Giacopello, M., Carlson, 2023] Is |X| ≤ 2c(X)πχ(X) true for
every homogeneous space X such that H(X) is finite?

The theorems 1.1.6, 1.1.8 and 1.1.13 below give partial answers to the previous
question and Theorem 1.1.14 shows that the answer is positive if H(X) is replaced
by U(X).
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Recall that a family U of open sets of a space X is point-finite if for every x ∈ X, the
set {U ∈ U : x ∈ U} is finite [Engelking, 1989, p. 44]. In [Tkachuck, 1983, Definition
2] it was defined the cardinal function p(X) = sup{|U | : U is a point-finite family in
X}.

In [Bonanzinga, 2013], the author generalized the previous definitions, introduc-
ing the following :

Definition 1.1.3. [Bonanzinga, 2013, Definition 1] A family U of open sets of a space
X is point-(≤ n) finite, where n ∈ N, if for every x ∈ X, the set {U ∈ U : x ∈ U} has
cardinality ≤ n. For each n ∈ N, define

pn(X) = sup{|U | : U is a point-(≤ n) finite family in X}.

Proposition 1.1.4. [Bonanzinga, 2013, Proposition 2] Let X be a topological space. Then
pn(X) = c(X) for every n ∈ N.

Theorem 1.1.5. [Erdös and Rado, 1956, Theorem 39] Let κ be a cardinal number and f :
[(22κ

)+]3 → κ a function, then there exists a subset H ∈ [(22κ
)+]κ

+
such that f ↾ [H]3 is

constant.

Theorem 1.1.6. [Bonanzinga, Giacopello, M., Carlson, 2023, Theorem 3.4] Let X be a 3-
Hausdorff homogeneous space. Then

|X| ≤ 22c(X)πχ(X)

Proof. Let c(X)πχ(X) = κ. By Proposition 1.1.4, p2(X) ≤ κ. Suppose that |X| ≥
(22κ

)+. For every triple x1, x2, x3 ∈ X of distinct points select neighbouroods Ui(x1, x2, x3)
of xi for i = 1, 2, 3 such that

⋂3
i=1 Ui(x1, x2, x3) = ∅. Fix a point p ∈ X and a local

π-base B for p with |B| = κ. Since the space is homogeneous, there exists a family
{hx}x∈X of homeomorphisms hx : X → X such that hx(p) = x for every x ∈ X. Fix
distinct points x1, x2, x3 ∈ X and observe that the set

⋂3
i=1 h−1

xi
(Ui(x1, x2, x3)) is an

open neighbourhood of p; since B is a π-base, there is a non empty B(x1, x2, x3) ∈ B
such that B(x1, x2, x3) is contained in it. Consider now the function f : [X]3 → B
defined by f ({x1, x2, x3}) = B(x1, x2, x3). Then by Theorem 1.1.5 there is Z ∈ [X]κ

+

and B ∈ B such that f ↾ [Z]3 = {B}. Now, the family {hz(B) : z ∈ Z} is point-
(≤ 2) finite in X. To see this, suppose by way of contradiction that there exists
x0 ∈ X such that |{hz(B) : x0 ∈ hz(B)}| = 3. So there are z1, z2, z3 ∈ X such that
x0 ∈ hzi(B), i = 1, 2, 3. This implies

x0 ∈ hzi(B) ⊆ hzi(
3⋂

i=1
h−1

zi
(Ui(z1, z2, z3))) ⊆ hzi(h

−1
zi
(Ui(z1, z2, z3))) = Ui(z1, z2, z3).

Then, x0 ∈
3⋂

i=1
Ui(z1, z2, z3) ̸= ∅, a contradiction. Furthermore, {hz(B) : z ∈ Z}

has cardinality exactly κ+. Otherwise there exists z0 ∈ Z s.t. |{z ∈ Z : hz(B) =
hz0(B)}| = κ+. As before, from hz0(B) ⊆ Ui(z1, z2, z3) for every triple of elements in
{z ∈ Z : hz(B) = hz0(B)}, a contradiction. Thus p2(X) = κ+, a contradiction with
p2(X) ≤ κ. This concludes the proof.

Recall the following result.

Theorem 1.1.7. [Erdös and Rado, 1956, Theorem 39] Let κ be a cardinal number, n ≥ 3

and f : [(22..
.2

κ

)+]n → κ a function (where the power is made (n − 1)-many times), then

there exists a subset H ∈ [(22..
.2

κ

)+]κ
+

such that f ↾ [H]n is constant.
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Theorem 1.1.8. [Bonanzinga, Giacopello, M., Carlson, 2023, Theorem 3.6] Let X be an
n-Hausdorff homogeneous space, with n ≥ 2. Then

|X| ≤ 22..
.2

c(X)πχ(X)

where the power is made (n − 1)-many times.

Proof. Similar to the proof of the previous theorem using Theorem 1.1.7 instead of
Theorem 1.1.5.

In [Carlson, Porter, and Ridderbos, 2012], the authors proved the following re-
sult.

Theorem 1.1.9. [Carlson, Porter, and Ridderbos, 2012, Theorem 5.3(1)] If X is an n-
Hausdorff homogeneous space, with n ≥ 2, then |X| ≤ d(X)πχ(X).

Definition 1.1.10. [Velichko, 1966, Definition 2]Let X be a space. For A ⊆ X , the
θ-closure of A is defined by

clθ(A) = {x ∈ X : V ∩ A ̸= ∅ for every open set V ∋ x}

A set A ⊆ X is θ-dense if clθ(A) = X . The θ-density dθ(X) of X is defined as the least
cardinality of a θ-dense subset of X.

Theorem 1.1.11. [Carlson, Porter, and Ridderbos, 2012, Theorem 5.3(2)] Let X be an n-
Urysohn homogeneous space, where n ≥ 2. Then |X| ≤ dθ(X)πχ(X).

Theorem 1.1.12. [Carlson, 2007, Theorem 2.4] Let X be a space. Then dθ(X) ≤ πχ(X)c(X).

Recall that a space is quasiregular if every nonempty open set contains a nonempty
regular closed set [Engelking, 1989].

Theorem 1.1.13. [Bonanzinga, Giacopello, M., Carlson, 2023, Theorem 3.8] Let X be an
n-Hausdorff quasiregular homogeneous space with n ≥ 2, then |X| ≤ 2c(X)πχ(X).

Proof. As X is n-Hausdorff and homogeneous, |X| ≤ d(X)πχ(X) by Theorem 1.1.9.
As X is quasiregular, it follows that dθ(X) = d(X). By Theorem 1.1.12, d(X) ≤

πχ(X)c(X). Thus, |X| ≤ d(X)πχ(X) ≤
(

πχ(X)c(X)
)πχ(X)

= 2c(X)πχ(X).

By Theorems 1.1.11 and 1.1.12, it is obtained the following.

Theorem 1.1.14. [Bonanzinga, Giacopello, M., Carlson, 2023, Theorem 3.12] Let X be an
n-Urysohn homogeneous space, where n ≥ 2. Then |X| ≤ 2c(X)πχ(X).

1.2 A homogenous extension of an n-Hausdorff space

In [Basile, Bonanzinga, Carlson, and Porter, 2019] the following is introduced to
generalize H-closed property in the context of n-Hausdorff spaces.

Definition 1.2.1. [Basile, Bonanzinga, Carlson, and Porter, 2019, Definition 6] Let n ≥ 2.
An n-Hausdorff space X is called n-H-closed if X is closed in every n-Hausdorff space
Y in which X is embedded.

In the following it is presented (Theorem 1.2.12 below) a homogeneous extension
of an n-Hausdorff space, n ≥ 2, which is a countable union of n-H-closed spaces;
using this result, the Example 1.2.13 consisting in an n-Hausdorff homogeneous non
n-Urysohn space is given. This is in fact a generalization of the following result.
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Theorem 1.2.2. [Carlson, Porter, and Ridderbos, 2017, Theorem 2.3] Let X be a Hausdorff
space. Then X can be embedded in a homogeneous space that is the countable union of H-
closed spaces.

Given a space X and an ultrafilter U ⊆ P(X), we will say that U is an open
ultrafilter if its base consists of open sets. Define aU =

⋂{U : U ∈ U}. For an n-
Hausdorff space X, with n ≥ 2, an open ultrafilter U on X is said to be full if |aU|
= n − 1.

Theorem 1.2.3. [Basile, Bonanzinga, Carlson, and Porter, 2019, Theorem 3] Let n ≥ 2,
and X be a space. The following are equivalent:

(a) X is n-Hausdorff

(b) if U is an open ultrafilter of X, then |aU| ≤ n − 1.

Theorem 1.2.4. [Basile, Bonanzinga, Carlson, and Porter, 2019] Let n ≥ 2, and X be an
n-Hausdorff space. The following are equivalent:

(a) X is n-H-closed

(b) every open ultrafilter on X is full.

Recall the following construction, made in [Basile, Bonanzinga, Carlson, and
Porter, 2019, Extension contruction Technique 2]. Let n ≥ 2, X be an n-Hausdorff
space and U = {U : U is an open ultrafilter such that |aU| < n − 1}. Enumerate U by
U = {Uα : α ∈ |U|}. For each α ∈ |U|, let kα = (n − 1)− |aUα| and {pαi : 1 ≤ i ≤ kα}
be a set of distinct points disjoint from X. Let Y = X ∪ {pαi : 1 ≤ i ≤ kα, α ∈ |U|}. A
set V is defined to be open in Y if V ∩ X is open in X and if pαi ∈ V for 1 ≤ i ≤ kα,
V ∩ X ∈ Uα. The space Y is an n-Hausdorff space.

In the following results it is used the notation of the previous contruction.

Proposition 1.2.5. [Basile, Bonanzinga, Carlson, and Porter, 2019, Proposition 9(a)] For
every α ∈ |U|,

Uα = {V ∩ X : pαi ∈ V ∈ τ(Y) for some 1 ≤ i ≤ kα},

where τ(Y) is the topology on Y.

By the previous proposition the space Y has the property that every open ultra-
filter on Y is full. Indeed the points pαi, 1 ≤ i ≤ kα, added to the space X, are in the
closure of each element of Uα. Therefore the space Y is n-H-closed.

Definition 1.2.6. [Basile, Bonanzinga, Carlson, and Porter, 2019, Remark 3] Let n ≥ 2,
S and T be n-H-closed extensions of an n-Hausdorff space X. The extension S is
projectively larger than T if there is a continuous surjection f : S → T such that
f (x) = x for x ∈ X.

Notice that this projectively larger function may not be unique.

Theorem 1.2.7. [Basile, Bonanzinga, Carlson, and Porter, 2019, Theorem 5] Let n ≥ 2, X
be n-Hausdorff space and Y be the n-H-closed extension of X constructed above. If Z is an
n-H-closed extension of X, there is a continuous surjection f : Y → Z such that f (x) = x
for all x ∈ X.

Theorem 1.2.7 shows that the n-H-closed extension Y of X is projectively larger
than every n-H-closed extension of X. Moreover, the space Y has an interesting
unique property as it is noted in the next result.
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Theorem 1.2.8. [Basile, Bonanzinga, Carlson, and Porter, 2019, Theorem 6] Let n ≥ 2,
X be an n-Hausdorff space and Y be the n-H-closed extension of X described above. Let
f : Y → Y be a continuous surjection such that f (x) = x for all x ∈ X. Then f is a
homeomorphism.

Remark 1.2.9. In the class of Hausdorff spaces the function in Definition 1.2.6 is
unique [Basile, Bonanzinga, Carlson, and Porter, 2019]. Sometimes this is a prob-
lem in non-Hausdorff spaces. The n-H-closed space Y constructed before for an
n-Hausdorff space X is a projective maximum, that is Y is projectively larger than
every n-H-closed extention and given a continuous surjection f : Y → Y such that
f (x) = x for every x ∈ X, then f is a homeomorphism. For the future such Y will be
denoted by n-kX and it is said to be the n-Katětov extension of X.

In [Uspenskiǐ, 1983] it is shown that for any space X there exists a cardinal κ
and a nonempty subspace Z ⊆ Xκ such that X × Z is homogeneous. The space
Z is found by selecting a set A such that κ = |A| ≥ |X| and letting Z = { f ∈
AX : for each x ∈ X, | f−1(x)| = κ}, where AX is the space of all functions from
A to X. Both Z and X × Z are homogeneous and homeomorphic. For the present
construction put H(X) = X × Z and consider X as a subspace of H(X).

Lemma 1.2.10. [Carlson, Porter, and Ridderbos, 2017, Lemma 2.1] Let X be a space and
h : X → X be a homeomorphism and let idZ be the identity function on Z . Then the
function h × idZ : H(X) → H(X) is also a homeomorphism that extends h.

Lemma 1.2.11. [Bonanzinga, Giacopello, M., Carlson, 2023, Lemma 4.11] Let n ≥ 2, X be
an n-Hausdorff space and h : X → X be a homeomorphism. Then there is a homeomorphism
n-kh : n-kX → n-kX that extends h.

Proof. Let p ∈ n-kX \ X, then p = pαi for some α ∈ |U| and for some i = 1, ..., kα. The
set V = {h(U) : U ∈ Uα} is an open ultrafilter on X and since |aUα| = |aV|, there
exists β ∈ |U| such that V = Uβ. Define n-kh(pαi) = pβi for every i = 1, ..., kα = kβ.
For x ∈ X, define n-kh(x) = h(x). The function n-kh is clearly a homeomorphism
that extends h.

Theorem 1.2.12. [Bonanzinga, Giacopello, M., Carlson, 2023, Theorem 4.12] Let n ≥ 2,
X be an n-Hausdorff space. Then X can be embedded in an homogeneous space that is the
countable union of n-H-closed spaces.

Proof. Let H1 = H(n-kX). If Hm is defined, let’s define Hm+1 = H(n-kHm) and
H =

⋃
m∈N Hm. A subset U ⊆ H is open in H if U ∩ Hm ∈ τ(Hm) for every m ∈ N.

The space H is the countable union of n-H-closed spaces. It is sufficent to prove
that H is homogeneous. Let p, q ∈ H. Since Hm ⊆ Hm+1, there exists m ∈ N

such that p, q ∈ Hm. Each Hm is homogeneous, then there exist a homeomorphism
h : Hm → Hm such that h(p) = q. By Lemma 1.2.11 there exists a homeomorphism
n-kh : n-kHm → n-kHm that extends h. By Lemma 1.2.10 the function n-kh × idZ :
Hm+1 → Hm+1 is a homeomorphism. Put n-kh = h1. By induction h can be extended
to hk : Hm+k → Hm+k for every k ∈ N. The function g =

⋃
k∈N hk : H → H extends

h and it is a homeomorphism on H. Then H is homogeneous.

Example 1.2.13. [Bonanzinga, Giacopello, M., Carlson, 2023, Example 4.13] An example
of an n-Hausdorff, homogeneous, not n-Urysohn space which is the countable union of n-H-
closed spaces, for every n ≥ 2.



34 The classes of n-Hausdorff homogeneous and n-Urysohn homogeneous...

Let’s take an n-Hausdorff, not n-Urysohn space X (for example see [Bonanzinga,
1998, Example 4]), n ≥ 2. Then, by Theorem 1.2.12, X can be embedded in an
n-Hausdorff, homogeneous space Y which is the countable union of n-H-closed
spaces. Furthermore Y is not n-Urysohn, since X is a non-n-Urysohn subset of it.
△
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CHAPTER 2

SOME RELATIVE COVERING
PROPERTIES DEFINED BY STARS

All the new contributions obtained by the author of the thesis included in this chap-
ter are contained in the articles [Bonanzinga and Maesano, 2022] and [Bonanzinga,
Giacopello and Maesano, 2023].

Definition 2.1. A space X is

• strongly star-compact, briefly SSC, if for every open cover U of the space X,
there exists a finite subset F of X such that st(F,U ) = X [Fleischman, 1970,
Definition 5];

• star-compact, briefly SC, if for every open cover U of the space X, there exists a
finite subfamily V of U such that st(

⋃ V ,U ) = X [Sarkhel, 1986].

In [van Douwen, Reed, Roscoe, and Tree, 1991] several useful results are proved
for compact-type properties defined by stars.

Theorem 2.2. [van Douwen, Reed, Roscoe, and Tree, 1991, theorems 2.1.4 and 2.1.5] Let X
be a T2 space. The following affirmations are equivalent

• X is CC

• X is SSC

Definition 2.3. A space X is

• strongly star-Lindelöf, briefly SSL, if for every open cover U of the space X, there
exists a countable subset C of X such that st(C,U ) = X [Ikenaga, 1990];

• star-Lindelöf, briefly SL, if for every open cover U of the space X, there exists a
countable subfamily V of U such that st(

⋃ V ,U ) = X [Ikenaga, 1983].

In [Bonanzinga, 1998] the Lindelöf-type star-properties are deeply studied. Sev-
eral result concern the bond between these properties and the property for the space
to possess countable extent. Recall the following

Proposition 2.4. [Bonanzinga, 1998, Proposition 1.1] Let X be a T1 space with e(X) = ℵ0.
Then X is SSL.
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In the same article it is pointed out that the converse of the previous proposition
is not true: every Isbell-Mrówka space is separable, hence SSL, and has uncountable
extent.

Proposition 2.5. [Bonanzinga, 1998, Corollary 3.9] Let X be a collectionwise Hausdorff
SSL space. Then e(X) = ℵ0.

The following diagram is also given.

Lindelöf e(X) = ℵ0 CC

separable SSL SSC

c.c.c.

T1 × T2

×

Recall also the following result in [Matveev, 2002], exposed with different terminol-
ogy

Theorem 2.6. [Matveev, 2002, Theorem 1] For every infinite cardinal κ there is a Tychonoff
SSL space X such that e(X) ≥ κ.

Recall that the product of a SC (SSC) space with a compact space is SC (SSC)
([Fleischman, 1970], [van Douwen, Reed, Roscoe, and Tree, 1991]); further the prod-
uct of a SL space with a compact space is SL ([van Douwen, Reed, Roscoe, and Tree,
1991]) while the product of a SSL space with a compact space need not be SSL ([van
Douwen, Reed, Roscoe, and Tree, 1991, Example 3.3.4]).

In [Ikenaga and Tani, 1980] the following property is defined.

Definition 2.7. [Ikenaga and Tani, 1980] A space X is K-star-compact, briefly K-SC, if
for every open cover U of the space X, there exists a compact subset K of X such that
st(K,U ) = X.

In paragraph 2.1, results on relative versions of compact-type and Lindelöf-type
properties are presented.

In [Kočinac, 1999] and [Bonanzinga, Cammaroto, and Kočinac, 2004] selection
principles defined by stars are introduced. Let X be a space and A, B and C be
collections of families of its subsets. Then:

• S∗
f in(A,B) denotes the following statement: for each sequence ⟨Un : n ∈ ω⟩ of

elements of A there exists a sequence ⟨Vn : n ∈ ω⟩ such that for each n ∈ ω,
Vn ∈ [Un]<ω and

⋃
n∈ω{st(V,Un) : V ∈ Vn} ∈ B.

• U∗
f in(A,B) denotes the following statement: for each sequence ⟨Un : n ∈ ω⟩ of

elements of A there exists a sequence ⟨Vn : n ∈ ω⟩ such that for each n ∈ ω,
Vn ∈ [Un]<ω and {st(

⋃ Vn,Un) : n ∈ ω} ∈ B.

• SS∗
f in(A,B) denotes the following statement: for each sequence ⟨Un : n ∈ ω⟩

of elements of A there exists a sequence ⟨Fn : n ∈ ω⟩ of finite subsets of X such
that {st(Fn,Un) : n ∈ ω} ∈ B.

Denote the class of all covers (resp. γ-covers) of X by O (resp., by Γ). The space
X is said to be:
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• strongly star-Menger, briefly SSM, if satisfies SS∗
f in(O,O), i.e. , for each se-

quence ⟨Un : n ∈ ω⟩ of open covers of X there exists a sequence ⟨Fn : n ∈ ω⟩ of
finite subsets of the space such that {st(Fn,Un) : n ∈ ω} ∈ O [Kočinac, 1999,
Definition 1.4];

• star-Menger, briefly SM, if satisfies S∗
f in(O,O), i.e. , for each sequence ⟨Un : n ∈

ω⟩ of open covers there exists a sequence ⟨Vn : n ∈ ω⟩ such that Vn ∈ [Un]<ω,
n ∈ ω, and

⋃
n∈ω{st(V,Un) : V ∈ Vn} ∈ O [Kočinac, 1999, Definition 1.4];

• strongly star-Hurewicz, briefly SSH, if satisfies SS∗
f in(O, Γ), i.e. , for each se-

quence ⟨Un : n ∈ ω⟩ of open covers of X there exists a sequence ⟨Fn : n ∈ ω⟩
of finite subsets of the space such that {st(Fn,Un) : n ∈ ω} ∈ Γ [Bonanzinga,
Cammaroto, and Kočinac, 2004, p. 81];

• star-Hurewicz, briefly SH, if satisfies U∗
f in(O, Γ), i.e. , for each sequence ⟨Un :

n ∈ ω⟩ of open covers there exists a sequence ⟨Vn : n ∈ ω⟩ such that Vn ∈
[Un]<ω, n ∈ ω, and {st(

⋃ Vn,Un) : n ∈ ω} ∈ Γ [Bonanzinga, Cammaroto, and
Kočinac, 2004, p. 81].

Recall also the following results which are crucial in this context.

Theorem 2.8. [Song, 2013, Example 2.4] For every infinite cardinal κ, there exists a T1
SSM space X such that e(X) ≥ κ.

Proposition 2.9. [Sakai, 2014, Corollary 2.2] Every closed and discrete subspace of a regular
SSM space has cardinality less than c. Hence a regular SSM space has extent less or equal
to c.

Proposition 2.10. [Bonanzinga and Matveev, 2009, Proposition 2] Let A be an almost
disjoint family. The following affirmations are equivalent:

• Ψ(A) is SSM

• |A| < d.

Proposition 2.11. [Bonanzinga and Matveev, 2009, Proposition 3] Let A be an almost
disjoint family. The following affirmations are equivalent:

• Ψ(A) is SSH

• |A| < b.

In paragraph 2.2, generalizations of the following results for some relative ver-
sions of the selection principles defined by stars will be presented.

Proposition 2.12. [Sakai, 2014, Proposition 1.7] Every SL (SSL) space of cardinality less
than d is SM (SSM).

Proposition 2.13. [Casas-de la Rosa, Garcia-Balan, and Szeptycki, 2019, Corollary 3.10]
Every SL (SSL) space of cardinality less than b is SH (SSH).

Theorem 2.14. [Sakai, 2014, Corollary 2.6] If X is a regular SM space such that w(X) = c,
then every closed and discrete subspace of X has cardinality less than c. Hence e(X) ≤ c.

Theorem 2.15. [Sakai, 2014, Proposition 2.9] The following statements are equivalent.

1. ω1 = d;
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2. if X is a regular SSM space, then e(X) ≤ ω.

Theorem 2.16. [Kočinac, 1999, Theorem 2.13] If X is a SM space and Y is a compact space,
then X × Y is a SM space.

Example 2.17. [Kočinac, 1999, Example 2.13] There exist two spaces X,Y such that X is
SSM, Y is SSL and X × Y is not SSM.

In [Bonanzinga and Matveev, 2001, Corollary 2.4] it is proved that the product of
a space with uncountable extent with a space having uncountable cellularity is not
SSL, hence not SSM; then it is given a consistent example of a not SSM space which
is the product of a SSM space and a compact space.

In the last section of paragraph 2.2, partial answers for the following questions
are presented.

