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Abstract. We consider the Navier problem

−∆2
k,pu(x) = f(x, u(x),∇u(x),∆u(x)) in Ω, u

∣∣
∂Ω

= ∆u
∣∣
∂Ω

= 0,

driven by the sign-changing (degenerate) Kirchhoff type p(x)-biharmonic operator, and in-
volving a (∇u,∆u)-dependent nonlinearity f . We prove the existence of solutions, in weak
sense, defining an appropriate Nemitsky map for the nonlinearity. Then, the Brouwer fixed

point theorem assested for a Galerkin basis of the Banach space W 2,p(x)(Ω) ∩W
1,p(x)
0 (Ω),

leads to the existence result. The case of non-degenerate Kirchhoff type p(x)-biharmonic
operator is also considered with respect to the theory of pseudo-monotone operators, and an
asymptotic analysis is derived.

1. Introduction

In this article we study equations whose main operator is a degenerate (sign-changing)
Kirchhoff type p(x)-biharmonic operator, namely u → −∆2

k,pu, for a function u given on a

bounded domain Ω ⊆ RN with smooth boundary ∂Ω. The appropriate setting to develop

this study, is the Banach space W 2,p(x)(Ω) ∩ W 1,p(x)
0 (Ω), where W r,p(x)(Ω) (r ≥ 1) means

the generalized variable exponent Sobolev space, and W
1,p(x)
0 (Ω) is the closure of C∞0 (Ω)

in W 1,p(x)(Ω) (see Section 2 for the precise notion). Here, the exponent p leaves in C(Ω)
and possesses sufficient regularities. The new operator ∆2

k,p is constructed over the p(x)-

biharmonic operator ∆2
p(x) (of fourth order) whose formula links to the p(x)-Laplace operator.

Indeed, for a p(x)-Laplace operator ∆p(x)u = div(|∇u|p(x)−2∇u) for all u ∈ W
1,p(x)
0 (Ω), we

have the corresponding p(x)-biharmonic operator ∆2
p(x)u = ∆(|∆u|p(x)−2∆u). Starting from

the sign-changing Kirchhoff type weight defined by

(1) K(p,∆u) = a− b
∫

Ω

1

p(x)
|∆u|p(x)dx, with a, b > 0,

we introduce the operator

∆2
k,pu = K(p,∆u)∆2

p(x)u =

(
a− b

∫
Ω

1

p(x)
|∆u|p(x)dx

)
∆2
p(x)u,

for all u ∈W 2,p(x)(Ω) ∩W 1,p(x)
0 (Ω), and consequently we define the Navier problem

(P ) −∆2
k,pu(x) = f(x, u(x),∇u(x),∆u(x)) in Ω, u

∣∣
∂Ω

= ∆u
∣∣
∂Ω

= 0.

We remark that the p(x)-Laplace operator, in contrast to the isotropic p-Laplacian (that
is, the case p(x) = p = constant), is not homogeneous and this is a source of difficulties
in the analysis of anisotropic problems. According to the relevant literature on the variable
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exponents Sobolev spaces (see the book of Rădulescu & Repovš [21]), we assume that p ∈ C(Ω)
satisfies the bound condition

1 < p− = inf
x∈Ω

p(x) ≤ p(x) ≤ p+ = sup
x∈Ω

p(x) < +∞.

To complete the presentation of the problem, we point out that the nonlinearity is assumed
of Carathéodory type (that is, for all (z, y, v) ∈ R × RN × R, x → f(x, z, y, v) is measurable
and for almost all x ∈ Ω, (z, y, v) → f(x, z, y, v) is continuous). The ∇u-dependence is
appropriate to cover the physical situations where convective phenomena of fluid dynamics
cannot be neglected (and hence, there is energy transfer accomplished by particles motion).
Moreover, we recall a classical direction of research aimed to analyze situations when f depends
on the derivatives of u (see for example Carrião et al. [4], and the references therein). These
situations motivate our choice to consider a ∇u-dependent nonlinearity. About equation (1),
we recall that the Kirchhoff weight is a useful way to represent (in a physical model setting)
how transverse vibrations imply changes in length of a string/beam. In details, Kirchhoff [12]
provided a generalization of the D’Alembert wave equation

ρ
∂2u

∂t2
−

(
P0

h
+
E

2L

∫ L

0

∣∣∣∣∂u∂x
∣∣∣∣2 dx

)
∂2u

∂x2
= 0,

with ρ, P0, h, E, L denoting physical parameters (that is, mass density, initial tension, area
of the cross-section, Young modulus of the material, length of the string), to describe the
changes in string length subject to free vibrations. Referring to the main equation in (P ) in
this setting, then u means the displacement, the coefficients a and b mean, respectively, the
intrinsic features and initial tension of the string, finally f(x, u,∇u,∆u) represents the external
force acting on it. On the other hand, we recall that fourth-order elliptic type equations are
useful to describe physical phenomena as diffusion on solids, phase field models of multiphasic
systems and others (see also Kefi & Rădulescu [11], Section 1). As we will say in the sequel,
there is an active literature on establishing the existence and nonexistence of solutions to this
type of problems under general conditions for the nonlinearity (see again [11]) and adopting the
techniques of the Calculus of Variations (we remark that the nonexistence of a priori estimates,
with respect to the norms of the gradient and the Laplacian of solution, is the main difficulty
in using variational techniques). Turning to the mathematical content of our manuscript,
we aim to obtain existence results of weak solutions to (P ) (see equation (5)). Since the
(∇u,∆u)-dependent nonlinearity cannot be considered using variational methods, we adopt
topological tools. Precisely, we center the proof on fixed-point arguments, and the preparation
work is made from two perspective: the introduction of a suitable Nemitsky map linked to the

nonlinearity f(x, u,∇u,∆u), and a discretization of the Banach space W 2,p(x)(Ω)∩W 1,p(x)
0 (Ω)

via the definition of a Galerkin basis.
Some recent references supporting our strategy can be considered in respect of three cate-

gories:

(A) problems with gradient and Laplacian dependent nonlinearities;
(B) problems with weighted Kirchhoff terms;
(C) problems with biharmonic operators.

For the category (A), we first mention the work of Carrião et al. [4] dealing with nonlinear
biharmonic equations under Navier boundary conditions. Using an iterative scheme of the
mountain pass approximated solutions together with useful truncations, the authors establish
the existence of at least one solution. In [4], the nonlinearity f depends on both the gradient
and the Laplacian of u, and this is the first paper where we find the similar representation of
f as in our manuscript. Usually in the literature are considered the dependence by first and
second order derivatives, and [4] is the first case where we found the Laplacian dependence ex-
plicitly stated (at the best of our knowledge). When f does not depend on the Laplacian ∆u,
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we recall the works of Bai et al. [2] (nonhomogeneous partial differential operator with Robin
boundary condition) and of Papageorgiou et al. [19] (constant exponent p-Laplacian operator
with Neumann boundary condition), where the authors use Leray-Schauder alternative prin-
ciple, together with truncation and comparison techniques. Both these works established the
existence of smooth positive solutions, without imposing any global growth condition on the
reaction term. Finally, we mentione the work of Ourraoui [17] where the Galerkin’s approach
jointly with useful a priori estimates, is adopted to conclude the existence of solutions to a
class of elliptic problems. This time, the toy problem is driven by a p-Kirchhoff type operator
with constant exponent p, Dirichlet boundary condition and a convection term.

