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Abstract— This paper proposes the theoretical framework and
the experimental application of the Active Disturbance Rejection
Control (ADRC) to Synchronous Reluctance Motor (SynRM)
drives. The ADRC is a non-linear control technique which can be
viewed as a particular kind of input-output Feedback Lineariza-
tion Control (FLC), where the non-linear transformation of the
state is not computed by means of the model, but is estimated on-
line. This approach permits coping with unmodeled dynamics as
well as uncertainty in the knowledge of the model parameters and
exogenous disturbances. The effectiveness of the proposed control
law has been verified experimentally on a suitably developed
test set-up. Experimental results fully confirm the high dynamic
performance guaranteed theoretically by ADRC.

I. INTRODUCTION

The first prototypes of the synchronous reluctance motors
(SynRM) date back to the first decades of 1900. At the very
beginning, SynRMs were rarely adopted because of their low
performance in terms of output torque and power, and their
relatively high price. Nevertheless, over the last few years
more performing SynRM have been designed and constructed
with higher reliability and robustness, making them suitable
for industry applications. In particular, improvements in rotor
design have allowed increased saliency ratio ranging from 9
to 12 [1]. Indeed, high saliency ratios have permitted high
performance applications, like machine tools drives, robotics,
and electrical vehicles. Another possible application is in
energy storage drives, like flywheel energy storage systems,
especially of low power, as needed in small islands. Because
of their construction characteristics, SynRMs can be hardly
operated in open loop. High dynamic performance can be
achieved by adopting vector control techniques and several
rotor-oriented or stator flux-oriented control schemes have
been developed [2]–[4]. Theoretically, the performance of the
SynRMs is limited, however, by the strong magnetic non-
linearity of the machine, with different self-saturation phenom-
ena on the direct and quadrature axes, as well as significant
cross-saturation phenomena. To address these issues, a large
number of nonlinear control strategies are available [5], [6].
Nevertheless, few applications of nonlinear control methods
to electrical drives are in general present in the scientific
literature, and even less for SynRMs. Among these, one of
the most promising nonlinear control strategies is the input-

output feedback linearization (FLC) [7]–[11]. In particular, [8],
[9] propose an adaptive input-output feedback-linearization
(AIOFL) technique used for speed and torque-tracking control
of a SynRM drive. [10] proposes a nonlinear controller, which
is able to directly regulate the torque by selecting the product
of direct and quadrature axes currents as one of the output vari-
ables. Recently, a nonlinear controller based on input-output
FL for SynRMs drives has been presented, considering the self
and cross-saturation saturation effects [12]. The space-vector
dynamic model adopted for developing the proposed FLC
technique has been proposed in [13], and the related magnetic
model including both the self and cross-saturation has been
described in [14]. The input-output FLC technique is, however,
a model-based control, and therefore it suffers primarily from
two disadvantages: 1) the accuracy of the dynamic model on
which the control law is based; and 2) the corresponding
correct knowledge of the model parameters. A way to deal
with this problem is to design robust control techniques able
to consider the parameter uncertainties explicitly: [15], [16].
Another very promising way to overcome these limitations
of the FLC is the adoption of the active disturbance rejection
control (ADRC) [17], [18]. In ADRC, the order of the dynamic
model of the system to be controlled is augmented, considering
the additional nonlinear function, permitting the system to be
linearized, with an additional component of the state. While
in the classic FLC this function is assumed to be known, in
the ADRC this function is estimated on-line by means of an
extended state observer (ESO). It follows that ADRC can be
considered as an "adaptive robust version" of the FLC control
technique, since the state feedback term is estimated on-line.
In this way, not only are the problems due to uncertainties
on the parameters addressed, but it is also possible to handle
unmodeled dynamics and exogenous disturbances (like load
torques). Specifically, this paper develops theoretically an
ADRC control technique for SynRMs drives, in particular
for those applications that require few perturbations in speed
and torque loops. Indeed, flywheel energy storage systems
require disturbance rejection to decrease the wear-out of the
components and extend their life-time. The proposed ADRC
has been tested experimentally on a suitably developed test
set-up.



II. SPACE-VECTOR STATE MODEL CONSIDERING SELF AND
CROSS-SATURATION

A novel complete magnetic model of the SynRM has
been proposed in [14], where specific flux versus current
functions have been deduced, permitting both the self and
cross-saturation effects to be accounted for. Correspondingly,
[13] has proposed a new space-vector model of the SynRM
including self and cross-saturation effects, expressed in state
form, written in the rotor reference frame. Both the complete
magnet model and the state space representation of the model
are briefly described in the following as an introduction to the
proposed control strategy.

