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Abstract: Background: Hereditary transthyretin amyloidosis with polyneuropathy (ATTRv) is an
adult-onset multisystemic disease, affecting the peripheral nerves, heart, gastrointestinal tract, eyes,
and kidneys. Nowadays, several treatment options are available; thus, avoiding misdiagnosis is
crucial to starting therapy in early disease stages. However, clinical diagnosis may be difficult, as the
disease may present with unspecific symptoms and signs. We hypothesize that the diagnostic process
may benefit from the use of machine learning (ML). Methods: 397 patients referring to neuromuscular
clinics in 4 centers from the south of Italy with neuropathy and at least 1 more red flag, as well
as undergoing genetic testing for ATTRv, were considered. Then, only probands were considered
for analysis. Hence, a cohort of 184 patients, 93 with positive and 91 (age- and sex-matched) with
negative genetics, was considered for the classification task. The XGBoost (XGB) algorithm was
trained to classify positive and negative TTR mutation patients. The SHAP method was used as
an explainable artificial intelligence algorithm to interpret the model findings. Results: diabetes,
gender, unexplained weight loss, cardiomyopathy, bilateral carpal tunnel syndrome (CTS), ocular
symptoms, autonomic symptoms, ataxia, renal dysfunction, lumbar canal stenosis, and history of
autoimmunity were used for the model training. The XGB model showed an accuracy of 0.707 ± 0.101,
a sensitivity of 0.712 ± 0.147, a specificity of 0.704 ± 0.150, and an AUC-ROC of 0.752 ± 0.107. Using
the SHAP explanation, it was confirmed that unexplained weight loss, gastrointestinal symptoms,
and cardiomyopathy showed a significant association with the genetic diagnosis of ATTRv, while
bilateral CTS, diabetes, autoimmunity, and ocular and renal involvement were associated with a
negative genetic test. Conclusions: Our data show that ML might potentially be a useful instrument
to identify patients with neuropathy that should undergo genetic testing for ATTRv. Unexplained
weight loss and cardiomyopathy are relevant red flags in ATTRv in the south of Italy. Further studies
are needed to confirm these findings.

Keywords: TTR; hereditary amyloid neuropathy; genetic screening; ATTRv; machine learning;
genetic testing
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1. Introduction

Hereditary transthyretin amyloidosis with polyneuropathy (ATTRv) is an adult-onset,
rare, and multisystemic disease, affecting the sensorimotor and autonomic functions along
with other organs, especially the heart, gastrointestinal tract, eyes, and kidneys [1]. ATTRv
is caused by the accumulation of abnormal amyloid fibrils originating from mutations in the
TTR gene; ATTRv displays incomplete penetrance and presents an autosomal dominant pat-
tern of inheritance [2,3]. The clinical phenotype is heterogeneous and often unpredictable;
therefore, the diagnosis is very difficult and, in most cases, delayed [4]. Multisystemic
clinical presentation of ATTRv often makes it difficult to distinguish ATTRv from other
conditions, thus causing a significant misdiagnosis [5,6]. For example, chronic inflamma-
tory demyelinating polyradiculoneuropathy, diabetes, sensory ataxia, and amyotrophic
lateral sclerosis (ALS) commonly overlap with ATTRv [5–7]. Unfortunately, misdiagnosis
of ATTRv carries high costs for the community in terms of mortality and inappropriate
treatments [8], because several treatment options are available if the correct diagnosis
is achieved, and these treatments are particularly effective in early disease stages [9–11].
Hence, avoiding misdiagnosis is crucial [4]. In the past, the diagnosis of ATTRv required
genetic testing performed upon a strong clinical suspicion in the presence of a positive
biopsy [8,12]. More recently, the role of a biopsy has no longer become irreplaceable due to
the broad availability of genetic testing [13,14]. Indeed, more recent diagnostic algorithms
suggest anticipating and often replacing the biopsy in the diagnostic workup [1]. In addi-
tion, the presence of a positive family history is not always present in ATTRv patients, and
it is not infrequent for clinicians to face difficult cases with a sporadic onset, due to the wide
heterogeneity within families and incomplete penetrance [15]. Consequently, based on the
published literature and expert opinions, symptom clusters and specific “red flags” have
recently been proposed to facilitate an earlier diagnosis [4,15]. However, there is still a need
for new strategies to find undiagnosed individuals and implement existing evidence-based
guidelines to improve ATTRv care [12].