For the category (B), we can mention the work of Vetro [24] dealing with the variable
exponents Lebesgue and Sobolev spaces, in the case of a single p(x)-Kirchhoff type opera-
tor and a Dirichlet boundary condition. We point out that the Kirchhoff weight in (1) was
previously considered by Hamdani et al. [10], and the related differential problem was ap-
proached by variational methods, since the reaction therein is neither gradient dependent
nor Laplacian dependent. At the basis of the recent interest for boundary value problems
with a Kirchhoff weight, there is the monography [14] by Lions. However, we usually find
in the literature a positive restriction to the values of the Kirchhoff term (that is, the form

a+b
∫

Ω

1

p(x)
|∆u|p(x)dx > 0, with a, b > 0), which means a non-degenerate term. To enlarge the

discussion over the sign of the Kirchhoff weight, we mention the recent works of Figueiredo &
Nascimento [7], Santos Júnior & Siciliano [22], where the involved Kirchhoff terms can vanish
in many different points. In all of them, existence and non-existence of solutions are estab-
lished via fixed point theorems. Finally, we mention the work of Maia [15] where the author
studies a class of p(x)-Choquard equations with a nonlocal and non-degenerate Kirchhof term,
establishing a multiplicity of solutions, combining truncation arguments with Krasnoselskii’s
genus.

For the category (C), we can mention the work of Guo et al. [9], where the Kirchhoff type
p(x)-biharmonic problem is approached via mountain pass theorem and Ekeland’s variational
principle. The involved problem is not gradient dependent in the reaction term. The similar
problem (but without the Kirchhoff weight) and the same technique of proofs are adopted by
Mbarki in [16]. We also mention the work of Boureanu et al. [3], where the authors consider a
no-flux boundary condition (useful to cover the cases of surfaces being impermeable to certain
contaminants). Finally, we cite the paper of Zhou [26] where the author establishes existence,
multiplicity and nonexistence results for a Navier p(x)-biharmonic problem with a parametric
reaction, involving variational methods too; see also [11] for a Navier p(x)-biharmonic problem
with singular weights.

Inspired by the above-mentioned works, we consider problem (P ) under the combined effects
of a sign-changing Kirchhoff weight (that is, we deal with the degenerate case) and a principal
p(x)-biharmonic operator, in the case of a gradient and Laplacian dependent nonlinearity.
The manuscript is organized as follows. In Section 2, we collect the basic facts on variable
exponent Lebesgue and Sobolev spaces, useful norm inequalities, properties of Banach spaces
and a Brouwer type fixed point result. In Section 3 we give the main theorems and their proofs
are shown in Section 4. In Section 5 we briefly discuss the case of a non-degenerate Kirchhoff
weight (that is, we deal with a positive constant sign weight), with respect to the theory of
pseudo-monotone operators, and establish an asymptotic result assuming that the coefficient
b in the Kirchhoff term works as a parameter. A short Section 6 concludes the manuscript.

2. Preliminaries

For a comprehensive coverage of the variable exponent Lebesgue and Sobolev spaces (which
are special cases of generalized Orlicz spaces) we refer to the monographs of Diening et al. [5]
and of Rădulescu & Repovš [21]. In the sequel we assume that p(x) > 1 for all x ∈ Ω, even
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when it is not explicitly stated. Given a bounded domain Ω ⊆ RN with smooth boundary

∂Ω, our study consider the Banach space W 2,p(x)(Ω) ∩W 1,p(x)
0 (Ω). Thus, we start recalling

the definition of the variable exponent Lebesgue space Lp(x)(Ω) as follows

Lp(x)(Ω) =

{
u ∈M(Ω) :

∫
Ω
|u(x)|p(x)dx < +∞

}
,

with M(Ω) being the space of all measurable functions u : Ω→ R. Thus, we define the norm

‖u‖Lp(x)(Ω) = inf
{
λ > 0 : ρp

(u
λ

)
≤ 1
}
,

for the modular

ρp(u) =

∫
Ω
|u(x)|p(x)dx for all u ∈ Lp(x)(Ω).

Different from the constant exponent Lp(Ω) (that is, the case p(x) = p = constant), the
variable exponent space is useful in the analysis of boundary value problems with nonstandard
growth conditions. However, even if the passage from the constant setting to the variable one
is natural, it is not trivial as some sources of difficulties occur (for example, we recall that

Lp(x)(Ω) is not invariant to translations and the convolution is not in general continuous; see
Kováčik & Rákosńık [13]). However, under additional hypotheses on the exponent p(·) we
can recover the situation and obtain boundedness and other properties useful to conclude the
study. For reader convenience, we recall that (Lp(x)(Ω), ‖·‖Lp(x)(Ω)) is a separable, reflexive and

uniformly convex Banach space. Moreover ‖ · ‖Lp(x)(Ω) and ρp(·) meet the following theorem.

Theorem 1 (Fan & Zhao [6], Theorem 1.3). For u ∈ Lp(x)(Ω) we get:

(i) ‖u‖Lp(x)(Ω) < 1 (= 1, > 1)⇔ ρp(u) < 1 (= 1, > 1);

(ii) if ‖u‖Lp(x)(Ω) > 1, then ‖u‖p
−

Lp(x)(Ω)
≤ ρp(u) ≤ ‖u‖p

+

Lp(x)(Ω)
;

(iii) if ‖u‖Lp(x)(Ω) < 1, then ‖u‖p
+

Lp(x)(Ω)
≤ ρp(u) ≤ ‖u‖p

−

Lp(x)(Ω)
.

Let p′ ∈ C(Ω) be the conjugate variable exponent to p(·), that is, the following formula
holds:

1

p(x)
+

1

p′(x)
= 1 for all x ∈ Ω.

Consequently we denote the cojugate of Lp(x)(Ω) by Lp(x)(Ω)∗ = Lp
′(x)(Ω), and in the case

p− > 1 we get the Hölder inequality∫
Ω
uwdx ≤

( 1

p−
+

1

(p′)−

)
‖u‖Lp(x)(Ω)‖w‖Lp′(x)(Ω) ≤ 2‖u‖Lp(x)(Ω)‖w‖Lp′(x)(Ω),

for u ∈ Lp(x)(Ω), w ∈ Lp
′(x)(Ω). This inequality leads us to the existence of embedding

results. For example, [6, Theorem 1.11] ensures the continuity of the embedding Lp1(x)(Ω) ↪→
Lp2(x)(Ω), whenever p1, p2 ∈ C(Ω) with p1(x) ≥ p2(x) > 1 for all x ∈ Ω. Using the variable
exponent Lebesgue space, for every integer r > 0 and fixed multi-index α = (α1, . . . , αN ), we
can define the variable exponent generalized Sobolev space

W r,p(x)(Ω) = {u ∈ Lp(x)(Ω) : Dαu ∈ Lp(x)(Ω), 1 ≤ |α| ≤ r}, p ∈ C(Ω),

where |α| =
∑n

i=1 αi (that is, the order) and Dαu = ∂|α|u/∂α1x1 · · · ∂αNxN . As already

mentioned in the Introduction, by W
r,p(x)
0 (Ω) we denote the closure of C∞0 (Ω) in W r,p(x)(Ω).