If Ψs = [ψsx, ψsy] is the vector whose elements are
the stator direct and quadrature flux components in the rotor
reference frame, and is = [isx, isy] is the corresponding stator
current vector, the complete space-vector dynamic model of
the SynRM in state form, selecting the stator fluxes as state
variables, can be written as [14]:

dΨs

dt
= us −Rsis − jωrΨs. (1)

As shown in [14], the stator fluxes can be obtained from the
stator current by means of the following relations:

ψsx=Lsxxisx, ψsy=Lsyyisy, (2)

where the static inductance components are defined as follows:

Lsxx = α
1− e−aisx
|isx|

+ β − γ 1− e−bisxisy
i2sx

, (3)

Lsyy = δ
1− e−cisy
|isy|

+ ε− γ 1− e−bisxisy
i2sy

, (4)

The entire magnetic behavior of the machine can be, therefore,
described by functions requiring the knowledge of 8 model
parameters. In [14], it has been further shown that the func-
tions (2) properly satisfy the reciprocity conditions as for the
cross-saturation, ensuring that the nonlinear inductances do
not generate or dissipate energy. Moreover, an identification
technique of the saturation model obtained with stand-still
tests and based on Genetic Algorithms (GA), without the
need for locking the rotor, has been proposed and validated
experimentally [14].

By using Eq.s (2)-(4), model (1) can be also conveniently
written by considering the stator currents as state variables,
instead of the stator fluxes, as follows:

dis
dt

= L′s
−1

(us −Rsis − jωrLsis) . (5)

The inverse of the dynamic inductances matrix L′s in (5) is
defined as:

L′s
−1

=
1

L′sxxL
′
syy − L′sxyL′syx

[
L′sxx L′syx
L′sxy L′syy

]
, (6)

where the self and cross dynamic inductances can be retrieved

as follows:

L′sxx=
dψsx
disx

=αae−aisx +β−γ (1+bisxisy)e−bisxisy−1

i2sx
(7)

L′syy=
dψsy
disy

=δce−cisx +ε−γ (1+bisxisy)e−bisxisy−1

i2sy
(8)

L′sxy=L′syx =
dψsx
disy

=
dψsy
disx

=γbe−bisxisy (9)

Finally the mechanical equation of the SynRM is given by:

J
dωr
dt

= −fvωr + tm − tl, (10)

where J and fv are the inertia moment and the viscous friction
coefficient, tl is the load torque, and tm is the electromagnetic
torque generated by the motor and given by:

tm=
3

2
p (Lsxx−Lsyy) isxisy=

3

2
p

(
1

Lsxx
− 1

Lsyy

)
ψsxψsy.

(11)
It is noteworthy that, only the expression of the static induc-
tances appears in the dynamics of the speed, since the elec-
tromagnetic torque depends explicitly on static inductances,
and depends on dynamic inductances only indirectly through
stator fluxes.

III. THE ACTIVE DISTURBANCE REJECTION CONTROL LAW

The proposed ADRC technique is based on the construction
of an extended model of order n + 1, where n is the order
of the system to be controlled. An additional state variable
should be introduced to represent the total disturbance due
to parameter uncertainties, external disturbances and non-
linearities. The model is eventually expressed in a canonical
form with a chain of integrators. On this basis, an ESO is
to be designed to estimate the total disturbance. Finally, a
control law is determined consisting of two components: the
first compensates the total disturbance and the second provides
the desired behavior to the system.

A. Extended models

Two distinct extended models are proposed, i.e. the flux
extended model and the speed extended model. The first
consists of the equations of the model described in Section
II expressing the dynamics of the the flux on the x axis, ψsx.
The other consists of the equations expressing the dynamics
of the mechanical speed ωr.

