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A review on optimization and cost-optimal methodologies in  
low-energy buildings design and environmental considerations 

 

 

Abstract 

The topic of low-energy buildings received a widespread and growing interest in last years, 
thanks to energy saving policies of developed countries. The design of a low-energy building is 
addressed with energy saving measures and renewable energy generation, but the correct 
assessment of phenomena occurring in a building usually requires to perform dynamic 
simulations and to analyze multiple scenarios to attain the optimal solution. The optimality of a 
technical solution may be subject to contrasting constraints and objectives. For this reason, 
designers may employ mathematical optimization techniques, a non-familiar topic to most of 
building designers. In this paper, a review on optimization of low-energy buildings design is 
provided, in order to collect the results of previous works and to guide new designers. The topic 
received an increasing interest in last years, with multi-objective optimization and genetic 
algorithms being the most popular. The most common objective functions are the costs and the 
operating energy consumption, while the environmental aspects are often neglected. As low-
energy buildings should reduce the global energy demand, their design may benefit enormously 
from the assessment of energy consumption and environmental impacts in the whole life cycle, 
even in a simplified way. 
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EU European Union 
GA Genetic Algorithm 
GII Grid Interaction Index 
GUI Graphical User Interface 
GWP Global Warming Potential 
HVAC Heating, Ventilation and Air Conditioning 
IBPSA International Building Performance Simulation Association 
LC-ZEB Life Cycle Zero Energy Building 
LCA Life Cycle Assessment 
LCC Life Cycle Cost 
MILP Mixed Integer Linear Programming 
MOBO Multi Objective Building Optimization tool 
MODA Multi-Objective Dragonfly Algorithm 
MODE Multi-Objective Differential Evolution algorithm 
MOGA Multi-Objective Genetic Algorithm 
MOOP Multi-Objective Optimization Problem 
MOPSO Multi-Objective Particle Swarm Optimization 
MS Member State 
NER Net Energy Ratio 
NPV Net Present Value 
NSGA Non-dominated Sorting Genetic Algorithm 
NZEB Net Zero-Energy Building 
nZEB nearly Zero-Energy Building 
OF Objective Function 
PCM Phase-Change Material 
PMV Predicted Mean Vote 
PPD Predicted Percentage of Dissatisfied 
PSO Particle Swarm Optimization 
PV Photovoltaic 
RES Renewable Energy Source 
SHGC Solar Heat Gain Coefficient 
SOOP Single-Objective Optimization Problem 
STD Standard Deviation 
TH Time Horizon 
UDI Useful Daylight Illuminance 
WDT Weighted Discomfort Time 

 

1. Introduction 

The building sector is considered as one of the most impacting on energy consumption in 
developed countries. In detail, European Union (EU) stated that buildings are responsible for 
40% of its energy consumption and 36% of its CO2 emissions [1]. Considering only the 
residential sector, it accounts for 25,4% of EU final energy consumption [2]. One of the tools 
identified by the EU countries to reduce this fraction of its energy requirement is the nearly 
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Zero-Energy Building (or nZEB) paradigm, defined in the Energy Performance of Buildings 
Directive (EPBD) Recast in 2010 as “a building that has a very high energy performance. The 
nearly zero or very low amount of energy required should be covered to a very significant extent 
by energy from renewable sources, including energy from renewable sources produced on-site 
or nearby” [3]. This definition is very generic and provides only with principles on which to 
start the design of a nZEB, as the EU Commission preferred not to quantify fixed requirements, 
letting the single Member States (MS) to set the preferred quantitative limits for energy 
consumption and renewable energy integration in national nZEBs. The EPBD Recast imposes 
that new buildings will have to be nZEBs from 31 December 2020 [3], but the topic might 
interest also refurbishment, as about 35% of buildings in EU are over 50 years old [1].  

Pushed by this regulation, academics and designers started developing design criteria and pilot 
projects for energy-efficient buildings, but even definitions, categories and limits, e.g. low-
energy buildings (LEBs), plus-energy buildings or Net Zero Energy Buildings (NZEBs). In 
detail, referring to the most commonly adopted definition, a NZEB is a building exchanging 
energy with the surrounding grids with an annual zero balance between exported and delivered 
energy [4], while a plus-energy building overperforms NZEBs, generating more energy than the 
requirement. Another categorization exists according to the boundary considered for the energy 
balance of the building, as it  may account for primary or final energy, and the Renewable 
Energy Sources (RES) plants may be installed on the building or nearby. Further, if a building is 
equipped with an adequate storage system, it may also be independent from surrounding energy 
networks as electricity and natural gas grids or district heating/cooling [5], [6]. 

Notwithstanding this widespread number of definitions, the approach to the design of an 
energy-efficient building should always be based on the following rules: 

• minimization of building’s thermal loads, i.e. reduction of the envelope transmittance; 

• employment of passive strategies, i.e. attribution of the burden of a part of the thermal 
loads’ removal to natural phenomena; 

• implementation of efficient HVAC systems, as low temperature surface embedded heating 
and cooling systems; 

• adoption of renewable energy generation technologies to cover a variable (but generally 
high) percentage of remaining thermal and electrical loads. 

This set of actions has to be followed with the aim to compare energy generation and loads. 
Thus, designers often have to assess different solutions and perform many dynamic 
thermophysical simulations in order to find the configuration of the building showing the lowest 
energy consumption and to correctly design the renewable energy systems that will cover these 
consumptions. This is due to three main reasons: 

• multiple energy efficiency solutions available: designers have to consider and combine the 
huge series of energy efficiency solutions on the market, both passive and active measures 
(i.e. envelope insulation, RES, Home and Building Automation technologies); 

• conflicting measures: solutions that might have both positive and negative impacts on the 
building. An example is the use of large windows, whose installation may lower electrical 
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consumption for lighting but rise solar heat gains (positive in winter but negative in 
summer) and thermal transmittance of the building; 

• multiple objectives to attain: the goal that designers or Decision Makers (DM) want to 
reach can be evaluated from different points of view, e.g. minimal cost, maximum energy 
saving or maximum internal comfort, that can be conflicting objectives. If two or more 
goals have to be attained ate the same time, the search of an optimal technical solution for 
a low-energy building becomes a Multi-Criteria or a Multi-Objective Optimization 
Problem (MOOP), characterized by constraints such as structural problems, legal 
obligations or cost-effectivity. 

For the above reasons, in order to find the optimal combination of technical solutions for the 
building, researchers and designers often combine Building Performance Simulation (BPS) and 
mathematical optimization tools, thus embracing areas of knowledge that are distant from each 
other, which are hardly part of the cultural baggage of a single professional figure. Indeed, the 
design process is usually carried out by design teams, composed by figures as architects, 
responsible for aspects as the shape, space, and functions of a building, and engineers, who care 
about the energy efficiency through a sensitivity analysis or optimization techniques performed 
with appropriate tools. The main aim of this paper is to illustrate the state-of-the-art about the 
use of optimization techniques in low-energy buildings sector, with a particular focus on nZEBs 
and NZEBs, comparing main features as objectives, constraints, methodologies and optimization 
algorithms, in order to sum up the almost ten years-experience of technicians in this field and to 
provide beginners and non-insiders with a guide on this topic. 

During this review, Authors realized that scientific literature already presented a large 
number of review papers in the same topic or in similar ones [7], [8], [17], [18], [9]–[16]. In 
these papers, following aspects are described: 

• the analytical form of the optimization problem applied to the energy performance of 
buildings [7], [10], [12]; 

• general description of most popular optimization algorithms [7]–[10], [12], [16], [18] and 
commercial BPS and BPO software [8], [12]–[15], [18]; 

• analysis and categorization of objective functions [12], [16], [17] and optimization variables 
[9], [12]; 

• uncertainty and/or sensitivity analysis on input parameters [11], [17]; 

• future perspectives and challenges [7], [12], [16]. 