Also, we consider the norm

‖u‖W r,p(x)(Ω) =
∑
|α|≤r

‖Dαu‖Lp(x)(Ω).
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From [6] and [13], we know that (W r,p(x)(Ω), ‖ · ‖W r,p(x)(Ω)) and (W
r,p(x)
0 (Ω), ‖ · ‖W r,p(x)(Ω))

are separable and uniformly convex (hence reflexive) Banach spaces. Now, taking in mind the
Poincaré inequality (for a reference, consider [5, Theorem 8.2.18])

‖u‖Lp(x)(Ω) ≤ c1‖∇u‖Lp(x)(Ω) for all u ∈W 1,p(x)
0 (Ω), some c1 > 0,

we recall that the norms ‖u‖W 1,p(x)(Ω) and ‖∇u‖Lp(x)(Ω) are equivalent on W
1,p(x)
0 (Ω). Accord-

ing to [25, Definition 4.3], we recall that for a couple of Banach spaces, namely X1 and X2,
we define the norm on the space X = X1 ∩X2 by

‖u‖X = ‖u‖X1 + ‖u‖X2 .

This remark is useful to our discussion, as we are interested to work on the Banach space

W 2,p(x)(Ω) ∩W 1,p(x)
0 (Ω). Hence, we consider as ingredients, the two norms:

‖u‖
W

1,p(x)
0 (Ω)

= ‖u‖Lp(x)(Ω) + ‖∇u‖Lp(x)(Ω) (where ‖∇u‖Lp(x)(Ω) = ‖|∇u|‖Lp(x)(Ω)),

and

‖u‖W 2,p(x)(Ω) =
∑
|α|=2

‖Dαu‖Lp(x)(Ω).

Consequently we introduce the norm

‖u‖ = ‖u‖
W 2,p(x)(Ω)∩W 1,p(x)

0 (Ω)
= ‖u‖W 2,p(x)(Ω) + ‖u‖

W
1,p(x)
0 (Ω)

for all u ∈W 2,p(x)(Ω) ∩W 1,p(x)
0 (Ω).

Moreover, from Zang & Fu [25] we know that the norm ‖u‖ is equivalent to ‖∆u‖Lp(x)(Ω) in

W 2,p(x)(Ω) ∩W 1,p(x)
0 (Ω). Indeed in [25], we have the inequality

(2) ‖∆u‖Lp(x)(Ω) ≤ ‖u‖ ≤ c2‖∆u‖Lp(x)(Ω),

for all u ∈W 2,p(x)(Ω) ∩W 1,p(x)
0 (Ω), where c2 > 0 is independent of u.

Next, for p ∈ C(Ω) we recall the formula of the critical Sobolev exponent p∗r(·) given as

(3) p∗r(x) =

{
Np(x)
N−rp(x) if rp(x) < N,

+∞ if N ≤ rp(x),
for all x ∈ Ω.

From [11] we recall the following Sobolev embeddings properties related to the Banach space

W 2,p(x)(Ω) ∩W 1,p(x)
0 (Ω).

Proposition 1. Given p, α ∈ C(Ω) with p(x) > 1 and 1 < α(x) < p∗r(x) for all x ∈ Ω, we

have that (W 2,p(x)(Ω) ∩W 1,p(x)
0 (Ω)) ↪→ Lα(x)(Ω) is a continuous and compact embedding.

On the other hand, we recall a general embedding result for Banach spaces (refer to Gasiński
& Papageorgiou [8, Lemma 2.2.27]).

Proposition 2. Let (X1, X2) be a couple of Banach spaces satisfying X1 ⊆ X2. Then, if X1

is dense in X2 and the embedding is continuous, also the embedding X∗2 ⊆ X∗1 is continuous.
Moreover, if X1 is reflexive then X∗2 is dense in X∗1 .

To develop our arguments of proofs, we use the features of appropriate operators of mono-
tone type. Precisely, we are interested to psedo-monotonicity. For reader convenience, we
recall some well-know facts about the class of pseudo-monotone operators.

Definition 1. Let 〈· , ·〉 be the duality pairing in Banach spaces, and consider a reflexive
Banach space X, with dual space X∗. Thus, A : X → X∗

(i) satisfies the (S+)-property if un
w−→ u in X and lim supn→+∞〈A(un), un−u〉 ≤ 0 imply

un → u in X;



6 VICENŢIU D. RĂDULESCU AND CALOGERO VETRO

(ii) is pseudo-monotone if un
w−→ u in X and lim supn→+∞〈A(un), un − u〉 ≤ 0 imply

lim inf
n→+∞

〈A(un), un − v〉 ≥ 〈A(u), u− v〉 for all v ∈ X;

(iii) is coercive if

lim
‖u‖X→+∞

〈A(u), u〉
‖u‖X

= +∞.

Remark 1. For a bounded operator A : X → X∗, Definition 1(ii) is equivalent to the following

implication: un
w−→ u in X and lim supn→+∞〈A(un), un − u〉 ≤ 0 imply A(un)

w−→ A(u) and
〈A(un), un〉 → 〈A(u), u〉. We will use these convergences in the sequel.

Pseudo-monotone operators lead to useful conditions for the existence of solutions to certain
operator equations. This depends on their surjectivity properties, as stated in the following
theorem (see also Papageorgiou & Winkert [20, Theorem 6.1.57]); see also Papageorgiou et al.
[18] for related abstract results.

Theorem 2. If A : X → X∗ is a pseudo-monotone, bounded, and coercive operator, defined
on a real and reflexive Banach space X. Then, the equation Au = b with b ∈ X∗, admits a
solution.

Remaining focused on the problem of solutions to operator equations, we note the following
byproduct of the Brouwer fixed point theorem.

Proposition 3. Given a continuous map A : X → X∗, with (X, ‖ · ‖X) being a normed
finite-dimensional space, then

If there exists some R > 0 such that

〈A(w), w〉 ≥ 0 for all w ∈ X with ‖w‖X = R,

then A(w) = 0 has a solution ŵ ∈ X satisfying the upper bound condition R ≥ ‖ŵ‖X .

3. Assumptions and results

In this section, we discuss the assumptions used in developing our study. Then, we present
the obtained results. About the exponent p ∈ C(Ω), we require the following condition
involving the finite values p− and p+:

(A1) p ∈ C(Ω) is finite with p− > p+/2.

The relevance in adopting such a condition, can be easily clarified referring to [10, Theorem
1.1] where the authors provide sufficient conditions to obtain the existence of a weak solution
to a degenerate (sign-changing) Kirchhoff equation without convection term. Moreover, (A1)
is adopted in [24] in the case of convection. We complete the set of assumptions, controlling
the growth of the Carathéodory nonlinearity f : Ω× R× RN × R→ R, as follows:

(A2) there exist σ ∈ Lα′(x)(Ω), α ∈ C(Ω) with 1 < α(x) < p∗2(x) for all x ∈ Ω and c > 0
such that

|f(x, z, y, v)| ≤ c(σ(x) + |z|α(x)−1 + |y|
p(x)

α′(x) + |v|
p(x)

α′(x) )

for a.a. x ∈ Ω, all z, v ∈ R, all y ∈ RN ;
(A3) there exist σ0 ∈ L1(Ω) and b1, b2, b3 ≥ 0 such that

|f(x, z, y, v)z| ≤ σ0(x) + b1|z|p(x) + b2|y|p(x) + b3|v|p(x)

for a.a. x ∈ Ω, all z, v ∈ R, all y ∈ RN .
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Assumptions (A2) and (A3) are dictated by the technical needs of our proofs and are useful
to establish a priori bounds to integral terms, and sign constraints to the involved operators
(see Section 4). On the other hand, we note that in dealing with practical situations (remaining
into a physical context, we think to evolution systems and related problems), it is natural to
impose control constraints on the growth of involved terms. Using (A3) we can obtain the
inequality∫