Question 2.18. [Kočinac, Konca, and Singh, 2022, Problem 2] Is the product of a set SSM
space with a compact space a set SSM space?

Question 2.19. [Kočinac, Konca, and Singh, 2022, Problem 2] Is the product of a set SM
space with a compact space a set SM space?

Partial answers to the previous questions are given also for the classes of set SH
and set SSH spaces.

2.1 Some relative compact-type and Lindelöf type properties
defined by stars

In [Bonanzinga and Pansera, 2007] the following relative versions of compact-type
properties defined by stars were considered.

Definition 2.1.1. [Bonanzinga and Pansera, 2007, p. 236]A subspace Y of a space X is:

• relatively SC in X if for every open cover U of X there is a finite subset V ⊂ U
such that st(

⋃ V ,U ) ⊃ Y.

• relatively (*) in X if for every open cover U of X there is a compact subset K ⊂ X
such that st(K,U ) ⊃ Y.

In similar way it is possible to formulate the following properties of subsets of a
topological space.

Definition 2.1.2. [Bonanzinga, M., 2022]A subspace Y of a space X is:

• relatively finite (*) in X if for every open cover U of X there is a finite subset
K ⊂ X such that st(K,U ) ⊃ Y.

• relatively countable (*) in X if for every open cover U of X there is a countable
subset C ⊂ X such that st(C,U ) ⊃ Y.

In the following propositions, characterizations of SC, K-SC and SSC properties
using relative versions of them are given.

Proposition 2.1.3. [Bonanzinga, M., 2022, Propoistion 1.1] The following are equivalent
for a space X:
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1. X is SC;

2. for every A ⊂ X, A is relatively SC in X.

Proof. The implication 1. ⇒ 2. is obvious.2. ⇒ 1. Suppose, by contraddiction, there
is an open cover U such that for every finite subfamily V ⊆ U , St(

⋃ V ,U ) ̸= X. Fixed
a finite subfamily V ⊆ U , call Y = X \ St(

⋃ V ,U ); since Y is relatively SC in X, there
is a finite subfamily V0 ⊆ U such that Y ⊂ St(

⋃ V0,U ). Define V ′
= V0 ∪ V . Then,

V ′ is a finite subfamily of U such that X = St(
⋃ V ′

,U ); a contradiction.

Proposition 2.1.4. [Bonanzinga, M., 2022, Proposition 1.2] The following are equivalent
for a space X:

1. X is K-SC;

2. for every A ⊂ X, A is relatively (*) in X;

3. for every nonempty subset A of X and every family U of open sets in X such that
A ⊆ ⋃U , there exists a compact subset K of X such that st(K,U ) ⊃ A.

Proof. The implications 1. ⇔ 2. and 3. ⇒ 1. are obvious. 1. ⇒ 3.. Assume that X is
a K-SC space. Let A ⊆ X be a non-empty subset and U a family of open sets of X
such that A ⊆ ⋃U . Define

U ′
= U ∪ {X \ A}.

Clearly, U ′
is an open cover of X. Since the space is K-SC, there is a compact subset

K of X such that st(K,U ′
) = X. Fix x ∈ A. Thus

x ∈ st(K,U ′
) ⇔ st(x,U ′

) ∩ K ̸= ∅

Then

st(x,U ′
) =

⋃{U ∈ U ′
: x ∈ U} =

⋃{U ∈ U : x ∈ U} = st(x,U )

So

x ∈ st(K,U ′
) ⇔ st(x,U ′

) ∩ K ̸= ∅ ⇔ st(x,U ) ∩ K ̸= ∅ ⇔ x ∈ st(K,U ).

Then A ⊂ st(K,U ).

The proof of the following two propositions are similar to the previous one, this
omitted.

Proposition 2.1.5. [Bonanzinga, M., 2022, Proposition 1.3] The following are equivalent
for a space X:

1. X is SSC;

2. for every A ⊂ X, A is relatively finite (*) in X;

3. for every nonempty subset A of X and every family U of open sets in X such that
A ⊆ ⋃U , there exists a finite subset F of X such that st(F,U ) ⊃ A.

Proposition 2.1.6. [Bonanzinga, M., 2022, Proposition 1.4] The following are equivalent
for a space X:

1. X is SSL;

2. for every A ⊂ X, A is relatively countable (*) in X;
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3. for every nonempty subset A of X and every family U of open sets in X such that
A ⊆ ⋃U , there exists a countable subset C of X such that st(C,U ) ⊃ A.

Notice that in propositions 2.1.4, 2.1.5 and 2.1.6, the affirmation 3. the compact,
resp. finite or countable, sets are required to be subsets of X. Asking that the finite,
resp. finite or countable, sets must be a subsets of the closure of A, the authors in
[Kočinac, Konca, and Singh, 2022] introduced the following relative versions of it.

Definition 2.1.7. [Bonanzinga, M., 2022] A subset A of a space X is

• relatively∗ SSC in X if for every family U of open sets in X such that A ⊆ ⋃U ,
there exists a finite subset F of A such that st(F,U ) ⊃ A;

• relatively∗ SC in X if for every family U of open sets in X such that A ⊆ ⋃U ,
there exists a finite subfamily V of U such that st(

⋃ V ,U ) ⊃ A;

• relatively∗ SSL in X if for every family U of open sets in X such that A ⊆ ⋃U ,
there exists a countable subset F of A such that st(F,U ) ⊃ A;

• relatively∗ SL in X if for every family U of open sets in X such that A ⊆ ⋃U ,
there exists a countable subfamily V of U such that st(

⋃ V ,U ) ⊃ A;

The following result is obvious.

Proposition 2.1.8. [Bonanzinga, M., 2022, Propoistion 2.1] Let A be a subspace of a space
X. If A is relatively∗ SC in X, then A is relatively SC in X.

The converse of the previous proposition is not true; see Example 2.1.24, where
a SC non set SC space is given.

Using definitions above, in [Kočinac, Konca, and Singh, 2022], the authors intro-
duced the following relative versions of SC and SSC (with different terminology).

Definition 2.1.9. [Kočinac, Konca, and Singh, 2022, Definition 3] A space X is

• set strongly star-compact, briefly set SSC, if every nonempty subset A of X is
relatively∗ SSC in X.

• set star-compact, briefly set SC, if every nonempty subset A of X is relatively∗

SC in X.

Recall that in the class of Hausdorff spaces, a space is CC iff it is SSC; by this fact
and since CC is hereditary with respect to closed sets, it is clear that CC implies set
SSC.

Proposition 2.1.10. [Bonanzinga, M., 2022, Proposition 2.2] If X is a Hausdorff space,
then the following properties are equivalent:

(i) X is CC

(ii) X is set SSC

(iii) X is SSC

The list of equivalent conditions can be enlarged at the cost of a higher separation
axiom.
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Proposition 2.1.11. [Bonanzinga, Giacopello, M., 2023, Proposition 1.3] If X is a regular
space, set SC and CC are equivalent properties.

Proof. Of course, every CC space is set SC. Now, let X be a regular set SC space. By
contradiction, assume there exists a closed and discrete subspace D = {xn : n ∈ ω}
of X. By regularity, there exists a disjoint family U = {Un : n ∈ ω} of open subsets of
X such that xn ∈ Un, for every n ∈ ω. Then D ⊆ ⋃U but for every finite subfamily
V of U , D ̸⊂ st(

⋃ V ,U ); a contradiction.

Corollary 2.1.12. [Bonanzinga, Giacopello, M., 2023] If X is a regular space, then the
following properties are equivalent:

(i) X is CC

(ii) X is set SSC

(iii) X is SSC

(iv) X is set SC

In a similar way the following relative version of K-SC property is considered.

Definition 2.1.13. [Bonanzinga, M., 2022] A subset A of a space X is relatively∗ K-SC
in X if for every family U of open sets in X such that A ⊆ ⋃U , there exists a compact
subset K of A such that st(K,U ) ⊃ A

And a covering property can be defined.

Definition 2.1.14. [Bonanzinga, M., 2022, Definition 2.2] A space X is set K-star-compact,
briefly set K-SC, if every subset A of X is relatively∗ K-SC in X.

The examples below will distinguish all the properties stated up to now.

Example 2.1.15. [Bonanzinga, M., 2022, Example 2.2] A T1 set SC not K- SC space (hence
not set K- SC and set SSC).

In [Song, 2007, Example 2.2] it is considered the set X = ω1 ∪ A, where A = {aα :
α ∈ ω1} is a set of cardinality ω1, topologized as follows: ω1 has the usual order
topology and is an open subspace of X; a basic neighborhood of a point aα ∈ A takes
the form

Oβ(aα) = {aα} ∪ (β, ω1), where β < ω1.

In [Song, 2007] it is proved that X is SC not K- SC. It is enough to prove that X is
set SC. Fix a nonempty subset B ⊆ X and a family U of open sets of X such that
B ⊆ ⋃U ; it is possible to assume that U consists of basic open sets. Define the sets
B1 = B ∩ ω1 and B2 = B ∩ A; obviously B = B1 ∪ B2. Since ω1 is countably compact
(hence set SC) and B1 ⊆ B, it is possible to find a finite subfamily V ′ ⊂ U such that
B1 ⊂ St(

⋃ V ′,U ). Fix aγ ∈ B2 and consider an open set Uγ ∈ U such that aγ ∈ Uγ.
Then, B2 ⊆ St(Uγ,U ). Define V = V ′ ∪{Uγ}. The family V is a finite subfamily of U
such that B ⊆ St(∪V ,U ) and then X is set SC. △

Definition 2.1.16. [Kočinac and Singh, 2020, Definition 5] A space X is

• set strongly star-Lindelöf, briefly set SSL, if every nonempty subset A of X is
relatively∗ SSL in X.

• set star-Lindelöf, briefly set SL, if every nonempty subset A of X is relatively∗

SL in X.
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Proposition 2.1.17. [Bonanzinga, M., 2022, Proposition 3.1] Let X be a T1 space. The
following affirmations are equivalent

• X is set SSL

• e(X) = ℵ0

Proof. Let X be a T1 space having countable extent. Assume, by contradiction, that
X is not set SSL. Then there exist a non empty subset A of X and a family U of open
sets of X such that A ⊆ ⋃U and for every countable subset C of A, A ̸⊆ st(C,U ).
Then, by induction, for each α < ω1 choose a point aα ∈ A such that aα /∈ st({aγ :
γ < α},U ) . Let B = {aα : α < ω1} ⊆ A. Since e(X) = ℵ0, there exists a limit
point a∗ for B in A. Then there exist U∗ ∈ U and α1, α2 ∈ ω1 with α1 ̸= α2 such that
a∗ ∈ U∗ and {aα1 , aα2} ⊂ U∗; a contradiction. Viceversa, assume that X is set SSL
and let D be a closed and discrete subset of X. For every x ∈ D there exists an open
neighbourhood Ux of x such that Ux ∩ D = {x}. Put U = {Ux : x ∈ D}. Then,
D = D ⊂ ⋃U . Since X is set SSL, there exists a countable subset C of D = D such
that D ⊂ st(C,U ). Then C = D; hence D is countable.

It can be proved the following generalization of Proposition 2.5.

Proposition 2.1.18. [Bonanzinga, M., 2022, Proposition 3.2] If X is a collectionwise Haus-
dorff set SL space, then e(X) = ℵ0 (equivalently, X is set SSL).

Proof. Suppose that X is a collectionwise Hausdorff set SL space and let D be a closed
and discrete subspace of X. For each x ∈ D, there exists an open neighbourhood Ux
of x such that Ux ∩ D = {x}. Since X is collectionwise Hausdorff, assume that
Ux are pairwise disjoint. Put U = {Ux : x ∈ D}. Then,

⋃U ⊇ D = D and, by
hypothesis there exists a countable subset V of U such that D ⊆ st(

⋃ V ,U ). Then D
is countable.

Corollary 2.1.19. [Bonanzinga, M., 2022, Corollary 3.1] If X is a collectionwise Hausdorff
space, then the following properties are equivalent:

1. e(X) = ℵ0

2. X is set SSL

3. X is set SL

4. X is SSL.

Note that SL property cannot be added to the list of equivalences of the previous
corollary even in the class of Tychonoff spaces, as the following example shows.

Example 2.1.20. [Bonanzinga, M., 2022, Example 3.1] A Tychonoff collectionwise Haus-
dorff K-SC (hence SL) space which is not SSL.

Let D be a discrete space of cardinality c. Consider the space X = (βD × (ω +
1)) \ ((βD \ D) × {ω}). The space X is collectionwise Hausdorff and e(X) > ω;
then by the previous result it is not SSL. It is enough to prove that X is K-SC (hence
SL). Let U be an open cover of X. For each α ∈ c, there exist nα ∈ ω and Un ∈ U
such that {α} × (nα, ω] ⊆ Uα. Let γ = sup{nα : α ∈ c}. The set K1 = βD × (γ + 1)
is compact and D × {ω} ⊆ st(K1,U ); indeed (α, ω) ∈ Uα ∈ U and Uα ∩ K1 ̸= ∅,
for every α ∈ D. The subspace βD × ω is CC, hence there exists a finite subset F of
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βD × ω such that βD × ω ⊂ st(F,U ). Then K = K1 ∪ F is a compact subset of X
such that st(K,U ) = X. △

However the following holds.

Corollary 2.1.21. [Bonanzinga, M., 2022, Corollary 3.2] If X is a normal collectionwise
Hausdorff space, then the following properties are equivalent:

1. e(X) = ℵ0

2. X is set SSL

3. X is set SL

4. X is SSL

5. X is SL.

Proof. It is enough to prove 5. ⇒ 1.. Suppose by contradiction that X contains an
uncountable closed discrete subset D. By the collectionwise Hausdorff property of
X, for every x ∈ D, it is possible to find an open neighbourhood Ux of x such that
{Ux : x ∈ D} is a disjoint family. The set F = X \⋃{Ux : x ∈ D} is closed, and by the
SL property of X and the fact that {Ux : x ∈ D} is an uncountable disjoint family, F is
non-empty. So by normality of X choose disjoint open sets U and V such that D ⊂ U
and F ⊂ V. Now U = {Ux : x ∈ D} ∪ {V} is an open cover of X and thus, by the
SL property of X there is a countable subcollection V ⊂ U such that st(

⋃ V ,U ) = X.
Without loss of generality it is possible to assume that there is a countable set C ⊂ D
such that V = {Ux : x ∈ C} ∪ {V}. But then (D \ C) ∩ st(

⋃ V ,U ) = ∅, which is a
contradiction.

The following fact will be used in Example 2.1.23 to produce a SSL not set SL
space.

Proposition 2.1.22. [Bonanzinga, M., 2022, Proposition 3.4] Let X be a space. If there exist
a closed and discrete subspace D of X having uncountable cardinality and a disjoint family
U = {Oa : a ∈ D} of open neighbourhoods of points a ∈ D, then X is not set SL.

Proof. Let D and U like in the hypothesis. For every countable subfamily V ⊂ U ,
there exists b ∈ D \⋃ V . Since Ob is the only element of U containing b, st(

⋃ V ,U ) ̸⊃
D.

Example 2.1.23. [Bonanzinga, M., 2022, Example 3.2] A Tychonoff SSL non set SL space.

Let D be a discrete space of cardinality c. Consider the space X = (βD × (ω +
1)) \ ((βD \ D)× {ω}) and the Isbell-Mrówka space Y = ω ∪A where A is a max-
imal almost disjoint family of infinite subsetes of ω such that |A| = c; of course,
assume X ∩ Y = ∅. D is homeomorphic to the subspace (βD × {ω}) \ ((βD \
D) × {ω}). Let f : D → A be a bijection and consider the quotient mapping
h : X ⊕Y → Z which identifies x with f (x), for every x ∈ D, where X ⊕Y is the dis-
crete sum of X and Y. Consider Z as the union of the compact spaces Xn = βD×{n},
n ∈ ω and the SSL space Y. Since the SSL property is preserved by countable unions,
Z is SSL. Since A = (βD × {ω}) \ ((βD \ D)× {ω}) is a closed and discrete subset
of Z of cardinality c and U = {{d} × (ω + 1) : d ∈ D} is a disjoint family of open
neighbourhoods of points ⟨d, ω⟩ ∈ A, by Proposition 2.1.22, Z is not set SL. △
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Example 2.1.24. [Bonanzinga, M., 2022, Example 3.3] A Hausdorff K-SC (hence SC and
SL) non set SL (hence non set SC nor set K-SC) space.

Let A = [0, c), B = [0, ω), Y = A × B. Put X = Y ∪ A ∪ {a} where a /∈ Y ∪ A.
Topologize X as follows: every point of Y is isolated; a basic neighborhood of α ∈ A
takes the form:

Uα(n) = {α} ∪ {⟨α, m⟩ : n < m}, for n ∈ ω

and a basic neighborhood of the point a takes the form:

Uα(F) = {a} ∪
(⋃{⟨α, n⟩ : α ∈ A \ F, n ∈ B}

)
, for a finite subset F of A.

The space X is clearly T2, but not T3 (in fact, the point a cannot be separated from
the closed set A by disjoint open sets). In [Song, 2015] it is proved that the space X
is K-SC. It is enough to show that the space X is not set SL. Note that A is a closed
and discrete subspace of X of cardinality c and the family U = {Uα : α ∈ A}, where
for every α ∈ A

Uα = {α} ∪ {⟨α, n⟩ : n ∈ B}

of pairwise disjoint open set such that
⋃U ⊃ A = A. Then, by Proposition 2.1.22,

the space X is not set SL. △

In the next paragraph an example of Tychonoff SC non set SC will be given (see
Example 2.2.10).

Corollary 2.1.28 below will show that "every c.c.c. space is set SL". This will
allow to show that a set SL space need not be set SSL, or, equivalently, need not
having countable extent . First recall the following :

Definition 2.1.25. A space X is

• weakly Lindelöf, briefly wL , if for every open cover U of X there exists a count-
able family V ⊂ U such that

⋃ V = X [Hodel, 1984];

• weakly Lindelöf with respect to closed sets , briefly wLc, if for every closed set
F ⊆ X and for every family U of open sets such that F ⊂ ⋃U there esists a
countable family V ⊂ U such that

⋃ V ⊇ F [Alas, 1993, Definition 1].

Of course, every Lindelöf space is wLc and every wLc space is wL.

Proposition 2.1.26. [Bonanzinga, M., 2022, PRoposition 3.5] Every wLc space is set SL.

Proof. Let X be a wLc space, A ⊆ X and U be a family of open sets of X such that
A ⊆ ⋃U . By hypothesis, there exists a countable family U0 ⊆ U such that

⋃U0 ⊇ A.
It is sufficient to prove that A ⊆ St(

⋃U0,U ). Fix x ∈ A. Then, there exists U ∈ U
such that x ∈ U. Since

⋃U0 ⊇ A, U ∩⋃U0 ̸= ∅ and then x ∈ St(
⋃U0,U ).

Note that the converse of the previous proposition is not true as the following
example shows.

Example 2.1.27. [Bonanzinga, M., 2022, Example 3.4] A T5 set SL space X which is not
wL (hence not wLc).

Consider the ordinal space ω1. This space is not wL because the open cover
U = {[0, α) : α < ω1} has no countable subfamily the union of which is dense in ω1.
Since ω1 is CC, it is set SL. △
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Corollary 2.1.28. [Bonanzinga, M., 2022, Corollary 3.3] Every c.c.c. space is set SL.

Proof. By [Alas, 1993, Inequality 3)] every c.c.c. space is wLc.

Using Corollary 2.1.28 and Proposition 2.1.17, the following example can be ex-
posed.

Example 2.1.29. [Bonanzinga, M., 2022, Example 3.5] A Tychonoff separable (hence set
SL) non set SSL space.

Consider the Isbell-Mrówka space Ψ(A) = ω ∪ A, where A is the maximal al-
most disjoint family of cardinality c. Ψ(A) is separable hence c.c.c. and, by the previ-
ous result, set SL. Since A is a closed and discrete subspace of Ψ(A) of uncountable
cardinality, e(Ψ(A)) > ω and, equivalentely, Ψ(A) is not set SSL. △

Note that the space of the previous example is SSL because it is separable. In
[van Douwen, Reed, Roscoe, and Tree, 1991, Example 3.2.3.2] it is proved that the
Pixley-Roy hyperspace of R is a c.c.c. (hence set SL) space which is not SSL (hence
not set SSL).

In [Bonanzinga, 1998] the author introduced the following star-covering prop-
erty and its hereditary, with respect to closed sets, version. Below it is shown that
these properties are related to set SL property.

Definition 2.1.30. A space X is

• absolutely star-Lindelöf , briefly a-st-L, if for every open cover U of X and every
dense subspace D ⊆ X there exists a countable set C ⊂ D such that st(C,U ) =
X [Bonanzinga, 1998, Definition 1.5];

• hereditarely closed absolutely star-Lindelöf , briefly h-cl-a-st-L, provided that ev-
ery its closed subspace is a-st-L [Bonanzinga, 1998, p. 83].

Recall also that absolute star-Lindelöfness is the countable version of the follow-
ing property introduced by M. Matveev:

Definition 2.1.31. [Matveev, 1994, Definition 1.1]A space X is absolutely countably com-
pact , briefly acc, if for every open cover U of X and every dense subspace D ⊂ X
there exists a finite subset F ⊂ D such that st(F,U ) = X.

The h-cl-a-st-L and wLc properties are indipendent as the following two exam-
ples show.

Example 2.1.32. [Bonanzinga, M., 2022, Example 3.6] A Tychonoff wLc space which is not
h-cl-a-st-L.

The Isbell-Mrówka space Ψ(A) = ω ∪A, where A is a maximal almost disjoint
family of cardinality c, is separable hence wLc. However e(Ψ(A)) > ω and then
Ψ(A) is not h-cl-a-star-Lindelöf. △

Example 2.1.33. [Bonanzinga, M., 2022, Example 3.7] A T5 h-cl-a-st-L which is not wLc.

The ordinal space ω1 is not wLc (see Example 2.1.27). By [Matveev, 1994, Theo-
rem 1.8], every CC space having countable tightness is acc. Since CC is hereditary
with respect to closed subspace and tightness is a hereditary cardinal function, every
closed subspace of ω1 is acc hence ω1 is h-cl-a-st-L. △

The set Lindelöf-type covering properties are related to absolute Lindelöf prop-
erties, as the following result shows.
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Proposition 2.1.34. [Bonanzinga, M., 2022, Proposition 3.6] Every h-cl-a-st-L T1 space is
set SSL (or equivalently, has countable extent).

Proof. Let X be a h-cl-a-st-L space, A be a subset of X and U be a family of open sets
of X such that A ⊆ ⋃U . By the hypothesis, there exists a countable subset C of A
such that st(C,U ) ⊇ A ⊇ A.

The converse of the previous result is not true as the following example shows.

Example 2.1.35. [Bonanzinga, M., 2022, Example 3.8] A Tychonoff set SSL space which is
not h-cl-a-st-L.

The space ω1 × (ω1 + 1), where ω1 + 1 is considered with the order topology, is
CC, hence it has countable extent. However this space is not a-st-L, since it is CC
non acc, hence it is not h-cl-a-st-L. △

The following diagram sums up the implications obtained up to now.

hered. separable

a-st-L separable

c.c.c.