For this reason, although some of these features are analyzed in this paper as well, the aim of 
this review is to differentiate from previous works and provide scientific community with new 
outcomes. The original contribution of this review is based on the analysis of the approaches 
adopted by researchers, highlighting general research trends and most commonly adopted 
algorithms, but also on other innovative aspects, such as social and environmental 
considerations related to the low-energy building performance optimization. In fact, 
notwithstanding the increasing number of scientific studies and the relatively high number of 
reviews on the topic, an important issue as the environmental impact of the building was often 
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neglected in the past. As the main aim of LEBs is to reduce the energy consumption occurring in 
use phase by a massive employment of insulation or RES, an amount of the avoided use phase 
energy consumption is shifted to the construction and demolition phases of the life cycle of the 
building [19]. Authors feel to state that this aspect should be always kept into account in the 
optimization of buildings energy performance, thus, in order to further provide readers with 
useful suggestions, environmental considerations on insulating materials considered in the 
analyzed studies are also given in this review. 

 

2. Background 

2.1. Mathematical optimization 

As previously stated, the design of a building with very high-energy performance can be 
considered as a Single or a Multi-Objective Optimization Problem. In general terms, 
mathematical optimization (or mathematical programming) is the branch of applied mathematics 
aimed at studying methods to find maximum and minimum points of an Objective Function 
(OF) by changing values assumed by the variables. In most engineering optimization problems, 
variables are subject to physical bounds (lower and upper bounds), as external dimensions limits 
for buildings, and the problem is limited by equality and inequality constraints, that confine the 
values assumed by the variables to the feasibility space. 

Multiple categorization criteria may be applied to optimization problems and algorithms. 
Depending on the variables and on the OF’s analytical representation, optimization problems 
can be classified as convex or non-convex, linear or non-linear, integer or real, and different 
algorithms are available for each kind of problem. Instead, regarding the desired solution, 
optimization problems can be categorized as single or multi-objective, depending on the 
considered number of OFs. In detail, in Single-Objective Optimization Problems (SOOP) the 
OF typically has only one global minimum and only one best solution exists (or none, 
eventually). On the opposite, MOOPs aims at finding a vector of decision variables that satisfies 
constraints and optimizes a vector function whose elements represent the OFs. These functions 
form a mathematical description of performance criteria, which usually conflict with each other, 
so that minimizing each OF separately gives a different solution. As a result, the solution to a 
MOOP is a set of trade-off solutions that are considered equally optimal, i.e. it may happen that 
solution A is better than B (A outperforms B) according to one criterion or OF, but B 
outperforms A according to another one. In this way, since these two solutions are equally 
optimal, the output of a MOOP is a set of optimal solutions, called Pareto front [20]. The Pareto 
front is composed by a set of solutions that outperform or are equal, in terms of quality, to all 
other solutions for all criteria and strictly outperform the other solutions for at least one 
criterion. When this happens, a solution dominates the others. Fig. 1 shows an example of a two-
dimensional Pareto front. 
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Fig. 1. Two-dimensional Pareto front example 

Finding a unique solution for a MOOP generally involves two stages: optimization and 
decision-making. According to the order of these operations, MOOP algorithms can be 
classified as a priori or a posteriori methods [21]. A priori methods require a deep knowledge of 
the problem before the optimization is performed, as the order of priority of the OFs has to be 
specified before the optimization is run. An example of a priori method is the scalarization 
technique, that involves the minimization of a weighted sum of the objective functions, thus 
reducing the analysis to a single-objective optimization and to the search of one optimal 
solution. A posteriori methods, instead, are oriented to identify the whole Pareto front, in order 
to obtain diversified solutions that may facilitate the decision-making process. 

Another classification of optimization techniques consists in the method of exploration of the 
feasibility space. According to this criterion, algorithms may be classified as exact (or 
deterministic) methods or heuristic methods. The exact methods are based on mathematical 
operations that involve derivatives, so that they require the OF to be expressed in a continuous 
and differentiable analytical form. On the opposite, heuristic methods are based on criteria 
derived from the experience of the analyst, and they generally do not require continuity and 
differentiability of the OF. For these algorithms, the evaluation of a fitness function (deriving 
from the OF) is generally used as convergence criterion. Lastly, depending on the quantity of 
alternatives considered, algorithms may be considered as single-point (or local search) or 
population-based. In detail, single point methods consider the perturbation of variables one by 
one, while population-based algorithms manage multiple sets of values of decision variables in 
each iteration. 

A widely-used category of a posteriori, heuristic, population-based methods is known as 
evolutionary algorithms. These algorithms search the optimal solutions combining sets of 
values of decision variables by miming biological evolution mechanisms such as reproduction, 
mutation, recombination, and selection, and obtaining new generations of individuals, i.e. the 
sets of variables values. A widespread category is composed by the genetic algorithms. The 
feature of being population-based techniques is intrinsically a feature that can be fruitfully 
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exploited to find out sets of solutions such as the MOOP solution requires. Indeed, these 
techniques are often employed in the design of a high performing building, as they can 
efficiently handle non-linear problems with discontinuities and many local minima, and 
moreover they do not require to calculate explicitly the objective function’s gradients but are 
based on improvement along iterations using the evaluation of the fitness function to assess the 
quality of solutions. This feature allows the interaction between the thermophysical software 
and the optimization tool, as the optimization algorithm “sees” the building only through the 
output of the thermophysical simulator, making evolutionary algorithms particularly suitable 
for building energy optimization [22]. 

 

2.2. Optimization of buildings’ design or refurbishment 

The optimization of a building during the design/refurbishment phase can be defined as the 
search of the set of features (design) or interventions (refurbishment) on the building envelope, 
on the HVAC systems and possibly on the energy production plants, whose combination gives 
the minimum of the objective function. This approach is quite different with respect to the 
“classical” approach to the design of a low-energy building depicted in Introduction section, as 
the order of intervention has to be condensed in a set of variables to be combined and analyzed, 
in order to identify the combination providing the optimal value of the objective functions. 

In many cases, in a building optimization study, the objective function is related to the energy 
consumption. Although this implies multiple terms to be considered, this target has been 
translated for NZEBs with simple analytical equations. This can be made according to two 
criteria, considering the building as a black box and analyzing the balance between local loads 
and generation or between the energy import and export [4], as in Eq. (1). 

 Load-Generation balance for NZEBs Import-Export balance for NZEBs  

 ( ) ( )
2 2 2

1 1 1

, , 0
t k j

k l k j g j
t t k k j j

L w G w
= = =

⎡ ⎤
⋅ − ⋅ ≤⎢ ⎥

⎣ ⎦
∑ ∑ ∑  ( ) ( )

2 2 2

1 1 1

, , 0
t k j

k i k j e j
t t k k j j

I w E w
= = =

⎡ ⎤
⋅ − ⋅ ≤⎢ ⎥

⎣ ⎦
∑ ∑ ∑  (1) 

where Gj are the building generation flows, Lk the building loads, Ej the building exports, Ik the 
building imports and w indicates weighing factors, adopted to make homogeneous the energy 
quantities. This formulation can be also adapted to low-energy buildings in terms of 
optimization problem, as in Eq. (2): 

 Load-Generation balance for LEBs Import-Export balance for LEBs  
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These equations only consider the energy consumptions occurring during the use phase of the 
building, thus neglecting the amounts of energy necessary to the construction and the disposal of 
the building, often referred to as embodied energy of the building. The assumption of neglecting 
these two terms is effective for conventional buildings, but the reduced energy consumption 
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occurring in the use phase of a LEB suggests to reconsider the energy optimization of a building 
in a life cycle perspective. Indeed, some attempts to integrate construction and disposal terms 
into Eqs. (1) - (2) have already been made [23], [24], but further work is still necessary. In 
detail, the work in [23] introduces the concept of Annualized Life Cycle Energy (ALCE) of a 
building as the sum of Annualized Embodied Energy (AEE) and Annual Energy Use (AEU), all 
expressed in kWh of primary energy, and defining a Life Cycle Zero Energy Building (LC-ZEB) 
as a building with ALCE = 0. Furthermore, a new indicator, the Net Energy Ratio (NER), is 
proposed in this work, in order to compare the AEU reduction with the AEE increase related to a 
retrofit intervention. 