Ω
|f(x, u,∇u,∆u)u|dx ≤ λ∗‖∆u‖p

+

Lp(x)(Ω)
+ ‖σ0‖L1(Ω),(4)

≤ λ∗‖u‖p+
+ ‖σ0‖L1(Ω) (‖u‖ ≥ ‖∆u‖Lp(x)(Ω), by (2)),

for all u ∈W 2,p(x)(Ω) ∩W 1,p(x)
0 (Ω) with ‖∆u‖Lp(x)(Ω) ≥ 1, where we set λ∗ = (b1 + b2)c3 + b3,

for some constant c3 > 0. The relevance in getting such an estimate, follows immediately from

the definition of weak solution to (P ). We note that u ∈ W 2,p(x)(Ω) ∩W 1,p(x)
0 (Ω) satisfying

u = ∆u = 0 on ∂Ω is a weak solution to (P ) if

(5) 〈−∆2
k,pu,w〉 =

∫
Ω
f(x, u,∇u,∆u)wdx

for all w ∈ W 2,p(x)(Ω) ∩W 1,p(x)
0 (Ω). Of course, u ≡ 0 such that (5) holds true, is a trivial

weak solution of (P ).
Before presenting the results of this manuscript, we introduce the last ingredient of our

strategy, namely the discrete Galerkin approximation (i.e., Galerkin basis) of the separable

Banach space W 2,p(x)(Ω) ∩W 1,p(x)
0 (Ω). That is, we introduce a sequence {Vn}n∈N of vector

subspaces of W 2,p(x)(Ω) ∩W 1,p(x)
0 (Ω) with the following properties:

(i) each subspace is finite dimensional, that is, dim (Vn) < +∞ for all n ∈ N;
(ii) each previous subspace of the sequence is contained in the subsequent one, that is,

Vn ⊆ Vn+1 for all n ∈ N;
(iii) the closure of the union of all subspaces is the vector space, that is, ∪n∈NVn =

W 2,p(x)(Ω) ∩W 1,p(x)
0 (Ω).

The Galerkin basis above, means an approximation sequence of a given Banach space, via
finite-dimensional subspaces. It is strongly related to the well-known Galerkin method for
numerical approximation of solutions to continuous problems by discrete finite-dimensional
problems. This approach works well for operator equations in weak form as equation (5), and
hence we establish the following result.

Proposition 4. Let {Vn}n∈N be a Galerkin basis of W 2,p(x)(Ω) ∩W 1,p(x)
0 (Ω). If assumptions

(A1)− (A3) hold, then for all n ∈ N we can find un ∈ Vn satisfying

(6) 〈−∆2
k,pun, w〉 =

∫
Ω
f(x, un,∇un,∆un)wdx for all w ∈ Vn.

Turning to the idea behind the Galerkin approximation method, our next step is to ensure
suitable properties of the approximation sequence of solutions originated in Proposition 4,

namely the sequence {un}n∈N ⊆ ∪∞n=1Vn. Thus, the boundedness in W 2,p(x)(Ω) ∩W 1,p(x)
0 (Ω)

of {un}n∈N is established in the following proposition.

Proposition 5. Let {un}n∈N ⊆ ∪∞n=1Vn be the Galerkin sequence originated in Proposition 4.

If assumptions (A1)− (A3) hold, then {un}n∈N is bounded in W 2,p(x)(Ω) ∩W 1,p(x)
0 (Ω).

We note that we will use the Galerkin sequence {un}n∈N in working with a special class of
maps, namely the Nemitsky maps. Thus, for the Carathéodory function f , we introduce the

Nemitsky map N∗f : W 2,p(x)(Ω) ∩W 1,p(x)
0 (Ω) ⊂ Lα(x)(Ω)→ Lα

′(x)(Ω) given as

(7) N∗f (u)(·) = f(·, u(·),∇u(·),∆u(·)) for all u ∈W 2,p(x)(Ω) ∩W 1,p(x)
0 (Ω).
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Referring to the works of Fan & Zhao [6] and Kováčik & Rákosńık [13], one can show
that this map is well-defined, bounded and continuous. We note that this characterization
of N∗f (·) follows directly by assumption (A2). Additionally denote the dual space W(Ω) =

(W 2,p(x)(Ω) ∩W 1,p(x)
0 (Ω))∗, we have that i∗ : Lα

′(x)(Ω) → W(Ω) is a continuous embedding

(recall Proposition 2). Consequently, the operator Nf : W 2,p(x)(Ω) ∩ W 1,p(x)
0 (Ω) → W(Ω)

defined by Nf = i∗ ◦ N∗f is bounded and continuous. Using this operator and referring to
Proposition 3, we establish the following existence theorem.

Theorem 3. Let {un}n∈N ⊆ ∪∞n=1Vn be the Galerkin sequence originated in Proposition 4. If

lim inf
n→+∞

|K(p,∆un)| > 0,

and the assumptions (A1)−(A3) hold, then problem (P ) admits a weak solution u ∈W 2,p(x)(Ω)∩
W

1,p(x)
0 (Ω).

We note that the additional assumption in Theorem 3 (that is, the fact that the sequence
{|K(p,∆un)|}n∈N admits a positive inferior limit as n goes to infinity) is not so restrictive.
Indeed, it means that ∫

Ω

1

p(x)
|∆un|p(x)dx 6→ a

b
for n→ +∞,

{un}n∈N ⊆ ∪∞n=1Vn.

This assumption does not avoid the weight degeneracy of the main operator ∆2
k,p, but

permits us to prove the result for certain special sequences of type {un}n∈N ⊆ ∪∞n=1Vn. This
is coherent with the setting of approximation theory and numerical analysis. Part of this
strategy is dictated by the (S+)-property of operators (see Definition 1) and its involvement
in the proof of the theorem.

4. Proofs of results

We first establish the existence of an approximation sequence of solutions to the type
equation (6), for all n ∈ N. The proof develops a bound from below for an appropriate operator
(see equation (8) of the proof), and then uses Proposition 3 to conclude. The arguments of
proof are carried out in the finite dimensional space Vn (clearly that holds for each n ∈ N).

Proof of Proposition 4. Given n ∈ N, we introduce the operator An : Vn → V ∗n defined by

(8) 〈An(u), w〉 = 〈−∆2
k,pu,w〉 −

∫
Ω
f(x, u,∇u,∆u)wdx

for all u,w ∈ Vn. Referring to the bound condition (4), if ‖w‖ ≥ ‖∆w‖Lp(x)(Ω) > 1 we have

〈−An(w), w〉

=

(
b

∫
Ω

1

p(x)
|∆w|p(x)dx− a

)∫
Ω
|∆w|p(x)dx+

∫
Ω
f(x,w,∇w,∆w)wdx

≥
(
b

∫
Ω

1

p(x)
|∆w|p(x)dx− a

)∫
Ω
|∆w|p(x)dx−

∫
Ω
|f(x,w,∇w,∆w)w|dx

≥ b

p+
‖∆w‖2p

−

Lp(x)(Ω)
− a‖∆w‖p

+

Lp(x)(Ω)
− λ∗‖∆w‖p

+

Lp(x)(Ω)
− ‖σ0‖L1(Ω)

(here we use (4))

≥ b

p+
‖∆w‖2p

−

Lp(x)(Ω)
− (a+ λ∗)‖∆w‖p

+

Lp(x)(Ω)
− ‖σ0‖L1(Ω)

≥ b

p+
‖∆w‖2p

−

Lp(x)(Ω)
− (a+ λ∗ + ‖σ0‖L1(Ω))‖∆w‖

p+

Lp(x)(Ω)
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(here we use ‖∆w‖Lp(x)(Ω) > 1)

≥ b

p+c2
‖w‖2p− − (a+ λ∗ + ‖σ0‖L1(Ω))‖w‖p

+

(here we use (2)).

