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Abstract 

 

The geochemistry of trace elements in volcanic gas emissions at Vulcano (Sicily, Italy) was 

investigated. Trace element concentrations in 94-412°C fumarole gases span over 10 orders of 

magnitude, from ~0.01 pmol/mol to ~300 µmol/mol, with some metalloids (B, Si) being the most 

abundant, followed by alkali, alkaline earth, and certain transition metals, and rare earth elements 

typically displaying the lowest concentrations. Thermodynamic modeling predicts most trace 

elements to be transported as chloride, hydroxide, and mixed hydroxy-chloro gas species (LiCl, 

KCl, NaCl, RbCl and CsCl, Be(OH)2, Mg(OH)2, MgCl2, CaCl2, SrCl2, CaCl(OH), TiOCl2, 

VOCl, VOCl2, VOCl3, NbOCl3, Cr(OH)3, CrCl3, Fe(OH)2, FeCl2 Co(OH)2, CoCl2, Ni(OH)2 to 

NiCl2, Cd(OH)2, CdCl2, Re(OH)3, ReCl3, ZnCl2, AgCl, WO2(OH)2, Al(OH)3, Si(OH)4, B(OH)4, 

TlO, GaCl3, SbCl, MnCl2, CuCl). Sulfide, hydrate, and elemental gas species are also important 

for some elements (Cd, AuS, Hg, PbS2, BiS, Bi, AsS, As2S3, TeS, SeH, SeS). However, for many 

trace elements, speciation remains uncertain or unknown due to a lack of thermodynamic data. 

Upon cooling and decompression of the volcanic gas, most trace elements are predicted to reach 

gas-solid equilibrium, resulting in the formation of secondary minerals. At high temperatures 

(~700-1000°C), the mineral assemblage forming is dominated by quartz, Ca-Na-K feldspars, and 

Mg-pyroxene, containing minor concentrations of other alkali and alkaline earth metals. Further 

cooling and decompression leads to the formation of minerals including magnetite, pyrite, 

chalcocite, and chalcopyrite together with other less abundant oxides (V, Cr, Ga, W, and Sn) and 

sulfides (Zn, Pb, Ni, Co, Cd, Mo, Ag, As, and Bi), and eventually a range of sulfates and 

sulfosalts (Li, K, Na, Rb, Cs, Be, Mg, Ca, Sr, Bi, Mn, Fe, Zn, Pb, and Sn) at the lowest 

temperatures (~100-300°C). For most trace elements, fumarole emission concentrations reflect 

higher gas-solid equilibrium temperatures than those observed during sampling, suggesting gas-

solid equilibria at high temperatures followed by incomplete re-equilibration upon further 

cooling near the surface.  

Trace element fluxes span over eight orders of magnitude, ranging from >100 kg/day to ~1·10
-6

 

kg/day. Silica, Al, and B consistently exhibit the highest fluxes, followed by alkali and alkaline 

earth metals, various transition metals and metalloids, with rare earth elements and actinides 

displaying the lowest fluxes. Generally, the trace element fluxes are lower compared to 

neighboring Stromboli and Etna, except for Pb, Bi, B, As, Sb, and Te. 

 

 

Keywords: Volcanic gas; trace elements; gas speciation; thermodynamic modeling 
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1. Introduction 

 

Volcanic gas emissions constitute significant sources of many elements to the atmosphere, 

including volatile metals, metalloids, and aerosols (Nriagu, 1989, Hinkley et al., 1999, Mather et 

al., 2003). Additionally, the composition of volcanic gases offers valuable insights into volatile 

element emissions into overlying hydrothermal systems and the formation of porphyry and 

epithermal ore deposits. The volatile element melt composition, together with pressure (depth), 

temperature, and the degree of crystallization of the degassing magma, govern the composition 

of the source magmatic gas (e.g., Nash and Crecraft, 1985, Blundy and Wood, 2003, Mather et 

al., 2012, Iveson et al., 2019). Moreover, as volcanic gases rise to the surface, their chemical 

composition may undergo changes through a number of processes, including interactions with 

the host rock and/or hydrothermal system (Symonds et al., 2001, Henley and Seward, 2018, 

Henley and Fischer, 2021), cooling, decompression, and oxidation upon mixing with the 

atmosphere. These processes, for example, result in mineral deposition, as evident from 

incrustations around fumarolic vents and the formation of aerosols in the atmosphere (e.g., 

Stoiber and Rose, 1974, Allen et al., 2000, Africano et al., 2002, Gauthier et al., 2016, Mandon et 

al., 2019, Inostroza et al., 2020, Ilyinskaya et al., 2021). 