Lindelöf h-cl-a-st-L wLc

e(X) = ℵ0 setSSL setSL

×
Ex.2.1.32

×Ex.2.1.33

×
Ex.2.1.32

T1

×Ex.2.1.35 × Ex.2.1.27

×
Ex.2.1.29

Consider the following relative version of acc property:

Definition 2.1.36. [Bonanzinga, M., 2022]A subset A of a space X is relatively acc in X
if for every collection U of open sets in X such that A ⊂ ⋃U , and for every dense
subspace D ⊂ X there exists a finite subset F ⊂ D such that st(F,U ) ⊃ A.

In [Kočinac and Singh, 2020] the authors introduced the following definition
(with different terminology).

Definition 2.1.37. [Kočinac and Singh, 2020, Definition 7]A space X is set absolutely
countably compact , briefly set acc, if every subset A of X is relatively acc in X.

In the same article the authors pose the following question:

Question 2.1.38. [Kočinac and Singh, 2020, Problem 1] Does an acc space which is not
set-acc exist?

The Proposition 2.1.39 below answers in the negative to the previous question.

Proposition 2.1.39. [Bonanzinga, M., 2022, Proposition 4.1] Let X be a space. The follow-
ing affirmations are equivalent.

• X is set acc
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• X is acc

Proof. Of course every set acc space is acc. Then, suppose X is an acc space. Let
A ⊆ X be a non-empty subset, U be a family of open sets of X such that A ⊆ ⋃U
and D be a dense subset of X. Define

U ′
= U ∪ {X \ A}.

Clearly, U ′
is an open cover for X. Since the space X is acc, there is a finite subset F

of D such that st(F,U ′
) = X. Fix x ∈ A. Thus

x ∈ st(F,U ′
) ⇔ st(x,U ′

) ∩ F ̸= ∅

and then

st(x,U ′
) = st(x,U ).

So, A ⊂ st(F,U ).

In [Aurichi, 2013] the following definition is introduced:

Definition 2.1.40. [Aurichi, 2013, Definition 2.1]A space X is selectively c.c.c. if for
every sequence (An : n ∈ ω) of maximal cellular open families in X, there is a
sequence (An : n ∈ ω) such that for each n ∈ ω, An ∈ An, and

⋃
n∈ω An is dense in

X.

In [Bal and Kočinac, 2020] the following star version of the previous property is
introduced:

Definition 2.1.41. [Bal and Kočinac, 2020] A space X is selectively star-c.c.c. if for each
open cover U of X and every sequence (An : n ∈ ω) of maximal cellular open
families in X, there is a sequence (An : n ∈ ω) such that for each n ∈ ω, An ∈ An,
and X = st(

⋃
n∈ω An,U ).

For further developement about selectively star-c.c.c. space, see [Song and Xuan,
2019] and [Xuan and Song, 2020a].

Finally in [Kočinac and Singh, 2020], using the following relative version of se-
lectively star-c.c.c. property:

Definition 2.1.42. [Bonanzinga, M., 2022]A subset A of a space X is relatively selectively
star-c.c.c. in X if for each collection U of open sets in X such that A ⊂ ⋃U , and
for each sequence (An : n ∈ ω) of maximal cellular open families in X, there is a
sequence (An : n ∈ ω) such that for each n ∈ ω, An ∈ An, and A ⊂ st(

⋃
n∈ω An,U ).

The following definition was introduced.

Definition 2.1.43. [Kočinac and Singh, 2020, Definition 8] A space X is set selectively
star-c.c.c. if every subset A of X is relatively selectively star-c.c.c. in X.

By Proposition 2.1.39 and [Kočinac and Singh, 2020, Theorem 5] the following
result is obvious.

Proposition 2.1.44. [Bonanzinga, M., 2022, Proposition 4.2] Every acc space is set selec-
tively star-c.c.c., hence selectively star-c.c.c..

Proposition 2.1.46 below give a negative answer to the question:
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Question 2.1.45. [Kočinac and Singh, 2020, Problem 2] Does there exists a Tychonoff se-
lectively star-c.c.c. space which is not set selectively star-c.c.c.?

Proposition 2.1.46. [Bonanzinga, M., 2022, Proposition 4.3] Let X be a space. The follow-
ing affirmations are equivalent

• X is set selectively star-c.c.c.

• X is selectively star-c.c.c..

Proof. Of course, every set selectively star-c.c.c. space is selectively star-c.c.c.. Then,
suppose X is a selectively star-c.c.c. space. Let A ⊆ X be a non-empty subset, U be
a family of open sets of X such that A ⊆ ⋃U and (An : n ∈ ω) be a sequence of
maximal cellular open families in X. Define

U ′
= U ∪ {X \ A}.

Clearly, U ′
is an open cover for X. Since the space X is selectively star-c.c.c., there is a

sequence (An : n ∈ ω) such that for each n ∈ ω, An ∈ An, and X = st(
⋃

n∈ω An,U ).
Fix x ∈ A. Thus

x ∈ st(
⋃

n∈ω An,U ′
) ⇔ st(x,U ′

) ∩ (
⋃

n∈ω An) ̸= ∅

and then

st(x,U ′
) = st(x,U ).

So, A ⊂ st(
⋃

n∈ω An,U ).

Replacing "st" with "stm", m ∈ ω, in the definitions of selective star-c.c.c. and set
selective star-c.c.c. properties, the notions of selective m-star-c.c.c. property ([Bal and
Kočinac, 2020], see also [Xuan and Song, 2020b]) and set selective m-star-c.c.c. property
([Kočinac and Singh, 2020]) were defined. A selectively 1-star-c.c.c. (set selectively
1-star-c.c.c.) space is exactly a selectively star-c.c.c. (resp., set selectively star-c.c.c.)
space. Of course, every selectively m-star-c.c.c. (set selectively m-star-c.c.c.) space is
selectively (m + 1)-star-c.c.c. (resp., set selectively (m + 1)-star-c.c.c.).

In [Bal and Kočinac, 2020] the following question is posed.

Question 2.1.47. [Bal and Kočinac, 2020, Problem 4.9] Does there exists a space which is
selectively 2-star-c.c.c. but not SSL?

The following example gives a positive answer to the previous question.

Example 2.1.48. [Bonanzinga, M., 2022, Example 4.1] There exists a T2 selectively star-
c.c.c. (hence selectively 2-star c.c.c.) space which is not SSL.

In [Aurichi, 2013, Corollary 2.9] it is proved that for every Tychonoff space X,
the function space Cp(X) is selectively c.c.c. and hence selectively star-c.c.c. Con-
sider the space Cp(ω1 + 1), where ω1 + 1 is endowed with the order topology. Then
Cp(ω1 + 1) is selectively star-c.c.c.. In [Bonanzinga and Matveev, 2000, p.117] it is
proved that Cp(ω1 + 1) is not SSL. △

Recall that

Theorem 2.1.49. [Bal and Kočinac, 2020, Theorem 3.2] Every Lindelöf space is selectively
star-ccc.
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Theorem 2.1.50. [Kočinac and Singh, 2020] Every set SSL space is set selectively 2 star-ccc.

Since every set selectively star-ccc space is set selectively 2 star-ccc and recalling
that the set version of selective star-ccc property is equivalent to the original prop-
erty (Proposition 2.1.46) and that set SSL is equivalent to countable extent (Proposi-
tion 2.1.17), the following result improves both the previous theorems.

Theorem 2.1.51. [Bonanzinga, M., 2022, Theorem 4.3] Every space with countable extent
is selectively star-c.c.c. .

Proof. Let X be a space such that e(X) = ℵ0. It is enough to prove that X is set
selectively star-ccc; by Proposition 2.1.46, this will prove the theorem. Let B ⊆ X be
a non-empty subset, U be a family of open sets of X such that B ⊆ ⋃U and (An :
n ∈ ω) be a sequence of maximal cellular open families in X. By Proposition 2.1.17,
there exists a countable subset of B, say Y = {y1, ..., yn}, such that B ⊂ St(Y,U ).

Fix b ∈ B. Then

b ∈ st(Y,U ) ⇔ there exists n ∈ ω such that yn ∈ st(b,U ).

For every n ∈ ω, put Un =
⋃

b∈B{st(b,U ) : yn ∈ st(b,U )}. Then, Un is an open
subset of X and, by maximality of An, there exists An ∈ An such that Un ∩ An ̸= ∅.
Then B ⊂ ⋃

n∈ω Un ⊂ st(
⋃

n∈ω An,U ). Therefore, X is set selectively star-ccc. 2

The Theorem 2.1.53 will show that a space X is selectively m-star-ccc if and only
if it is set selectively m-star-ccc, for every m ∈ N.

Lemma 2.1.52. [Bonanzinga, M., 2022, Lemma 4.1] Let X be a topological space, A ⊆ X
be a nonempty subset, and U be a family of open sets of X such that A ⊂ ⋃U . Consider the
family U ′ = U ∪ {X \ A}. Then for every m ∈ N, stm(x,U ) = stm(x,U ′) for all x ∈ A.

Proof. Fix x ∈ A. For the basis of the induction, see the proof of Proposition 2.1.4.
Now, assume that stm(x,U ) = stm(x,U ′) is true for a fixed k ∈ N. Then for every
V ∈ U ,

V ∩ stm(x,U ′) ̸= ∅ ⇔ V ∩ stm(x,U ) ̸= ∅.

So stm+1(x,U ′) = stm+1(x,U ) as required.

Using the previous lemma and proceeding as in the proof of Proposition 2.1.46,
it is possible to obtain the following result.

Theorem 2.1.53. [Bonanzinga, M., 2022, Theorem 4.4] Let m ∈ N. A space X is selectively
m-star-ccc iff it is set selectively m-star-ccc.

Lastly, it is consdered the behaviour of the productivity of set SSL and set SL
spaces. Note that, by Proposition 2.1.10 (resp. Corollary 2.1.12), set SSC (resp. set
SC) property is not productive and it is preserved in the Hausdorff (resp. regular)
product with compact spaces. Recall that a map is perfect if it is continuous, closed,
onto and each fiber is compact.

Proposition 2.1.54. [Bonanzinga, Giacopello, M., 2023, Proposition 3.3] If f : X → Y is
a perfect map and A is an uncountable closed and discrete subspace of X, then f (A) is an
uncountable closed and discrete subspace of Y.
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Proof. Let f and A be as in the hypothesis. Clearly f (A) is closed in Y. Note that,
for every y ∈ f (A), f−1(y) ∩ A is a closed subset of the compact subspace f−1(y)
and then, since A is discrete, it is finite. Now, fix y ∈ f (A) and say f−1(y) ∩ A =
{x1, ..., xn}. For every i = 1, ..., n fix an open subset Ui of X such that A ∩ Ui = {xi}
and put U =

⋃n
i=1 Ui. Since A \ U is a closed subset of X, f (A \ U) = f (A) \ {y} is

a closed subset of Y, and then {y} is open in f (A) with the topology inherited from
Y.

Corollary 2.1.55. [Bonanzinga, Giacopello, M., 2023, Corollary 3.4] The product of a space
having countable extent with a compact space has countable extent.

Proof. Let X be a space with countable extent and Y be a compact space. The projec-
tion from X × Y onto X is a perfect map. Then, by Proposition 2.1.54, e(X × Y) =
ω.

By Proposition 2.1.17, the previous result can be restated as follows.

Proposition 2.1.56. [Bonanzinga, Giacopello, M., 2023, Proposition 3.5] The product of a
T1 set SSL space with a compact space is set SSL.

Proposition 2.1.57. [Bonanzinga, Giacopello, M., 2023, Proposition 3.9] If X and Y are T1
spaces with e(X) > ℵ0 and c(Y) > ℵ0 then X × Y is not set SL.

Proof. Let S = {sα : α < ω1} be a closed and discrete subset of X, O = {Oα : α < ω1}
be a pairwise disjoint family of nonempty open subsets of Y. For every α < ω1, fix
tα ∈ Oα. Put A = {(sα, tα) : α < ω1}. It is obvious that A is an uncountable
discrete subspace of X × Y. It is enough to show that A is closed. For every α < ω1
there exists an open set, say Nα, such that Nα ∩ S = {sα}. Then (X × Y) \ A =
((X \ S)×Y)∪⋃

α<ω1
(Nα × (Y \ {tα})). Then, by Proposition 2.1.22, X ×Y is not set

SL.

Example 2.1.58. [Bonanzinga, Giacopello, M., 2023, Example 3.10] There exists a T1 set
SC (hence set SL) space X and a compact space Y with c(Y) > ℵ0 such that X × Y is not
set SL (hence not set SC).

Consider the set X = ω1 ∪ A, where A = {aα : α ∈ ω1} is a set of cardinality ω1,
topologized as follows: ω1 has the usual order topology and is an open subspace of
X; a basic neighborhood of a point aα ∈ A takes the form

Oβ(aα) = {aα} ∪ (β, ω1), where β < ω1.

In 2.1.15 it is said that X is set SC, hence X is set SM. Moreover e(X) > ℵ0. If Y is
any compact space with c(Y) > ℵ0, by Proposition 2.1.57, X × Y is not set SL. △

2.2 Some relative Menger-type and Hurewicz-type proper-
ties defined by stars

The following result gives a characterization of the SSM property in terms of a rela-
tive version of it.

Proposition 2.2.1. [Bonanzinga, Giacopello, M., 2023, Proposition 2.2] The followings are
equivalent for a space X:

1. X is SSM;
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2. for each nonempty subset A of X and each sequence (Un : n ∈ ω) of collection of open
sets of X such that A ⊂ ⋃Un for every n ∈ ω, there exists a sequence (Fn : n ∈ ω)
such that Fn, n ∈ ω, is a finite subset of X and A ⊂ ⋃

n∈ω st(Fn,Un).

Proof. 2. ⇒ 1. is obvious. 1. ⇒ 2. Let A ⊆ X be a nonempty subset and (Un : n ∈ ω)
be a sequence of families of open sets of X such that A ⊆ ⋃Un for every n ∈ ω.
Define

U ′
n = Un ∪ {X \ A}

for all n ∈ ω. Clearly, each U ′
n is an open cover for X. Since X is SSM, there is a

sequence (Fn : n ∈ ω) of finite subsets of X such that X =
⋃

n∈ω st(Fn,Un). Fix
x ∈ A. Then there exists n ∈ ω such that x ∈ st(Fn,U ′

n). Observe that

x ∈ st(Fn,U ′
n) ⇔ st(x,U ′

n) ∩ Fn ̸= ∅.

Also

st(x,U ′
n) =

⋃{U ∈ U ′
n : x ∈ U} =

⋃{U ∈ Un : x ∈ U} = st(x,Un).

So

x ∈ st(Fn,U ′
n) ⇔ st(x,U ′

n) ∩ Fn ̸= ∅ ⇔ st(x,Un) ∩ Fn ̸= ∅ ⇔ x ∈ st(Fn,Un).

Since x is an arbitrary point of A, A ⊂ ⋃
n∈ω st(Fn,Un).

The following result is a characterization of SSH property in terms of a relative
version of it. The proof is similar to the previous one.

Proposition 2.2.2. [Bonanzinga, Giacopello, M., 2023, Proposition 4.2] The following af-
firmations are equivalent for a space X:

1. X is SSH;

2. for each nonempty subset A of X and for each sequence (Un : n ∈ N) of collection
of open sets of X such that A ⊂ ⋃Un for every n ∈ ω, there exists a sequence
(Fn : n ∈ N) such that Fn, n ∈ ω, is a finite subset of X and ∀x ∈ A, x ∈ st(Fn,Un)
for all but finitely many n ∈ ω.

Notice that in the propositions above, the affirmation 2. consents to choose the
finite sets are required to be subsets of X. Asking that the finite sets must be subsets
of the closure of A, the authors in [Kočinac, Konca, and Singh, 2022] defined the
following relative version of the SM and SSM properties were considered.

Definition 2.2.3. A space X is

• set strongly star-Menger, briefly set SSM, if for each nonempty subset A of X
and for each sequence (Un : n ∈ ω) of collection of open sets of X such that
A ⊂ ⋃Un for every n ∈ ω, there exists a sequence (Fn : n ∈ ω) such that Fn,
n ∈ ω, is a finite subset of A and A ⊂ ⋃

n∈ω st(Fn,Un) [Kočinac, Konca, and
Singh, 2022, Definition 4];

• set star-Menger, briefly set SM, if for each nonempty subset A of X and for each
sequence (Un : n ∈ ω) of collection of open sets of X such that A ⊂ ⋃Un for
every n ∈ ω, there exists a sequence (Vn : n ∈ ω) such that Vn, n ∈ ω, is
a finite subset of Un and A ⊂ ⋃

n∈ω st(
⋃ Vn,Un) [Kočinac, Konca, and Singh,

2022, Definition 4];
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• set strongly star-Hurewicz, briefly set SSH, if for each nonempty subset A ⊆ X
and for each sequence (Un : n ∈ ω) of collection of open sets of X such that
A ⊆ ⋃Un for every n ∈ ω, there exists a sequence (Fn : n ∈ ω) such that Fn,
n ∈ ω, is a finite subset of A and ∀x ∈ A, x ∈ st(Fn,Un) for all but finitely
many n ∈ ω [Kočinac, Konca, and Singh, 2022, Definition 5];

• set star-Hurewicz, briefly set SH, if for each nonempty subset A ⊆ X and for
each sequence (Un : n ∈ ω) of collection of open sets of X such that A ⊆ ⋃Un
for every n ∈ ω, there exists a sequence (Vn : n ∈ N) such that Vn, n ∈ ω, is a
finite subset of Un and ∀x ∈ A, x ∈ st(

⋃ Vn,Un) for all but finitely many n ∈ ω
[Kočinac, Konca, and Singh, 2022, Definition 5].

The set SSH and set SSM properties lie between CC and the property having
countable extent.

Theorem 2.2.4. [Bonanzinga, Giacopello, M., 2023] Let X be a space. The following rela-
tions hold

X CC X set SSH X set SSM e(X) = ℵ0

The following examples show that the previous implications cannot be reversed.

Example 2.2.5. [Bonanzinga, Giacopello, M., 2023] A metrizable set SSH space which is
not CC

Consider ω with the discrete topology. This is a H (hence set SSH) non CC space.
△

Example 2.2.6. [Bonanzinga, Giacopello, M., 2023, Example 4.4] (b < d) There is a Ty-
chonoff set SSM space which is not set SSH.

Consider an unbounded subset X of the Baire space ωω of cardinality b. Then
e(X) = ℵ0, and X is not Hurewicz, hence not set SSH by [Bonanzinga, Cammaroto,
and Kočinac, 2004, Proposition 4.1]. △

Example 2.2.7. [Bonanzinga, Giacopello, M., 2023, Example 2.17] A Tychonoff space hav-
ing countable extent which is not set SSM.

Let I be the space of irrationals and X ⊂ I any non-Menger subspace of cardinal-
ity d (for instance, consider the Baire space ωω which is homeomorphic to I and take
a cofinal subset of cardinality d). It is well known that any cofinal subset of ωω is not
Menger. Of course, X is a paracompact space having countable extent. By [Kočinac,
1999, Theorem 2.8], in the class of paracompact Hausdorff spaces Menger property
is equivalent to SM, hence X is not set SSM. △

Recall that [Matveev, 2002, Theorem 1] shows that the extent of a Tychonoff SSL
space can be arbitrarily big. In [Sakai, 2014, Example 3.1] the same space was used
to prove that the extent of a Tychonoff SM (in fact SC) space can be arbitrarily large.
The following result shows that the extent of a regular set SM space cannot exceed c.

Theorem 2.2.8. [Bonanzinga, Giacopello, M., 2023, Theorem 2.8] If X is a regular set
SM space, then every closed and discrete subspace of X has cardinality less than c. Hence,
e(X) ≤ c.
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Proof. Fix a closed and discrete subspace Y of X and assume |Y| = c. Consider a
family B of open subsets of X such that for every y ∈ Y there exists B ∈ B such
that y ∈ B and B ∩ Y = {y} and suppose that |B| = c. Denote by [B]<ω the fam-
ily of all finite subsets of B, by P = ([B]<ω)ω the family of all the sequences of
elements of [B]<ω and introduce on P the partial order "≤" defined as follows: if
(B′

n)n∈ω, (B′′
n )n∈ω ∈ P then (B′

n)n∈ω ≤ (B′′
n )n∈ω means B′

n ⊆ B′′
n for every n ∈ ω.

Let {(Bα,n)n∈ω : α < c} be a cofinal family in (P,≤). Take Z = {yα : α < c} by
choosing for every α < c a point yα ∈ Y \ ⋃

n∈ω

⋃Bα,n and yα ̸= yβ for α ̸= β. For
every α < c let {Vn(yα) : n ∈ ω} be a sequence of open neighbourhoods of yα such
that Vn(yα) ⊆ B for some B ∈ B and every n ∈ ω and Vn(yα) ∩

⋃Bα,n = ∅ for every
n ∈ ω. For every n ∈ ω put Un = {Vn(yα) : α < c}. Clearly Z = Z ⊆ ⋃Un for
every n ∈ ω. It is enough to show that the subset Z and the sequence (Un : n ∈ ω)
do not satisfy the set SM property. Let (Vn : n ∈ ω) be any sequence of finite
subsets of Un for every n ∈ ω. Let (B′

n : n ∈ ω) ∈ P such that every mem-
ber of Vn is contained in a member of B′

n. Since {(Bα,n)n∈ω : α < c} is a cofi-
nal family in P, there exists γ < c such that B′

n ⊆ Bγ,n for every n ∈ ω. Then
Vn(yγ) ∩

⋃ Vn ⊆ Vn(yγ) ∩
⋃Bγ,n = ∅ for every n ∈ ω. Since Vn(yγ) is the only

member of Un containing yγ, yγ ̸∈ ⋃
n∈ω st(

⋃ Vn,Un).

Example 2.2.9 below gives a consistent example of a SSM space which is not set
SSM. In fact, such an example was already described in [Kočinac, Konca, and Singh,
2022]; here it is given a shorter proof.

Example 2.2.9. [Kočinac, Konca, and Singh, 2022] (ω1 < d) There exists a Tychonoff SSM
space which is not set SSM.

Assume ω1 < d and consider Ψ(A) with |A| = ω1. By Theorem 2.10 and since
e(Ψ(A)) > ω, Ψ(A) is a SSM not set SSM space. △

Using Theorem 2.2.8 it is possible to construct a Tychonoff space distinguishing
SM and set SM properties. In fact, the following example distinguishes SC and set
SC properties.

Example 2.2.10. [Bonanzinga, Giacopello, M., 2023, Example 2.12] A Tychonoff SC (hence
SM) space which is not set SM (hence not set SC).

In [Matveev, 2002], for each infinite cardinal τ the following space X(τ) was
considered. Let Z = { fα : α < τ} where fα denotes the points in 2τ with only the
αth coordinate equal to 1. Consider the set

X(τ) = (2τ × (τ+ + 1)) \ ((2τ \ Z)× {τ+})

with the topology inherited from the product topology on 2τ × (τ+ + 1). Denote
X0 = 2τ × τ+ and X1 = Z × {τ+}. Then X(τ) = X0 ∪ X1. X1 is a closed and discrete
subspace of X(τ) of cardinality τ. So the extent of X(τ) is τ. In [Sakai, 2014] it is
proved that the space X(c) is SC (hence SM). By Theorem 2.2.8, X(c) it is not set SM.
△

The following are the set versions of Proposition 2.12.