Summing up, we obtain the inequality

〈−An(w), w〉 ≥ ‖w‖p+

[
b

p+c2
‖w‖2p−−p+ − a− λ∗ − ‖σ0‖L1(Ω)

]
for all w ∈ Vn. Thus, we deduce the non-negativity condition

〈−An(w), w〉 ≥ 0 if ‖w‖ ≥
[
p+c2

b
(a+ λ∗ + ‖σ0‖L1(Ω))

]1/(2p−−p+)

.

Next, we prepare the application of Proposition 3, and hence we choose and fix a value

R > max

{[
p+c2
b (a+ λ∗ + ‖σ0‖L1(Ω))

]1/(2p−−p+)
, 1

}
. Consequently, for each element w of the

generic subspace Vn, in the Galerkin sequence, satisfying ‖w‖ = R we get

〈−An(w), w〉 ≥ 0.

These are the hypotheses of Proposition 3, and consequently the operator equation−An(w) =
0 is solved by a suitable un ∈ Vn. Clearly, the same conclusion will hold for its opposite coun-
terpart An(w) = 0, and hence equation (6) is established. �

We remark that Proposition 4 gives us a sequence of solutions of problems in the form
(P ), but restricted to finite dimensional spaces (namely, Vn for all n ∈ N). But these finite
dimensional spaces are linked each others since they are elements of the Galerkin basis {Vn}n∈N
of W 2,p(x)(Ω) ∩W 1,p(x)

0 (Ω). Next proof is aimed to show the boundedness of the sequence
{un}n∈N ⊆ ∪∞n=1Vn.

Proof of Proposition 5. The proof requires estimates of the quantity ‖∆un‖Lp(x)(Ω), in the form

of bounds from above. Precisely, we will show that

(9) ‖∆un‖Lp(x)(Ω) ≤ max

{[
p+

b
(a+ λ∗ + ‖σ0‖L1(Ω))

]1/(2p−−p+)

, 1

}
for all n ∈ N.

If ‖∆un‖Lp(x)(Ω) ≤ 1 for all n ∈ N, then the sequence {un}n∈N is bounded in W 2,p(x)(Ω) ∩
W

1,p(x)
0 (Ω). Whenever ‖∆un‖Lp(x)(Ω) > 1 (for some n ∈ N), we note that

‖∆un‖2p
−−p+

Lp(x)(Ω)
≤ p+

b

(
a+ λ∗ + ‖σ0‖L1(Ω)

)
.

In fact, referring to equation (6) (that is starting from the result of Proposition 4), for the
choice w = un we deduce that

b

p+
‖∆un‖2p

−

Lp(x)(Ω)
≤ a‖∆un‖p

+

Lp(x)(Ω)
−
∫

Ω
f(x, un,∇un,∆un)undx

≤ a‖∆un‖p
+

Lp(x)(Ω)
+

∫
Ω
|f(x, un,∇un,∆un)un|dx

≤ a‖∆un‖p
+

Lp(x)(Ω)
+ λ∗‖∆un‖p

+

Lp(x)(Ω)
+ ‖σ0‖L1(Ω)

(here we use the estimate (4)).

We assumed before that ‖∆un‖Lp(x)(Ω) > 1, and hence we have

b

p+
‖∆un‖2p

−

Lp(x)(Ω)
≤
(
a+ λ∗ + ‖σ0‖L1(Ω)

)
‖∆un‖p

+

Lp(x)(Ω)
,
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and dividing both sides of the inequality by b
p+ ‖∆un‖p

+

Lp(x)(Ω)
, we get

‖∆un‖2p
−−p+

Lp(x)(Ω)
≤ p+

b

(
a+ λ∗ + ‖σ0‖L1(Ω)

)
.

But this implies that (9) holds true. Of course, it follows trivially that the Galerkin sequence

{un}n∈N ⊆ ∪∞n=1Vn is bounded in the Banach space W 2,p(x)(Ω) ∩W 1,p(x)
0 (Ω). �

We are ready for the proof of our convergence result.

Proof of Theorem 3. Starting from the boundedness of the approximation sequence {un}n∈N ⊆
∪∞n=1Vn in W 2,p(x)(Ω) ∩W 1,p(x)

0 (Ω) (as follows by Proposition 5), upon appealing to the re-

flexivity of this Banach space we note that for some u ∈ W 2,p(x)(Ω) ∩ W 1,p(x)
0 (Ω), we can

assume

(10) un
w−→ u in W 2,p(x)(Ω) ∩W 1,p(x)

0 (Ω) and un → u in Lα(x)(Ω).

Referring to the boundedness of the Nemitsky map in (7), it follows that the sequence

{Nf (un)}n∈N is bounded in W(Ω).

Additionally, the operator −∆2
k,p : W 2,p(x)(Ω) ∩W 1,p(x)

0 (Ω) → W(Ω) is bounded too, and
hence also the sequence

(11) {−∆2
k,pun −Nf (un)}n∈N is bounded in W(Ω).

If necessary, we can consider a relabeled subsequence of (11) to conclude that

(12) −∆2
k,pun −Nf (un)

w−→ g in W(Ω), for some g ∈W(Ω),

this is an immediate consequence of the fact that the dual space W(Ω) is reflexive. Moreover,
we can select w in ∪∞n=1Vn, so that there exists an index n(w) ∈ N satisfying

w ∈ Vn(w).

Of course, Proposition 4 says us that equation (6) remains true for each n ≥ n(w). We pass
n to infinity in the same (6) to get

〈g, w〉 = 0 for all w ∈ ∪∞n=1Vn.

Referring to the properties of the Galerkin basis {Vn}n∈N (see Section 3) we know that

∪∞n=1Vn is dense in W 2,p(x)(Ω)∩W 1,p(x)
0 (Ω). Therefore, this leads to the conclusion g = 0, and

using (12) we get

(13) −∆2
k,pun −Nf (un)

w−→ 0 in W(Ω).

Turning to equation (6), we consider w = un and obtain

(14) 〈−∆2
k,pun −Nf (un), un〉 = 0 for all n ∈ N.

By (13) we have

〈−∆2
k,pun −Nf (un), u〉 → 0 as n→ +∞,

and using (14) we get

(15) lim
n→+∞

〈−∆2
k,pun −Nf (un), un − u〉 = 0.

Since {un}n∈N is bounded, then {N∗f (un)}n∈N is bounded too. Using this fact along with

Hölder’s inequality and the compact embedding W 2,p(x)(Ω) ∩ W 1,p(x)
0 (Ω) ↪→ Lα(x)(Ω) (see

Proposition 1), we get∣∣∣∣∫
Ω
f(x, un,∇un,∆un)(un − u) dx

∣∣∣∣
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≤ 2‖N∗f (un)‖Lα′(x)(Ω)‖u− un‖Lα(x)(Ω)

≤ 2

(
sup
n∈N
‖N∗f (un)‖Lα′(x)(Ω)

)
‖u− un‖Lα(x)(Ω) → 0 as n→ +∞.