 ALCE AEE AEU= +  (3) 

 
before after

after before

AEU AEU
NER

AEE AEE
−

=
−

 (4) 

 The other approach proposed in literature [24], related to NZEBs or plus-energy buildings, 
proposes a relation that can be considered as a more detailed and exploitable form of Eq. (3), 
including three additional terms in Import-Export balance of Eq. (1), as in Eq. (5): 
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where EEi,a is the annualized initial embodied energy, EEr,a is the annualized recurring 
embodied energy and DEa is the annualized demolition energy. 

Although the terms in Eqs. (1) - (5) appear as simple and linear functions, it is necessary to 
evaluate dynamic thermophysical simulations in order to calculate accurately each hourly 
energy flow in a building. Thus, BPS tools are often employed, simulating the building dynamic 
behavior and providing only results as output. This feature hides the analytical form of the 
objective function to an optimization tool that may be coupled to the BPS software, inhibiting 
from calculating derivatives of the function to find the minimum value. For this reason, although 
many differences exist between the aims and the developed techniques of the studies analyzed in 
this review, it is possible to identify a general scheme in the optimization of a building that has 
been generally followed by researchers [25]–[27], that is based on the following steps (Fig. 2): 

• definition of the base case (e.g. existing building, preliminary design); 

• assessment of the objective function and variables of the optimization; 

• execution of the algorithm / coupling of multiple algorithms, generally heuristic-based, to 
perform iterations by using a convergence criterion and a fitness function; 

• data post-processing and analysis. 
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Fig. 2. Example of one simulation cycle of heuristic algorithm for thermophysical optimization 

Another commonly used objective is the cost minimization, that is considered with multiple 
approaches, as the investment cost only, both the investment and operating costs (e.g. electric 
energy purchase) or the Life Cycle Cost (LCC), that considers all the costs quantities occurring 
during the life of the buildings. In the EU’s legislative framework, the concept of building cost 
optimization has been included in the cost-optimal methodology, defined in [28]. This 
methodology requires to calculate the global costs of a building (Eq. (6)), defined as the sum of 
initial investment cost, CI, annual cost for component j at the year i, Ca,i (j) (composed by 
energy, running and periodic or replacement costs), and the final value of component Vf,τ (j), if 
the expected lifetime is longer than the period considered in the analysis, and to compare the Net 
Present Value (NPV) of different solutions to find the best option, by actualizing annual terms 
with discount rate Rd (i). This methodology is based on standard EN 15459 [29], and is quite 
similar to the cost categorization systems usually adopted for Life Cycle Cost (LCC) 
assessment. 

 ( ) ( ) ( ) ( ), ,
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G I a i d f
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C C C j R i V j
τ

ττ
=

⎧ ⎫
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 Other Objective Functions usually employed are indicators used to assess:  

• CO2-eq emissions [30]–[37] (e.g. Global Warming Potential (GWP), shown in Eq. (7) [38]); 

• the interactions between the building and the electrical grid [33]–[35], [39], [40] (e.g. Grid 
Interaction Index (GII), shown in Eq. (8) [41]); 

• thermal internal comfort [36], [39], [42]–[49], often assessed by Predicted Mean Vote 
(PMV) and Predicted Percentage of Dissatisfied (PPD) static indicators (Eqs. (9) - (10)) 
[50], [51] that correlate the metabolic rate of occupants and psychrometric quantities to 
estimate people satisfaction. Although more accurate models can be found in literature, as 
adaptive comfort model, only one study [47] employed a dynamic indicator (Weighted 
Discomfort Time (WDT)). This aspect highlights that, as optimization models often 
require simplified equations, in order to reduce computational time, researchers prefer to 
employ a static model as PMV + PPD in lieu of dynamic thermal comfort models; 

• visual internal comfort [46], [52], evaluated by Discomfort Glare Index (DGI) or Useful 
Daylight Illuminance (UDI), reported in Eqs. (11) - (12) [46], 
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where ax and ar are the radiative efficiencies due to a unit increase in atmospheric abundance, 
respectively, of the considered substance, x, and of the reference gas, r (CO2), x(t) and r(t) are 
their time-dependent decay in abundance of the instantaneous release, TH is the time horizon of 
the calculation, STD is the standard deviation, E(i) is the net energy export to the grid in i-th 
hour, M is the metabolic activity of the occupant, L is the thermal load on the occupant’s body, 
Ls,i is the luminance in the direction connecting the observer with each source, Lb is the 
background luminance that, for windows, is the average luminance of the wall excluding the 
window, Lwin is the luminance from the windows, ωs,i is the solid angle subtending the source 
from the point of view of the observer, P expresses the dependence of perceived discomfort 
glare on the position of the source i with respect to the observer, ti is the hour of the year and 
wfi is a weighting factor, equal to 0 or 1 depending on external illuminance. 

 A complete description of the topics behind these indicators is out of the scopes of this 
review paper, readers can refer to bibliography for further information. 

 

2.3. Main Building Simulation tools 

Thermal simulation of buildings received a great importance in last years, becoming a 
standard in both research and design fields, thanks to the growing performance of computers in 
terms of computational capacity and to the introduction of energy saving policies in buildings 
construction. The growing number of available solutions pushed the US Department of Energy 
(DOE) to create a web resource, the Building Energy Software Tools (BEST) Directory, 
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collecting main features of commercial BPS. The resource is now managed by IBPSA-USA and 
describes more than 150 tools. 

Instead, the application of optimization techniques in building design and performance 
simulation, also called Building Performance Optimization or BPO, is still rarely employed, and 
although building-specific optimization tools already exist, researchers mainly employ generic 
optimizers, i.e. optimization software suitable for each kind of application [46], [49], [53]–[55]. 
A list with the most important tools used for energy design of buildings is reported in Table 1, 
while a description of software that were employed in the analyzed studies is provided in Table 
2, highlighting the interoperability between geometrical modelling, thermophysical and 
optimization tools. A more comprehensive description of main BPO tools may be found in [13]. 