Machine learning (ML) algorithms have shown remarkable capabilities for the de-
velopment of classification models. In particular, their strength lies in finding hidden
relationships among the variables to predict a clinical outcome. In fact, recently, it has
been reported that data mining can improve the prediction and diagnostic precision in
several different conditions including cardiac amyloidosis [16–18]. However, despite the
fact that they enable the training of high-accuracy models, many ML algorithms suffer
from the problem of low interpretability and transparency [19]. The lack of transparency
prompts general skepticism of these new technologies and complicates their integration
into clinical practice [20,21]. In recent years, to interpret and explain the developed models,
the training of ML classifiers is followed by explainable AI (XAI) algorithms [22]. The use
of XAI algorithms allows for an understanding of the most important features involved in
the prediction process and for a comparison of model findings with the medical literature.
In addition, it is possible to avoid several issues that could affect the model’s reliability and
detect abnormal behaviors and erroneous findings.

We hypothesize that the use of ML and XAI methods in the genetic screening for
ATTRv might lead to a higher sensitive and specific diagnostic approach, thus contributing
to a significant reduction in the diagnostic delay of ATTRv in non-endemic areas, as well as
ensuring the early treatment for this rare inherited disease. This study aims to evaluate the
role of machine learning algorithms in the prediction of ATTRv, diagnosed by means of
genetic testing.

2. Methods
2.1. Study Procedures

This study was approved by the Ethical Committee of Messina on 22 March 2016
(V n.3/2016), and it was conducted in conformity with the Declaration of Helsinki princi-
ples. Patients suspected of having ATTRv based on specific “red flags” [4,15] were enrolled.
In a second phase, they went through a complete diagnostic workup for ATTRv including



Brain Sci. 2023, 13, 805 3 of 10

genetic testing. Clinical data have been retrospectively collected from patients undergoing
TTR genotyping in four centers specializing in the diagnosis and care of ATTRv (the neuro-
muscular clinics of Palermo, Messina, Naples, and Rome). For each patient undergoing
genetic testing, the presence of specific “red flags” was investigated. Then, clinical data
were compared in patients with positive and negative genetics; afterward, the red flags
included in this study were combined to define a precise algorithm for diagnosis through a
“Machine Learning” model.

2.2. Patient’s Population

Patients with chronic axonal sensorimotor polyneuropathy referring to the neuromus-
cular centers of Palermo, Rome, Messina, and Naples were retrospectively included in this
study. Inclusion criteria were (1) informed consent for genetic testing; (2) age > 18 years;
(3) presence of at least one red flag to raise suspicion of ATTRv. Exclusion criteria were
(1) lack of informed consent; (2) no eligibility for genetic testing. Data were available for all
patients followed in the four centers for ATTRv. All patients enrolled were examined with
a detailed questionnaire exploring the presence of “red flags” for ATTRv and underwent
genetic testing for ATTRv.

2.3. Clinical Variables: “Red Flags”

The latest evidence suggests that ATTRv should be suspected if progressive peripheral
sensorimotor neuropathy is observed in combination with one or more of the following: au-
tonomic dysfunction (erectile dysfunction, orthostatic hypotension, syncope), cardiomyopa-
thy, gastrointestinal symptoms, unexplained weight loss, bilateral carpal tunnel syndrome
(CTS), lumbar canal stenosis, renal impairment, ocular involvement (vitreous opacities),
and/or family history of polyneuropathy, cardiomyopathy, or ATTRv [4]. According to this
evidence, we evaluated the presence of such red flags through a detailed questionnaire.

2.4. Machine Learning Analysis

The XGBoost (XGB) classifier was trained to classify positive and negative TTR mu-
tation patients. The XGB is a gradient boosting algorithm that uses several decision trees
to create the final model [23]. The decision trees are constructed sequentially to improve
the failures of the previously trained trees. In fact, the training process aims to minimize
a loss function by adding weak decision tree learners. This method is called a boosting
ensemble method and has been shown to improve model accuracy [24]. The XGBoost
model is established as a standard to process tabular data and improve the performance
over deep architectures [25]. In fact, several applications showed a high performance of the
XGBoost model when using a dataset with a limited number of samples [26–28]. Eventually,
the XGBoost was compared with other models, namely, support vector machine (SVM)
with linear kernel, logistic regression (LR), and decision tree (DT).