It follows that

lim
n→+∞

〈−∆2
k,pun, un − u〉 = 0 (recall (15)).(16)

Combining (10), (13) and (16) we conclude that u ∈W 2,p(x)(Ω) ∩W 1,p(x)
0 (Ω) is an approx-

imated solution to (P ), in the sense that u is the weak limit of the Galerkin (approximation)
sequence {un}n∈N ⊆ ∪∞n=1Vn.

Without any loss of generality, from the assumption lim infn→+∞ |K(p,∆un)| > 0 we can
consider the case where

lim inf
n→+∞

K(p,∆un) > 0,

that is we remove the absolute value above (however, the other case can be concluded in a
similar fashion). Thus, we can find a relabeled subsequence of {un}n∈N satisfying the limit
condition

(17) K(p,∆un)→ K0 > 0 as n→ +∞.

Now, (16) jointly with (17) leads to the limit

lim
n→+∞

〈−∆2
p(x)un, un − u〉 ≤ 0,

which gives us the (S)+-property of the p(x)-biharmonic operator (see [1], Proposition 4.2

(iii)), provided that un → u in W 2,p(x)(Ω) ∩ W 1,p(x)
0 (Ω), as n goes to infinity. Using the

convergence (13), we know that

−∆2
k.pun − f(x, un,∇u,∆un)

w−→ 0 in W(Ω).

This means that the following equality occurs

−∆2
k,pu− f(x, u,∇u,∆u) = 0.

Consequently, we get that u ∈ W 2,p(x)(Ω) ∩W 1,p(x)
0 (Ω) solves problem (P ), in the sense of

weak solutions (namely, we retrieve (5)). This completes the proof. �

Example 1. Consider f : Ω× R× RN × R→ R given as follows:

f(x, u,∇u,∆u) = f1(x, u) + f2(x,∇u) + f3(x,∆u)

where f1, f3 : Ω × R → R and f2 : Ω × RN → R are continuous functions, with f1 positive
function that grows slower than a suitable power of the unknown variable u, f2 bounded from
above by a gradient term, and f3 bounded from above by a Laplacian term. For these functions,
we assume that we can find σi ∈ Lα

′(x)(Ω) (i = 1, 2, 3), α ∈ C(Ω) with 1 < α(x) ≤ p(x) for all
x ∈ Ω, such that:

(H1) there exists b1 > 0 satisfying

0 < f1(x, z) ≤ σ1(x) + b1|z|α(x)−1 for a.a. x ∈ Ω, all z ∈ R;

(H2) there exists b2 ≥ 0 satisfying

0 ≤ f2(x, y) ≤ σ2(x) + b2|y|
p(x)

α′(x) for a.a. x ∈ Ω, all y ∈ RN ;

(H3) there exists b3 ≥ 0 satisfying

0 ≤ f3(x, v) ≤ σ3(x) + b3|v|
p(x)

α′(x) for a.a. x ∈ Ω, all v ∈ R.
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It is clear that assumptions like (H1)−(H3) can be seen as an immediate way to decompose
the effects of a global reaction f and identify its basic components (for example, this is of
a certain interest in population models to better control the dynamics of reaction-diffusion
processes). On the other hand, combining assumptions (H1) − (H3), it follows easily that f
satisfies (A2)− (A3).

Remark 2. In the case of positive nonlinearity (for example, refer to the situation in Example
1, by assumption (H1)), Theorem 3 ensures the existence of a weak solution to problem (P ),

namely u ∈W 2,p(x)(Ω) ∩W 1,p(x)
0 (Ω) with u 6= 0.

5. Case of non-degenerate Kirchhoff term

In this section, we consider the case of a non-degenerate (constant sign) Kirchhoff term of
the form

(18) K+(p,∆u) = a+ b

∫
Ω

1

p(x)
|∆u|p(x)dx, for some a, b > 0,

and hence we assume

K+(p,∆u) ≥ a > 0 for all u ∈W 2,p(x)(Ω) ∩W 1,p(x)
0 (Ω).

This time, we consider the operator −∆2,+
k,p : W 2,p(x)(Ω) ∩W 1,p(x)

0 (Ω)→W(Ω) defined by

〈−∆2,+
k,p u,w〉 = K+(p,∆u)〈−∆2

p(x)u,w〉 = K+(p,∆u)

∫
Ω
|∆u|p(x)−2∆u∆wdx

for all u,w ∈W 2,p(x)(Ω)∩W 1,p(x)
0 (Ω). Thus, we discuss the existence of weak solutions to the

Navier problem

(19) −∆2,+
k,p u(x) = f(x, u(x),∇u(x),∆u(x)) in Ω, u

∣∣
∂Ω

= ∆u
∣∣
∂Ω

= 0.

We derive the definition of weak solution to (19) as follows

u ∈W 2,p(x)(Ω) ∩W 1,p(x)
0 (Ω) is a weak solution to (19) if

〈−∆2,+
k,p u,w〉 =

∫
Ω
f(x, u,∇u,∆u)wdx

for all w ∈W 2,p(x)(Ω) ∩W 1,p(x)
0 (Ω), and u = ∆u = 0 on ∂Ω.

We note that −∆2
p(x) is continuous, bounded, strictly monotone and of type (S)+. Thus,

the new operator −∆2,+
k,p is also bounded, continuous and satisfies the property (S)+ (recall,

that based on the assumption K+(p,∆u) ≥ a > 0, the last operator −∆2,+
k,p can be considered

as positive-weight version of the variable exponent p(x)-biharmonic operator.
Since gradient and Laplacian dependences are again a main feature of our nonlinearity,

clearly we cannot adopt variational tools. Thus, we revisit the theory of pseudo-monotone
operators to develop a topological approach. For the Nemitsky map Nf : W 2,p(x)(Ω) ∩
W

1,p(x)
0 (Ω) → W(Ω), we consider the operator A : W 2,p(x)(Ω) ∩W 1,p(x)

0 (Ω) → W(Ω) given
as

(20) A(u) = −∆2,+
k,p u−Nf (u) for all u ∈W 2,p(x)(Ω) ∩W 1,p(x)

0 (Ω).

Clearly, this operator is bounded and continuous. Additionally, we show that (20) is coercive
and pseudo-monotone.

Starting from the coercivity proof, using assumption (A3), for all u ∈W 2,p(x)(Ω)∩W 1,p(x)
0 (Ω)

with ‖∆u‖Lp(x)(Ω) > 1 we get

〈A(u), u〉 =

(
a+ b

∫
Ω

1

p(x)
|∆u|p(x)dx

)∫
Ω
|∆u|p(x)dx−

∫
Ω
f(x, u,∇u,∆u)udx
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≥ b

p+
‖∆u‖2p

−

Lp(x)(Ω)
− (a+ λ∗ + ‖σ0‖L1(Ω))‖∆u‖

p+

Lp(x)(Ω)

≥ b

p+c2
‖u‖2p− − c4‖u‖p

+
for some c4 > 0

(here we use the inequality (2)).

Therefore the coercivity of (20) follows immediately since p+ < 2p−.
Next, we conclude the pseudo-monotonicity of (20), using the following arguments.