Proposition 2.2.11. [Bonanzinga, Giacopello, M., 2023, Proposition 2.14] Every set SL
space of cardinality less than d is set SM.
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Proof. Let X be a set SL space of cardinality less than d. Let A ⊆ X and (Un : n ∈ ω)
be a sequence of families of open sets of X such that A ⊆ ⋃Un for every n ∈ ω.
For every n ∈ ω there is a countable subfamily Vn = {Vn,m : m ∈ ω} of Un
such that A ⊆ st(

⋃ Vn,Un). For every x ∈ A choose a function fx ∈ ωω such that
st(x,Un) ∩ Vn, fx(n) ̸= ∅ for all n ∈ ω. Since { fx : x ∈ A} is not a cofinal family in
(ωω,≤), there are some g ∈ ωω and nx ∈ ω for x ∈ A such that fx(nx) < g(nx). Let
Wn = {Vn,j : j ≤ g(n)}. Then A ⊆ ⋃

n∈ω st(
⋃Wn,Un).

Proposition 2.2.12. [Bonanzinga, Giacopello, M., 2023, Proposition 2.15] Every set SSL
space of cardinality less than d is set SSM.

Proof. Similar to the previous one.

It is thus obtained the following.

Corollary 2.2.13. [Bonanzinga, Giacopello, M., 2023, Corollary 2.16] Let X be a T1 space
of cardinality less than d. The following affirmations are equivalent:

1. X is set SSM

2. e(X) = ℵ0.

In the previous corollary the hypothesis on the cardinality of the space is manda-
tory: see Example 2.2.7 where the space X has cardinality d.

Corollary 2.2.14. [Bonanzinga, Giacopello, M., 2023, Corollary 2.18] The following state-
ments are equivalent:

1. ω1 < d;

2. every T1 space of cardinality ω1 having countable extent is set SSM.

Proof. It follows by Corollary 2.2.13 and Example 2.2.7.

The following result is easy to check.

Proposition 2.2.15. [Bonanzinga, Giacopello, M., 2023, Proposition 2.4] A space X is set
SSM if and only if every closed subspace of X is SSM.

The previous result is not true for set SM spaces: the space of Example 2.1.58
below contains a discrete subspace of uncountable cardinality, hence not SM.

Using Theorem 2.15, proved by Sakai, it is obtained the following list of equiva-
lent conditions.

Theorem 2.2.16. [Bonanzinga, Giacopello, M., 2023, Theorem 2.20] The following state-
ments are equivalent

1. ω1 = d;

2. if X is a regular SSM space, then e(X) ≤ ω;

3. for regular spaces of cardinality less than < d, set SSM and SSM are equivalent
properties.

4. for regular spaces of cardinality < d, set SSL and SSL are equivalent properties.

5. every closed subspace of a regular (set) SSM space X such that |X| < d is (set) SSM.
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Proof. 1. ⇔ 2. holds by Theorem 2.15. 2. ⇒ 3. Let X be a space of cardinality less
than d. By Corollary 2.2.13, X is SSM iff X is set SSM. 3. ⇒ 1. Assume ω1 < d.
Consider the space Ψ(A) with |A| = ω1. By Theorem 2.10, Ψ(A) is SSM, and since
e(Ψ(A)) > ω, Ψ(A) is not set SSM. 3. ⇔ 4. is obvious. 3. ⇔ 5. follows from
Proposition 2.2.15.

Of course, countable spaces are Menger, then set SSM and SSM.

Corollary 2.2.17. [Bonanzinga, Giacopello, M., 2023, Corollary 2.21] For regular spaces X
such that ω < |X| < d, SSM and set SSM are not equivalent properties.

Corollary 2.2.18. [Bonanzinga, Giacopello, M., 2023, Corollary 2.22] Uncountable regular
spaces in which SSM and set SSM are equivalent properties have cardinality ≥ d.

In [Kočinac, Konca, and Singh, 2022, Example 5] the authors constructed a T1 set
SM space which is not set SSM and posed the following question.

Question 2.2.19. [Kočinac, Konca, and Singh, 2022, Problem 1] Does there exist a Ty-
chonoff set SM space which is not set SSM?

Now it is possible to give a consistent positive answer to Question 2.2.19.

Example 2.2.20. [Bonanzinga, Giacopello, M., 2023, Example 2.24] (ω1 < d) A Tychonoff
set SM space which is not set SSM.

Assume ω1 < d and consider Ψ(A) with |A| = ω1. Since Ψ(A) is separable, it is
set SL hence, by Proposition 2.2.11, it is set SM. Since e(Ψ(A)) > ω, Ψ(A) is not set
SSM. △

All the result obtained for Menger-type properties can be extended to Hurewicz-
type properties.

Example 2.2.21. [Bonanzinga, Giacopello, M., 2023, Example 4.6] (ω1 < b) There exists a
Tychonoff SSH not set SSH space.

Assume ω1 < b and consider Ψ(A) with |A| = ω1. Then, by Theorem 2.11 and
since e(Ψ(A)) > ω, Ψ(A) is SSH not a set SSH space. △

Following Theorem 2.2.8 step by step with little modifications it is possible to
prove the following result.

Theorem 2.2.22. [Bonanzinga, Giacopello, M., 2023, Theorem 4.8] If X is a regular set
SH space, then every closed and discrete subspace of X has cardinality less than c. Hence
e(X) ≤ c.

In [Singh and Kočinac, 2021, Example 2.4] it is given a Hausdorff SH space which
is not set SH. The following example improves the latter with a higher separation
axiom.

Example 2.2.23. [Bonanzinga, Giacopello, M., 2023, Example 4.9] A Tychonoff SC (hence
SH) space which is not set SH.

Consider the space X(c) of Example 2.2.10. X(c) is SC (hence SH) and, by Theo-
rem 2.2.22, it is not set SH. △

In analogy to Proposition 2.2.11 and Proposition 2.2.12, it is possible prove the
following.



56 Chapter 2. Some relative covering properties defined by stars

Proposition 2.2.24. [Bonanzinga, Giacopello, M., 2023, Proposition 4.11] Every set SL (set
SSL) space of cardinality less than b is set SH (set SSH).

Proof. Let X be a set SL space of cardinality less than b (the proof is similar if X is
set SSL). Let A ⊆ X and (Un : n ∈ ω) be a sequence of families of open sets of X
such that A ⊆ ⋃Un for every n ∈ ω. For every n ∈ ω there is a countable subfamily
Vn = {Vn,m : m ∈ ω} of Un such that A ⊆ st(

⋃ Vn,Un). For every x ∈ A choose a
function fx ∈ ωω such that st(x,Un)∩Vn, fx(n) ̸= ∅ for all n ∈ ω. Since { fx : x ∈ A}
is a bounded family in (ωω,≤∗), there exists g ∈ ωω such that for every x ∈ A,
fx(n) ≤ g(n) for all but finitely many n ∈ ω. Let Wn = {Vn,j : j ≤ g(n)}. Then for
every x ∈ A, x ∈ st(

⋃Wn,Un) for all but finitely many n ∈ ω.

Corollary 2.2.25. [Bonanzinga, Giacopello, M., 2023, Corollary 4.12] Let X be a T1 space
X of cardinality less than b. The following affirmations are equivalent:

1. X is set SSH

2. e(X) = ℵ0.

Corollary 2.2.26. [Bonanzinga, Giacopello, M., 2023, Corollary 4.13] For spaces X such
that |X| < b, the following affirmations are equivalent:

1. X is set SSM

2. X is set SSH

3. e(X) = ℵ0.

In [Singh and Kočinac, 2021] the authors give a T1 set SH space which is not set
SSH. The next example gives a consistent improvement.

Example 2.2.27. [Bonanzinga, Giacopello, M., 2023, Example 4.14] (ω1 < b) A Tychonoff
set SH space which is not set SSH.

Assume ω1 < b and consider Ψ(A) with |A| = ω1. Since Ψ(A) is separable, it is
set SL hence, by Proposition 2.2.24, it is set SH. Since e(Ψ(A)) > ω, Ψ(A) is not set
SSH. △

In what follows a partial answer to Question 2.18 (Proposition 2.2.29), and a neg-
ative answer to Question 2.19 (Example 2.2.30) are exposed; subsequently, Proposi-
tion 2.2.32 and Example 2.2.33 prove the same assertions for Hurewicz-type proper-
ties.

Proposition 2.2.28. [Bonanzinga, Giacopello, M., 2023, Corollary 3.6] The product of a T1
set SSM space with a compact space has countable extent.

Proof. It follows from Proposition 2.1.56.

Corollary 2.2.29. [Bonanzinga, Giacopello, M., 2023, Corollary 3.7] The T1 product of a
set SSM space with cardinality less than d and a compact space is set SSM.

Proof. By Corollary 2.2.13.

Example 2.2.30. [Bonanzinga, Giacopello, M., 2023, Example 3.10] There exists a T1 set
SM space X and a compact space Y with c(Y) > ℵ0 such that X × Y is not set SM.

Consider Example 2.1.58. △
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Proposition 2.2.31. [Bonanzinga, Giacopello, M., 2023, Proposition 4.16] The product of a
set SSH space with a compact space has countable extent.

Proof. By Corollary 2.1.55.

Proposition 2.2.32. [Bonanzinga, Giacopello, M., 2023, Proposition 4.17] The product of a
T1 set SSH space having cardinality less than b with a compact space is set SSH.

Proof. By Corollary 2.2.26 and Proposition 2.1.56.

Proposition 2.2.33. [Bonanzinga, Giacopello, M., 2023, Proposition 4.15] Set SH property
is not preserved in the product with compact spaces.

Proof. Consider Example 2.1.58.

The following diagram sums up implications and counterexamples for all the
compact-type, Lindelöf-type, Menger-type and Hurewicz-type properties. A dis-
connected crossed arrow means that the counterexample is a consistent one.
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CC

set SSC set K-SC set SC

C SSC K-SC SC

set SSH set SH

H SSH SH

set SSM set SM

M SSM SM

set SSL set SL

L SSL SL

T3

×Ex.2.1.15T2

× Ex.2.1.24

×
Ex.2.2.27

×
Ex.2.2.21

Ex.2.2.6 ×

×

Ex.2.2.10

×
Ex.2.2.20

×
Ex.2.2.9

×Ex.2.2.7
×Ex.2.1.23

FIGURE 2.1: Summing diagram
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CHAPTER 3

FRÉCHET-URYSOHN PROPERTY
AND SELECTIVE SEPARABILITY

All the new contributions obtained by the author of the thesis included in this chap-
ter are contained in the article [Bardyla, Maesano and Zdomskyy, 2023].

Definition 3.1. [Fréchet, 1906]A space X is said to be Fréchet-Urysohn, briefly FU, if
for every A ⊂ X and x ∈ A \ A there exists a sequence S ⊂ A \ {x} converging to x,
i.e., S ∈ [A \ {x}]ω and |U \ A| < ω for every open neighbourhood U of x.

Definition 3.2. [Scheepers, 1999, with different terminology]A space X is said to be

• M-separable (or selectively separable) if for every sequence ⟨Dn : n ∈ ω⟩ of dense
subsets of X, there are finite sets Fn ⊂ Dn, n ∈ ω, such that

⋃{Fn : n ∈ ω} is
dense in X [Bella, Bonanzinga, Matveev, and Tkachuk, 2008, Definition 2.1];

• H-separable if for every sequence ⟨Dn : n ∈ ω⟩ of dense subsets of X, there are
finite sets Fn ⊂ Dn, n ∈ ω, such that every nonempty open set of X meets all
but finitely many Fn [Bella, Bonanzinga, and Matveev, 2009, Definition 28];

• R-separable if for every sequence ⟨Dn : n ∈ ω⟩ of dense subsets of X, there
points xn ∈ Dn, n ∈ ω, such that {xn : n ∈ ω} is dense in X [Bella, Bonanzinga,
and Matveev, 2009, Definition 47].

By [Bella, Bonanzinga, Matveev, and Tkachuk, 2008, Proposition 2.3(1)], every
space with a countable π-base is M-separable; in [Gruenhage and Sakai, 2011] it
is pointed out how a space with countable π-weight is also R-separable and H-
separable.

It is in fact possible to distnguish all the mentioned principles.

Corollary 3.3. [Bella, Bonanzinga, and Matveev, 2009] The existence of a countable M-
separable space which is not H-separable is consistent with ZFC.

In the same article the authors prove informally the existence of a H-separable
(hence M-separable) non R-separable space (see [Bella, Bonanzinga, and Matveev,
2009, p. 1247]).
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It was proved by Barman and Dow that FU property implies selective separablity
in the class of separable spaces.

Theorem 3.4. [Barman and Dow, 2011, Theorem 2.9] Each separable FU space is M-
separable.

This result was improved later in the same year.

Corollary 3.5. [Gruenhage and Sakai, 2011, Corollary 4.2] Each separable FU space is R-
separable.

Recall the following weaker versions of selective separability properties.

Definition 3.6. A space X is said to be

• mM-separable if for every decreasing sequence ⟨Dn : n ∈ ω⟩ of dense subsets of
X, there are finite sets Fn ⊂ Dn, n ∈ ω, such that

⋃{Fn : n ∈ ω} is dense in X;

• mH-separable if for every decreasing sequence ⟨Dn : n ∈ ω⟩ of dense subsets of
X, there are finite sets Fn ⊂ Dn, n ∈ ω, such that every nonempty open set of
X meets all but finitely many Fn [Gruenhage and Sakai, 2011, Definition 2.6];

• mR-separable if for every decreasing sequence ⟨Dn : n ∈ ω⟩ of dense subsets
of X, there points xn ∈ Dn, n ∈ ω, such that {xn : n ∈ ω} is dense in X
[Gruenhage and Sakai, 2011, Definition 2.6].

The previous weaker versions of selective separability were introduced by the
authors in the light of the following result.

Lemma 3.7. [Gruenhage and Sakai, 2011, Lemma 2.1] A space is M-separable if and only
if it is mM-separable.

Notice also that, by [Gruenhage and Sakai, 2011, Lemma 2.7(2) and Corollary
4.2], every countable FU space is mH-separable.

The following diagram sums up the implications between the cited selective
properties.

R-sep. πw(X) = ℵ0 H-sep.

M-sep.

sep.

mR-sep. FU + sep. FU + count. mH-sep.

mM-sep.

In this chapter the spaces considered will be mainly countable and without isolated
points in the light of the following results.
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Proposition 3.8. [Bella, Bonanzinga, Matveev, and Tkachuk, 2008, Proposition 2.3 (3)]
Given a space X, if X has a dense open M-separable subspace, then it is M-separable.

Lemma 3.9. [Barman and Dow, 2011, Lemma 2.3] A space X is M-separable if and only if
the set I of isolated points is countable and X \ I is M-separable.

In the proof of Theorem 3.2.3, the following result will be used, originally proved
with different terminology

Theorem 3.10. [Blass, 1973, Theorem 2] (p = c) There exist 2c Pc-point ultrafilters.

In fact the statement of the theorem assume MA instead of (p = c) , but the proof
takes advantage only of the equality.

Recall also the following proposition

Proposition 3.11. [Bella, Bonanzinga, and Matveev, 2013, Proposition 3.2] Let A be a
countable subset of a space X. If x ∈ A and χ(x, X) < p, then there exists a sequence
S ⊆ A which converges to x.

The following result is crucial for what studied in paragraph 3.3.

Theorem 3.12. [Barman and Dow, 2012, Theorem 3.3] (PFA) The product of two countable
FU spaces is M-separable.

Notice that in a previous article the authors proved the converse of the theorem
above using an opposite set-theoretical assumption.

Theorem 3.13. [Barman and Dow, 2011, Theorem 3.3] (CH) There exist two countable FU
spaces whose product is not M-separable.

3.1 A Hausdorff Fréchet-Urysohn space which is not H-sepa-
rable in ZFC

Theorem 3.1.1. [Bardyla, M., Zdomskyy, 2023, Theorem 2.1] There exists a countable
Hausdorff FU space X without isolated points which is not H-separable.

Proof. The underlying set of X will be ω, and let τ0 be a topology on ω such that
⟨ω, τ0⟩ is homeomorphic to the rationals Q with the topology induced from the eu-
clidean one.

Proceeding recursively over ordinals α ∈ c, a topology τ = τc turning ω into a
space with the needed properties will be constructed as an increasing union τc =⋃

α<c τα of intermediate topologies.
Let ⟨En : n ∈ ω⟩ be a sequence of dense subsets of ⟨ω, τ0⟩; without loss of

generality it is possible to assume that those are mutually disjoint. Consider an
enumeration {⟨Sα, xα⟩ : α < c} of [ω]ω × ω such that for each ⟨S, x⟩ ∈ [ω]ω × ω
there are cofinally many ordinals α for which ⟨S, x⟩ = ⟨Sα, xα⟩, and an enumeration
{⟨Fα

n : n ∈ ω⟩ : α < c} of ∏n∈ω[En]<ω.
Let A ⊂ [ω]ω be a compact almost disjoint family of size c (it can easily be con-

structed by, e.g., considering the family of all branches through 2<ω, and then copy-
ing it via any bijection between ω and 2<ω) and C be any mad family extending
A. Note that C ̸= A since there are no analytic mad families by [Mathias, 1977,
Corollary 4.7].

Suppose that for some α < c and all δ ∈ α a topology τδ on ω, a family Yδ ⊂ [ω]ω

were contructed, and for every Y ∈ Yδ either n(Y) ∈ ω (such Y will be called vertical)
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or C(Y) ∈ C (such Y will be called horizontal) such that the following conditions are
satisfied:

(1) τβ ⊂ τδ for all β ≤ δ;

(2) Yβ ⊂ Yδ for all β ≤ δ and Yδ consists of sequences convergent in ⟨ω, τδ⟩;

(3) For every β < δ, if xβ is a limit point of Sβ (with respect to τδ), then there exists
Y ∈ Yδ converging to xβ with |Y ∩ Sβ| = ω;

(4) Every vertical Y ∈ Yδ is contained in En(Y), and each horizontal Y ∈ Yδ is a
subset of

⋃
n∈C(Y) En; Moreover, in the latter case |Y ∩ En| ≤ 1 for all n ∈ C(Y);

(5) For every β < δ there exists Uβ ∈ τδ and Aβ ∈ A such that:

- Uβ = ω \⋃
n∈Aβ

Fβ
n ,

- {Aβ : β < δ} ∩ {C(Y) : Y ∈ Yδ} = ∅

- Aβ ̸= Aβ′ for any β ̸= β′ with β′ < δ

(6) τδ is generated by τ0 ∪ {Uβ : β < δ} as a subbase;

(7) En is dense in ⟨ω, τδ⟩ for all n ∈ ω.

Observe that (5) and (6) imply (7), as well as the fact that for every C ′ ∈ [C]<ω

and K ∈ [ω]<ω, the topology τδ ↾
⋃

n∈K∪(⋃ C ′) En has a countable base. Moreover, if
C ′ ∈ [C \ {Aβ : β < δ}]<ω, then

τδ ↾
⋃

n∈K∪(⋃ C ′)

En = τ0 ↾
⋃

n∈K∪(⋃ C ′)

En.

Several cases are now to be considered, depending on α:

I. α is limit.
It is easily checked that the topology τα generated by

⋃
δ<α τδ as a base, along

with Yα =
⋃

δ<α Yδ satisfies (1)-(7) for δ = α.

II. α = δ + 1 and xδ is a limit point of Sδ in ⟨ω, τδ⟩. Two sub-cases are considered:

(i) If |Y ∩ Sδ| = ω for some Y ∈ Yδ converging to xδ, then define Yα = Yδ

and pick any
Aδ ∈ A \ {C(Y) : Y ∈ Yδ},

let Uδ be such as in item (6), denote by τα the topology generated by τδ ∪
{Uδ} as a subbase, and note that all the conditions (1)-(7) are satisfied,
e.g., each Y ∈ Yα = Yδ is convergent also in ⟨ω, τα⟩ since Uδ almost
contains all such Y.

(ii) Suppose |Y ∩ Sδ| < ω for all Y ∈ Yδ converging to xδ. If there exists n ∈ ω

such that xδ ∈ Sδ ∩ En
τδ , let Yδ ∈ [Sδ ∩ En]ω be a sequence converging to

xδ (remember that all the τβ’s restricted to En are the same, and thus turn
En into a copy of the rationals), and in this case set n(Yδ) = n. Conversely,
assume that there is no such n.

Claim 1. There exists a sequence Y ∈ [Sδ]
ω converging to xδ in ⟨ω, τδ⟩.
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Proof of the Claim 1. Let C ′ be the family of all those C ∈ C such that there
exists a sequence YC ∈ [Sδ]

ω convergent to xδ in ⟨ω, τ0⟩ such that YC ⊂⋃
n∈C En and |YC ∩ En| ≤ 1 for all n ∈ C. Two cases are possible:
a) C ′ is finite. It follows that xδ is not in the closure of S′

δ = Sδ \
⋃{En :

n ∈ ∪C ′} with respect to τ0. Indeed, otherwise there exists a sequence
Y ∈ [S′

δ]
ω converging to xδ in ⟨ω, τ0⟩, and since it cannot have infinite

intersection with any En, it is possible to conclude that there exists
L ∈ [ω]ω with |Y ∩ En| ̸= ∅ for all n ∈ L. Then L ∩ (∪C ′) = ∅,
but on the other hand any C ∈ C with |C ∩ L| = ω must be in C′, a
contradiction. Consequently, xδ is also not in the closure of S′

δ with
respect to τδ, and hence it must be in the closure of S′′

δ = Sδ ∩
⋃{En :

n ∈ ∪A′} with respect to τδ. However, τδ ↾ S′′
δ ∪ {xδ} has countable

base, so there exists a sequence Yδ ∈ [S′′
δ ]

ω convergent to xδ with
respect to τδ. By shrinking Yδ if necessary, it is possible to assume to
find C(Yδ) ∈ C ′ satisfying (4) along with Yδ. It remains to set Yα =
Yδ ∪ {Yδ}, pick any Aδ ∈ A \ ({C(Y) : Y ∈ Yα} ∪ {Aβ : β < δ}), and
let Uδ and τα be such as required in (5), (6) for α.

b) C ′ ⊃ {Ck : k ∈ ω}, where Ck ̸= Cm for k ̸= m. For every k ∈ ω let YCk

be witnessing for Ck ∈ C ′. By shrinking YCk ’s, if necessary, assume
that |⋃k∈ω YCk ∩ En| ≤ 1 for all n ∈ ω. Let Y ⊂ ⋃

k∈ω YCk be such
that YCk ⊂∗ Y for all k ∈ ω and Y converges to xδ with respect to τ0.
Such Y obviously exists since τ0 has a countable base. Set L = {n ∈
ω : Y ∩ En ̸= ∅} and note that L cannot be covered by finitely many
elements of C because |L ∩ Ck| = ω for all k ∈ ω. Thus

{A ∩ L : A ∈ A, |A ∩ L| = ω}

cannot be a mad family of infinite subsets of L since it is analytic, and
hence there exists L′ ∈ [L]ω which is almost disjoint from all A ∈ A.
Let C ∈ C be such that |C ∩ L′| = ω, denote by Yδ the sequence
Y ∩⋃

n∈C∩L′ En, set C(Yδ) = C, and Yα = Yδ ∪ {Yδ}. Finally, pick any
Aδ ∈ A \ ({C(Y) : Y ∈ Yα} ∪ {Aβ : β < δ}) and let Uδ and τα be such
as required in (5), (6) for α. Since Aβ ∩ C(Y) is finite for all Y ∈ Yα

and β < α, Y ⊂∗ Uβ for all Y ∈ Yα and β < α, and hence all Y ∈ Yα

remain convergent with respect to τα.

III. α = δ + 1 and xδ is not a limit point of Sδ in ⟨ω, τδ⟩. In this case set x′δ = 0
(in fact, any i ∈ ω instead of 0 would work), S′

δ = ω \ {0}, and repeat the
same argument of I I, with ⟨S′

δ, x′δ⟩ instead of ⟨Sδ, xδ⟩. Note that x′δ must be in
the closure of S′

δ in ⟨ω, τδ⟩ since this topological space has no isolated points,
because it has disjoint dense subsets by (7).