Considering the limited number of cases in the dataset, the model performance was
computed using a 20-repeated stratified 10-fold cross-validation, ensuring a correct estima-
tion of the model generalization capability. The stratified setting guaranteed the balancing
between the two groups for the training and test. Accuracy, area under the receiver operat-
ing characteristic (AUC-ROC), specificity, sensitivity, positive predictive value (PPV), and
negative predictive value (NPV) were computed as metrics to evaluate model performance,
reporting mean and standard deviation.

In addition, to evaluate the contribution of each red flag in the XGB model, the SHAP
three explainer method was used as an explainable AI algorithm [29,30]. The SHAP
algorithm exploits the computation of the Shapley values to assess the contribution of each
feature to the model decision process. It is a post-hoc explanation algorithm;, that is, it
is applied after the training of the machine learning model. In our case, it was applied
to the trained XGBoost model to estimate the most impactful features in the predictive
process. Explaining the prediction is mandatory in medical domains because the patterns
a model discovers may be more important than its performance [30]. The SHAP method
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is established as a reference for model explanation, proving its effectiveness in different
contexts [31–33]. For this reason, it allows us to estimate the most impactful features in the
predictive process.

3. Results

Data from 397 patients affected by polyneuropathy of undetermined etiology who un-
derwent TTR genotyping were initially considered for study inclusion in the study period.
In particular, 213 TTR-mutated subjects and 184 patients with negative genetic testing were
included. However, after removing 120 first-degree family members,
93 mutated ATTRv probands (age 68 (32–87) years, 72 (77%) males) were included. Among
patients with negative genetic testing, 96 patients (age 69 (52–82) years, 70 (73%) males) were
selected. Patients with positive and negative genetic testing were age- and sex-matched.
Hence, a cohort of 189 patients, 93 with a positive and 96 with a negative genetic test, was
considered for the classification task. As reported in Table 1, the 93 screening-positive
ATTRv patients presented more frequently with bilateral CTS and autonomic dysfunction,
followed by ataxia, unexplained weight loss, and cardiomyopathy. Among ATTRv patients,
the most frequent mutations encountered were Phe64Leu (52%), Val30Met (31%), Glu89Gln
(5%), and Val122Ile (3%) (Table 1).

Table 1. Clinical features and genotypes encountered in the screened-positive ATTRv patients. ATTRv,
Hereditary transthyretin amyloidosis with polyneuropathy; TTR, transthyretin; * Chi-square with
p < 0.05.

Clinical Features Screening-Positive ATTRv
Patients (n = 93) Screening-Negative Patients (n = 96) p Value

Age (years) 68 (32–87) 69 (52–82) 0.24
Gender (males) 72 (77%) 70 (73%) 0.29

Bilateral carpal tunnel syndrome 47 (51%) 51 (53%) 0.42
Autonomic dysfunction 47 (51%) 50 (52%) 0.47

Ataxia 45 (48%) 46 (48%) 0.53
Unexplained weight loss 42 (45%) 30 (31%) 0.034 *

Cardiomyopathy 39 (42%) 35 (36%) 0.26
Gastrointestinal disturbances 34 (37%) 40 (42%) 0.28

Lumbar canal stenosis 19 (20%) 28 (26%) 0.11
Diabetes 7 (8%) 24 (25%) 0.001 *

Ocular disorders 5 (5%) 27 (28%) <0.001 *
Renal dysfunction 4 (4%) 13 (14%) 0.023 *

Autoimmunity 2 (2%) 21 (22%) <0.001 *

TTR Mutations

Phe64Leu 48 (52%) - -
Val30Met 29 (31%) - -
Glu89Gln 5 (5%) - -
Val122Ile 3 (3%) - -

Others 1 (8%) - -

The min–max approach was used to normalize in the range [0, 1] the age feature.
The XGBoost classifier was trained using the gbtree booster, with 0.2 as the learning rate,
0.8 as the L2 regularization term, and 100 estimators. The other hyperparameters were
maintained at the default values. The linear kernel was set for the SVM. The achieved
model’s performances were reported in Table 2. The XGB outperforms the other algorithms,
showing a higher AUROC, accuracy, and most importantly, a balanced sensitivity and
specificity. Conversely, the LR and SVM resulted in being unable to generalize to negative
samples, considering the large imbalance between the sensitivity and specificity. The
results suggest the capability of the XGB model to fairly identify both positive and negative
samples. In particular, an AUC-ROC of 0.752 ± 0.107, accuracy of 0.707 ± 0.101, sensitivity
of 0.712 ± 0.147, specificity of 0.704 ± 0.150, NPV of 0.726 ± 0.118, and PPV of 0.711 ± 0.119
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were computed. Figure 1 shows the AUC-ROC curve of the considered models, computed
during the 20-repeated 10-fold cross-validation.