Let {un}n∈N ⊆W 2,p(x)(Ω) ∩W 1,p(x)
0 (Ω) satisfy

un
w−→ u in W 2,p(x)(Ω) ∩W 1,p(x)

0 (Ω) and lim sup
n→+∞

〈A(un), un − u〉 ≤ 0.(21)

On the other hand, requirement (21) implies that

(22) lim sup
n→+∞

[
〈−∆2,+

k,p un, un − u〉 −
∫

Ω
f(x, un,∇un,∆un)(un − u)dx

]
≤ 0.

Moreover, we note that {un}n∈N converges weakly in W 2,p(x)(Ω) ∩ W 1,p(x)
0 (Ω) and it is

bounded. Then, we deduce that the sequence {N∗f (un)}n∈N is bounded too. An application

of Hölder’s inequality, jointly with compactness of the embedding W 2,p(x)(Ω)∩W 1,p(x)
0 (Ω) ↪→

Lα(x)(Ω) (we refer to Proposition 1), are sufficient enough to conclude that

(23)

∫
Ω
f(x, un,∇un,∆un)(un − u)dx→ 0 as n→ +∞.

By (22) we derive the (strong) convergence of {un}n∈N as follows

lim sup
n→+∞

〈−∆2,+
k,p un, un − u〉 ≤ 0,

⇒ un → u in W 2,p(x)(Ω) ∩W 1,p(x)
0 (Ω)(24)

(since −∆2,+
k,p has the (S)+-property).

The convergence in (24) and the fact that the operator (20) is continuous, give us

A(un)→ A(u), 〈A(un), un〉 → 〈A(u), u〉,

and therefore (20) is pseudo-monotone.

Based on the above properties of the operator (20) we establish the following existence
theorem.

Theorem 4. If assumptions (A1)− (A3) hold, then (19) admits at least a weak solution.

The proof of Theorem 4 is a consequence of the application of Theorem 2 to the operator
(20). Indeed, Theorem 2 ensures that the pseudo-monotone, bounded and coercive operator

(20) defined on the real and reflexive Banach space W 2,p(x)(Ω) ∩W 1,p(x)
0 (Ω) is such that the

equation

A(û) = 0 (here, for the special choice b = 0 ∈W(Ω))

admits a solution û ∈W 2,p(x)(Ω)∩W 1,p(x)
0 (Ω). Of course, that û ∈W 2,p(x)(Ω)∩W 1,p(x)

0 (Ω) is
a weak solution to (19).

Remark 3. It is obvious that Theorem 4 can be seen as a byproduct of Theorem 3, but this
time the proof does not use the approximation arguments and can be developed just adapting
the theory of operators of monotone type in Banach spaces.
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As a special case of nonlinearity f : Ω × R × RN × R → R, one can consider the following
function

f(x, u,∇u,∆u) = f1(x, u,∇u,∆u)− f2(x, u,∇u,∆u),

which means a gradient and Laplacian dependent logistic-type nonlinearity. To recover our
framework, we suppose that f1, f2 : Ω×R×RN×R→ R are Carathéodory functions satisfying
the following assumptions:

(L1) f1(x, z, y, v)− f2(x, z, y, v) ≥ 0 for a.a. x ∈ Ω, all z ∈ R, all y ∈ RN , all v ∈ R;
(L2) fi(x, z, y, v) = 0 for a.a. x ∈ Ω (i = 1, 2), all z ≤ 0, all y ∈ RN , all v ∈ R, and there

exist σi ∈ L∞ (i = 1, 2) and α ∈ C(Ω) with 1 < α(x) ≤ p(x) for all x ∈ Ω such that

|fi(x, z, y, v)| ≤ σi(x)(1 + |z|α(x)−1 + |y|
p(x)

α′(x) + |v|
p(x)

α′(x) )

for a.a. x ∈ Ω, all z ≥ 0, all y ∈ RN , all v ∈ R.

In the following example, we remove the gradient and Laplacian dependences in the non-
linearity.

Example 2. Consider f : Ω× R→ R given as follows:

f(x, z) = f1(x, z)− f2(x, z),

where f1, f2 : Ω× R→ [0,+∞) are defined by:

f1(x, z) =

{
zβ(x)−1 for z > 0,

0 for z ≤ 0,

and

f2(x, z) =


zβ(x)−1 ln z for z > 1,

zβ(x)−1 for z ∈ (0, 1],

0 for z ≤ 0,

with β ∈ C(Ω) bounded away from 1. If 1 < β(x) < α(x) ≤ p(x) for all x ∈ Ω, then we have

|f(x, z, y, v)| ≤ b0zα(x)−1 and |f(x, z, y, v)|z ≤ b1zp(x),

for a.a. x ∈ Ω, all z ≥ 0, all y ∈ RN , all v ∈ R, some b0, b1 > 0.

In the next example, we depict a situation where we deal with a Laplacian term competing
against a gradient dependent term.

Example 3. Consider f : Ω× R× RN × R→ R given as follows:

f(x, u,∇u,∆u) = λ|∆u|
p(x)−α′(x)

α′(x) ∆u− h(x, u,∇u), λ > 0,

where α ∈ C(Ω) with 1 < α(x) ≤ p(x) for all x ∈ Ω, and h : Ω×R×RN → R is the following
continuous function:

h(x, z, y) = b1|z|p(x)−2z − b2|y|
α(x)

α′(x) , b1 ≥ 0, b2 > 0.

We remark that

|h(x, z, y)| ≤ b1|z|α(x)−1 + b2|y|
α(x)

α′(x) and |h(x, z, y)z| ≤ c5(|z|α(x) + |y|p(x)),

for all x ∈ Ω, all z ∈ R, all y ∈ RN , some c5 = c5(b1, b2, α
−, (α′)−) > 0. Then, the assumptions

(A2)− (A3) hold true easily.

In the above examples we linked the exponents α, β ∈ C(Ω) directly to p ∈ C(Ω) instead
than to the critical Sobolev exponent p∗2(·) (recall definition (3)). Adopting a similar setting
in our assumptions, we are able to perform an asymptotic analysis of our problem. Thus, we
revise assumption (A3) as follows:
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(A3)′ there exist σ0 ∈ L1(Ω), β ∈ C(Ω) with 1 < β(x) ≤ β+ < p− ≤ p(x) for all x ∈ Ω and
b1, b2, b3 ≥ 0 such that

|f(x, z, y, v)z| ≤ σ0(x) + b1|z|β(x) + b2|y|β(x) + b3|v|p(x)

for a.a. x ∈ Ω, all z, v ∈ R, all y ∈ RN .

Clearly, Theorem 4 remains true if we change assumption (A3) by (A3)′, as assumption
(A3)′ implies (A3).

Referring to the presence of the nonlocal term b
∫

Ω

1

p(x)
|∆u|p(x)dx (b > 0), which changes

the geometry of problem (19) respect to the case where b = 0 in (18), we note that it is inter-
esting to regard b as a parameter and investigate the asymptotic behavior of weak solutions
to (19) as b ↓ 0. The similar idea and convergence study are proposed in Shuai [23] and in a
series of subsequent papers. To prepare the setting, we introduce the sets

Sb = solution set to (19), as b ≥ 0 is fixed,

S = ∪b≥0 Sb = solution set to (19).

If assumptions (A1), (A2) and (A3)′ hold, we note that Sb and S are bounded in W 2,p(x)(Ω)∩
W

1,p(x)
0 (Ω), provided that a > b3 (recall (18)). Fixed b ≥ 0, without loss of generality, we

choose a solution u ∈W 2,p(x)(Ω) ∩W 1,p(x)
0 (Ω) of (19) satisfying the norm inequality ‖u‖ > 1.