1) Flux extended model: From model (1)-(5), using the
linearization procedure used in [12], and defining xψ1 = ψsx,
the following equation can be written:

ẋψ1 = fψ + usx. (12)

where fψ is called total flux disturbance defined as follows:

fψ = −Rsisx + ωrψsy. (13)

Now if an extra state variable xψ2 = fψ is defined, the flux
extended model becomes:

ẋψ1 = xψ2 + usx, ẋψ2 = ḟψ. (14)



2) Speed extended model: The procedure used for obtaining
the speed extended model parallels the one used to definine
the flux extended model, but in this case the speed is assumed
as a measured output. In this case, from the model equations
(1)-(5) and (10)-(11), using the linearization procedure used in
[12], and defining xω1 = ωr and xω2 = ω̇r = a, the following
equations can be written:

ẋω1 = xω2, ẋω2 = fω + bωusy, (15)

where fω is called total speed disturbance defined as follows:

fω = −fva+
3p

2J

([
g1 g2

]
L′s
−1

+

(
1

Lsxx
− 1

Lsyy

)[
ψsx ψsy

])[usx−Rsisx+ωrψsy
−Rsisy − ωrψsx

]
, (16)

where:

g1 :=

(
∂Lsxx

∂isx

L2
sxx

−
∂Lsyy

∂isx

L2
syy

)
=

1

isx

(
L′sxx − Lsxx

L2
sxx

)
+

1

isy

(
L′syx
L2
syy

)
, (17a)

g2 :=

 ∂Lsxx

∂isy

L2
sxx

−
∂Lsyy

∂isy

L2
syy

 =

1

isy

(
L′syy − Lsyy

L2
syy

)
+

1

isx

(
L′sxy
L2
sxx

)
. (17b)

while bω is defined as:

bω=
3p

2J

(
g1L

′
sxy+g2L

′
syy

L′sxxL
′
syy−L′sxy

2 +

(
1

Lsyy
− 1

Lsxx

)
ψsx

)
. (18)

Also in this case, if an extra state variable xω3 = fω is
defined, the speed extended model becomes:

ẋω1 = xω2, ẋω2 = xω3 + bωusy, ẋω3 = ḟω. (19)

Models (14) and (19) show that the flux and speed extended
models have the same structure, but different dimensions.
Moreover, choosing the control variables as follows:

usx = −x̂ψ2 + ν′x, usy =
1

bω

(
−x̂ω3 + ν′y

)
, (20)

where x̂ψ2 and x̂v3 are the estimates of xψ2 and xv3, respec-
tively, and designing ν′x and ν′y so that the models (14) and
(19) satisfy the design requirements, the total disturbances can
be assumed as perfectly compensated. The total disturbances
can be estimated with two ESOs. In particular two ESOs will
be designed to estimate the state of the extended models and,
as can be easily viewed from the model, the estimate of the
total disturbance corresponds to the estimate of the second
state variable for the flux model and of the third state variable
for the speed model.

Remark 1: On the basis of the above, the differences
between the classic FL and the proposed ADRC technique are

clear. Indeed, in the FL shown in [12] the control inputs are
designed as in (20), but the total disturbances fψ = xψ2 and
fω = xω3 are analytically computed as in (13) and (16) with a
drawback arising from the uncertainties on the parameters due
to the complexity of the formulation of (13) and (16). With
the proposed ADRC, these terms are estimated as shown in
the following, and no knowledge on the structure of these
terms is needed. In this way, not only are the problems of
parameter uncertainty addressed, but also possible issues from
unmodelled dynamics are addressed.

B. ESO for a third-order extended model

In the following, ESOs for both speed and flux extended
model will be considered. Note that flux and speed extended
models have the same structure but different dimensions: this
means that all the calculations and considerations given for
one model can be easily adapted to the other extended model.

The ESO chosen for the state estimation of model (19) is
that proposed in [19], whose set of equations is given by:

˙̂xω1 = x̂ω2 − εh1
(
x̂ω1 − xω1

ε2

)
, (21a)

˙̂xω2 = x̂ω3 − h2
(
x̂ω1 − xω1

ε2

)
+ bωusy, (21b)

˙̂xω3 = −ε−1h3
(
x̂ω1 − xω1

ε2

)
, (21c)

where ε is a suitable positive parameter, and the functions
hi(·), i = 1, 2, 3, can be either linear or non-linear functions.

Defining the estimation errors:

ηi =
ei
ε3−i

, i = 1, 2, 3, (22)

the dynamics of the variables ηi are described by the equa-
tions:

εη̇1 =η2−h1(η1), εη̇2 =η3−h2(η1), εη̇3 =−εḣ−h3(η1). (23)

The structure of hi(η1), i = 1, 2, 3, characterizes the ESO.
This paper considers the Linear ESO (LESO). With this choice,
fixing hi(η1) = βiη1, i = 1, 2, 3, with βi positive constants,
equations (23) can be written as follow:

εη̈ = Aη + εbḟω (24)

where η =
[
η1 η2 η3

]T
, A =

[
−β1 1 0
−β2 0 1
−β3 0 0

]
, and b =[

0 0 −1
]T
.