 

Table 1. List of the most important tools used for energy design of buildings 

Building Performance Simulation Building Performance Optimization 

TRNSYS [56] GenOpt [57] 

EnergyPlus [58] MATLAB Optimization Toolbox [59] 

IDA-ICE [60] modeFRONTIER [61] 

ESP-r [62] BEopt [63] 

DOE-2 [64] Opt-E-Plus [65] 

 

Table 2. Main features of main software employed in the analyzed studies 

Software Category 
Operative 

System 
[59], [66] 

Interactions with 
Geometrical 

Tools 

Interactions with 
Thermophysical 

Tools 

Interactions with 
Generic 

Optimization 
Tools 

Interactions with 
Specific 

Optimization 
Tools 

EnergyPlus 
Thermophysical 

simulation 

Windows 

Mac 

Linux 

SketchUp [67] 

OpenStudio [68] 

DesignBuilder [48], 
[66] 

Rhinoceros + plug-
ins [52], [66] 

- 

GenOpt [13], [15] 

modeFRONTIER 
[13] 

MATLAB Opt. 
Toolbox [44] 

MOBO [69] 

DesignBuilder [48], 
[66] 

Rhinoceros + plug-
ins [52] 

Opt-E-Plus [13], 
[15] 

jEPlus [66] 

jEPlus+EA [15] 

TRNSYS 
Thermophysical 

simulation 
Windows 

SketchUp (through 
TRNSYS3D) [66] 

- 

GenOpt (through 
TRNOPT) [13], [15] 

MATLAB Opt. 
Toolbox [66] 

MOBO [15] 

TRNOPT 
(connection with 

GenOpt) [15] 

BEopt [13], [15] 

Multiopt2 [15] 

IDA-ICE Thermophysical 
simulation 

Windows 

SketchUp [66] 

ArchiCAD [66] 

Revit [66] 

- 

GenOpt [13], [15] 

MATLAB Opt. 
Toolbox [70] 

MOBO [15] 

IDA-ESBO 
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MagiCAD [66] 

MATLAB 

Programming 
environment 

Optimization 
tool 

Windows 

Mac 

Linux 

- 

TRNSYS [66] 

EnergyPlus [44] 

IDA-ICE [70] 

modeFRONTIER 
[13] 

Topgui [13] 

DesignBuilder 

Geometrical 
modelling 

Optimization 
tool 

Windows 

Linux 
- 

EnergyPlus [48], 
[66] 

Radiance [66] 

MATLAB Opt. 
Toolbox [49] 

- 

 

3. Methodology 

In this review, algorithms and methodologies employed to optimize the energy performance of 
a building have been examined, focusing on design or refurbishment phases, thus neglecting 
optimization algorithms aimed at optimize the scheduling or the control of building systems. In 
order to analyze the optimization techniques applied to low-energy buildings, with a special 
focus on NZEBs, a bibliometric analysis has been conducted in mid-2018, selecting all papers 
prior to 2017 and using NZEB and optimization as keyword in scientific databases Scopus, 
ScienceDirect, MDPI and IEEE Xplore, and referring also to the bibliography of the selected 
papers, in order to collect also works not strictly related to Zero Energy Buildings. Furthermore, 
many papers reporting the word “NZEB” were focused only on low-energy buildings. The 
number of paper collected was drastically reduced as multiple papers had to be excluded, mainly 
because of the improper use of the keywords (e.g. NZEBs only cited in the introduction to 
describe the EU energy context, optimization used as synonymous of improvement) [71], [72], 
[81]–[90], [73], [91]–[93], [74]–[80]. 

The final set of this bibliometric research is composed by 64 works on energy saving in 
buildings, which may be categorized according to three criteria: 

• works on optimization to achieve NZEB or nZEB target, both on new and existing 
buildings: 37 papers; 

• works on optimization applied to low-energy buildings, without pursuing the zero-energy 
target, both on new and existing buildings: 13 papers; 

• works on cost-optimal nZEBs design, according to [28], both on new and existing 
buildings: 23 papers. 

Although this paper is mainly oriented on optimization algorithms, a description of cost-
optimal evaluations is considered very useful for designers, who are more interested on a 
regulation-oriented approach. This review is conducted starting from general considerations on 
examined papers and then focusing on three classes above depicted, providing an in-depth 
description of various algorithms, variables, objective functions and software employed by 
researchers in this topic. At the bottom of each sub-section, a description of the most notable 
approaches and original ideas is also given. As a summary of this analysis, a discussion section 
is provided at the end of the paper, highlighting lacks in literature and suggesting new ideas and 
research lines. 
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4. Review 

4.1. General considerations 

The Directive 2010/31/EU imposes to EU Member States that new buildings will have to be 
nZEBs starting from 31/12/2020. As this date is approaching, the topic of nZEB and low-energy 
buildings is gaining an increasing interest. As already stated, realizing a low-energy building 
requires a detailed investigation of multiple technical alternatives, and optimization techniques 
can improve the design process in terms of time for the investigation and quality of the final 
solution. This is corroborated by the fact that the analyzed papers show a Compound Annual 
Growth Rate (CAGR) higher than 29% between 2008 and 2017, with the greatest increment 
between 2012 and 2013, as shown in Fig. 3. The peak of publications was reached in 2015, with 
a decrease in last two years. 

 

 
Fig. 3. Publication of analyzed studies between last ten years (2008-2017) 

This decrease has not to be confused with a diminishing interest in the topic of low-energy 
buildings, as can be proved by the histogram reported in Fig. 4, obtained by searching “low”, 
“energy” and “buildings” as keywords on ScienceDirect database: 
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Fig. 4. Number of studies on low energy buildings on ScienceDirect database after 2000 

In Fig. 5, a geographical distribution of the research groups involved in the reviewed studies is 
reported. As some studies were conducted by researchers coming from different countries, the 
sum of values in Fig. 5 is higher than 64. Thanks to EU energy saving policies, as one may 
expect, European countries are the most interested in the topic of the NZEBs, and specifically on 
the optimization of its performance, while in other countries this subject appears to still be in 
developing phase. 

Further focusing on Europe (Fig. 6), the main outcome is that Italian researchers result as the 
most prolific in the topic of the optimization of energy-efficient buildings with 23 studies [44], 
[46], [96]–[105], [47], [106]–[108], [48], [49], [53], [54], [67], [94], [95], followed by Finnish 
[26], [70], [109]–[112], Portuguese [32], [42], [100], [113]–[115] and Spanish [31], [100], 
[116]–[119] researchers (all with 6 studies). It is worth to be highlighted that 6 of the 12 works 
in Asia have been conducted in Hong Kong [33]–[35], [39], [40], [45], focusing on the 
application of the uncertainties of parameters in the renewable systems design. 
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Fig. 5. Geographical distribution of analyzed studies in the world 

 

 
Fig. 6. Geographical distribution of analyzed studies in Europe 

Considering the main topic of the analyzed works, it is possible to state that the greatest effort 
has been done in the refurbishment of existing buildings [25], [26], [67], [70], [94], [95], [98]–
[100], [106], [109], [110], [31], [112]–[115], [120]–[125], [32], [126], [39], [42], [47], [49], 
[53], [55] (31 studies) and in the design of new buildings [30], [36], [68], [101]–[103], [107], 
[111], [116]–[118], [127], [37], [128], [129], [40], [43]–[46], [48], [52] (22 studies), as shown in 
Fig. 7. These studies are mainly focused in residential buildings, but also some studies on 
industrial or office buildings are slowly emerging [49], [52], [99], [122], [125]. As stated by a 
2011 study from BPIE [130], the current annual growth rate in the residential sector in EU is 
equal to 1%, so the refurbishment is considered as the most effective way to introduce nZEBs 
along the European continent. For this reason, the fact that research is currently focusing on the 
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refurbishment rather than on the design of new buildings is a positive outcome. 9 papers [96], 
[97][33], [54][34], [104], [105][35], [108] focused on the design of single components of the 
building, as an optimized wall stratigraphy or optimal RES size, while 2 works [119], [131] 
focused on the use phase energy consumption minimization. 

 

 
Fig. 7. Main topic of analyzed studies 

Another useful analysis concerns variables considered for the optimization of the building, 
that have been arranged as follows: 

• Building envelope (thermophysical properties of walls, roofs, and floors, shape and 
orientation of the building, shadowing systems, or PCMs employment); 

• Fixtures (thermophysical properties of windows and doors, emissivity and SHGC of glass); 

• HVAC and equipment (air conditioning systems, CHP plants, energy storage); 

• RES plants (solar collectors, PV, wind turbines, bio-diesel generators, wood or pellet 
boilers). 