This completes the recursive construction of the objects mentioned in (1)-(7) so that
these conditions are satisfied. The space ⟨ω, τc⟩ is as required: (2), (3) imply the FU
property, and (5) entails the failure of the H-separability.

3.2 A Fréchet-Urysohn α4 space which is not H-separable un-
der p = c

Recall the following local properties of points of a space.
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Definition 3.2.1. [Arhangel’skii, 1972, p. 267]Let X be a space, and denote by Γx the
set of all A ∈ [X \ {x}]ω which converge to x ∈ X. A point x ∈ X has the property:

(α1) if for each ⟨Sn : n ∈ ω⟩ ∈ [Γx]ω, there is S ∈ Γx such that Sn ⊂∗ S for all n ∈ ω;

(α2) if for each ⟨Sn : n ∈ ω⟩ ∈ [Γx]ω, there is S ∈ Γx such that Sn ∩ S is infinite for
all n ∈ ω;

(α3) if for each ⟨Sn : n ∈ ω⟩ ∈ [Γx]ω, there is S ∈ Γx such that Sn ∩ S is infinite for
infinitely many n ∈ ω;

(α4) if for each ⟨Sn : n ∈ ω⟩ ∈ [Γx]ω, there is S ∈ Γx such that Sn ∩ S ̸= ∅ for
infinitely many n ∈ ω.

A space X is an αi space, where i ∈ {1, 2, 3, 4}, if it is an αi space at each x ∈ X.

Each of these αi-properties obviously imply the next one.

The main result of this section endowes the space of Theorem 3.1.1 of zero-
dimensionality and α4 property, but at the cost of an additional set-theoretic assump-
tion.

As a preliminary, the next easy statement is proved: it can be considered as a
folklore and it is possible to refer to it as "there are no (ω,< b)-gaps". Its proof is
similar to the argument of [Jech, 2003, Theorem 29.8].

Lemma 3.2.2. [Bardyla, M., Zdomskyy, 2023, Lemma 3.1] Suppose that A ⊂ [ω]ω, |A| <
b, {Bi : i ∈ ω} ⊂ [ω]ω, and |A ∩ Bi| < ω for all A ∈ A and i ∈ ω. Then there exists
X ⊂ ω such that A ⊂∗ ω \ X and Bi ⊂∗ X for any A ∈ A and i ∈ ω.

Proof. For each A ∈ A find an increasing function fA ∈ ωω with A ∩ Bi ⊂ fA(i) (for
example, consider fA(i) = max(A ∩ Bi) + 1) for all i ∈ ω, and let f ∈ ωω be such
that fA ≤∗ f for all A ∈ A. Then X =

⋃
i∈ω(Bi \ f (i)) is as required.

Theorem 3.2.3. [Bardyla, M., Zdomskyy, 2023, Theorem 3.2] (p = c) There exists a count-
able zero-dimensional α4 FU space X without isolated points which is not H-separable.

Proof. The underlying set of X will be ω, and let τ0 be a topology on ω such that
⟨ω, τ0⟩ is homeomorphic to the rationals Q with the topology induced from the eu-
clidean one.

By Theorem 3.10, it is possible to fix a Pc-point G.
The final topology τ = τc turning ω into a space with the needed properties will

be constructed recursively over ordinals α ∈ c as an increasing union τc =
⋃

α<c τα of
intermediate zero-dimensional topologies.

Let ⟨En : n ∈ ω⟩ be a sequence of mutually disjoint dense subsets of ⟨ω, τ0⟩
and {⟨Sα,Aα, xα⟩ : α < c} be an enumeration of [ω]ω × [[ω]ω]ω × ω such that
for each ⟨S,A, x⟩ ∈ [ω]ω × [[ω]ω]ω × ω there are cofinally many ordinals α such
that ⟨S,A, x⟩ = ⟨Sα,Aα, xα⟩. Fix also an enumeration {⟨Fα

n : n ∈ ω⟩ : α < c} of
∏n∈ω[En]<ω.

Suppose to have already constructed a zero-dimensional topology τδ on ω, an
almost disjoint family Yδ ⊂ [ω]ω, and for every Y ∈ Yδ and element IY ∈ G∗ =
P(ω) \G for some α < c and all δ ∈ α such that the following conditions are satisfied:

(1) The weight of τδ is < c;
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(2) For every n, x ∈ ω there exists Y ∈ Y0 such that Y ∈ [En]ω and Y converges to
x;

(3) Yβ ⊂ Yδ for all β ≤ δ < α and Yδ consists of sequences convergent in ⟨ω, τδ⟩;

(4) For every β < δ, if xβ is a limit point of Sβ and every A ∈ Aβ is a sequence
converging to xβ in ⟨ω, τδ⟩, then

– there exists Y ∈ Yδ converging to xβ with |Y ∩ Sβ| = ω;

– there exists Y ∈ Yδ such that Y ∩ (A \ {xβ}) ̸= ∅ for infinitely many
A ∈ Aβ;

(5) Every Y ∈ Yδ is contained in
⋃

n∈IY
En; Moreover, either |Y ∩ En| = 1 for all

n ∈ IY, or |IY| = 1;

(6) For every β < δ there exists Uβ ∈ τδ and Gβ ∈ G such that Uβ ∩
⋃

n∈Gβ
Fβ

n = ∅;

(7) En is dense in ⟨ω, τδ⟩ for all n ∈ ω.

Several cases are now to be considered, depensing on α:

I. α is limit.
It is easily checked that the topology τα generated by

⋃
δ<α τδ as a base, along

with Yα =
⋃

δ<α Yδ, satisfies (1)-(7) for δ = α.

II. α = δ + 1, xδ is a limit point of Sδ in ⟨ω, τδ⟩, and Aδ consists of mutually dis-
joint sequences convergent to xδ.
If |Y ∩ Sδ| = ω for some Y ∈ Yδ converging to xδ, then denote by Y0,δ one of
these Y’s. Similarly, if

{
A ∈ Aβ : Y ∩ (A \ {xβ}) ̸= ∅

}
is infinite for some

Y ∈ Yδ, denote by Y1,δ one of these Y’s.

So consider the case |Y ∩ Sδ| < ω for all Y ∈ Yδ converging to xδ. Since
the weight of ⟨ω, τδ⟩ is < c = p, by Proposition 3.11 there exists a sequence
Y0,δ ∈ [Sδ]

ω convergent to xδ. Passing to an infinite subset of Y0,δ, if necessary,
it is possible to assume that either there exists n ∈ ω such that Y0,δ ⊂ En,
in which case set IY0,δ = {n}, or there exists an infinite IY0,δ ∈ G∗ such that
Y0,δ ⊂ ⋃

n∈IY0,δ
En and |Y0,δ ∩ En| = 1 for all n ∈ IY0,δ . Note that Y0,δ is almost

disjoint from any Y ∈ Yδ.

Now suppose that {A ∈ Aβ : Y ∩ (A \ {xβ}) ̸= ∅} is finite for all Y ∈ A.
Replacing each A ∈ Aδ with an infinite subset thereof, it is possible to assume
that for each A ∈ Aδ, either there exists n(A) ∈ ω such that A ⊂ En(A) (such
A will be called vertical), or |A ∩ En| ≤ 1 for all n ∈ ω (such A will be called
horizontal). Since every space of character < b is α1, there exists a sequence
Y ⊂ ∪Aδ convergent to xδ such that |Y ∩ A| = 1 for all A ∈ Aδ. The fact that
no element of Yδ converging to xδ intersects infinitely many A ∈ Aδ yields
that Y is almost disjoint from all elements of Yδ. Note also that Aδ is a disjoint
family, and hence each infinite subset of Y intersects infinitely many elements
of Aδ.

If there are infinitely many horizontal sequences, then |Y ∩ En| ̸= ∅ for in-
finitely many n, and hence by shrinking Y to some infinite Y1,δ it is possible to
assume that |Y1,δ ∩ En| ≤ 1 for all n and |Y1,δ ∩ En| = 1 if and only if n ∈ I for
some I ∈ G∗. In this case set IY1,δ = I.
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Now suppose that all but finitely many A ∈ Aδ are vertical. If {n(A) : A ∈
Aδ, A is vertical} is infinite, then as before by shrinking Y to some infinite Y1,δ
it is possible to assume that |Y1,δ ∩ En| ≤ 1 for all n and |Y1,δ ∩ En| = 1 if and
only if n ∈ I for some I ∈ G∗. Also in this case set IY1,δ = I.

In the remaining case there exists n ∈ ω with {A ∈ Aδ : n(A) = n} infinite.
Then set Y1,δ = Y ∩ En, IY1,δ = {n}, and note that Y1,δ is infinite.

Shrinking Y0,δ and Y1,δ, if necessary, it is possible to assume that they are dis-
joint. Finally, set Yα = Yδ+1 = Yδ ∪ {Y0,δ, Y1,δ} and note that (3), (4), and (5)
are satisfied for δ + 1 instead of δ.

Now consider the following construction of Uδ, Gδ satisfying (6). This will
require that if x ∈ Uδ and Y ∈ Yδ converges to x, then Y ⊂∗ Uδ. Let Gδ ∈ G be
such that |Gδ ∩ IY| < ω for all Y ∈ Yα. Then Fδ :=

⋃
n∈Gδ

Fδ
n is almost disjoint

from any Y ∈ Yα.

Claim 2. For every n ∈ ω there exists Cn ⊂ ω such that

(8) Y ⊂∗ Cn for any Y ∈ Yα converging to n in ⟨ω, τδ⟩;
(9) Cn ∩ Cm = ∅ for all n ̸= m;

(10) Cn ∩ Fδ = ∅ for all n ̸= m.

Proof. For every n ∈ ω denote by Yα,n the family of all Y ∈ Yα converging to
n, and fix a family {On

k : k ∈ ω \ {n}} ⊂ τ0 such that On
k is a clopen neigh-

bourhood of k not containing n. Then |Y ∩ On
k | < ω for all Y ∈ Yα,n and k ̸= n,

and hence Lemma 3.2.2 implies that there exists C0
n ⊂ ω such that Y ⊂∗ C0

n
and |C0

n ∩ On
k | < ω for all Y, k as above. Notice that |C0

n ∩ Y| < ω for all
Y ∈ Yα \ Yα,n because Y ⊂∗ On

k for k ̸= n being the limit point of Y. Thus let-
ting C0 = C0

0 \ Fδ and Cn = C0
n \ (

⋃
n′<n Cn′ ∪ Fδ) it is obtained that {Cn : n ∈ ω}

is a disjoint family satisfying (8)− (10).

The construction of Vδ := ω \ Uδ will be done recursively over k ∈ ω, namely
it will be constructed as an increasing union

⋃
k∈ω Vδ

k . Set Vδ
−1 = ∅, Vδ

0 = Fδ

and assuming that Vδ
k is constructed, let

Vδ
k+1 = Vδ

k ∪
⋃
{Cn \ {min Cn} : n ∈ Vδ

k \ Vδ
k−1}.

In the sequel a subset B of ω it is said to be saturated if n ∈ B implies Cn ⊂∗

B. It follows that Vδ defined above is saturated. It is sufficient to prove that
Uδ := ω \ Vδ is saturated as well. Indeed, otherwise there exists n ∈ Uδ such
that Cn ∩ Vδ ̸= ∅. Let k ∈ ω be the minimal such that Cn ∩ Vδ

k+1 ̸= ∅ (note
that Cn ∩ Vδ

0 = Cn ∩ Fδ = ∅ by (9)). Then there exists m ∈ Vδ
k \ Vδ

k−1 with
Cn ∩ Cm ̸= ∅, which is impossible since n ̸= m (because n ∈ Uδ and m ∈ Vδ).

Finally, Uδ ̸= ∅ since min Cn ∈ Uδ for all n ∈ Vδ.

Let τα be the topology generated by τδ ∪ {Uδ, Vδ} as a base. This way a 0-
dimensional topology satisfying (6) is obtained. Since both Uα, Vα are satu-
rated, it is easy to see that all Y ∈ Yα are convergent also in ⟨ω, τα⟩. Indeed,
suppose that y is the limit of Y ∈ Yα and y ∈ U ∩ Uδ, where U ∈ τδ. Then
Y ⊂∗ U (because Y converges in ⟨ω, τδ⟩) and Y ⊂∗ Cy ⊂∗ Uδ, and therefore
Y ⊂∗ U ∩Uδ. The same argument works also for Vδ instead of Uδ. Since U ∈ τδ

was arbitrary, Y converges to y also in ⟨ω, τα⟩.
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To see that also (7) holds, fix n ∈ ω and y ∈ U, where U ∈ τα. Let Y ∈
Y0 ∩ [En]ω ⊂ Yα be convergent to y. Then Y ⊂∗ U, and hence Y ⊂∗ U ∩ En,
which yields U ∩ En ̸= ∅.

This completes the construction of the objects mentioned in (1)-(7) for all δ < c,
so that these conditions are satisfied. Condition (4) implies that X = ⟨ω, τc⟩ is FU
and α4. Indeed, if A is a countable family of mutually disjoint sequences convergent
to some x ∈ ω in X = ⟨ω, τc⟩, then there exists δ < c such that ⟨ω \ {x},A, x⟩ =
⟨Sδ,Aδ, xδ⟩. Then Y1,δ ∈ Yδ+1 is convergent to xα in ⟨ω, τc⟩, and it intersects infinitely
many elements of Aδ = A. Similarly one can check the FU property. Finally, (6)
implies the failure of the H-separability, which completes the proof.

The assumption of being α4 cannot be much improved in Theorem 3.2.3 as the
following fact shows.

Proposition 3.2.4. [Bardyla, M., Zdomskyy, 2023, Proposition 3.3] Every separable FU α2
space X is H-separable.

Proof. Let ⟨En : n ∈ ω⟩ be a sequence of dense subsets of X, and D be a countable
dense subset of X. Let {di : i ∈ ω} be an enumeration of all non-isolated elements of
D, and {d′i : i ∈ ω} = D \ {di : i ∈ ω}. For every i, n ∈ ω fix an injective sequence Si

n
of elements of En \ {di} convergent to di. Applying α2 it is possible to find a sequence
⟨si

n : n ∈ ω⟩ convergent to di such that si
n ∈ Si

n ⊂ En. Note that {d′i : i ∈ ω} consists
of isolated points of X and hence it is a subset of En for all n ∈ ω. It follows that the
sequence 〈

Fn := {d′i : i ≤ n} ∪ {si
n : i ≤ n} : n ∈ ω

〉
is a witness for the H-separability of X. Indeed, given any open U ⊂ X, either there
exists i ∈ ω such that d′i ∈ U, and thus U ∩ Fn ̸= ∅ for all n ≥ i; or there exists i ∈ ω
with di ∈ U, and then U ∩ Fn ̸= ∅ as soon as si

n ∈ U and n ≥ i, and si
n ∈ U for all

but finitely many n since ⟨si
n : n ∈ ω⟩ convergent to di.

Question 3.2.5. Does there exists a zero-dimensional FU zero-dimensional α3 space which
is not H-separable?

3.3 Products of Fréchet-Urysohn spaces and M-separability

Definition 3.3.1. [Bardyla, M., Zdomskyy, 2023] Let τ0 be a topology on ω turning it
into a space homeomorphic to the rationals Q. In what follows (∗Q) stands for the
following statement:

MA + there exists a mad family A on ω such that

• every disjoint pair A′,A′′ ∈ [A]<c is separated, i.e. there exists S ⊂ ω
such that A′ ⊂∗ S and A′′ ⊂∗ ω \ S for any A′ ∈ A′ and A′′ ∈ A′′;

• Every A ∈ A is either closed discrete or a convergent sequence in
⟨ω, τ0⟩.

The formally weaker statement obtained from (∗Q) by dropping the second item
is known to be consistent. More precisely, the following result was proved by Dow
and Shelah.

Theorem 3.3.2. [Dow and Shelah, 2012] It is consistent with MA and c = ω2 that there
is a maximal almost disjoint family such that any disjoint pair of its ≤ ℵ1-sized subsets are
separated.
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Osservation 3.3.3. Consider a topology τ0 on ω such that ⟨ω, τ0⟩ is homeomorphic
to the rationals in [0, 1], and let θ : ω → Q ∩ [0, 1] be the corresponding homeomor-
phism.

In what follows, all the topological properties of subsets of ω, (e.g., convergence,
being closed discrete, etc.) are considered with respect to the topology τ0.

Fix an almost disjoint family A ⊂ [ω]ω consisting of convergent sequences as
well as closed discrete subsets. Given any n ∈ ω, denote by Fn(A) the filter gen-
erated by F (A) ∪ {O ∈ τ0 : n ∈ O} and note that if G is MFn(A)-generic, then
XG :=

⋃
⟨s,F⟩∈G s is a sequence convergent to n, and |XG ∩ Y| = ω for any sequence

Y ∈ V convergent to n, provided that Y ̸⊂ ⋃A′ for any A′ ∈ [A]ω. Indeed, any such
Y belongs to Fn(A)+, and XG has infinite intersection with any element of Fn(A)+

by genericity.
Fix r ∈ [0, 1] \ Q and let Fr(A) be the filter generated by

F (A) ∪ {θ−1[O ∩ Q] : r ∈ O is an open subset of R}.

By genericity, if G is MFr(A)-generic, then XG :=
⋃

⟨s,F⟩∈G s ⊂ ω is closed and discrete
because θ[XG] converges to an irrational number r ∈ [0, 1], and |XG ∩ Y| = ω for
any closed discrete subset Y of ω such that r is a limit point of θ[Y] and Y ̸⊂ ⋃A′

for any A′ ∈ [A]<ω. Indeed, similarly as in the case of Fn(A), any such Y belongs to
Fn(A)+, and XG has infinite intersection with any ground model element of Fn(A)+

by the genericity.

Definition 3.3.4. [Dow and Shelah, 2012, definitions 1.3 and 1.4]An almost disjoint fam-
ily A ⊂ [ω]ω is called special, if there exists a function c : [A]<ω → ω and a linear
ordering < of A such that for each n ∈ ω and sequences

⟨B0, B1, . . . , Bn−1⟩, ⟨C0, C1, . . . , Cn−1⟩ ∈ An

increasing with respect to <, if

c⟨B0, B1, . . . , Bn−1⟩ = c⟨C0, C1, . . . , Cn−1⟩ = k,

then for all i ̸= j, i, j ∈ n, Bi ∩ Cj ⊂ k. An almost disjoint family A ⊂ [ω]ω is called
ω1-special, if any A′ ∈ [A]ω1 is special.

Osservation 3.3.5. There is a natural poset introduced in [Dow and Shelah, 2012,
Definition 2.4] and denoted by QA,<, which for an almost disjoint family A and a
linear order < thereof, introduces a function c having the above property: A condi-
tion in this poset is a finite function d : P(Ad) → ω, where Ad ∈ [A]<ω, such that
for each n ∈ ω and <-increasing sequences

⟨B0, B1, . . . , Bn−1⟩, ⟨C0, C1, . . . , Cn−1⟩ ∈ An
d ,

if d⟨B0, B1, . . . , Bn−1⟩ = d⟨C0, C1, . . . , Cn−1⟩ = k, then for all i ̸= j, i, j ∈ n we have
Bi ∩ Cj ⊂ k. It is clear that A is special in VQA,< . However, this poset may collapse
cardinals: In ZFC one can construct an almost disjoint family A of size ω1 which
cannot be made special by any forcing which preserves ω1, see [Dow and Shelah,
2012, p. 108] and references therein.

Lemma 3.3.6. [Dow and Shelah, 2012, Prop. 1.5] (MAℵ1) Let A ∈ [[ω]ω]ω1 be a ω1-
special almost disjoint family. Then A is separated.

Theorem 3.3.7. [Bardyla, M., Zdomskyy, 2023, Theorem 4.4] (∗Q) is consistent.
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Proof. Denote by Λ the set of all limit ordinals below ω2. Let V ba a model of GCH.
Construct a finitely supported iteration ⟨Pα, Q̇β : α ≤ ω2, β < ω2⟩ of c.c.c. posets
of size ω1, along with a sequence ⟨Ȧβ : β < ω2, β ∈ Λ⟩, where Ȧβ = {Ẋξ : ξ ∈
(β + 1) ∩ Λ} is a Pβ+1-name for an almost disjoint family, as follows:

• If β is a successor ordinal, then Q̇β is (Pβ-name for) a ccc poset of size ω1;

• For β ∈ Λ the poset Q̇β is a Pβ-name for the product Q̇0
β × Q̇1

β, where

(a) Letting Ȧ−
β be a Pβ-name for

⋃
ξ∈β∩Λ Ȧξ = {Ẋξ : ξ ∈ β ∩ Λ}, Q̇0

β is
either MFṙβ

(Ȧ−
β )

for some Pβ-name ṙβ for an irrational number in [0, 1],

or MFnβ
(Ȧ−

β )
for some nβ ∈ ω, decided by a bookkeeping function as

described below; Q̇0
β produces a generic subset Ẋβ almost disjoint from

all elements of Ȧ−
β , and set Ȧβ = Ȧ−

β ∪ {Ẋβ};

(b) Q̇1
β = Q̇Ȧ−

β ,<, where < is the linear order (actually wellorder) of Ȧ−
β gen-

erated by the indices of its elements, i.e., Ẋξ < Ẋζ iff ξ < ζ, ξ, ζ ∈ β ∩ Λ.

Almost literally following the argument in the proof of [Dow and Shelah, 2012, The-
orem 2.6], it is possible to show that Pω2 is c.c.c., the only non-trivial ingredient
being that Q̇1

β is forced to be c.c.c. by 1Pβ
. This, roughly speaking, happens because

elements of Ȧ−
β are added as generic reals for corresponding Mathias posets. Now

a standard choice of a suitable bookkeeping function “delivering” the names for
posets Q̇β at successor steps β, and nβ or ṙβ for limit β, guarantees that (∗Q) holds
in VPω2 . More precisely, MA is guaranteed at successor stages, and A =

⋃
β∈Λ Aβ is

a mad family consisting of convergent sequences (added at stages β ∈ Λ for which
the bookkeeping function gives nβ ∈ ω) and closed discrete sets (added at stages
β ∈ Λ for which the bookkeeping function gives ṙβ); The presence of Q̇1

β’s for β ∈ Λ
implies that any A′ ∈ [A]ω1 is special, which together with Lemma 3.3.6 implies that
any such A′ is separated, and thus completes the proof of the theorem.

Osservation 3.3.8. Even though the main part of the proof of Theorem 3.3.7, namely
that Q̇1

β is forced to be c.c.c. by 1Pβ
, can be done in exactly the same way as the

corresponding step in the proof of [Dow and Shelah, 2012, Theorem 2.6], the overall
scheme of the proof of Theorem 3.3.7 is very different from that of [Dow and Shelah,
2012, Theorem 2.1]. More precisely, the proof of the latter gives a so-called tight mad
family, i.e., a mad family A such that for every countable X ⊂ I(A)+ (recall that
X ∈ I(A)+ iff X has infinite intersection with infinitely many elements of A) there
exists A ∈ A such that |A ∩ X| = ω for all X ∈ X . On the other hand, no mad
family A of subsets of Q consisting of convergent sequences and closed discrete sets
can be tight. Indeed, it easy to prove that for every 0 < δ < ϵ there exists a closed
discrete D ⊂ Q such that D ∈ I(A)+ and δ < |x| < ϵ for all x ∈ D. Now let
⟨Dn : n ∈ ω⟩ be a sequence of closed discrete subsets of Q which lie in I(A)+ and
such that 3

5·2n < |x| < 4
5·2n for all x ∈ Dn. Then it is clear that there is neither a closed

discrete subset of Q nor a convergent sequence there which has infinite intersection
with each (even infinitely many) of Dn’s.