In [19] it is shown that if coefficients βi are chosen such
that matrix A is Hurwitz, and if the derivative of the total
speed disturbance is bounded, or rather if there exists a positive
constant P such that |ḟω| < P , then the estimation errors (22)
converge to zero exponentially.

For the flux extended model, the same calculations can be
done but considering a second order dynamics instead of a
third order one. For this reason, the ESO chosen for the state



Figure 1. Block diagram of the proposed control algorithm.

estimation of model (15) is given by:

˙̂xψ1 = x̂ψ2 − h1
(
x̂ψ1 − xψ1

ε

)
+ bψusx, (25a)

˙̂xψ2 = −ε−1h2
(
x̂ψ1 − xψ1

ε

)
, (25b)

where ε is a suitable positive parameter, and the functions
hi(·), i = 1, 2, are chosen as linear terms like the speed ESO.

C. Design of flux and speed controllers

With reference to (19), if the control input is selected as
in equation (20), and considering that x̂ω3 ≈ xω3, then the
following model is obtained:

ẋω1 = xω2, ẋω2 = ν′y. (26)

This structure corresponds to a double integrator (if the
flux model is considered, a single integrator is obtained:
ẋψ1 = ν′x). This model is reachable and, consequently, a
state feedback control law based on the assignment of the
eigenvalues can be derived, but it does not allow steady-
state null tracking errors to be obtained. As a result, to have
perfect tracking of constant reference, the state of model (26)
is augmented by adding a third variable z, whose dynamics
is:

żω = x1ωref − xω1, (27)

where x1ωref is the desired value of speed. It is easy to verify
that model (26)-(31) is reachable and the control law:

ν′y = −kTωx, (28)

with kω =
[
kω1 kω2 kω3

]T
and x =

[
xω1 xω2 zω

]T
,

allows the eigenvalues of the dynamic matrix of the model to
be assigned. The characteristic polynomial is given by:

∆(λ) = λ3 + kω1λ
2 + kω2λ+ kω3, (29)

where the parameters kω1, kω2 and kω3 are determined as-
suming that the desired eigenvalues are λω1 = −ζωn +
jωn

√
1− ζ2, λω2 = −ζωn − jωn

√
1− ζ2 and λω3 = σ,

where ωn and ζ are the natural frequency and the damping fac-
tor respectively, while σ is a negative real number. Obviously,
the implementation of the above control law can be carried

out using the state estimated by the ESO. More precisely, the
implementation of the control law requires the knowledge of
xω1 and xω2, while the knowledge of xω3 allows the total
disturbance fω to be compensated.

With reference to the controller design for the flux model
(19), the same procedure given above for the speed controller
can be followed. In particular, if the control input is selected
as in equation (20), and considering that x̂ψ2 ≈ xψ2, then the
following model is obtained:

ẋψ1 = ν′x (30)

This structure corresponds to an integrator, which is reachable
and, consequently, a state feedback control law based on the
assignment of the eigenvalues can be derived. Also in this case,
for obtaining a steady-state null error the state is augmented
by adding a second variable zψ , whose dynamics is:

żψ = x1ψref − xψ1, (31)

where x1ψref is the desired flux. Thus, the control law:

ν′x = −kTψx, (32)

with kψ =
[
kψ1 kψ2

]T
and x =

[
xψ1 zψ

]T
, allows the

eigenvalues of the dynamic matrix of the model to be assigned.
In this case, parameters kψ1, kψ2 are determined by assuming
that the desired eigenvalues are λψ1 = −ζωn + jωn

√
1− ζ2

and λψ2 = −ζωn − jωn
√

1− ζ2, where ωn and ζ are the
natural frequency and the damping factor respectively.

The block diagram of the proposed control algorithm is
shown in Fig. 1.

Remark 2: Note that the proposed control scheme requires
the existence of the inverse of bω . However, it is possible to
prove that the inverse exists if ψsx 6= 0 and this condition
is always satisfied because the SynRM works properly only
if the flux ψsx is strictly greater than zero for any working
condition, meaning that the machine is properly magnetized.