Data on the major element composition of volcanic gas are readily available today, both 

based on direct measurements of volcanic gas and passive fumarole emissions. High-temperature 

volcanic gas is typically dominated by H2O (~70-95 mol%), followed by CO2 (~1-15 mol%) and 

SO2 (<1-15 mol%), with lesser amounts of HCl, HF, HBr, CO, H2S, and H2 (e.g., Symonds et al., 

1994, Delmelle et al., 2000, Bobrowski et al., 2003). However, available data on the trace 

element composition of volcanic gas are limited. Data are available for volcanic eruption plumes 

from various geological settings like Etna and Stromboli (Italy), Ambrym (Vanuatu), Holuhraun 

(Iceland), Kilauea (Hawaii, USA), Erta Ale (Ethiopia), Tolbachik (Russia) (Aiuppa, 1999, Allard 

et al., 2000, Calabrese et al., 2011, Zelenski et al., 2013, Zelenski et al., 2014, Gauthier et al., 

2016, Mason et al., 2021), and degassing volcanic hydrothermal systems, for example, Kudriavy 

(Russia), Merapi (Indonesia), Augustine (USA), Usu and Satsuma-Iwo Jima (Japan), Cerro 

Negro, Momotombo and San Cristobal (Nicaragua), Poas (Costa Rica), and Iceland (Gemmell, 

1987, Symonds et al., 1987, Symonds et al., 1992, Hedenquist et al., 1994, Taran et al., 1995, 

Symonds et al., 1996, Wahrenberger et al., 2002, Kaasalainen and Stefánsson, 2012). Based on 

these studies, the trace element composition, including metal and metalloid concentrations, 

varies over ten orders of magnitude from <10
-12 

to >0.01 mol%. 

Our understanding of trace element concentrations and transport by volcanic gases relies 

on several factors. Sampling of volcanic gas at extremely high temperatures is difficult as well as 

chemical analysis of trace elements in samples containing high levels of S, Cl and F. Moreover, 

the chemical composition of samples from natural manifestations may change from source to 

surface due to various factors, including gas-rock interaction, gas condensation and interaction 

with shallow overlying hydrothermal fluids. Equilibrium thermodynamic calculations have been 

applied to model such trace element transport behavior (Symonds et al., 1987, Quisefit et al., 

1989, Symonds et al., 1992, Symonds and Reed, 1993, Getahun et al., 1996, Wahrenberger et al., 

2002, Henley and Seward, 2018, Mandon et al., 2020). The results indicate that most metals and 

metalloids interact with major gases to form chlorine, sulfur and hydrated gaseous compounds 

(e.g., Henley and Seward, 2018). However, the outcome of such calculations is dependent on the 

quality of the thermodynamic data and thermodynamic equations used, neither being well 
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defined at these high temperatures and moderate to low pressures (e.g., Pokrovski et al., 2013, 

Henley and Seward, 2018). Alternatively, trace element behavior has been interpreted 

qualitatively by comparing results from different geological settings. For instance, variations in 

halogen concentrations have been employed to elucidate differences in trace element emissions 

between arc and intraplate volcanoes, including notably high emissions from certain halogen-rich 

intraplate volcanoes (Gauthier et al., 2016, Mandon et al., 2019, Mason et al., 2021, Zelenski et 

al., 2021). 

The aim of this study is to enhance our understanding of the abundances and transport 

characteristics of trace elements within volcanic gases. We intend to link measured trace 

abundances in fumarolic fields along with composition and spatial distribution of mineral 

deposits observed at extinct volcanoes to processes occurring during magmatic gas transport 

from source to surface, focusing on the influence of major gas composition, cooling and 

decompression on speciation and mineral precipitation. For this, fumarole emissions from 

Vulcano Island (Italy) were collected using various methods to assess the reproducibility and 

accuracy of the sampling and analytical techniques. Trace element abundances were obtained for 

a range of fumarole temperatures and compositions between 2008 and 2022. Additionally, we 

employed thermodynamic modeling to analyze gas speciation and gas-solid interactions as the 

gases rise from depth after exsolution from a magma to the fumarole where they are emitted. We 

compared these models with data on gas composition and solid sublimates to gain insight into 

the factors controlling trace element concentrations and transport behavior. 