The overall scheme of the proof of the next theorem is patterned after that of
[Barman and Dow, 2011, Theorem 2.24]. However, there are also essential differ-
ences because this construction lasts > ω1-many steps and hence it is necessary to
make sure to not face a kind of Hausdorff gaps consisting of convergent sequences
in this construction, which is done with the help of a mad family witnessing (∗Q).
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Theorem 3.3.9. [Bardyla, M., Zdomskyy, 2023, Theorem 4.5] (∗Q) There exist two count-
able regular (hence zero-dimensional) FU spaces X0, X1 without isolated points whose prod-
uct is not M-separable.

Proof. Let the underlying sets of X0, X1 be ω and τ0 = σ0 be a topology on ω such
that ⟨ω, τ0⟩ is homeomorphic to the rationals. Let A be a mad family on ω whose
existence is guaranteed by (∗Q).

The final topologies τ = τc and σ = σc turning ω into Frechet-Urysohn-spaces
with non-M-separable product will be constructed recursively over ordinals α ∈ c as
increasing unions τc =

⋃
α<c τα and σc =

⋃
α<c σα of intermediate zero-dimensional

topologies. Let ⟨En : n ∈ ω⟩ be a sequence of mutually disjoint dense subsets of
⟨ω × ω, τ0 ⊗ σ0⟩ such that E :=

⋃
n∈ω En is (the graph of) a permutation of ω. It

will be needed that the sets En remain dense in ⟨ω × ω, τα ⊗ σα⟩ for all α ≤ c. Let
{⟨Sα, xα⟩ : α < c} be an enumeration of [ω]ω ×ω such that for each ⟨S, x⟩ ∈ [ω]ω ×ω
there are cofinally many even as well as odd1 ordinals α such that ⟨S, x⟩ = ⟨Sα, xα⟩.
Fix also an enumeration {⟨Fα

n : n ∈ ω⟩ : α < c} of ∏n∈ω[En]<ω. For the convenience
of those readers familiar with the proof of [Barman and Dow, 2011, Theorem 2.24],
for a subset A of ω, denote E[A] and E−1[A] (here E is seen as a map from ω to ω)
by E(A, 1) and E(A, 0), respectively.

Suppose that for some α < c and all δ ∈ α topologies τδ, σδ on ω and almost
disjoint families Yδ,Zδ ⊂ [ω]ω, such that the following conditions are satisfied:

(1) The weight of τδ, σδ is < c;

(2) (a) Yβ ⊂ Yδ for all β ≤ δ and Yδ consists of sequences convergent in ⟨ω, τδ⟩;
(b) Zβ ⊂ Zδ for all β ≤ δ and Zδ consists of sequences convergent in ⟨ω, σδ⟩;

(3) (a) For every β < δ, if β is even and xβ is a limit point of Sβ in ⟨ω, τδ⟩, then
there exists Y ∈ Yδ converging to xβ in ⟨ω, τδ⟩ with |Y ∩ Sβ| = ω;

(b) For every β < δ, if β is odd and xβ is a limit point of Sβ in ⟨ω, σδ⟩, then
there exists Z ∈ Zδ converging to xβ in ⟨ω, σδ⟩ and such that |Z∩ Sβ| = ω;

(4) (a) There are injective maps ϕδ
0, ϕδ

1 : Yδ → A such that Y ⊂ ϕδ
0(Y) and

E(Y, 1) ⊂ ϕδ
1(Y) for all Y ∈ Yδ;

(b) There are injective maps ψδ
1, ψδ

0 : Zδ → A such that Z ⊂ ψδ
1(Y) and

E(Z, 0) ⊂ ψδ
0(Z) for all Z ∈ Zδ;

(c) ψδ
1[Zδ] ∩ ϕδ

1[Yδ] = ∅ and ψδ
0[Zδ] ∩ ϕδ

0[Yδ] = ∅;

d) ϕ
β
i ⊂ ϕδ

i and ψ
β
i ⊂ ψδ

i for any β < δ and i ∈ 0, 1;

(5) (a) E(ϕδ
0(Y), 1) and ϕδ

1(Y) are closed and discrete in ⟨ω, σδ⟩ for all Y ∈ Yδ;

(b) E(ψδ
1(Z), 0) and ψδ

0(Z) are closed and discrete in ⟨ω, τδ⟩ for all Z ∈ Zδ;

(6) For every β < δ there are Uβ ∈ τδ and Vβ ∈ σδ such that2

(Uβ × Vβ) ∩
⋃

n∈ω

Fβ
n = ∅.

(7) En is dense in ⟨ω × ω, τδ ⊗ σδ⟩ for all n ∈ ω.

1An ordinal is even (resp. odd) if it can be written in the form ω · α + i for some even (resp. odd)
i ∈ ω.

2In particular, Uβ, Vβ, Iβ depend only on β and not on δ.
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were already contructed. By (7) the space (ω ×ω, τδ ⊗ σδ) is crowded, since no space
with isolated points can contain disjoint dense subsets. Several cases are now to be
considered, depending on α:

I. α is limit.
It is easily checked that topologies τα and σα generated by

⋃
δ<α τδ and

⋃
δ<α σδ

as a base, respectively, along with Yα =
⋃

δ<α Yδ, Zα =
⋃

δ<α Zδ, ϕα
i =

⋃
δ<α ϕδ

i
and ψα

i =
⋃

δ<α ψδ
i satisfy (1)-(7) for δ = α and i ∈ {0, 1}.

II. α = δ + 1, δ is even, xδ is a limit point of Sδ in ⟨ω, τδ⟩, and |Y ∩ Sδ| < ω for all
Y ∈ Yδ converging to xδ.
Since the weight of ⟨ω, τδ⟩ is < c = p, there exists a sequence T ∈ [Sδ]

ω con-
vergent to xδ. Let Aδ

0 ∈ A be such that |Aδ
0 ∩ T| = ω.

Analogously, since |ψδ
0(Z) ∩ T| < ω for all Z ∈ Zδ (because ψδ

0(Z) is closed
discrete in ⟨ω, τδ⟩), then ψδ

0(Z) ̸= Aδ
0 for all Z ∈ Zδ. For the same reason

|E(ψδ
1(Z), 0) ∩ T| < ω for all Z ∈ Zδ. Since E is a permutation of ω, A1↓0 :=

{E(A, 0) : A ∈ A} is a mad family, and hence there exists Aδ
1 ∈ A such that

|E(Aδ
1, 0)∩ Aδ

0 ∩ T| = ω. It follows from the above that E(Aδ
1, 0) ̸= E(ψδ

1(Z), 0)
for all Z ∈ Zδ, and hence also Aδ

1 ̸= ψδ
1(Z).

Finally, set Yδ = T ∩ Aδ
0 ∩ E(Aδ

1, 0), Yα := Yδ ∪ {Yδ}, Zα = Zδ, ϕα
0 (Yδ) = Aδ

0,
ϕα

1 (Yδ) = Aδ
1, ϕα

0 ↾ Yδ = ϕδ
0, and ϕα

1 ↾ Yδ = ϕδ
1. It follows from the construc-

tion that item (4) is satisfied. To proceed further we need the following direct
consequence of [Barman and Dow, 2011, Lemma 2.23].

Claim 3. Suppose that X is a countable crowded space of weight less than p,
T ⊂ P(X) is a family of almost disjoint converging sequences in X, |T | < p,
and R ⊂ P(X) is a countable family of subsets of X such that each R ∈ R has
dense complement and is almost disjoint from each member of T , with all but
possibly one elements of R being discrete. Then there is an expansion of the
topology of X to a larger crowded one, obtained by adding countably many
sets along with their complements, in which each R ∈ R is a closed nowhere
dense set, and each member of T is again a converging sequence.

For every ⟨x, y⟩ ∈ ω2 and n ∈ ω find an injective sequence〈
⟨s⟨x,y⟩,n

i , t⟨x,y⟩,n
i ⟩ : i ∈ ω

〉
∈
(
En ∩

(
(ω \ Aδ

0)× (ω \ Aδ
1)
)ω

convergent to ⟨x, y⟩. This is possible because all elements of A are either
closed discrete or convergent sequences with respect to τ0 = σ0, and hence
they remain nowhere dense in any stronger topology without isolated points,
e.g., τδ and σδ. It follows that Tx,y := {t⟨x,y⟩,n

i : i ∈ ω} is almost disjoint

from each Z ∈ Zα. Indeed, E(T⟨x,y⟩,n, 0) = {s⟨x,y⟩,n
i : i ∈ ω} is a conver-

gent sequence in ⟨ω, τδ⟩, whereas E(Z, 0) is closed discrete in this space for
all Z ∈ Zδ. Also, E(T⟨x,y⟩,n, 0) ∩ Aδ

0 = ∅ by the choice of T⟨x,y⟩,n, and hence
T⟨x,y⟩,n ∩ E(Aδ

0, 1) = ∅ for all x, y as above. In particular, since y ∈ ω is ar-
bitrary, it shows that ω \ E(Aδ

0, 1) is dense3 in ⟨ω, σδ⟩. Also, T⟨x,y⟩,n is almost
disjoint from Aδ

1 for all x, y by construction. Applying Lemma 3 to X = ⟨ω, σδ⟩,
T = Zδ ∪ {T⟨x,y⟩,n : x, y, n ∈ ω}, R = {E(Aδ

0, 1), Aδ
1}, a 0-dimensional topol-

ogy σ−
α ⊃ σδ on ω in which elements of T are converging is obtained, and those

3This is of course easy and follows directly from the fact that Aδ
0 is nowhere dense in ⟨ω, τδ⟩.
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of R are closed discrete. By the choice of T , En is dense in ⟨ω × ω, τδ ⊗ σ−
α ⟩ for

all n, because there is a sequence in En converging to each ⟨x, y⟩. Thus condi-
tion (5) will be satisfied because the topology σα is going to be crowded and
stronger than σ−

α . For convenience set τ−
α = τδ.

Next, consider the following construction of Uδ, Vδ satisfying (6). This condi-
tion requires that if x ∈ Uδ and Y ∈ Yδ converges to x, then Y ⊂∗ Uδ.

Claim 4. There are families {Cn : n ∈ ω} and {Dn : n ∈ ω} such that

(8) Y ⊂∗ Cn for any Y ∈ Yα converging to n in ⟨ω, τ−
α ⟩;

(9) Z ⊂∗ Dn for any Z ∈ Zα converging to n in ⟨ω, σ−
α ⟩;

(10) Cn ∩ Cm = ∅ and Dn ∩ Dm = ∅ for all n ̸= m;

(11) E(Cn, 1) ∩ Dm = ∅ (or equivalently, E(Dm, 0) ∩ Cn = ∅) for any n, m ∈ ω.

Proof. For every n ∈ ω denote by Yα,n the family of all Y ∈ Yα converging to
n, and fix a family {On

k : k ∈ ω \ {n}} ⊂ τ0 such that On
k is a clopen neigh-

bourhood of k not containing n. Then |Y ∩ On
k | < ω for all Y ∈ Yα,n and k ̸= n,

and hence Lemma 3.2.2 implies that there exists C0
n ⊂ ω such that Y ⊂∗ C0

n
and |C0

n ∩ On
k | < ω for all Y, k as above. Notice that |C0

n ∩ Y| < ω for all
Y ∈ Yα \ Yα,n because Y ⊂∗ On

k for k being the limit point of Y. Thus letting
C1

0 = C0
0 and C1

n = C0
n \

⋃
n′<n C0

n′ we get that {C1
n : n ∈ ω} is a disjoint family

such that Y ⊂∗ C1
n for all Y ∈ Yα,n. Similarly it is possible to get a disjoint fam-

ily {D1
n : n ∈ ω} such that Z ⊂∗ D1

n for all Z ∈ Zα,n, where Zα,n = {Z ∈ Zα : Z
converges to n}. Finally, by item (4) and the property of A stated in (∗Q), it is
possible to find C, D ⊂ ω such that ϕα

0 (Y) ⊂∗ C and ϕα
1 (Y) ⊂∗ D for all Y ∈ Yα,

and |ψα
1 (Z) ∩ D| < ω and |ψα

0 (Z) ∩ C| < ω for all Z ∈ Zα.

Set Cn = C1
n ∩C ∩ E(D, 0) and Dn = D1

n ∩ (ω \ D)∩ (ω \ E(C, 1)). The families
{Cn : n ∈ ω} and {Dn : n ∈ ω} are as required. Indeed, by (8), for all Y ∈ Yα,n
it is true that Y ⊂∗ C1

n, Y ⊂ ϕδ
0(Y) ⊂∗ C, and E(Y, 1) ⊂ ϕα

1 (Y) ⊂∗ D, the latter
implying Y ⊂∗ E(D, 0), and hence Y ⊂∗ Cn. (9) is analogous: for all Z ∈ Zα,n,
Z ⊂∗ D1

n, Z ⊂ ψδ
1(Z) ⊂∗ ω \ D, and E(Z, 0) ⊂ ψα

0 (Z) ⊂∗ ω \ C, the latter
implying Z ⊂∗ ω \ E(C, 1), and hence Z ⊂∗ Dn. Condition (10) follows from
Cn ⊂ C1

n and Dn ⊂ D1
n. And finally,

E(Cn, 1) ∩ Dm ⊂ E
(
E(D, 0), 1

)
∩ (ω \ D) = D ∩ (ω \ D) = ∅

for all n, m ∈ ω, which yields (11).

For every ⟨x, y⟩ ∈ ω2 and n ∈ ω fix an injective sequence〈
⟨s⟨x,y⟩,n

k , t⟨x,y⟩,n
k ⟩ : k ∈ ω

〉
∈ (En \ Fδ

n)
ω

converging to ⟨x, y⟩ in ⟨ω × ω, τ−
α ⊗ σ−

α ⟩. Assume in addition that these se-
quences are mutually disjoint, i.e., s⟨x,y⟩,n

k = s⟨x′,y′⟩,n′

k′ (resp. t⟨x,y⟩,n
k = t⟨x′,y′⟩,n′

k′ )

iff x = x′, y = y′, n = n′, and k = k′. Set S⟨x,y⟩,n = {s⟨x,y⟩,n
k : k ∈ ω} and

T⟨x,y⟩,n = {t⟨x,y⟩,n
k : k ∈ ω} for all ⟨x, y⟩ and n as above.

Replacing the Dm’s and Cm’s with smaller sets, if necessary, it is additionally
possible to assume that

|S⟨x,y⟩,n ∩ Cm| < ω and |T⟨x,y⟩,n ∩ Dm| < ω
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for all ⟨x, y⟩, n, and m. Indeed, since E(Y, 1) is closed and discrete in ⟨ω, σ−
α ⟩

for every Y ∈ Yα and E(S⟨x,y⟩,n, 1) = T⟨x,y⟩,n is a convergent sequence in this
topology, then |S⟨x,y⟩,n ∩ Y| < ω for all ⟨x, y⟩, n as above. Since there are no
(ω,< b) gaps, there exists S ⊂ ω such that S⟨x,y⟩,n ⊂∗ S and |Y ∩ S| < ω for all
⟨x, y⟩, n. Thus replacing Cm with Cm \ S for all m ∈ ω, if necessary, it is possible
to assume that |S⟨x,y⟩,n ∩ Cm| < ω for all ⟨x, y⟩, n, in addition to all properties
of Cm stated above. Analogously with |T⟨x,y⟩,n ∩ Dm| < ω for all ⟨x, y⟩, n.

Finally, consider the following construction of Uδ and Vδ. This will be done
recursively over k ∈ ω, namely they will be constructed as increasing unions⋃

k∈ω Uδ,1
k and

⋃
k∈ω Vδ,1

k , respectively. Moreover adding their complements to
the corresponding topologies can also be done without any harm by construct-
ing these as increasing unions

⋃
k∈ω Uδ,0

k and
⋃

k∈ω Vδ,0
k , respectively. These ob-

jects are constructed along with

– non-decreasing sequences ⟨H j
k : k ∈ ω⟩ and ⟨Gj

k : k ∈ ω⟩ of finite subsets
of ω, where j ∈ 2; and

– for each x ∈ ⋃
k∈ω H1

k ∪ ⋃
k∈ω H0

k , y ∈ ⋃
k∈ω G1

k ∪ ⋃
k∈ω G0

k and n ∈ ω

cofinal subsets C̃x, D̃y, S̃⟨x,y⟩,n and T̃⟨x,y⟩,n of Cx, Dy, S⟨x,y⟩,n and T⟨x,y⟩,n,
respectively,

such that H1
0 = {x1

0} and G1
0 = {y1

0} for some ⟨x1
0, y1

0⟩ ̸∈
⋃

n∈ω Fδ
n , H0

0 = G0
0 =

∅, and the following conditions are satisfied for all k ∈ ω and i ∈ 2:

(i) H1
k ∩ H0

k = G1
k ∩ G0

k = ∅;

(ii) Uδ,i
k =

[
Hi

k ∪
⋃{C̃x : x ∈ Hi

k} ∪
∪⋃{S̃⟨x,y⟩,n : n ≤ k, ⟨x, y⟩ ∈ Hi

k × (G1
k ∪ G0

k )}
]
∪ ∆i

k,
Vδ,i

k =
[
Gi

k ∪
⋃{D̃y : y ∈ Gi

k} ∪
∪⋃{T̃⟨x,y⟩,n : n ≤ k, ⟨x, y⟩ ∈ (H1

k ∪ H0
k )× Gi

k}
]
∪ Σi

k;

(iii) ∆1
k = ∅ for all k and ∆0

k = {k} if k ̸∈ Uδ,1
k , otherwise ∆0

k = ∅; Σ1
k = ∅ for

all k and Σ0
k = {k} if k ̸∈ Vδ,1

k , otherwise Σ0
k = ∅;

(iv) Uδ,1
k ∩ Uδ,0

k = Vδ,1
k ∩ Vδ,0

k = ∅;

(v) If ⟨x, y⟩ ∈ (H1
k ∪ H0

k )× (G1
k ∪G0

k ), then T̃⟨x,y⟩,n = E(S̃⟨x,y⟩,n, 1) for all n ≤ k;

(vi) (Uδ,1
k × Vδ,1

k ) ∩⋃
n∈ω Fδ

n = ∅;

(vii) Hi
k+1 = Hi

k ∪ {min(Uδ,i
k \ Hi

k)} provided that Uδ,i
k ̸= ∅, and Hi

k+1 = Hi
k =

∅ otherwise; Gi
k+1 = Gi

k ∪ {min(Vδ,i
k \ Gi

k)} provided that Vδ,i
k ̸= ∅, and

Gi
k+1 = Gi

k = ∅ otherwise.

Notice that, by (ii) and the choices of H1
0 and G1

0 , the equalities Uδ,i
k = ∅ and

Vδ,i
k = ∅ are possible only for i = 0. To start off the inductive construction, set

C̃x1
0
= Cx1

0
\ E({y1

0}, 0), D̃y1
0
= Dy1

0
\ E({x1

0}, 1),

T̂⟨x1
0,y1

0⟩,0 = T⟨x1
0,y1

0⟩,0 \
(
E(Cx1

0
, 1) ∪ E({x1

0}, 1)
)
,

Ŝ⟨x1
0,y1

0⟩,0 = S⟨x1
0,y1

0⟩,0 \
(
E(Dy1

0
, 0) ∪ E({y1

0}, 0)
)

and then
T̃⟨x1

0,y1
0⟩,0 = T̂⟨x1

0,y1
0⟩,0 ∩ E(Ŝ⟨x1

0,y1
0⟩,0, 1)
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and
S̃⟨x1

0,y1
0⟩,0 = Ŝ⟨x1

0,y1
0⟩,0 ∩ E(T̂⟨x1

0,y1
0⟩,0, 0).

The equation

E(S̃⟨x1
0,y1

0⟩,0, 1) = E
(
Ŝ⟨x1

0,y1
0⟩,0 ∩ E(T̂⟨x1

0,y1
0⟩,0, 0), 1

)
=

E(Ŝ⟨x1
0,y1

0⟩,0, 1) ∩ E
(
E(T̂⟨x1

0,y1
0⟩,0, 0), 1

)
=

= E(Ŝ⟨x1
0,y1

0⟩,0, 1) ∩ T̂⟨x1
0,y1

0⟩,0 = T̃⟨x1
0,y1

0⟩,0

proves (v) for k = 0. To check (vi) note that

U0,1
0 × V0,1

0 =
(
{x1

0} ∪ C̃x1
0
∪ S̃⟨x1

0,y1
0⟩,0

)
×

(
{y1

0} ∪ D̃y1
0
∪ T̃⟨x1

0,y1
0⟩,0

)
=

{⟨x1
0, y1

0⟩} ∪ ({x1
0} × D̃y1

0
) ∪ ({x1

0} × T̃⟨x1
0,y1

0⟩,0) ∪

∪(C̃x1
0
× {y1

0}) ∪ (C̃x1
0
× D̃y1

0
) ∪ (C̃x1

0
× T̃⟨x1

0,y1
0⟩,0) ∪

∪(S̃⟨x1
0,y1

0⟩,0 × {y1
0}) ∪ (S̃⟨x1

0,y1
0⟩,0 × D̃y1

0
) ∪ (S̃⟨x1

0,y1
0⟩,0 × T̃⟨x1

0,y1
0⟩,0),

i.e., U0,1
0 ×V0,1

0 is a union of 9 sets, of which 7 ones “in the middle” have empty
intersection with

⋃
n∈ω En because A × B ∩ ⋃

n∈ω En = ∅ provided that A ∩
E(B, 0) = ∅, which is the case for these 7 products by the choice or definition
of the corresponding sets. Also, ⟨x1

0, y1
0⟩ ̸∈

⋃
n∈ω Fδ

n by the choice, whereas

S̃⟨x1
0,y1

0⟩,0 × T̃⟨x1
0,y1

0⟩,0 ∩
⋃

n∈ω

En = {⟨s⟨x1
0,y1

0⟩,0
k , t⟨x1

0,y1
0⟩,0

k ⟩ : k ∈ ω} ⊂ E0 \ Fδ
0 ,

and hence S̃⟨x1
0,y1

0⟩,0 × T̃⟨x1
0,y1

0⟩,0 also has empty intersection with
⋃

n∈ω Fδ
n . This

completes the case k = 0 since all other items are easily checked.

Suppose now that items (i) − (vii) hold for k and note that (vii) gives the
unique way to define Hi

k+1 and Gi
k+1 for i ∈ {0, 1}, and the points (iv) (vii)

for k yields (i) for k + 1. Given i ∈ 2 and x ∈ Hi
k+1 \ Hi

k and y ∈ Gi
k+1 \ Gi

k, set

C̃x = Cx \
(

E(G1
k+1, 0) ∪

⋃ {
E(T⟨x′,y′⟩,n′

, 0) :

⟨x′, y′⟩ ∈ (H1
k+1 ∪ H0

k+1)× (G1
k+1 ∪ G0

k+1), n′ ≤ k
}
∪ H0

k+1

)
=

= Cx \
(

E(G1
k+1, 0) ∪

⋃ {
S⟨x′,y′⟩,n′

:

⟨x′, y′⟩ ∈ (H1
k+1 ∪ H0

k+1)× (G1
k+1 ∪ G0

k+1), n′ ≤ k
}
∪ H0

k+1

)
and

D̃y = Dy \
(

E(H1
k+1, 1) ∪

⋃ {
E(S⟨x′,y′⟩,n′

, 1) :

⟨x′, y′⟩ ∈ (H1
k+1 ∪ H0

k+1)× (G1
k+1 ∪ G0

k+1), n′ ≤ k
}
∪ G0

k+1

)
=

= Dy \
(

E(H1
k+1, 1) ∪

⋃ {
T⟨x′,y′⟩,n′

:

⟨x′, y′⟩ ∈ (H1
k+1 ∪ H0

k+1)× (G1
k+1 ∪ G0

k+1), n′ ≤ k
}
∪ G0

k+1

)
.