Although HVAC and electrical equipment (e.g. electrical pumps) have been considered 
slightly less than other groups of variables, as shown in Fig. 8, it is possible to state that all 
categories appear to be equally useful to the researchers in their contribution to minimize the 
energy consumptions of a building. 
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Fig. 8. Main categories of variables considered for the energy optimization of buildings 

By changing the point of view and considering the different categories of energy 
consumptions in a building (Fig. 9), it is possible to reach different conclusions. Indeed, as it 
could be easily expected, the space conditioning is by far the most frequent considered energy 
sink (i.e. category of energy consumption) in the analyzed literature. Most of studies consider 
both space heating and cooling, but in selected locations it is replaced by only space heating or 
cooling. The second most considered energy sink is the internal lighting, both artificial and 
natural, as rising the natural lighting also increases the cooling loads. Ventilation and Domestic 
Hot Water (DHW) are also considered, with both mechanical and natural ventilation being 
aggregated because of scarcity of studies regarding natural ventilation, depending on the 
typology of the building. The embodied energy, i.e. the energy needed for production, 
installation and possibly disposal of building components and equipment, has been considered 
only in three studies [36], [111], [128]. A fourth study also considered the embodied impacts of 
a building, but as it was focused on the carbon footprint of a building, the embodied carbon was 
calculated, rather than embodied energy [25]. 

 

 
Fig. 9. Objective functions-related energy sinks considered for the optimization of buildings 

Information contained in Figs. (7)-(9) are summarized in Table 3: 
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Table 3. Summary of main topics, categories of variables and objective functions 

 
NZEBs & nZEBs Low-energy buildings 

Main topic of analyzed studies 
Building refurbishment 23 8 

Building design 17 5 

Building single component 9 0 

Use phase of buildings 2 0 

Main categories of variables for the energy optimization of buildings 

Building envelope 37 9 

Fixtures 33 9 

RES plants 30 5 

HVAC and equipment 26 4 

Objective functions-related energy sinks for the optimization of buildings 

Air conditioning 50 13 

Lighting 33 6 

DHW 25 5 

Ventilation 21 1 

Embodied energy 3 0 

 

Another interesting feature to be recapped is the uncertainty analysis of parameters and the 
robustness of models. It is well known that energy simulations of buildings are based on a 
weather file, representing a standardized set of outdoor conditions (air temperature, solar 
radiation, wind speed, etc.) for a given climate location. These conditions should represent the 
typical average year for a geographic site, smoothing variations that might occasionally occur. 
But nZEBs and NZEBs are based on the measurement of energy consumption and production 
occurring in reality, thus these values are subject to variability and uncertainty. A similar 
argument may be discussed on financial parameters (e.g. interest rates), that are estimated based 
on the current and past financial trends. The statistical analysis on input parameters have been 
rarely considered in the analyzed papers. Neglecting sensitivity analyses performed over 
optimization outputs, thus non optimization-integrated approaches [109], [110], [112], [120], 
[123], [127], the uncertainty analysis was assessed by the integration of Monte-Carlo 
simulations in the process, adopting probability distributions for input parameters as climate data 
or thermophysical features of building [34], [35], [39], [40], [45]. This kind of analysis was 
mainly adopted for avoiding the oversizing of equipment ad RES plants, and it proved to be an 
effective and reliable way to design the components in a NZEB. 

Regarding the analysis of computational burden related to adopted methodologies, very few 
data are available. In detail, 14 studies provided various and different information about the 
technical features of computers employed for running simulations, and it is not possible to 
extrapolate useful information. Available data are reported in Table 4. 
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Table 4. Details on computational burden of simulations conduced in analyzed studies 

Paper CPU RAM Problem Features - 
Simulations 

Problem Features - 
Variables and 

constraints 
Calculation Time 

[68] 
Intel Xeon E5540 
processors in a 10 
cores mini cluster 

- 

139,968 combinations 
explored through 1,350 

simulations (population size 
10 and 135 generations) 

11 integer variables 

- 5 generations: 18 min 
- 60 generations: 3 hours and 36 

min 
- 135 generations: 8 hours 

[117] Intel C2D E7400 @ 
2.8 GHz 4 GB - 4 variables 

- 40 s for a 2-storey building for 
each run 

- 2 min and 40 s for a 4-storey 
building for each run 

[131] Quad core Intel 
processor server - - 11 categories of 

variables More than 50 hours 

[118] Quad core i5 
computer - 4,096 simulations - 

Approximately 2 min per 
simulation (6 days for the whole 

optimization) 

[31] 

Computer AMD 
Athlon(tm) II X2 

B24 with a processor 
@ 2.99 GHz 

3.49 GB - 

1,110 continuous 
variables, 2,800 binary 

variables, and 3,513 
constraints 

The CPU time is in the order of 
seconds depending on the 

instance being solved 

[32] Server with 16 CPUs 72 GB - 11 categories of 
variables 

Stop criteria for the optimization 
process is an optimality gap of 
less than 3% or an optimization 

run time of one hour. The 
average computation time 

increases from 341 s without the 
consideration of passive 

measures to about 728 s by 
considering them 

[43] Dual core laptop - 
9,600 simulations 

(population size 300 and 32 
generations) 

- 3 days globally, about 30 s per 
simulation 

[46] 
Intel Core i7 with 4 
cores (8 threads) @ 

2.2 GHz 
8 GB 

17,006,112 combinations 
explored through 600 

simulations (population size 
24 and 25 generations) 

- 13 hours to complete the 
optimization run 

[25] Intel i7 6 GB 55,296 combinations 9 integer variables 10 hours 

[108] Intel Core i7 @ 2.00 
GHz - 76,800 combinations 9 integer variables 

A thermophysical simulation 
takes around 360 s by using the 
‘conduction transfer function’ 

algorithm with 6 time-steps per 
hour. For this reason, the paper 

adopts only few  thermophysical 
simulations and many 

optimization runs, that require 
around 1 second 

[119] Intel Core i5-2430M 
CPU @ 2.40 GHz 8 GB - 

37,440 continuous 
variables, 6,963 integer 
variables, and 51,282 

constraints 

Elapsed time is case dependent.  
Stop criteria: simulations run 

until a gap of 1% or, 
alternatively, 2 h of operation 

[111] 
Intel Core i5-3470 

CPU @ 3.20 GHz (4 
CPUs) 

- 

4,992 combinations 
explored through 800 

simulation runs (the same 
search space is explored 
through 1,600 simulation 
runsbut optimal solutions 

were very similar) 

4 integer variables A thermophysical simulation 
requires about 300 s 

[49] Intel Core i7 @ 2.00 
GHz - 134,217,728 combinations 10 integer variables 

Each simulation requires about 
600 s. The computational time 

required by an exhaustive 
sampling would be prohibitive, 
around ‘hundreds of years’. The 

GA is employed to save time 

[112] Quad-core i5-3570 
CPU @ 3.70 Hz - 4,608 combinations 7 integer variables - 
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From the analysis of the whole bulk of papers in literature, it is hard to compare different 
works in order to identify a general trend or to suggest an approach instead of another, as many 
combinations of tools, algorithms and applications have been found. The main evidence that is 
possible to derive is that genetic algorithms are preferred for the interaction between a 
thermophysical software and an optimization tool, thanks to the fact that they do not require the 
analytical expression of objective function or constraints. Multi-objective approach appears to 
be most reliable for the selection of an optimal solution, as it allows to consider multiple aspects 
of a project or system. 