 

2. Study area 

 

Vulcano Island (Italy) forms part of the Aeolian volcanic arc. Its eruptive and subsurface 

materials include basalt, trachyte, and rhyolite (Clocchiatti et al., 1994, Zanon et al., 2003, 

Peccerillo et al., 2006, De Astis et al., 2013, Costa et al., 2020). The youngest edifice on Vulcano 

is La Fossa (~5.5 kyrs), hosts a fumarolic field (Fig. 1) (De Astis et al., 2013). Gas emissions 

mainly consist of H2O (>80 mol%), CO2 (4-20 mol%), sulfur volatiles ( SO2 and H2S; 0.1-1.5 

mol%), and HCl (0.02-0.8 mol%), along with lower concentrations of HF, H2, N2, and He 

(Chiodini et al., 1993, Nuccio et al., 1999, Paonita et al., 2002, Paonita et al., 2013). A 

hydrothermal system, partially fed by seawater, is the main source of thermal manifestations at 

the base of the La Fossa cone (Capasso et al., 1992, Nuccio et al., 1999, Paonita et al., 2002, 

Federico et al., 2010). 

Studies conducted over the past few decades have observed variations in fumarolic gases 

during periods of unrest, characterized by increased gas temperature and fluxes and changes in 

gas composition (increasing CO2, He and N2 concentrations relative to H2O), followed by 

intermittent periods of repose (Martini et al., 1980, Carapezza et al., 1981, Cioni and D'Amore, 

1984, Badalamenti et al., 1991, Barberi et al., 1991, Chiodini et al., 1993, Chiodini et al., 1995, 

Capasso et al., 1997, Italiano et al., 1998, Capasso et al., 1999, Nuccio et al., 1999, Paonita et al., 

2002, Paonita et al., 2013, Inguaggiato et al., 2022). The most recent unrest episode occurred 

between 2021 and 2022 (Aiuppa et al., 2022, Federico et al., 2023). These fluctuations in gas 

composition during unrest and repose periods are attributed to variations in the mixing ratio 

between magmatic (enriched in CO2, He and N2) and hydrothermal gases possibly related to 

magma injections in the deep chamber (Chiodini et al., 1992, Chiodini et al., 1993, Chiodini et 

al., 1995, Aiuppa et al., 2005, Granieri et al., 2006, Taran, 2011, Aiuppa et al., 2022). 
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Elevated concentrations of metals and metalloids have been observed in air particulates 

near the volcano (Dongarrà and Varrica, 1998, Varrica et al., 2000, Fulignati et al., 2006). 

Furthermore, metal and metalloid-rich sublimates and incrustations are common at the La Fossa 

fumarole field, including sulfur, salammoniac, sassolite, sulfides, and sulfosalts (e.g. Garavelli et 

al., 1997, Fulignati and Sbrana, 1998, Vurro et al., 1999, Garavelli et al., 2005, Demartin et al., 

2009, Pinto et al., 2014). Additionally, studies of hydrothermal waters have shown elevated 

metal concentrations relative to source water, partly influenced by magmatic gas input (Brondi 

and Dall'Aglio, 1991, Aiuppa et al., 2000, Falcone et al., 2022). Nevertheless, the trace element 

concentrations in volcanic gas emissions at Vulcano remain poorly characterized (Cheynet et al., 

2000). 