3.3. Products of Fréchet-Urysohn spaces and M-separability 75

For every

⟨⟨x′, y′⟩, n′⟩ ∈
(
(H1

k+1 ∪ H0
k+1)× (G1

k+1 ∪ G0
k+1)× (k + 2)

)
\

\
(
(H1

k ∪ H0
k )× (G1

k ∪ G0
k )× (k + 1)

)
set

T̂⟨x′,y′⟩,n′
= T⟨x′,y′⟩,n′ \

[
E
(⋃ {

Cx : x ∈ H1
k+1

}
∪ H1

k+1, 1
)
∪ G0

k+1 ∪

∪
⋃ {

Dy : y ∈ G1
k+1 ∪ G0

k+1
}]

,

Ŝ⟨x′,y′⟩,n′
= S⟨x′,y′⟩,n′ \

[
E
(⋃ {

Dy : y ∈ G1
k+1

}
∪ G1

k+1, 0
)
∪ H0

k+1 ∪

∪
⋃ {

Cx : x ∈ H1
k+1 ∪ H0

k+1
}]

,

and finally

T̃⟨x′,y′⟩,n′
:= T̂⟨x′,y′⟩,n′ ∩ E(Ŝ⟨x′,y′⟩,n′

, 1),

S̃⟨x′,y′⟩,n′
:= Ŝ⟨x′,y′⟩,n′ ∩ E(T̂⟨x′,y′⟩,n′

, 0).

The equality

E(S̃⟨x′,y′⟩,n′
, 1) = E

(
Ŝ⟨x′,y′⟩,n′ ∩ E(T̂⟨x′,y′⟩,n′

, 0), 1
)
=

E(Ŝ⟨x′,y′⟩,n′
, 1) ∩ E

(
E(T̂⟨x′,y′⟩,n′

, 0), 1
)
=

= E(Ŝ⟨x′,y′⟩,n′
, 1) ∩ T̂⟨x′,y′⟩,n′

= T̃⟨x′,y′⟩,n′

for all ⟨⟨x′, y′⟩, n′⟩ as above yields (v) for k + 1. Let Uδ,i
k+1 and Vδ,i

k+1 be defined
according to (ii) and (iii) for k + 1. To check (vi) for (k + 1), consider the prod-
uct

Uδ,1
k+1 × Vδ,1

k+1 =
(α) =

(
H1

k+1 × G1
k+1

)
∪
(

H1
k+1 ×

⋃{D̃y : y ∈ G1
k+1}

)⋃
(β)

⋃ (
H1

k+1 ×
⋃{T̃⟨x,y⟩,n : n ≤ k + 1, ⟨x, y⟩ ∈

∈ (H1
k+1 ∪ H0

k+1)× G1
k+1}

)⋃
(γ)

⋃ (⋃{C̃x : x ∈ H1
k+1} × G1

k+1

)⋃
(ζ)

⋃ (⋃{C̃x : x ∈ H1
k+1} ×

⋃{D̃y : y ∈ G1
k+1}

)⋃
(ε)

⋃ (⋃{C̃x : x ∈ H1
k+1}×

×⋃{T̃⟨x,y⟩,n : n ≤ k + 1, ⟨x, y⟩ ∈ (H1
k+1 ∪ H0

k+1)× G1
k+1}

)⋃
(η)

⋃ (⋃{S̃⟨x,y⟩,n : n ≤ k + 1, ⟨x, y⟩ ∈
∈ H1

k+1 × (G1
k+1 ∪ G0

k+1)} × G1
k+1

)⋃
(θ)

⋃ (⋃{S̃⟨x,y⟩,n : n ≤ k + 1, ⟨x, y⟩ ∈ H1
k+1 × (G1

k+1 ∪ G0
k+1)}×

×⋃{D̃y : y ∈ G1
k+1}

)⋃
(λ)

⋃ (⋃{S̃⟨x,y⟩,n : n ≤ k + 1, ⟨x, y⟩ ∈ H1
k+1 × (G1

k+1 ∪ G0
k+1)}×

×⋃{T̃⟨x,y⟩,n : n ≤ k + 1, ⟨x, y⟩ ∈ (H1
k+1 ∪ H0

k+1)× G1
k+1}

)
.

To show that this product is disjoint from F =
⋃

n∈ω Fδ
n it is needed to analyze

sets appearing in the above long formula one by one. H1
k+1 × G1

k+1 is disjoint
from F by the inductive assumption, namely (vi) for k, since H1

k+1 ⊂ Uδ,1
k

and G1
k+1 ⊂ Vδ,1

k . The second product in (α) is disjoint from F because it was
explicitly made E(H1

k+1, 1) disjoint from D̃y if y ∈ G1
k+1 \ G1

k , and hence H1
k+1 ×

D̃y is disjoint even from E in this case. And if y ∈ G1
k then it is possible to use
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(vi) for k since H1
k+1 ⊂ Uδ,1

k and D̃y ⊂ Vδ,1
k . Analogously it is possible to show

that also the product in item (γ) is disjoint from F.

The product in (β) is disjoint from F because E(H1
k+1, 1) was explicitly made

disjoint from T̃⟨x,y⟩,n if ⟨⟨x, y⟩, n⟩ lies in the difference N :=(
((H1

k+1 ∪ H0
k+1)× G1

k+1)× (k + 2)
)
\
(
((H1

k ∪ H0
k )× G1

k )× (k + 1)
)
,

and if
⟨⟨x, y⟩, n⟩ ∈ ((H1

k ∪ H0
k )× G1

k )× (k + 1)

then it is possible to use (vi) for k since H1
k+1 ⊂ Uδ,1

k and T̃⟨x,y⟩,n ⊂ Vδ,1
k . Anal-

ogously it is possible to show that also the product in item (η) is disjoint from
F.

The product in (ζ) is disjoint even from E since E(Cx, 1) ∩ Dy = ∅ for any
x, y ∈ ω by Claim 4(11).

The product in item (ε) is disjoint from F because E(C̃x, 1) were explicitly made
disjoint from T̃⟨x′,y′⟩,n if x ∈ H1

k+1 \ H1
k or ⟨⟨x′, y′⟩, n⟩ ∈ N, and if both x ∈ H1

k
and

⟨⟨x′, y′⟩, n⟩ ∈ (H1
k ∪ H0

k )× (G1
k ∪ G0

k )× (k + 1)

then it is possible to use (vi) for k since C̃x ⊂ Uδ,1
k and T̃⟨x′,y′⟩,n ⊂ Vδ,1

k . Anal-
ogously it is possible to show that also the product in item (θ) is disjoint from
F.

Finally, consider the product in (λ). Given ⟨⟨x, y⟩, n⟩ and ⟨⟨x′, y′⟩, n′⟩ in

((H1
k+1 ∪ H0

k+1)× G1
k+1)× (k + 2),

two cases are possible. If ⟨⟨x, y⟩, n⟩ = ⟨⟨x′, y′⟩, n′⟩, then T̃⟨x,y⟩,n = E(S̃⟨x,y⟩,n, 1),
and hence

(S̃⟨x,y⟩,n × T̃⟨x,y⟩,n)
⋂

E ⊂ {⟨s⟨x,y⟩,n
k , t⟨x,y⟩,n

k ⟩ : k ∈ ω} ⊂ En \ Fδ
n ,

i.e., S̃⟨x,y⟩,n × T̃⟨x,y⟩,n is disjoint from F. If ⟨⟨x, y⟩, n⟩ ̸= ⟨⟨x′, y′⟩, n′⟩, then

E(S̃⟨x,y⟩,n, 1) = T̃⟨x,y⟩,n ⊂ T⟨x,y⟩,n,

and hence
E(S̃⟨x,y⟩,n, 1) ∩ T̃⟨x′,y′⟩,n′ ⊂ T⟨x,y⟩,n ∩ T⟨x′,y′⟩,n′

= ∅,

which implies that (S̃⟨x,y⟩,n ∩ T̃⟨x′,y′⟩,n′
) ∩ E = ∅. This completes the proof of

(vi) for (k + 1).
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Finally, it remains to check (iv) for k + 1. Write Uδ,1
k+1 ∩ Uδ,0

k+1 as follows:

Uδ,1
k+1 ∩ Uδ,0

k+1 =
(α∩) =

(
H1

k+1 ∩ H0
k+1

)⋃ (
H1

k+1 ∩
⋃{C̃x : x ∈ H0

k+1}
)⋃

(β∩)
⋃ (

H1
k+1 ∩

⋃{S̃⟨x,y⟩,n : n ≤ k + 1, ⟨x, y⟩ ∈
∈ H0

k+1 × (G1
k+1 ∪ G0

k+1)}
)⋃

(γ∩)
⋃ (⋃{C̃x : x ∈ H1

k+1} ∩ H0
k+1

)⋃
(ζ∩)

⋃ (⋃{C̃x : x ∈ H1
k+1} ∩

⋃{C̃x : x ∈ H0
k+1}

)⋃
(ε∩)

⋃ (⋃{C̃x : x ∈ H1
k+1}∩

∩⋃{S̃⟨x,y⟩,n : n ≤ k + 1, ⟨x, y⟩ ∈ H0
k+1 × (G1

k+1 ∪ G0
k+1)}

)⋃
(η∩)

⋃ (⋃{S̃⟨x,y⟩,n : n ≤ k + 1, ⟨x, y⟩ ∈
∈ H1

k+1 × (G1
k+1 ∪ G0

k+1)} ∩ H0
k+1

)⋃
(θ∩)

⋃ (⋃{S̃⟨x,y⟩,n : n ≤ k + 1, ⟨x, y⟩ ∈ H1
k+1 × (G1

k+1 ∪ G0
k+1)}∩

∩⋃{C̃x : x ∈ H0
k+1}

)⋃
(λ∩)

⋃ (⋃{S̃⟨x,y⟩,n : n ≤ k + 1, ⟨x, y⟩ ∈ H1
k+1 × (G1

k+1 ∪ G0
k+1)}∩

∩⋃{S̃⟨x,y⟩,n : n ≤ k + 1, ⟨x, y⟩ ∈ H0
k+1 × (G1

k+1 ∪ G0
k+1)}

)
.

Similarly (but easier) to the proof of (vi) it is possible to check that all the
intersections in the formula displayed above are empty. For instance, consider
the intersection in item (θ∩). Fix any

⟨⟨x, y⟩, n⟩ ∈
(

H1
k+1 × (G1

k+1 ∪ G0
k+1)

)
× (k + 2)

and x′ ∈ H0
k+1. If x′ ̸∈ H0

k , then, since S⟨x,y⟩,n was explicitly subtracted from
Cx′ in the definition of C̃x′ , so C̃x′ ∩ S̃⟨x,y⟩,n = ∅. If ⟨⟨x, y⟩, n⟩ ∈ N (see the
proof of (vi) for the definition thereof), then, since Cx′ was explicitly subtracted
from S⟨x,y⟩,n in the definition of S̃⟨x,y⟩,n, so again C̃x′ ∩ S̃⟨x,y⟩,n = ∅. Otherwise
S̃⟨x,y⟩,n ⊂ Uδ,1

k and C̃x′ ⊂ Uδ,0
k and therefore it is possible to use (iv) for k in

order to get C̃x′ ∩ S̃⟨x,y⟩,n = ∅.

Thus the inductive construction of all the objects needed for defining Uδ and
Vδ, so that conditions (i)− (vii) are satisfied, is finished.

Set Uδ =
⋃

k∈ω Uδ,1
k , Vδ =

⋃
k∈ω Vδ,1

k , and note that ω \ Uδ =
⋃

k∈ω Uδ,0
k and

ω \ Vδ =
⋃

k∈ω Vδ,0
k by (iii) and (iv). Let τα and σα be the topologies generated

by τ−
α ∪ {Uδ, ω \ Uδ} and σ−

α ∪ {Vδ, ω \ Vδ} as a base, respectively. This way
0-dimensional topologies are obtained and (vi) implies that (6) is satisfied.
Moreover, (vii) gives that Uδ =

⋃
k∈ω H1

k , ω \ Uδ =
⋃

k∈ω H0
k , Vδ =

⋃
k∈ω G1

k ,
and ω \ Vδ =

⋃
k∈ω G0

k . Thus by (ii) for every x ∈ Uδ the set Cx is almost
contained in Uδ, and hence also Y ⊂∗ Uδ for all Y ∈ Yα converging to x. The
same holds for ω \ Uδ. It follows that all Y ∈ Yα remain convergent sequences
in ⟨ω, τα⟩. Analogously, all Z ∈ Zα remain convergent sequences in ⟨ω, σα⟩,
and hence (3) holds for α. Finally, whenever n ∈ ω, ℓ ∈ 22, and ⟨x, y⟩ ∈
U(ℓ(0))

δ × V(ℓ(1))
δ , then4, then {⟨s⟨x,y⟩,n

k , s⟨x,y⟩,n
k ⟩ : k ∈ ω} ⊂∗ U(ℓ(0))

δ × V(ℓ(1))
δ .

Indeed, by (vii) there exists k ∈ ω such that x ∈ Uδ,ℓ(0)
k and y ∈ Vδ,ℓ(1)

k , and
therefore (ii) implies

S̃⟨x,y⟩,n ⊂∗ Uδ,ℓ(0)
k ⊂ Uℓ(0)

δ and T̃⟨x,y⟩,n ⊂∗ Vδ,ℓ(1)
k ⊂ Vℓ(1)

δ .

4For I ⊂ ω set I(1) = I and I(0) = ω \ I.
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As a result En remains dense in ⟨ω × ω, τα ⊗ σα⟩ for all n, because there is an
injective sequence in En converging to each ⟨x, y⟩. This also proves that there
are no isolated points in ⟨ω × ω, τα ⊗ σα⟩. This completes the verification of
(1)− (7) for δ = α.

III. α = δ + 1, δ is odd, xδ is a limit point of Sδ in ⟨ω, σδ⟩, and |Z ∩ Sδ| < ω for all
Z ∈ Zδ converging to xδ.
In this case it is possible to repeat the argument from Case II, with the roles of
Zδ and Yδ interchanged, so that again (1)-(7) are satisfied for δ = α.

IV . α = δ + 1, δ is even, and either xδ is not a limit point of Sδ in ⟨ω, τδ⟩, or it is
and there exists Y ∈ Yδ converging to xδ in ⟨ω, τδ⟩ with |Y ∩ Sδ| = ω. Then set
Yα = Yδ, Zα = Zδ, τ−

α = τδ, σ−
α = σδ, and repeat the argument from Case II

starting from Claim 4.

V . α = δ + 1, δ is odd, and either xδ is not a limit point of Sδ in ⟨ω, σδ⟩, or it is
and there exists Z ∈ Zδ converging to xδ in ⟨ω, σδ⟩ with |Z ∩ Sδ| = ω. Then set
Yα = Yδ, Zα = Zδ, τ−

α = τδ, σ−
α = σδ, and repeat the argument from Case III

starting from Claim 4.

All in all, this completes the construction of the objects mentioned in (1)-(7) for
all δ < c, so that these conditions are satisfied. Conditions (3) and (2) imply that
X = ⟨ω, τc⟩ and Y = ⟨ω, σc⟩ are FU, and X ×Y is not M-separable by (6). Moreover,
both spaces are zero-dimensional since they started from zero-dimensional topolo-
gies and they were always enlarged by adding new sets along with their comple-
ments. This completes the proof of Theorem 3.3.9.

Osservation 3.3.10. If X0 and X1 are the space constructed in the previous Theorem, then
X0 ⊔ ω and X1 ⊔ ω are countable regular FU spaces and not crowded whose product is not
M-separable; however it is easy to see that, if X0 is M-separable and X1 contains a dense set
of isolated points, then X0 × X1 is M-separable.

Corollary 3.3.11. [Bardyla, M., Zdomskyy, 2023] It is consistent with (MA+¬CH) that
the product of two countable regular FU spaces is not M-separable.

3.4 Products of H-separable spaces in the Laver model

Definition 3.4.1. [Bardyla, M., Zdomskyy, 2023, Definition 5.1]A topological space
⟨X, τ⟩ is said to be bounded box-separable (briefly, b.b.-separable) if for every function
R assigning to each countable family U of non-empty open subsets of X a sequence
R(U ) = ⟨Fn : n ∈ ω⟩ of finite non-empty subsets of X such that {n : Fn ⊂ U} is in-
finite for every U ∈ U , there exists U ⊂ [τ \ {∅}]ω of size |U| = ω1 and a sequence
⟨li : i ∈ ω⟩ ∈ ωω such that for all U ∈ τ \ {∅} there exists U ∈ U such that for all
but finite i ∈ ω there is n ∈ [li, li+1) such that R(U )(n) ⊆ U.

The proof of the following statement is close to that of [Repovš and Zdomskyy,
2018, Lemma 2.2], the only difference being a more careful analysis of sets of the
form {n : R(U )(n) ⊂ U}.

Proposition 3.4.2. [Bardyla, M., Zdomskyy, 2023, Proposition 5.2] In the Laver model
every countable H-separable space is b.b.-separable
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Proof. Consider V[Gω2 ], where Gω2 is Pω2-generic and Pω2 is the iteration of length
ω2 with countable supports of the Laver forcing. Fix an H-separable space of the
form ⟨ω, τ⟩ and a function R such as in the definition of b.b-separability. By a stan-
dard argument (see, e.g., the proof of [Blass and Shelah, 1987, Lemma 5.10]) there
exists an ω1-club C ⊆ ω2 such that for every α ∈ C the following conditions hold:

(i) τ ∩ V[Gα] ∈ V[Gα] and for every sequence ⟨Dn : n ∈ ω⟩ ∈ V[Gα] of dense
subsets of ⟨ω, τ⟩ there exists a sequence ⟨Kn : n ∈ ω⟩ ∈ V[Gα] such that
Kn ∈ [Dn]<ω and for every U ∈ τ \ {∅} the intersection U ∩ Kn is non-empty
for all but finitely many n ∈ ω;

(ii) R(U ) ∈ V[Gα] for any U ∈ [τ \ {∅}]ω ∩ V[Gα]; and

(iii) For every A ∈ P(ω) ∩ V[Gα] the interior Int(A) also belongs to V[Gα].

By [Laver, 1976, Lemma 11] there is no loss of generality in assuming that 0 ∈ C. Set
U := [τ \ {∅}]ω ∩ V. It suffices to prove the following auxiliary

Claim 5. For every A ∈ τ \ {∅} there are U ∈ U, J ∈ [ω]ω ∩ V[G1] such that for every
consecutive j, j′ ∈ J there exists n ∈ [j, j′) with the property R(U )(n) ⊂ A.

Proof. Equivalent, the following statement will be proved:

For every A ∈ τ \ {∅} there are U ∈ U, J ∈ [ω]ω ∩ V[G1] such that for
every m ∈ ω there exists n ∈ [m, J(m)) with the property R(U )(n) ⊂ A,
where J(m) is the m-th element of J with respect to its increasing enu-
meration.

Suppose that there exists A ∈ τ \ {∅} for which the lemma is false. Let Ȧ be
a Pω2-name for A and p ∈ Pω2 a condition forcing the negation of the statement
quoted above. Applying [Laver, 1976, Lemma 14] to the sequence ⟨ȧi : i ∈ ω⟩ such
that ȧi = Ȧ for all i ∈ ω, it is possible to consider a condition p′ ≤ p such that
p′(0) ≤0 p(0), and a finite set Us ⊂ P(ω) for every s ∈ p′(0) with p′(0)⟨0⟩ ≤ s,
such that for each n ∈ ω, s ∈ p′(0) with p′(0)⟨0⟩ ≤ s, and for all but finitely many
immediate successors t of s in p′(0),

p′(0)⌢t p′ ↾ [1, ω2) ⊩ ∃U ∈ Us(Ȧ ∩ n = U ∩ n).

Subclaim 5.1. There exists p′′ ≤ p′ s.t. for every s ∈ p′′(0), p′′(0)⟨0⟩ ≤ s, n ∈ ω and
every immediate successor t of s in p′′(0),

p′′(0)⌢t p′′ ↾ [1, ω2) ⊩ ∃U ∈ Us(Int(U) ̸= ∅ ∧ Ȧ ∩ n = U ∩ n).

Proof. Suppose by contradiction that

(∗∗) For every p′′ ≤ p′ it is possible to find s ∈ p′′(0) with p′′(0)⟨0⟩ ≤ s, n ∈ ω,
infinitely many immediate successors t of s in p′′(0), for which there exists
r = r(t) ≤ p′′(0)⌢t p′′ ↾ [1, ω2) forcing
∀U ∈ Us (U ∩ n = Ȧ ∩ n ⇒ Int(U) = ∅).

Fix p′′ ≤ p′ and let s be as in (∗∗). Note that it is possible to replace n with any
other bigger number and (∗∗) will be still satisfied, so it is possible to assume that
U ∩ n ̸= U′ ∩ n for any distinct U, U′ ∈ Us. Let p(3) ∈ Pω2 be the condition obtained
by strengthening p′′(0) by leaving only those infinitely many immediate successors
of s like in (∗∗), and p(3)(α) = p′′(α) for all α > 0. Next, removing yet another finite
collection of immediate successors of s in p(3)(0) and keeping the other coordinates
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the same, it is possible to assume that for every immediate successor t of s in p(3)(0)
it is true that

p(3)(0)⌢t p′′ ↾ [1, ω2) ⊩ ∃U ∈ Us (U ∩ n = Ȧ ∩ n),

and hence by strengthening r(t), if necessary, it is additionally possible to assume
that, for some U(t) ∈ Us with Int(U(t)) = ∅, r(t) ⊩ Ȧ ∩ n = U(t) ∩ n. By the
choice of n, such an U(t) is unique. Furthermore, strengthening p(3) again in the
way described above and using the finiteness of Us, it is possible to assume that there
exists Us ∈ Us with U(t) = Us for all t as above. Summarizing all the modifications
of p′′ mentioned above, it is obtained the following:

(∗∗)′ For every p′′ ≤ p′ it is possible to find p(3) ≤ p′′, s ∈ p(3)(0) with p(3)(0)⟨0⟩ ≤
s, n ∈ ω with U ∩ n ̸= U′ ∩ n for any distinct U, U′ ∈ Us, Us ∈ Us with
Int(Us) = ∅, and for every immediate successors t of s in p(3)(0) a condition
r(t) ≤ p(3)(0)⌢t p′′ ↾ [1, ω2) forcing Us ∩ n = Ȧ ∩ n.

Let ⟨Dk : k ∈ ω⟩ ∈ V be a sequence of dense subsets of ⟨ω, τ⟩ such that for every
U ∈ ⋃{Us : s ∈ p′(0), p′(0)⟨0⟩ ≤ s} with Int(U) = ∅ there are infinitely many
k ∈ ω such that Dk = ω \ U. Let ⟨Fk : k ∈ ω⟩ ∈ V be a witness of the H-separability
of X for ⟨Dk : k ∈ ω⟩. So it is possible to choose k0 ∈ ω and p′′ ≤ p′ such that
p′′ ⊩ (∀k ≥ k0)(Ȧ ∩ Fk ̸= ∅).