 

4.2. Net and nearly-Zero Energy Buildings optimization 

In this review, 37 works that employ optimization algorithms to attain the NZEB or nZEB 
targets have been collected. It is possible to divide these studies into three macro-categories, 
according to the nature of the developed technique (one paper compares both single and multi-
objective algorithms, thus this work is double-counted): 

• Single-objective optimization (10 papers) [33], [53], [94], [95], [106], [112], [117]–[119], 
[131]; 

• Multi-objective optimization (28 papers) [26], [32], [45]–[49], [52], [54], [68], [70], [96], 
[33], [97], [102], [107], [108], [111], [121], [122], [128], [34]–[37], [39], [40], [44]. 

The most numerous group of works is certainly the one employing multi-objective 
optimization, that is often preferred to single-objective algorithms. This orientation highlights 
the complexity of the energy optimization of a building, and also confirms data reported in some 
of examined review papers [13], [14], where it is stated that 70% of the interviewed designers 
perform multi-objective optimization. 

In single-objective optimization papers, there is a great predominance of heuristic algorithms. 
Indeed, excluding 2 works [95], [131] where the employed technique was not explicated, only 1 
work used a deterministic Mixed Integer Linear Programming (MILP) algorithm [119], another 
study experimented a statistical optimization through Yates algorithm [118] and 6 papers out of 
8 used heuristic algorithms, and specifically: 

• 3 used Particle Swarm Optimization (PSO) algorithm [53], [94], [106]; 

• 2 used unspecified genetic algorithms [33], [112]; 

• 1 used Tabu Search algorithm [117]. 

About multi-objective optimizations works, 3 out of 27 papers didn’t specify the algorithm 
[52], [102], [107]. Most of the remaining studies reported the use of heuristic algorithms, with a 
great predominance of Non-dominated Sorting Genetic Algorithm (NSGA) II algorithm [132], 
that was used 12 times [26], [33], [108], [111], [36], [44], [46]–[49], [68], [70], both in the 
original or modified versions. This frequency of employment is corroborated by [27], where 
NSGA II’s performance has been compared to other six multi-objective algorithms, resulting 
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one of the best, although Two-Phase Optimization Genetic algorithm (PR_GA) [133] is reported 
to be the best one. In general, in this category of papers have been found: 

• 12 works using NSGA II (Non-dominated Sorting Genetic Algorithm) [26], [33], [108], 
[111], [36], [44], [46]–[49], [68], [70]; 

• 4 works using MOGA or MOGA II (Multi-Objective Genetic Algorithm) [54], [96], [97], 
[121]; 

• 3 works using unspecified genetic algorithm [37], [122], [128]; 

• 6 works using Scalarization technique (deterministic algorithm) [32], [34], [35], [39], [40], 
[45]. 

The objective functions explicitly considered in all these studies are summarized in Fig. 10. 
The main outcome is that economic aspects are the most preferred metrics to reach the optimal 
solution in a building. Indeed, although most works are not pursuing the cost-optimal building 
solution, they usually evaluate investment cost [34], [39], [40], [45], [54], [108], [118], [121], 
[122] or both investment and operating costs [32], [33], [35], [117], [131]. Energy consumptions 
are also considered as a quantity to be minimized in a complementary way to cost functions 
[34], [39], [96], [97], [102], [107], [108], [118], [121], [122], [40], [44], [45], [48], [52], [54], 
[68], [95]. Thus, it can be stated that consumption is always considered, as the operating costs 
also account for the economic expenses for energy supply. Carbon dioxide emissions have been 
mainly evaluated through the operating energy consumption of the building, but a study 
involving LCA analysis was also present [36]. Internal comfort refers to thermal or visual 
comfort and it is generally assessed through synthetic indicators. Thermal comfort has been 
maximized through Fanger’s indicators Predicted Mean Vote (PMV) and Predicted Percentage 
Dissatisfied (PPD) [44], discomfort hours [36], [39], [49], Weighted Discomfort Time (WDT) 
[47], Long-term Percentage of Dissatisfied [46]. Visual comfort has been calculated with Useful 
Daylight Illuminance (UDI) [46], [52] and Discomfort Glare Index (DGI) [46]. Even building 
interactions with the electrical grid has been minimized through indicators as Grid Interaction 
Index, that has been considered by two different research groups in Hong Kong, indicating that 
the NZEB is considered as a way to reduce the electrical demand in their country, as well as a 
means to reduce the energy and carbon footprint of human activities. 
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Fig. 10. Objective functions considered in NZEB and nZEB analyzed works 

An interesting feature is that few studies specify the constraints used in their model. In this 
category, only 4 studies explicitly explained what variable was subject to constraints, although is 
highly probable that at least geometrical constraints were considered, in order to obtain feasible 
building solutions. Indeed, only [45] clearly specifies that the Net Zero annual balance has been 
considered as a constraint. Other constrained variables were: 

• the internal comfort [45], [46], [48], outlined as a minimum air changes value or minimum 
thermal comfort hours; 

• a minimum number of hours of independency from the electrical grid [45]; 

• constraints linked to legal requirements (maximum energy consumption from non-
renewable sources) or to national incentives (minimum Primary Energy Saving for CHP 
plant) [119]. 

Considering the BPS tools used in these studies, it is possible to state that TRNSYS and 
EnergyPlus are the most employed thermophysical tools. Although both of them provide 
optimization software interfaces, i.e. TRNOPT, jEplus+EA and Opt-E-Plus, these tools are still 
rarely used, while MATLAB is the most preferred optimization software (Figs. 11 and 12). 
MATLAB shows a great versatility in this research field, as it has been used both for energy 
calculations [35], [54], [96], [97], [102], [107], [119], often using simplified models, and for 
optimization, recurring to MATLAB Optimization Toolbox [27], [33], [108], [34], [36], [37], 
[44], [45], [47], [49], [70]. There is also a number of researchers who preferred to develop on 
their own an optimization tool rather than using an existing one. 
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Fig. 11. Thermophysical BPS used in literature review on NZEB and nZEB 

 

 
Fig. 12. Optimization BPS used in literature review on NZEB and nZEB 

Regarding innovative approaches introduced in this category of studies, two particular sets of 
studies are recapped here. 

The first set of studies has been conducted in University of Salento (Lecce, Italy), and is 
focused on finding the optimal stratigraphy for the external walls of a building located in 
Mediterranean area through multi-objective optimization [54], [96], [97]. Differently from other 
studies, this research neglects time-consuming energy simulation of a building, focusing only on 
dynamic performance of the opaque components. Indeed, the objective functions of these works 
are quantities as thermal admittance, periodic thermal transmittance, decrement factor, and time 
shift. Furthermore, a special attention is given to eco-friendly materials through the 
maximization of the ITACA score, i.e. a percentage of compliancy with ITACA Protocol 
standards [134]. Calculation procedure has been developed in MATLAB, coupled with 
modeFRONTIER optimization tool using MOGA II algorithm. 
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Another group of interesting studies involves two different research teams in Hong Kong, 
belonging to The Hong Kong Polytechnic University [33]–[35] and to City University of Hong 
Kong [39], [40], [45]. These research groups, apparently independently, introduced an 
interesting topic in the design of a NZEB, stating that the conventional engineering approaches, 
based on the definition of a worst case for the design of an equipment, may result to be 
fallacious, because it leads to oversizing that may affect the achievement of the NZEB target. 
The design approach applied in these works is based on Monte-Carlo statistical analysis on 
physical parameters (e.g. building transmittance), design parameters (e.g. internal loads, 
ventilation rate), and scenario parameters (wind speed, air temperature, sun radiation), and has 
been applied both on the HVAC systems (mainly for cooling, since in Hong Kong this is the 
most impacting thermal load) and on the RES plants (PV, wind turbines and bio-diesel 
generators). 