 

3. Methods 

 

3.1. Sampling and analytical methods 

 

Volcanic gas samples of fumarole emissions were collected during four sampling campaigns in 

2008, 2009, 2012 and 2022 (Fig. 1). The first three sampling campaigns took place during 

periods of repose, while the last one was during the unrest. For sampling, a ~50-cm long Pyrex 

glass or titanium tube was inserted into the fumarole and connected to the sampling bottles using 

a silicon tube. Samples for major elemental determination (H2O, CO2, CH4, SO2, H2S, H2, O2, 

N2, Ar, Cl, and F) were collected into pre-evacuated ~50-100 ml gas-bulbs containing 4M NaOH 

(ACS reagent) or 50% KOH (ACS reagent) (~30 ml per 100 ml) solution with and without 1M 

Zn-acetate or 0.15M Cd(HO)2 for SO2 and total sulfur (Stot) analysis, respectively. All analysis 

were conducted at the University of Iceland if not otherwise indicated. Non-condensable gases 

(CH4, H2, O2, N2 and Ar) were determined by gas chromatography (GC). The concentration of 

other major elements was analyzed in the condensate. The CO2 was analyzed by titration 

(Arnórsson et al., 2006), the Cl and F concentrations by ion chromatography (IC) and Stot as SO4 

by ion chromatography on samples that had previously been oxidized using H2O2 (30% 

Suprapur®) and UV-light. The concentration of SO2 was analyzed in samples containing Zn-

acetate. In the sample bottle, H2S was assumed to quantitatively precipitate as ZnS(s), and 

subsequently the precipitate was filtered off. The SO2 was further oxidized to completion using 

H2O2 and UV-light and analyzed using ion chromatography as SO4. The concentration of H2S 

was then calculated as the difference between Stot and SO2. 

Three sampling methods were applied for trace element determination (Ag, Al, As, Au, 

B, Ba, Be, Bi, Ca, Cd, Ce, Co, Cr, Cs, Cu, Dy, Er, Eu, Fe, Ga, Gd, Ge, Hf, Hg, Ho, Ir, K, La, Li, 

Lu, Mg, Mn, Mo, Nb, Nd, Ni, P, Pb, Pd, Pr, Pt, Rb, Re, Rh, Ru, Sb, Sc, Se, Si, Sm, Sn, Sr, Ta, 

Tb, Te, Th, Ti, Tl, Tm, U, W, V, Y, Yb, Zn, Zr). Firstly, direct vapor condensate samples were 

collected into Teflon bottles, these filtered through 0.2 µm filter (cellulose acetate or Teflon) on-

site, diluted with deionized water and acidified with trace element grade 67% HNO3 (1 mL per 

100 mL solution). Condensates collected in 2022 were not treated immediately after collection, 

but filtered and acidified weeks after sampling. Secondly, samples were collected into pre-

evacuated gas bottles containing 25% NH4OH (Merck Suprapur®) (Sortino et al., 2006) solution 

(~30 mL per 100 mL bottle), followed by dilution with deionized water. Thirdly, samples were 

collected in three condensers in line, with the last two containing 0.3M NaOCl solution for 

efficient dissolution and oxidation of volatile elements. A steady gas flow (0.2-0.3 mL/min) 

through the traps was maintained by an air-pump at the end of the line. The condensate sample 
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was filtered, diluted, and acidified as previously described whereas the NaOCl containing sample 

was not further treated. Following analysis, the concentrations of the gas emissions were added 

from various traps and normalized to the vapor condensate collected. By filtering condensate 

samples on site, we assumed any solid particles > 0.2 µm diameter (both host rock particles from 

magma fragmentation or conduit erosion and particles formed by direct condensation of the 

magmatic gas phase) to be removed from solution, the trace element content reflecting that of 

gaseous molecules solely.  

The trace element concentrations were analyzed as follows: with a single-collector 

double-focusing magnetic sector inductively coupled plasma mass spectrometer (Thermo 

Finnigan Element-2) at Arizona State University for the 2008 and 2009 datasets, using the most 

appropriate resolution for each element; an inductively coupled plasma sector field mass 

spectrometer at ALS Scandinavia accredited commercial laboratory for the 2012 dataset using 

screening analysis; a single-quadrupole inductively coupled plasma mass spectrometer (Thermo 

Fisher iCap™ RQ) at the University of Iceland for the 2022 dataset, run in collision cell mode 