Fix p(3), s, n, Us, and p(t)’s such as in (∗∗)′. Let k1 ≥ k0 be such that Dk1 = ω \Us,
and thus Fk1 ∩ Us = ∅. Choose now n1 > n, max Fk1 and an immediate successor t
of s in p(3)(0) with

p(3)(0)⌢t p′′ ↾ [1, ω2) ⊩ ∃U ∈ Us(Ȧ ∩ n1 = U ∩ n1).

Thus r(t) also forces the above property (being stronger than p(3)(0)⌢t p′′ ↾ [1, ω2))
as well as Us ∩ n = Ȧ ∩ n. Since all the differences between elements of Us show up
below n, r(t) forces Us ∩ n1 = Ȧ ∩ n1. Since

Fk1 ⊂ Dk1 ∩ n1 = (ω \ Us) ∩ n1 = n1 \ Us,

then r(t) forces Fk1 ∩ Ȧ = ∅. On the other hand k1 ≥ k0, r(t) ≤ p′′, and the latter
forces Ȧ ∩ Fk ̸= ∅ for all k ≥ k0, a contradiction.

It is now possible to assume that every U ∈ Us with s ∈ p′(0) and p′(0)⟨0⟩ ≤ s has
nonempty interior. Let U = {Int(U) : U ∈ ⋃{Us : s ∈ p′′(0), p′′(0)⟨0⟩ ≤ s} (or any
countable family containing it if this family of interiors is finite) and R(U )(n) = ⟨Fn :
n ∈ ω⟩. Replace p′(0) with a tree T in the Laver forcing L such that T⟨0⟩ = p′(0)⟨0⟩
and for all s ∈ T with s ≥ T⟨0⟩ there exists Ns ∈ ω so that for every immediate
successor t of s in T the following two properties hold:

(a) ∀U ∈ Us ∃n = n(s, U) > |s| (Fn ⊂ Int(U) ∩ Ns)

(b) Tt
⌢p′ ↾ [1, ω2) ⊩ ∃U ∈ Us (Ȧ ∩ Ns = U ∩ Ns)

For any s ∈ T set

js = max{n(s, U) : U ∈ Us}+ 1

Let G1 be L-generic over V with T ∈ G1 and ℓ ∈ ω↑ω be the Laver real generated by
G1. Finally put

J = {jℓ↾m : m ≥ |T⟨0⟩|}
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and note that J ∈ V[G1].

Subclaim 5.2. T⌢p′ ↾ [1, ω2) ⊩ ∀m ≥ |T⟨0⟩| ∃n ∈ [m, jℓ̇↾m) (Fn ⊂ Ȧ)

Proof. Suppose the statement is false and pick r ≤ T⌢p′ ↾ [1, ω2) and m ≥ |T⟨0⟩|
such that

r ⊩ ∀n ∈ [m, jℓ̇↾m)(Fn ̸⊂ Ȧ).

Observe that r = R⌢r ↾ [1, ω2) and without loss of generality assume |R⟨0⟩| ≥ m+ 1.
Setting {s} = R ∩ ωm and {t} = R ∩ ωm+1, two elements of T which contradict the
disjunction of (a) and (b) above are obtained.

It follows that
T⌢p′ ↾ [1, ω2) ≤ p′ ≤ p

and T⌢p′ ↾ [1, ω2) forces for Ȧ the quoted statement after the formulation of Claim 5,
contradicting the assumption that p forces for Ȧ the negation of that statement. This
contradiction completes the proof of Claim 5 and thus also of Proposition 3.4.2.

Lemma 3.4.3. [Bardyla, M., Zdomskyy, 2023, Lemma 5.4] Suppose b > ω1, X is a b.b.-
separable space and Y is an H-separable space. Then X × Y is mH-separable, provided it is
separable.

Proof. Let ⟨Dn : n ∈ ω⟩ be a decreasing sequence of countable dense subsets of
X × Y. Fix a countable family U of open non-empty subsets of X and a partition
{ΩU : U ∈ U} of ω into infinite pieces. For every U ∈ U and n ∈ ΩU set

DU
n = {y ∈ Y : ∃x ∈ U(⟨x, y⟩ ∈ Dn)}.

Note that every DU
n defined in this way is dense in Y. Since Y is H-separable there

exists a sequence of sets ⟨LU
n : n ∈ ω⟩ such that LU

n ∈ [DU
n ]

<ω for all n ∈ ω and
every open subset of Y intersects all but finite LU

n ’s. For every U ∈ U and n ∈ ΩU
find a set KU

n ∈ [U]<ω such that for every y ∈ LU
n there exists x ∈ KU

n such that
⟨x, y⟩ ∈ Dn, and set R(U ) = ⟨KU

n : n ∈ ω⟩. Note that KU
n ⊂ U for all n ∈ ΩU , so R is

as in the definition of b.b.-separability. Therefore there exist a family U of countable
collections of open non-empty subsets of X of cardinality ω1 and a sequence ⟨li :
i ∈ ω⟩ ∈ ωω that witness the b.b.-separability. By the hypothesis |U| < b, so it is
possible to select a sequence ⟨Fn : n ∈ ω⟩ such that Fn ∈ [Dn]<ω and KU

n × LU
n ⊂ Fn

for all U ∈ U and all but finitely many n ∈ ω. It is sufficient to prove that the
sequence

⟨F′
i :=

⋃
n∈[li ,li+1)

Fn : i ∈ ω⟩

witnesses the mH-separability of X × Y. First of all, note that F′
i ⊂ Dli ⊂ Di by the

monotonicity of the sequence ⟨Dn : n ∈ ω⟩. Now fix an open non-empty subset U ×
V ⊆ X ×Y and find U ∈ U and i0 ∈ ω such that for all i ≥ i0 there exists n ∈ [li, li+1)
with R(U )(n) = KU

n ⊂ U. Suppose that i ≥ i0, and both of the conditions KU
n × LU

n ⊂
Fn and LU

n ∩V ̸= ∅ hold true for all n ≥ li. Given n ∈ [li, li+1) with R(U )(n) = KU
n ⊂

U, it follows from the above that Fn ∩ (U × V) ̸= ∅, which combined with Fn ⊂ F′
i

proves the mH-separability of X × Y.

Proposition 3.4.2, Lemma 3.4.3, and the fact that b > ω1 is true in the Laver
model all together imply the following
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Theorem 3.4.4. [Bardyla, M., Zdomskyy, 2023, Theorem 5.5] In the Laver model, the prod-
uct of two H-separable spaces is mH-separable provided that it is separable. In particular, in
this model the product of two countable H-separable spaces is mH-separable.
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LIST OF SYMBOLS

ZF Zermelo-Fraenkel’s axioms 1
AC the Axiom of Choice 1
ZFC Zermelo-Fraenkel’s axioms togheter with the Axiom of Choice 1
λ, κ cardinal numbers 1
κ+ the least cardinal greater than the cardinal κ 1
α, β, γ, δ ordinal numbers 1
ℵ0 the first infinite cardinal 1
ℵ1 the first uncountable cardinal 1
ℵn+1 the successor cardinal of ℵn 1
ω the first infinite ordinal 1
ω1 the first uncountable ordinal 1
n, m, k integers 1
N the set of all integers 1
<ωω the set of all finite sequences of integers 1
|A| the cardinality of a set A 2
[A]κ the set of all subsets of a set A of cardinality κ 2
[A]≤κ([A]<κ, [A]≥κ, [A]>κ) set of all subsets of A of cardinality ≤ κ (< κ,≥ κ,> κ) 2
c,2ℵ0 the cardinality of the set of the real numbers 2
c f (κ) the cofinality of a cardinal κ 2
⊆∗ almost contained relation 2
b the minimal cardinality of a unbounded family in ωω 2
d the minimal cardinality of a cofinal family in ωω 2
p the minimal cardinality of a family in [ω]ω with

SFIP but with no pseudointersection 2
CH the Continuum Hypothesis 2
X a topological space 2
τ a topology 2
O the family of all the covers of a space 3
Γ the family of all the γ-covers of a space 3
Ω the family of all the ω-covers of a space 3
d(X) the density of a space X 4
πχ(x, X) the π-character of a point x ∈ X 4
χ(x, X) the character of a point x ∈ X 4
πχ(X) the π-character of a space X 4
χ(X) the character of a space X 4
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e(X) the extent of a space X 5
L(X) the Lindelöf degree of X 5
ωω the Baire space 6
A an almost disjoint or a maximal almost disjoint family 6
Ψ(A) the Isbell-Mröwka space on an almost disjoint family A 6
Cp(X) the space of continuous functions from X to the real line R 6
F a filter or an ultrafilter 6
F (A) the dual filter on a family A 7
P a forcing notion 7
Hθ the set of all sets whose transitive closure has cardinality

less than θ 7
M, V models 7
MA the Martin’s Axiom 8
PFA the Proper Forcing Axiom 9
(T ,≤) a tree 10
MF the Mathias forcing on the filter F 10
H(X) the Hausdorff number of a space X 12
st(A,V) the star of the set A with respect the family of sets V 22
U(X) the Urysohn number of a space X 12
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Kočinac, Lj.D.R. and S. Singh (2020). “On the set version of selectively star-ccc spaces”.
In: Journal of Mathematics, Article ID 9274503 2020. DOI: 10.1155/2020/9274503.

Kunen, K. (1980). Set Theory: An Introduction to Independence Proofs. Elsevier, Amster-
dam.

Laver, R. (1976). “On the consistency of Borel’s conjecture”. In: Acta Mathematica 137,
pp. 151 –169. DOI: 10.1007/BF02392416. URL: https://doi.org/10.1007/
BF02392416.

Mathias, A.R.D. (1977). “Happy families”. In: Annals of Mathematical Logic 12, pp. 59–
111. DOI: 10.1016/0003-4843(77)90006-7.

Matveev, M.V. (1984). “On properties similar to pseudocompactness and countable
compactness”. In: Moscow University Mathematics Bulletin 39.2, pp. 32–36. ISSN:
0027-1322.

— (1994). “Absolutely countably compact spaces”. In: Topology and its Applications
58, pp. 81–91. DOI: 10.1016/0166-8641(94)90074-4.

— (1998). “A survey on star covering properties”. In: Topology Atlas, preprint 330.
— (2002). “How weak is weak extent?” In: Topology and its Applications 119, pp. 229–

232. DOI: 10.1016/S0166-8641(01)00061-X.
Moore, R.L. (1935). “A set of axioms for plane analysis situs”. In: Fundamenta Math-

ematicae 25, pp. 13–28. URL: http://matwbn.icm.edu.pl/ksiazki/fm/fm25/
fm2514.pdf.

Mrówka, S. (1955). “On completely regular spaces”. In: Fundamenta Mathematicae 41,
pp. 105–106. DOI: 10.4064/FM-41-1-105-106.

Novák, J. (1949). In: ÿéCasopis pro pÿéestovánıi matematiky a fysiky 74, pp. 238–239.
URL: https://www.digizeitschriften.de/id/31311028X_0074%7Clog1?tify=
%7B%22pages%22%3A%5B417%5D%2C%22pan%22%3A%7B%22x%22%3A0.401%2C%

22y%22%3A0.732%7D%2C%22view%22%3A%22export%22%2C%22zoom%22%3A0.

311%7D&origin=%2Fsearch%3Faccess%3Dall%26direction%3Dasc%26filter%

255BZeitschriften % 255D % 255B1 % 255D % 3D31311028X % 257Clog1 % 26filter %

255BObjekttyp%255D%255B1%255D%3Dvolume%26from%3D1940%26mainFrom%

3D1872%26mainTo%3D1950%26q%3D%252A%26sorting%3Dtitle.sorttitle.sort%

26to%3D1949.
Porter, J.R. and G.R. Woods (1987). Extensions and Absolutes of Hausdorff Spaces. Springer

New York, NY. ISBN: 978-1-4612-8316-4. DOI: 10.1007/978-1-4612-3712-9.
Repovš, D. and L. Zdomskyy (2018). “Products of H-separable spaces in the Laver

model”. In: Topology and its Applications 239, pp. 115–119. DOI: 10.1016/j.topol.
2018.02.021.

— (2020). “M-separable spaces of functions are productive in the Miller model”. In:
Annals of Pure and Applied Logic 171.7, p. 102806. ISSN: 0168-0072. DOI: 10.1016/
j.apal.2020.102806.

https://doi.org/10.1007/3-540-44761-X
https://doi.org/10.1016/S0166-8641(96)00075-2
https://doi.org/10.1016/S0166-8641(96)00075-2
https://doi.org/10.5486/PMD.1999.2097
https://doi.org/10.3390/axioms12010093
https://doi.org/10.1515/ms-2022-0013
https://doi.org/10.1515/ms-2022-0013
https://doi.org/10.1155/2020/9274503
https://doi.org/10.1007/BF02392416
https://doi.org/10.1007/BF02392416
https://doi.org/10.1007/BF02392416
https://doi.org/10.1016/0003-4843(77)90006-7
https://doi.org/10.1016/0166-8641(94)90074-4
https://doi.org/10.1016/S0166-8641(01)00061-X
http://matwbn.icm.edu.pl/ksiazki/fm/fm25/fm2514.pdf
http://matwbn.icm.edu.pl/ksiazki/fm/fm25/fm2514.pdf
https://doi.org/10.4064/FM-41-1-105-106
https://www.digizeitschriften.de/id/31311028X_0074%7Clog1?tify=%7B%22pages%22%3A%5B417%5D%2C%22pan%22%3A%7B%22x%22%3A0.401%2C%22y%22%3A0.732%7D%2C%22view%22%3A%22export%22%2C%22zoom%22%3A0.311%7D&origin=%2Fsearch%3Faccess%3Dall%26direction%3Dasc%26filter%255BZeitschriften%255D%255B1%255D%3D31311028X%257Clog1%26filter%255BObjekttyp%255D%255B1%255D%3Dvolume%26from%3D1940%26mainFrom%3D1872%26mainTo%3D1950%26q%3D%252A%26sorting%3Dtitle.sorttitle.sort%26to%3D1949
https://www.digizeitschriften.de/id/31311028X_0074%7Clog1?tify=%7B%22pages%22%3A%5B417%5D%2C%22pan%22%3A%7B%22x%22%3A0.401%2C%22y%22%3A0.732%7D%2C%22view%22%3A%22export%22%2C%22zoom%22%3A0.311%7D&origin=%2Fsearch%3Faccess%3Dall%26direction%3Dasc%26filter%255BZeitschriften%255D%255B1%255D%3D31311028X%257Clog1%26filter%255BObjekttyp%255D%255B1%255D%3Dvolume%26from%3D1940%26mainFrom%3D1872%26mainTo%3D1950%26q%3D%252A%26sorting%3Dtitle.sorttitle.sort%26to%3D1949
https://www.digizeitschriften.de/id/31311028X_0074%7Clog1?tify=%7B%22pages%22%3A%5B417%5D%2C%22pan%22%3A%7B%22x%22%3A0.401%2C%22y%22%3A0.732%7D%2C%22view%22%3A%22export%22%2C%22zoom%22%3A0.311%7D&origin=%2Fsearch%3Faccess%3Dall%26direction%3Dasc%26filter%255BZeitschriften%255D%255B1%255D%3D31311028X%257Clog1%26filter%255BObjekttyp%255D%255B1%255D%3Dvolume%26from%3D1940%26mainFrom%3D1872%26mainTo%3D1950%26q%3D%252A%26sorting%3Dtitle.sorttitle.sort%26to%3D1949
https://www.digizeitschriften.de/id/31311028X_0074%7Clog1?tify=%7B%22pages%22%3A%5B417%5D%2C%22pan%22%3A%7B%22x%22%3A0.401%2C%22y%22%3A0.732%7D%2C%22view%22%3A%22export%22%2C%22zoom%22%3A0.311%7D&origin=%2Fsearch%3Faccess%3Dall%26direction%3Dasc%26filter%255BZeitschriften%255D%255B1%255D%3D31311028X%257Clog1%26filter%255BObjekttyp%255D%255B1%255D%3Dvolume%26from%3D1940%26mainFrom%3D1872%26mainTo%3D1950%26q%3D%252A%26sorting%3Dtitle.sorttitle.sort%26to%3D1949
https://www.digizeitschriften.de/id/31311028X_0074%7Clog1?tify=%7B%22pages%22%3A%5B417%5D%2C%22pan%22%3A%7B%22x%22%3A0.401%2C%22y%22%3A0.732%7D%2C%22view%22%3A%22export%22%2C%22zoom%22%3A0.311%7D&origin=%2Fsearch%3Faccess%3Dall%26direction%3Dasc%26filter%255BZeitschriften%255D%255B1%255D%3D31311028X%257Clog1%26filter%255BObjekttyp%255D%255B1%255D%3Dvolume%26from%3D1940%26mainFrom%3D1872%26mainTo%3D1950%26q%3D%252A%26sorting%3Dtitle.sorttitle.sort%26to%3D1949
https://www.digizeitschriften.de/id/31311028X_0074%7Clog1?tify=%7B%22pages%22%3A%5B417%5D%2C%22pan%22%3A%7B%22x%22%3A0.401%2C%22y%22%3A0.732%7D%2C%22view%22%3A%22export%22%2C%22zoom%22%3A0.311%7D&origin=%2Fsearch%3Faccess%3Dall%26direction%3Dasc%26filter%255BZeitschriften%255D%255B1%255D%3D31311028X%257Clog1%26filter%255BObjekttyp%255D%255B1%255D%3Dvolume%26from%3D1940%26mainFrom%3D1872%26mainTo%3D1950%26q%3D%252A%26sorting%3Dtitle.sorttitle.sort%26to%3D1949
https://www.digizeitschriften.de/id/31311028X_0074%7Clog1?tify=%7B%22pages%22%3A%5B417%5D%2C%22pan%22%3A%7B%22x%22%3A0.401%2C%22y%22%3A0.732%7D%2C%22view%22%3A%22export%22%2C%22zoom%22%3A0.311%7D&origin=%2Fsearch%3Faccess%3Dall%26direction%3Dasc%26filter%255BZeitschriften%255D%255B1%255D%3D31311028X%257Clog1%26filter%255BObjekttyp%255D%255B1%255D%3Dvolume%26from%3D1940%26mainFrom%3D1872%26mainTo%3D1950%26q%3D%252A%26sorting%3Dtitle.sorttitle.sort%26to%3D1949
https://www.digizeitschriften.de/id/31311028X_0074%7Clog1?tify=%7B%22pages%22%3A%5B417%5D%2C%22pan%22%3A%7B%22x%22%3A0.401%2C%22y%22%3A0.732%7D%2C%22view%22%3A%22export%22%2C%22zoom%22%3A0.311%7D&origin=%2Fsearch%3Faccess%3Dall%26direction%3Dasc%26filter%255BZeitschriften%255D%255B1%255D%3D31311028X%257Clog1%26filter%255BObjekttyp%255D%255B1%255D%3Dvolume%26from%3D1940%26mainFrom%3D1872%26mainTo%3D1950%26q%3D%252A%26sorting%3Dtitle.sorttitle.sort%26to%3D1949
https://doi.org/10.1007/978-1-4612-3712-9
https://doi.org/10.1016/j.topol.2018.02.021
https://doi.org/10.1016/j.topol.2018.02.021
https://doi.org/10.1016/j.apal.2020.102806
https://doi.org/10.1016/j.apal.2020.102806


90 Bibliography

Rothberger, F. (1938). “Eine Verschärfung der Eigenschaft C”. In: Fundamenta Mathe-
maticae 30, pp. 50–55. DOI: 10.4064/fm-30-1-50-55.

Sakai, M. (2014). “Star versions of the Menger property”. In: Topology and its Applica-
tions 170, pp. 22–34. DOI: 10.1016/j.topol.2014.07.006.

Sarkhel, D.N. (1986). “Some generalizations of countably compactness”. In: Indian
Journal of Pure and Applied Mathematics 17, pp. 778–785. URL: https://cir.nii.
ac.jp/crid/1571698599638564736.

Scheepers, M. (1996). “Combinatorics of open covers I: Ramsey theory”. In: Topology
and its Applications 69, pp. 31–62. DOI: 10.1016/0166-8641(95)00067-4.

— (1997). “Combinatorics of open covers (III): games, Cp (X)”. In: Fundamenta Math-
ematicae 152.3, pp. 231–254. URL: http://eudml.org/doc/212209.

— (1999). “Combinatorics of open covers VI: selectors for sequences of dense sets”.
In: Quaestiones Mathematicae 22.1, pp. 109–130. DOI: 10.1080/16073606.1999.
9632063.

Simon, P. (1980). “A compact Frèchet space whose square is not Frèchet”. In: Com-
mentationes Mathematicae Universitatis Carolinae 21, pp. 749–753.

Singh, S. (2021). “Set-starcompact and related spaces”. In: Afrika Matematika 32, 1389–1397.
DOI: 10.1007/s13370-021-00906-5.
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b, 2
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c.c.c. forcing notion, 8
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cardinal function, 4
cellularity of a space, c(X), 4
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character of a space,χ(X), 4
cofinal set, 2
cofinality, 2
collectionwise Hausdorff space, 3
compact space, 3
complete metric space, 6
continuum hypothesis, 2
countable set, 3
countable support iteration, 10
countably compact space, 3

D
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dense subset of a forcing notion, 7
density of a space, d(X), 4

E
extent of a space, e(X), 5

F
filter of a forcing notion, 7
filter on a set, 6
finite support iteration, 10
first-countable space, 4
forcing contition, 7
forcing notion, 7
Fréchet-Urysohn space, FU space, 4
full ultrafilter, 32

G
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H-closed space, 3
H-separable space, 23
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Hausdorff space, 3
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mM-separable space, 60
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n-H-closed space, 14
n-Hausdorff space (n ≥ 2), 12
n-homogeneous space, 28
n-Katětov extension of a topological
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nodes, 10
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relatively∗ SC subset, 16
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relatively∗ SSL subset, 16
Rothberger space, 5
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second-countable space, 4
selection principles, 5
selective m-star-c.c.c. property, 48
selectively c.c.c. space, 18, 47
selectively separable space, 23
separable space, 4
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set star-compact space, 16
set star-Lindelöf space, 17
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set absolutely countably compact
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set selective m-star-c.c.c. property, 48
set selectively star-c.c.c. space, 47
set star-Hurewicz space, 21
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set strongly star-compact space, 16, 40
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set strongly star-Menger space, 20
singular cardinal, 2
star of a subset, 15
star-compact space, 16
star-Hurewicz space, 20
star-Lindelöf space, 16
star-Menger space, 20
stem, 10
strong intersection property, 2
strongly star-compact space, 16
strongly star-Hurewicz space, 20
strongly star-Lindelöf space, 16
strongly star-Menger space, 20
successor node, 10
support of a condition, 10

T
T1 space, 3
T2 space, see Hausdorff space, 3
T2, 1

2
space, see Urysohn space, 3

T3 space, see regular space, 3
T3, 1

2
space, see Tychonoff space, 3

T4 space, see normal space, 3
T5 space, see hereditarily normal

space, 3
T6 space, see perfectly normal space, 3
θ-closure of a set, 31
θ-dense set, 31
θ-density, 31
transitive class, 7
transitive closure, 7
transitive set, 7
tree, 10
Tychonoff space, 3

U
Urysohn number, U(X), 12
Urysohn space, 3

W
weakly Lindelöf space, 44
weakly Lindelöf with respect to closed

sets space, 44

Z
zero-dimensional space, 4
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