An interesting outcome has been provided by [68], where a performance comparison between 
scenario-by-scenario, parametric and evolutionary optimization approaches for a nZEB design is 
done. This work shows that the optimization appears much appealing, as it allows to evaluate 
multiple combinations and contemporarily saving up to 2,5 times the needed hours, even with 
lower computational performance, equally allowing to identify the Pareto front with a good 
diversity of solutions. 

 

4.3. Low-Energy Buildings optimization 

In order to further deepen the topic of optimization applied to low-energy buildings, other 13 
papers were selected [25], [30], [123], [124], [129], [31], [42], [43], [55], [103], [113], [116], 
[120], with 3 employing single-objective and 10 adopting multi-objective approaches. The 
algorithms employed in this category are various, in detail: 

• 4 studies, conducted by 2 different research groups, developed a mathematical model in 
order to describe the thermal behavior of the building, that were solved by deterministic 
combinatorial Tchebycheff programming technique [30], [42], [55], [113]. Their 
importance is also due to the fact that these models represent first attempts to evaluate the 
building optimization with multi-objective approach [55]; 

• 2 studies employed scalarization technique to turn the problem in a single-objective 
optimization, that was solved with evolutionary algorithms. In detail the first study used a 
genetic algorithm [120] and the last a differential evolution algorithm [123], considered to 
outperform the genetic ones; 

• 2 studies employed genetic NSGA II multi-objective genetic algorithm [25], [103]; 

• 1 study used SPEA2 multi-objective evolutionary algorithm (Strength Pareto Evolutionary 
Algorithm) [43]; 

• 1 study considered a deterministic MILP single-objective algorithm coupled with the 
ε-constraint algorithm to manage multi-objectives and overcome non-convex solutions 
[31]; 
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• 2 between the single-objective studies employed genetic algorithms to obtain the minimum 
LCC of the retrofit actions [124][129]; 

• The other study employing single-objective optimization adopted heuristic Tabu Search 
algorithm [116]. 

As for the Net and nearly-Zero Energy Buildings optimization group, analyzing the explicitly 
considered objective functions in these studies (Fig. 13), cost functions are the most employed, 
with 12 studies out of 13 considering investment or operating costs (1 study considered 2 cost 
functions) [25], [30], [124], [129], [31], [42], [43], [55], [113], [116], [120], [123]. Energy 
consumptions have been assessed in 10 studies [30], [42], [43], [55], [103], [113], [116], [120], 
[123], [124], being replaced in other 2 works by environmental aspects calculated with LCA 
methodology [25], [31], while another paper minimized both energy consumption and CO2 
emissions [30]. Only 2 studies also considered the thermal comfort [42], [43], the first 
calculating the PMV while the last only by comparing cooling loads and air-conditioning peak 
power. 

 

 
Fig. 13. Objective functions considered in Low-Energy Buildings analyzed works 

Again, as already stated for Net and nearly-Zero Energy Buildings optimization group of 
works, only 2 studies in this group specify the constraints used in their model. These constraints 
are design-oriented, as they concern a maximum value of investment cost, a maximum payback 
time and a minimum attained energy saving [120], [123]. 

Regarding thermophysical BPS and BPO tools, various combinations have been adopted. 
Excluding studies which do not specify the employed software, EnergyPlus [25], [103], [124], 
[129] TRNSYS [42], MATLAB [113], and Be10 [43] were used for thermophysical simulations, 
while GenOpt [42], MATLAB [42], Octopus [43] and jEPlus+EA [25] were employed for 
optimization. In detail,  MATLAB was used for both building simulation and optimization in 
[113], while LINGO was used in the same way in [55]. Two approaches of integrated design 
with specific tools can be found in [25], [43]. The first is based on Rhynoceros, a 3D CAD 
commercial software, whose performance can be improved with Grasshopper and its plug-ins to 
evaluate parametric analyses. In detail, Be10 plug-in allows to perform energy calculation, while 



 

26 

 

 

multi-objective analysis can be done through Octopus plug-in. The second has been done in 
EnergyPlus, using SketchUp for the geometrical modelling, jEPlus for parametric analysis and 
jEPlus+EA for multi-objective optimization. 

 

4.4. Cost-Optimal nearly-Zero Energy Buildings 

More than one third of the reviewed papers is concerned on cost-optimality of nZEBs (23 
papers). All these works have been conducted in Europe, as the cost-optimal technique has been 
set by EU in [28] as the methodology to follow for calculating minimum energy performance of 
buildings. These works are quite inhomogeneous, so it is not possible to further categorize them 
in smaller groups. 

The unique common feature of these works, as the name of this category suggests, is that the 
objective function is always a cost function. The most used is the Global Cost, a methodology 
introduced by the standard EN 15459 [29] that accounts for the initial investment, the sum of 
annual costs among the considered time period and the final value. This function is quite similar 
to the Life Cycle Cost (LCC), that is used as an alternative in these studies. Both Global Cost or 
LCC functions are often actualized through Net Present Value calculation. In some studies, 
multi-objective optimization is performed, also considering energy consumptions or thermal 
comfort (Fig. 14). 

 

 
Fig. 14. Objective functions considered in Cost-Optimal nearly-Zero Energy Buildings analyzed works 

As EU guidelines suggest to assess a minimum of ten alternative package in order to select the 
cost-optimal alternative, there are few studies on cost-optimal nZEBs that employ optimization 
algorithms, as previously stated. These studies have been mainly conducted by two research 
teams, and are structured as follows: 

• First group, composed by Italian and French researchers [53], [94], [106], employs the 
single-objective Particle Swarm Optimization algorithm to calculate the global cost. In 
their studies, the optimal solution is assessed by comparing multiple envelope, windows, 
HVAC and RES variables, by the coupling of TRNSYS with GenOpt; 
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• The second group is composed mainly by Finnish researchers [70], [111], [112], and in 
their works LCC is used as objective function, evaluated through genetic algorithms. The 
thermophysical simulations have been conducted with IDA-ICE in these studies, while 
MATLAB, MOBO and an original tool were used for the optimization. 

A special attention is to be granted to MOBO, a BPO software developed by Finnish 
researchers and presented in [15]. According to his developers, MOBO (Multi Objective 
Building Optimization tool) was created in order to provide a freeware able to overcome the 
limitations of other existing BPOs, integrating multiple kinds of optimization algorithms (single 
or multi-objective optimization, constrained or unconstrained problem, continuous or integer 
variables) and providing a Graphical User Interface (GUI) to define the problem. 

In this group of works, an interesting approach has been proposed in [49], where a multi-step 
calculation has been followed. The first step involves the time-consuming energy simulation of 
design alternatives, where energy consumption and internal comfort are optimized through a 
multi-objective genetic algorithm, determining the Pareto front. The second step concerns the 
calculation of the global cost for each alternative and the determination of the cost-optimal one. 
This two-step approach allows to save time because the thermophysical simulations are 
performed only during the first step, thus calculating the cost related only for a subset of 
solutions (Pareto front solutions) and executing a second optimization that is based on simpler 
and shorter calculations. 

With respect to the BPS employed in these works, many studies were performed using 
commercial software or tools originally developed following standard ISO 13790, highlighting 
that these researchers are more regulation-oriented, while others used IDA-ICE (often preferred 
in North European countries), TRNSYS and EnergyPlus, as stated in Fig. 15. 

 

 
Fig. 15. Thermophysical BPS used in literature review on cost-optimal nZEBs 
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5. Discussion and Conclusions 

In this paper, academic works on building energy optimization have been reviewed, with a 
special focus on Net and nearly Zero Energy Buildings. Although other similar papers already 
exist, this study is one of the first attempts to summarize literature on this topic, focusing on 
algorithmic features in order to provide beginners with a useful view on already explored 
methodologies. Although some technical figures as architects may be less familiar with this 
topic [12], they should also benefit from this review, earning a basic knowledge about the 
optimization techniques and the available commercial tools, allowing to move their first steps 
with more awareness. 