(He). See Supplementary material for further details on the ICP-MS settings and operating 

conditions. All samples were run using multiple dilutions to prevent and overcome interferences 

due to high sulfur load and matrix effects. Detection limits (replicates of multi-element standard 

measurements with a 99% confidence level) and blank reagent concentrations were further 

determined for each type of sample matrix (Supplementary material). For individual elements, 

the trace analytical reproducibility was generally <10% at the 95% confidence level based on 

double to multiple analysis of each sample. The analytical accuracy based on standard solutions 

analysis (SPEX standards) were generally <3% and the analytical detections based on matrix 

matched standard solutions was <10 ppb for most elements but as high as ~4 ppm in some cases 

(Supplementary material). Some elements (Be, Zr, Nb, Ag, Cd, Hf, Ta, W, Re, Au, Tl, Bi, Ga, 

Ge, Se) had high uncertainties (>5-10% rsd) and should thus be regarded as qualitative. Rare 

Earth Elements and Platinum Group Elements results are indicative.  

 

3.2.Thermodynamic modelling 

 

Trace elements in volcanic gas can exist as gaseous compounds, liquids, and solid particles. To 

model this complex composition, equilibria among solids and gases were considered. The 

calculations were performed using HSC Chemistry 10 software 

(https://www.mogroup.com/portfolio/hsc-chemistry/), employing Gibbs energy minimization to 

determine the equilibrium composition of the system at specified temperature and pressure 

conditions.  

The purpose of the thermodynamic modeling was to provide insight into the trace 

element gaseous speciation and the composition of the solid condensed phases which the gas is 

in equilibrium with over the temperature and pressure range of the ascending volcanic gas. For 

this purpose, the gas was allowed to cool and decompress from 1000°C and 1000 bar consistent 

with an initial lithostatic pressure of magma at ~4 km depth to surface at 100°C and 2 bar. The 

gas was assumed to rapidly decompress to just above atmospheric pressures (~3 bar) while 

cooling to the maximum fumarole temperatures of 650°C observed at Vulcano. Following this 

quasi isenthalpic expansion to shallow depth, conductive cooling occurs at near-constant 

pressure down to 2 bar. This pressure-temperature path used for thermodynamic modelling is 

detailed in Supplementary material. 
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For the calculations, a typical major gas composition was used, based on an enriched CO2 

sample (#FNB from 2022, Supplementary material), to represent the deep gas composition and 

minimize potential influence from hydrothermal fluids in the shallow part of the conduit. The H2 

content was adjusted to reflect high temperature conditions. In contrast, trace element 

concentrations for the calculations were averaged from all the samples analyzed. The input gas 

composition for the thermodynamic calculations is provided in the Supplementary material. 

The HSC Chemistry 10 database served as the foundation for the calculations. This database 

incorporates available gaseous and mineral thermodynamic data from the literature, including 

Gibbs energy (ΔG), enthalpy (ΔH), entropy (S), and heat capacity (Cp) data. In some instances, 

data for certain gaseous species were extrapolated from low to high temperatures using the 

appropriate heat capacity function. Gas species were added in the input file as an ideal gas 

mixture, while solids were assumed to form pure phases. Initially, all gaseous species and 

minerals for selected components were included in the calculations but were subsequently 

narrowed down to include only those observed in significant concentrations (>10
-15

 mol%). In 

total, 265 gaseous species and 214 minerals were eventually included in the calculations 

(Supplementary material). 

 

4. Results 

 

4.1 Major element composition 

 

The volcanic gases emissions collected at Vulcano had temperatures between 94 and 412 °C 

(Table 1). The gas composition (n =22) was dominated by H2O (82.3-93.6 mol %), followed by 

CO2 (5.44-17.5 mol %), HCl (0.022-0.81 mol %), SO2 (0.032-0.42 mol %), H2S (0.010-0.26 

mol%), N2 (8.0·10
-3

-0.20 mol%), H2 (5.6·10
-3

-0.17 mol%), CH4 (1.5·10
-5

-0.065 mol%) and HF 

(1.1·10
-3

-0.050 mol%). Samples collected in 2022 displayed higher concentrations of CO2 and 

lower HCl contents compared to samples collected during 2008-2012. Duplicate samples 

collected at the same time from the same fumarole display reasonably similar values with 

differences being: <1% for H2O, <5-15% for CO2, SO2, HCl and HF and <25-30% for H2, CH4, 

N2 and O2 and <50% for H2S. 