Table 2. Achieved performance of the XGBoost, Linear Regression (LR), Support Vector Machine
(SVM), and Decision Tree (DT) models, computed considering the 20-Repeated 10-Fold Cross-
Validation. AUC-ROC, area under the receiver operating characteristic curve; PPV, positive predictive
value; NPV, negative predictive value.

Accuracy AUC-ROC Sensitivity Specificity PPV NPV

XGBoost 0.707 ± 0.101 0.752 ± 0.107 0.712 ± 0.147 0.704 ± 0.150 0.711 ± 0.119 0.726 ± 0.118
LR 0.660 ± 0.099 0.725 ± 0.107 0.732 ± 0.135 0.592 ± 0.150 0.641 ± 0.102 0.703 ± 0.129

SVM 0.662 ± 0.099 0.713 ± 0.118 0.795 ± 0.165 0.534 ± 0.154 0.626 ± 0.095 0.749 ± 0.160
DT 0.656 ± 0.100 0.661 ± 0.101 0.644 ± 0.154 0.669 ± 0.143 0.660 ± 0.118 0.668 ± 0.114
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In addition, Figure 2 shows the SHAP beeswarm plot, in which the features are
ordered by importance. The graph calculated through the Shapley values enables a clinical
introspection of the model, restoring the predictive red flags of positive or negative genetics.
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The SHAP beeswarm plot (Figure 2) shows that age, bilateral CTS, and autonomic
dysfunction were similarly distributed in both screening-positive and negative patients
(blue and red dots on both sides). This result was unexpected as CTS and autonomic
dysfunction were the most frequent symptoms in ATTRv patients, being reported in 51%
of cases (Table 1). Of interest, less frequent symptoms such as ataxia, unexplained weight
loss, gastrointestinal symptoms, and cardiomyopathy were predictive of ATTRv (red dots
on the right side). Conversely, ocular involvement, autoimmunity, diabetes, lumbar spinal
stenosis, and renal involvement were associated with a negative genetic test (red dots on
the left side).

4. Discussion

This study explores the role of a machine learning approach to identify reliable clinical
factors which might be predictive of a positive genetic test. The principal purpose was
to develop a systematic approach capable of guiding genetic testing in the context of
general practitioners and neurologists who are not confident with ATTRv amyloidosis.
Unfortunately, the multisystemic clinical presentation of ATTRv often makes it difficult to
distinguish it from other conditions, thus causing a significant misdiagnosis [5,6]. Recent
evidence has clearly shown the importance of an early diagnosis in such a fatal and
disabling disease, especially when dealing with treatable disorders [4]. Hence, reliable
and standardized diagnostic approaches are in demand [4]. However, as ATTRv is a
heterogeneous disease caused by over 130 different mutations in the TTR gene, several
peculiar phenotypes have been reported in non-endemic countries depending on specific
genotypes and environmental factors [34]. Indeed, we aim to develop a simple guide for
genetic testing that may be useful for clinicians.

The use of ML methods enables the analysis of complex hidden patterns between data.
For this reason, features that individually appear not significant (univariate analysis) can
become predictive when aggregated with other features through ML models (multivariate
analysis) [21]. However, traditional ML methods allow for the development of highly
accurate models while not guaranteeing model transparency. Through XAI algorithms, it
was possible to validate the model findings and compare them with the medical literature.
The explainability toward their users is becoming a requirement these systems should
satisfy [35] to implement user acceptance and control [36], and to face the ethical and
legal aspects [36]. In fact, our XGBoost model achieved a promising performance for
the detection of a positive biopsy, and important findings were clinically validated via
the SHAP explanation. In particular, the analysis suggested that unexplained weight
loss, cardiomyopathy, gastrointestinal disturbances, and ataxia are useful clinical features
to detect ATTRv patients among patients presenting with polyneuropathy (Figure 2).
These results are far along with considering these as the main clinical features in ATTRv
patients, as, in the cohort examined, bilateral CTS associated with autonomic dysfunction
and ataxia was the most frequent clinical picture, encountered in 50% of cases in the
selected population. However, it should be noted that this main core of symptoms of
ATTRv is similar to the ones generated by other causes of polyneuropathy, first of all
diabetic polyneuropathy, which was quite frequent in our control group (Figure 2). Hence,
we might interpret these “red flags” as a guide to raise suspicion of ATTRv in patients
presenting with an undetermined polyneuropathy associated with a bilateral carpal tunnel
syndrome. In addition, it should be considered that even if CTS is considered a main feature
of ATTRv [37], presenting many years before other more severe features, CTS is also highly
frequent in other etiologies [38,39]. Ataxia in ATTRv is an expression of a prominent sensory
fiber involvement, which characterizes the early phase of ATTRv [40], and often precedes
the more disabling motor damage [14,41]. Gastrointestinal involvement is frequent in
ATTRv [42], and diarrhea, constipation, or weight loss may be present since the onset of
the disease, even anticipating neurological symptoms [43]. In addition, recent evidence
proved that gastrointestinal involvement may alter body composition with a good reversal
after gene silencing [44]. Furthermore, gastrointestinal symptoms are insidious and can be
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misinterpreted, thus causing a relevant diagnostic delay [43,45]. In this study, weight loss
and gastrointestinal symptoms showed a similar prevalence rate in TTR-mutated patients
(37–45%), confirming their possible pathophysiological correlation [46,47]. Finally, cardiac
involvement in ATTRv is common as it can represent clinical onset [6,48,49]. Moreover,
Phe64Leu and Val30Met, amounting to over 80% of cases, are usually associated with
mixed phenotypes [6,49,50].