European countries are at the forefront of this sector, mainly because of the EU energy saving 
policy, with Italian researchers being the most involved, while other countries in the world are 
increasingly interesting in the topic. 

After almost ten years of experience in this research field, many methodologies have been 
explored, considering different kinds of optimization algorithms, variables, objectives and 
software, that were deeply analyzed and compared in this study. As so many approaches have 
been investigated by the scientific community, it is not possible to identify a general trend or a 
common frame of investigation. Nevertheless, genetic multi-objective algorithms are often 
preferred, first of all the NSGA II algorithm, as their structure appear to be the most convenient 
for the connection with BPS tools and the management of their outputs. 

To date, only few integrated thermophysical and optimization tools exist, conversely 
researchers often combine specific thermophysical BPS with optimization software through 
programming languages as MATLAB. TRNSYS and EnergyPlus have shown to be the most 
popular BPS tools, thanks to their accuracy and relative user-friendliness, while IDA-ICE is 
growing interest, mainly in northern Europe countries. The MATLAB computing environment 
has shown a great versatility, as it has been employed both to evaluate and to optimize energy 
performance of buildings, although the thermophysical performance have been estimated 
through simplified models. MOBO, a BPO freeware developed in scientific environment [15], 
appears to be a very interesting tool, as already stated in [7], since this software allows to 
employ a great variety of optimization algorithms, but has still been rarely used. 

As the aim of the optimization should be the identification of the optimal building 
configuration to be implemented, the legal requirements and constraints should be also taken 
into account in the optimization process. In EU Countries, the energy performance of buildings 
is rated in a synthetical way through the Energy Performance Certificates (EPC), introduced by 
the first EPBD in 2002. EPCs attribute a letter to each building, from G (the worst class) to A 
(the best class), that are determined by the yearly energy requirements of the building. In a 
similar way, the optimal building performance may also be assessed by comparing them with 
EPC classes. A categorization of optimal solutions within a certification scheme was analyzed in 
only 4 between the reviewed studies [26], [98], [114], [117], considering European EPCs or the 
Italian CasaClima certification. Moreover, as EPCs are usually collected to develop databases at 
national and international level, a further evolution of EPCs may include a specific section, to be 
filled in whether the building was designed with optimization techniques, in order to indicate 
parameters (input data), variables, their bounds and objective functions adopted in the design 
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process. This database should be public, as it may help future designers in the setting of new 
optimization processes. 

One of the main outcomes of this analysis is that most commonly optimized variables are cost 
functions as Global cost, Life Cycle Cost or investment cost, while energy consumption in use 
phase of the building are considered secondly, showing a general market-oriented trend of the 
studies. More surprising is that other aspects, as the environmental implications of the building 
or the internal comfort of dwellers, have been often ignored. Focusing on the first one, although 
the main aim of the LEBs is the energy saving, this was often accounted in literature as the 
operating saving only, neglecting the implications on the embodied energy of the building 
deriving from the retrofit interventions, that are particularly important in this kind of buildings 
[19]. This may be caused both by the difficulty in analyzing these kinds of impacts for non-
insiders and by the scarcity of tools that integrate thermophysical and environmental analyzes 
available. In order to account for the global energy footprint of the building, a reliable 
methodology as the Life Cycle Assessment (LCA) [135], [136] should be employed, but few 
examples exist in literature, as already highlighted in [36] with respect to the coupling between 
TRNSYS and EQUER. In detail, the only commercial software reported in the BEST Directory 
performing both dynamic thermophysical simulations and Life Cycle Assessment of buildings is 
PLEIADES, a French software composed by a module for each aspect of the design of a 
building. The STD COMFIE (formerly COMFIE) is the part dedicated to the energy simulation, 
while PLEIADES ACV (formerly EQUER or novaEQUER) is the module performing the LCA 
[137]. Regarding research studies, two attempts to integrate the Life Cycle Assessment in 
dynamic energy simulation were found in literature [138], [139]. In the first study [138], a new 
type for TRNSYS was developed, allowing to perform calculations according to the standard 
EN 15978 [140], the European standard dedicated to the LCA of buildings. The second study 
[139] shows the development of a framework for linking EnergyPlus with a multi-objective 
optimization tool (Honeybee), also recurring to an LCA database available in MS Excel format. 

In order to show the advantages that the employment of LCA may bring to the design of a 
low-energy building, a further analysis was conducted on papers considering the insulation of 
the envelope (i.e. external wall, roof or floor) as an improvement action. Insulation materials 
adopted in the reviewed studies were categorized in High impact (embodied energy > 200 
MJ/FU, red filling in Fig. 16), Mid impact (100 MJ/FU < embodied energy < 200 MJ/FU, 
yellow filling in Fig. 16) and Low impact (embodied energy < 100 MJ/FU, green filling in Fig. 
16), according to the LCA impact reported in [141], where materials’ embodied energy per 
given thermal performance is provided. In Fig. 17 it is possible to see that 19% of papers 
considered High impact materials and 35% used Mid impact materials, while 23% of papers 
didn’t take into account the material but only the insulating performance. 
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Fig. 16. Insulation materials’ embodied energy per given thermal performance [141] 

 

 
Fig. 17. Insulation materials’ embodied energy in the analyzed papers 

One of the few quantitative proofs of the disadvantages given from the employment of 
insulation materials available in literature can be found in [138], where a comparison of main 
LCA indicators trend for a given building for different thicknesses of insulation material 
(expanded polystyrene) is provided. In this specific case, although the use phase electricity 
consumption lowered exponentially with higher insulation thicknesses, the Global Energy 
Requirement underwent a quasi-linear increase. 

A more comprehensive way to rate buildings performance, also accounting for environmental 
impacts, are the Sustainable Building Certifications. The sustainability certifications assess and 
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rate buildings performance and environmental impacts, promoting more eco-friendly measures 
to be adopted in the building sector. There are currently hundreds of certification systems, 
comparing different aspects, and are mainly based on Life Cycle Assessment methodology. 
Main examples are the British Building Research Establishment Environmental Assessment 
Method (BREEAM), the American Leadership in Energy and Environmental Design (LEED), 
the Japanese Comprehensive Assessment System for Built Environment Efficiency (CASBEE) 
and the Italian ITACA (Institute for the Innovation and Transparency of Contracts and 
Environmental Sustainability, Istituto per l'Innovazione e Trasparenza degli Appalti e la 
Compatibilità Ambientale in Italian) Protocol [97], [134], [142]. Some of the papers analyzed in 
this study took into account the ITACA protocol indicators between their objective functions, as 
already reported in 4.2 section [54], [97], [99], and this example represents a useful guide for 
non-insiders to include in a simplified way an LCA in the optimization framework of a low-
energy building design/refurbishment. Indeed, some similarities between Sustainable Building 
Certifications and multi-objective optimization approach to the design of a building can be 
recognized, but while the rating’s main aim is to categorize the performance, and only 
secondarily to give advices for the reduction of impacts, an optimization process is primarily 
oriented to the creation of a sustainable building through the best available combination of 
alternatives. 

Thus, although embodied energy and embodied carbon are often neglected in traditional 
buildings, as NZEBs are shifting building energy consumption from the use phase to the 
construction phase, authors strongly recommend to assess also for environmental implications of 
buildings, in order to identify the technical solution for the building that really allows to save 
energy, ultimately introducing a way to design buildings supporting the sustainable 
development. According to this recommendation, as future development of this study, available 
thermophysical, optimization and LCA tools will be further analyzed in order to integrate the 
most promising ones into a unique framework for the integrated energy and environmental 
design of buildings. 
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