 

4.2 Trace element composition 

 

The concentrations of 64 trace elements were analyzed in 38 samples of volcanic gas emissions. 

Alkali metals (Li, Na, K, Rb, Cs) and alkaline earth metals (Be, Mg, Ca, Sr, Ba) exhibit 

concentrations ranging from 0.001 to 8588 nmol/mol (Table 1, Fig. 2). Among these, Na, K, Mg, 

and Ca are the most abundant, whereas Rb, Cs, and Be have comparatively lower concentrations. 

All concentrations exceed the analytical detection limit, indicating significant findings.  

The concentrations of transition metals (Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Zr, Nb, 

Mo, Ru, Rh, Pd, Ag, Cd, Hf, Ta, W, Re, Ir, Pt, Au, Hg) spanned 9 orders of magnitude, ranging 

from approximately 10
-5

 to 10
4
 nmol/mol. The most abundant elements were Fe, Ti, and Zn (1 – 

18,825 nmol/mol), followed by Cr, Mn, Ni, and Cu (0.4 – 336 nmol/mol), and V, Mo, Ta, Cd, 

Co, Zr, Hf, Hg, W, and Nb (0.002 – 54 nmol/mol). For most transition metals (Sc, Ti, V, Cr, Mn, 

Fe, Co, Ni, Cu, Zn, Zr, Mo, Pd, Ag, Cd, Ta, W, Ir, and Hg), concentrations were above the 

analytical detection limit (Fig. 2), indicating significant results. However, for other transition 
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metals (Nb, Re, Ru, Rh, Hf, Pt, and Au), concentrations were just higher or similar to analytical 

detections, suggesting that results for those elements should be interpreted with caution.  

The concentrations of post-transition metals (Al, Ga, Tl, Sn, Pb, Bi), metalloids (B, Si, 

Ge, As, Sb, Te), and non-metals (P, Se) also spanned a wide concentration range (7·10
-4

 – 3·10
5
 

nmol/mol). Boron and silicon emerged as the most abundant with consistently elevated 

concentrations (555 – 300755 nmol/mol), followed by Al, As, Pb, and P (0.1 – 140638 

nmol/mol), Bi, Tl, Se, Sb, and Sn (7·10
-4

 – 623 nmol/mol), and Te, Ga, and Ge (4·10
-3

 – 18 

nmol/mol). Most concentrations of the post-transition metals, metalloids, and non-metals were 

above the analytical detection limit, with some exceptions (Sn, P, and Se) suggesting that results 

for the latter elements should be interpreted with caution. 

The concentration of rare earth elements and selected actinides (Y, La, Ce, Pr, Nd, Sm, 

Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, Th, U) were consistently low (10
-5

 - 2 nmol/mol), with 

many data points close to the analytical detection limits (La, Ce, Pr, Nd, Sm, Gd, Dy, Ho, Er, 

Tm, Yb, Lu, and Th). 

 

5. Discussion 

 

5.1. Volcanic gas compositions and data quality 

 

Trace elemental concentrations in volcanic gas emissions are known to depend on the methods 

applied for sampling and analysis (e.g., Fischer et al., 1998b, Sortino et al., 2006, Zelenski et al., 

2013). Several potential issues have been identified. These include the precipitation of sulfur 

upon direct vapor condensation, resulting in the deposition of elemental substances within and 

onto solid surfaces. Elevated blank concentrations may also occur due to the reagents used for 

sampling, particularly when volcanic gases are sampled into alkaline (NaOH) condensates, a 

common technique for sampling and analysis of major gases. Additionally, non-quantitative 

trapping of volatile elements into condensates can occur resulting in underestimation of the 

analyte content, while trapping of aerosol (rock particles from magma fragmentation or eroded 

from the conduit and/or condensed species from the magmatic gas) would overestimate the 

concentration of some elements with respect to pure gaseous compounds. Furthermore, 

analytical uncertainties and challenges often arise from the sample matrix, particularly with 

elevated concentrations of elements such as S, F and Na. 