Since u is a weak solution, for a test function w = u ∈W 2,p(x)(Ω) ∩W 1,p(x)
0 (Ω) we obtain the

estimates

a

∫
Ω
|∆u|p(x)dx ≤ 〈−∆2,+

k,p u, u〉

=

∫
Ω
|f(x, u,∇u,∆u)u|dx

≤
∫

Ω

(
σ0(x) + b1|u|β(x) + b2|∇u|β(x) + b3|∆u|p(x)

)
dx

(here we use (A3)′)

≤ ‖σ0‖L1(Ω) + (λ∗ − b3)‖∆u‖β
+

Lp(x)(Ω)
+ b3

∫
Ω
|∆u|p(x)dx,

(recall λ∗ = (b1 + b2)c3 + b3, for some c3 > 0),

⇒
∫

Ω
|∆u|p(x)dx ≤

‖σ0‖L1(Ω) + (λ∗ − b3)‖∆u‖β
+

Lp(x)(Ω)

a− b3
.

Summing up, we deduce that

‖∆u‖p
−

Lp(x)(Ω)
≤
‖σ0‖L1(Ω) + (λ∗ − b3)‖∆u‖β

+

Lp(x)(Ω)

a− b3
,

and hence

(25) ‖u‖p− ≤ c2

‖σ0‖L1(Ω) + (λ∗ − b3)‖u‖β+

a− b3
.

Since β+ < p− by (A3)′ we conclude that Sb is bounded in W 2,p(x)(Ω) ∩W 1,p(x)
0 (Ω). Next,

we note that (25) does not dependent on b, and hence this inequality can be established for

every u ∈ S. It follows that the set S = ∪b≥0Sb is bounded in W 2,p(x)(Ω) ∩W 1,p(x)
0 (Ω).

Based on the above properties (that is, the boundedness of the sets S and Sb), we note that

un ∈ Sbn for all n ∈ N implies that the sequence {un}n∈N is bounded in W 2,p(x)(Ω)∩W 1,p(x)
0 (Ω).

Then, we establish the following convergence theorem depicting the behavior of problem (19)
in the case b ↓ 0.
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Theorem 5. Let assumptions (A1), (A2) and (A3)′ with b3 < a hold. Given a sequence of
parameters {bn}n∈N converging to 0+, and a sequence {un}n∈N of solutions to (19) such that
un ∈ Sbn for all n ∈ N, then there is a relabeled subsequence of {un}n∈N such that un → u in

W 2,p(x)(Ω)∩W 1,p(x)
0 (Ω) with u ∈W 2,p(x)(Ω)∩W 1,p(x)

0 (Ω) solution to (19), whenever b = 0 in
(18).

The proof of Theorem 5 uses the similar arguments in establishing that (20) is pseudo-

monotone. Indeed, since {un}n∈N is bounded in W 2,p(x)(Ω) ∩W 1,p(x)
0 (Ω), then we can find a

relabeled subsequence of {un}n∈N such that

un
w−→ u in W 2,p(x)(Ω) ∩W 1,p(x)

0 (Ω) and un → u in Lα(x)(Ω), for some u ∈W 1,p(x)
0 (Ω).

Thus we get easily (refer to (23)) the convergence∫
Ω
f(x, un,∇un,∆un)(un − u)dx→ 0 as n→ +∞,

whenever un → u in Lα(x)(Ω) (by assumption (A2)). Next, un ∈ Sbn for all n ∈ N, gives us

(26) 〈−∆2,+
k,p un, w〉 =

∫
Ω
f(x, un,∇un,∆un)wdx

for all w ∈W 2,p(x)(Ω)∩W 1,p(x)
0 (Ω). We choose w = un− u ∈W 2,p(x)(Ω)∩W 1,p(x)

0 (Ω) in (26),
and hence we get

(27) 〈−∆2,+
k,p un, un − u〉 =

∫
Ω
f(x, un,∇un,∆un)(un − u)dx for all n ∈ N.

Letting n→ +∞ in (27), since bn ↓ 0 we obtain

lim
n→+∞

a〈−∆2
p(x)un, un − u〉 = 0,

⇒ un → u in W 2,p(x)(Ω) ∩W 1,p(x)
0 (Ω)

(since −∆2
p(x) has the (S)+-property).

From (A2) we know that Nf : W 2,p(x)(Ω) ∩W 1,p(x)
0 (Ω)→W(Ω) defined by Nf = i∗ ◦N∗f is

bounded and continuous (recall the discussion about equation (7)). Thus, we have

〈Nf (un), w〉 → 〈Nf (u), w〉 in W(Ω).

Since 〈−∆2
p(x)un, w〉 → 〈−∆2

p(x)u,w〉 in W(Ω) and∫
Ω

1

p(x)
|∆un|p(x)dx

∫
Ω
|∆un|p(x)−2∆un∆wdx is bounded,

then taking the limit in (26) for n → +∞, we deduce that u ∈ W 2,p(x)(Ω) ∩W 1,p(x)
0 (Ω) is a

weak solution to (19), whenever b = 0 in (18). Such a u ∈ W 2,p(x)(Ω) ∩W 1,p(x)
0 (Ω) is a weak

solution to the Navier p(x)-biharmonic problem

−∆2
p(x)u(x) =

1

a
f(x, u(x),∇u(x,∆u(x)) in Ω, u

∣∣
∂Ω

= ∆u
∣∣
∂Ω

= 0.

6. Conclusions

This manuscript proposed a topological approach in solving certain classes of boundary
value problems. The new leading operator in the elliptic equation is named Kirchhoff type
p(x)-biharmonic operator. It merges the features of a fourth order operator (namely, the bihar-
monic operator), constructed over the anisotropic p(x)-Laplace operator (in the case p ∈ C(Ω)
is bounded and bounded away from 1), and of a nonlocal term (namely, a Kirchhoff type term).
The investigated toy problems involve a Navier boundary condition, which gives us that the
unknown variable and its Laplacian are null on the boundary of the domain Ω (⊆ RN and
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bounded). The main results established the existence of at least a weak solution, following
two different strategies. The first one is originated by a Galerkin method for numerical ap-
proximation of solutions to continuous problems by corresponding discrete finite-dimensional
problems. The second one is originated by the classical theory of pseudo-monotone operators,
and is applied to a more classical non-degenerate Kirchhoff term (that is, bounded away from
a positive value). Summing up, we focused on the impact that a gradient and Laplacian de-
pendent nonlinearity has in the well-posedness of the problem and in the control of its growth
via global a priori estimates. The similar results in the paper apply to different boundary

conditions, without the need to change the variable space framework W 2,p(x)(Ω)∩W 1,p(x)
0 (Ω).

For example, we mention the well-known no-flux condition

u
∣∣
∂Ω

= constant, ∆u
∣∣
∂Ω

= 0,∫
∂Ω

∂

∂ν
(|∆u|p(x)−2∆u)dS = 0.

This type of condition is useful to model practical situations of electrorheological and ther-
morheological fluids, whenever the surfaces are impermeable to certain contaminants (see
again [3]).
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18 VICENŢIU D. RĂDULESCU AND CALOGERO VETRO

[17] A. Ourraoui, On an elliptic equation of p-Kirchhoff type with convection term, C. R. Acad. Sci. Paris, Ser.
I 354 (2016), 253–256.
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