Remark 3: Note that here the auxiliary input νx appears
in the definition of the total disturbance fω , that made the
proposed scheme nonconventional, since it has never been
considered and tested in past works. This problem aries from
the dependency of the self and cross-saturation inductances of
the model on the stator current.



Figure 2. Photograph of the SynRM experimental set-up.

Table I
PARAMETERS OF THE SYNRM SATURATION MODEL

SYMBOLS VALUES
a 0.35
b 4.04
c 1.20
α 0.35
β 0.0047
γ 0.0018
δ 0.13
ε 0.025

IV. TEST SET-UP

The proposed ADRC control technique has been tested
experimentally on a suitably developed test set-up with the
SynRM motor model ABB 3GAL092543-BSB with rated
power 2.2 kW, rated speed 1500 rpm, rated torque of 14
Nm, rated current 5.5 A. The SynRM is mechanically coupled
with a torque-controlled permanent magnet synchronous motor
(PMSM) drive working as an active load. The SynRM is
supplied by a Voltage Source Inverter (VSI) with insulated gate
bipolar transistor (IGBT) modules, model Semikron SMK 50
GB 123, driven by a Space-Vector Pulse Width Modulation
technique (SV-PWM) with PWM frequency set to 5 kHz.
Fig. 2 shows the photo of the SynRM drive test set-up, and
Tab. I shows the parameters of the complete saturation model,
identified with the technique proposed in [14].

V. EXPERIMENTAL RESULTS

To verify the effectiveness of the proposed ADRC control
technique and its dynamic performance, three kinds of exper-
imental tests have been done: 1) start-up test at no load, 2)
speed reversal at no load, 3) step load torque at constant speed.

As for test 1, a step speed reference of 50 rad/s has
been given to the SynRM drive at no load. Fig. 3.a shows
the reference and measured speeds, and the speed tracking
error. It can be observed that the ADRC control works
properly, ensuring high dynamic performance; the measured
speed tracks the reference properly, and the steady-state speed
is reached in almost 0.25 s. Fig. 3.b shows the direct and
quadrature components of the stator currents expressed in the
rotor reference frame, isx and isy , during the same test. It can
be noted that isx is controlled to a constant value, almost equal
to 2 A, while isy exhibits a stepwise waveform during the

speed transient needed to generate the maximum propulsive
torque. It can be also noted a limited non-null value at steady-
state, needed to cover the friction torque of the drive.

As for test 2, a step speed reversal from -50 rad/s to
50 rad/s has been commanded at no load. Fig.s 3.c and 3.d
show the same kind of waveforms shown as for test 1. The
speed waveform clearly shows that the SynRM drive is able
to properly perform the speed reversal with high dynamic
performance, with the complete reversal accomplished in less
than 0.25 s. In consistency with this, isx is controlled to a
constant value, almost equal to 2 A, and isy exhibits a stepwise
waveform during the speed reversal.

As for test 3, the SynRM drive runs at the constant speed
reference equal to 50 rad/s; a positive square load profile of
peak value equal to 5 Nm, followed by a negative one of
the same peak value, has been applied to the drive by acting
on the PMSM drive torque reference. Fig.s 3.e and 3.f show
waveforms similar to those obtained in tests 1 and 2. The
speed waveform shows the torque rejection capability of the
ADRC control; indeed, as soon as the load torque is applied,
the control immediately reacts and drives the speed back to
the reference value, regardless the sign of the applied torque.
Finally, Fig. 4 shows the load and the electromagnetic torques
obtained. It should be remarked that the electromagnetic
torque tracks the load torque quickly, during each transient,
permitting the speed to be maintained at the reference value.
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VII. CONCLUSION

The main contribution of this paper consists in the theo-
retical development and the experimental application of the
ADRC of SynRM. The ADRC is a particular non-linear
control technique: it can be considered as a particular kind
of FLC, where the non-linear transformation of the state is
estimated on-line rather than computed by means of the model.
This approach addresses the unmodelling dynamics as well as
uncertain model parameters and exogenous disturbances. The
effectiveness of the proposed control law has been verified ex-
perimentally on a suitably developed test set-up. Experimental
results fully confirm the high dynamic performance ensured
theoretically by ADRC. The disturbance rejection obtained in
this way can be applied to flywheel energy storage systems.
This is the focus of current research with particular attention
to storage systems for remote areas or small islands.
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