Conversely, renal and ocular dysfunction, as well as lumbar canal stenosis, did not
represent in our cohort a sensitive red flag. A first consideration is that lumbar canal
stenosis, ocular involvement, and renal dysfunction were also frequent in patients with
a negative genetic test, probably because the target population was quite aged (Table 1).
Moreover, many patients also presented with a cataract which might have caused an
underestimation of the vitreous opacities in this cohort. However, the high frequency of
diabetes in the control group might have influenced our results considering the potential
ocular and renal damage which is characteristic of diabetes [51–53]. In addition, autonomic
dysfunction and CTS are frequently encountered in diabetic polyneuropathy [39,54]. Many
studies have explored the differential diagnosis between ATTRv and diabetes, showing
their similarities and differences [55]. However, our data come from a real-life experience
of screening which might be a strength of the study if we consider that diabetes is the most
common worldwide cause of acquired neuropathy: from this perspective, these results
underline that cardiac (hypertrophic cardiomyopathy) and gastrointestinal involvement
(unexplained weight loss, diarrhea, constipation) in an ataxic patient might represent the
most sensitive red flags to the diagnosis of ATTRv, even in diabetic patients.

5. Limitations and Future Directions

Our study presents several limitations that should be addressed. The first limita-
tion concerns the small size of the dataset. As a consequence, the study sample is not
wide enough to draw conclusions on specific mutation-related phenotypes, but results
are inferred considering ATTRv as a whole. In particular, it is well established that the
generalization capabilities of ML models (also called data-driven models) are related to
the availability of large amounts of data. In fact, to propose a fair performance, a cross-
validation procedure was applied. However, there is a lack of a structured comparison with
a statistical ordinary analysis for the complete validation of such an instrument. A further
limitation comes from the concept of “red flag”, which can be self-reported by the patient,
described in a specialist’s report, and demonstrated by an instrumental examination with
different grades of precision in the clinical assessment. Hence, the assessment of such red
flags might be poor and incomplete, due to underreporting or undervaluation (i.e., ocular
and cardiac assessments, evaluation of erectile dysfunction). Hence, poor assessment as
well as misdiagnosis with diabetes might explain the low predictive value of ocular and
renal symptoms in this cohort. Finally, we included data from four specialized centers for
the care of ATTRv from Palermo, Messina, Naples, and Rome; hence, our results might be
reliable only when related to specific mutations from Italy.

6. Conclusions

Hereditary transthyretin amyloidosis with polyneuropathy (ATTRv) is an adult-onset
multisystemic disabling and fatal disease, affecting the peripheral nerves, heart, gastroin-
testinal tract, eyes, and kidneys. Nowadays, several treatment options are available; thus,
avoiding misdiagnosis is crucial to starting therapy in early disease stages. Our data
support the use of ML and XAI algorithms in clinical screening to raise the suspicion of
ATTRv, thus contributing to a potential reduction in the diagnostic delay in non-endemic
areas. ATTRv should be suspected if progressive peripheral sensorimotor neuropathy is
observed in combination with ataxia, gastrointestinal problems, unexplained weight loss,
and cardiomyopathy. Further studies are needed to explore the clinical application of an
ML algorithm in ATTRv.
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