To assess data quality, we employed three different sampling approaches and compared 

the results (Table 1, Figs. 2 and 3). Firstly, direct condensation of volcanic gas was applied, 

followed by filtration (0.2 µm), dilution, and acidification with HNO3. Secondly, samples were 

collected into pre-evacuated gas bottles containing a 25% NH4OH solution, followed by dilution. 

Thirdly, samples were collected using condensation trap followed by traps containing an 

oxidizing agent (0.3M NaOCl) connected in-line. Subsequently, the samples were filtered and 

diluted. Direct condensate samples were obtained in 2008 and 2022, the samples being treated 

(filtered, diluted and acidified) on site after sampling in 2008 while they waited untreated for 

weeks after sampling in 2022. In 2009, only samples using condensation and NaOCl traps were 

collected, the condensate treated on site after sampling. In 2012, duplicate samples were 

collected, employing both pre-evacuated bottles containing NH4OH and the previously described 

condensation traps and NaOCl traps, samples treated on site after sampling. Filtration directly 

after collection ensured removal of aerosol > 0.2 µm from the samples in 2008, 2009 and 2012. 
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Leaching of rock particles collected along with the condensate in 2022 would however have time 

to occur until filtration. 

For alkali (Li, Na, K, Rb, Cs) and alkaline earth (Be, Mg, Ca, Sr, Ba) metals, the 

concentrations generally exhibit comparability among sampling methods. However, there are 

exceptions. Direct condensate samples, if not treated immediately like those from 2022, 

sometimes display concentration spikes for rock-forming elements (e.g. Li, Rb, Cs, Be, Mg, Sr, 

Mn, Fe, Al) which is likely related to host rock particle dissolution upon sample storage. This 

should be kept in mind when discussing gaseous transport solely. Additionally, samples collected 

into pre-evacuated gas bottles containing NH4OH sometimes exhibit lower elemental 

concentrations, particularly for Ca and Mg. This decrease may be attributed to the precipitation 

of hydroxides in the alkaline condensate. For transition metals (Sc, Ti, V, Cr, Mn, Fe, Co, Ni, 

Cu, Zn, Zr, Nb, Mo, Ru, Rh, Pd, Ag, Cd, Hf, Ta, W, Re, Ir, Pt, Au and Hg), the concentrations 

are generally comparable among sampling methods. However, exceptions include concentration 

spikes (V, Cr, Fe, Nb, Hf) or lower concentrations (Co, Mo) in condensate samples. 

Nevertheless, concentration variability between samples, even during the same sampling 

campaign, is more noticeable than the variation between sampling methods. For post-transition 

metals (Al, Ga, Tl, Sn, Pb, Bi), metalloids (B, Si, Ge, As, Sb, Te), and non-metals (P, Se), the 

elemental concentrations often exhibit variability among methods. Some elements (Al, Ga, Sb) 

display concentration spikes in direct condensation samples, while others show low 

concentrations in NH4OH (B, Al, Sn, P, Te) and NaOCl (Bi) samples. Regarding Rare Earth 

Elements and actinides (Y, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, Th, U), 

they generally exhibit low and similar concentrations among different sampling methods. 

However, in some cases, concentrations are lower for samples collected into NH4OH solution 

(Y, Ce, Ho, U). 

Direct comparison of data for the same fumarole emission is possible for samples 

collected using condensation and NaOCl traps and pre-evacuated gas bottles containing NH4OH 

(Fig. 3). The results reveal systematically higher concentrations for some elements in samples 

collected using the traps (Al, As, B, Ca, Cs, Ga, P, Pt, Rb, Sb, Si, Sn, Sr, Y, Yb, Zn), whereas 

other elements consistently display lower concentrations (Au, Bi, Mn, Hg, Pb, Tl). Selenium is 

often found at higher levels in NaOCl traps, while Hg and Pb tend to be more concentrated in 

NH4OH bottles. Potassium and Ag show large variabilities between the two sampling methods. 

The use of an oxidizing agent (NaOCl) appears to be more effective to sample volatile elements 

such as As, Sb, and Se, which may partly remain in the gas phase at room temperature explaining 

the lower concentrations in NH4OH bottles. However, the collection of mercury (Hg) is not 

efficient, suggesting the need for different methods for specific Hg studies (i.e., Edwards et al., 

2023). 

Our results emphasize the variability of trace element abundances measured in fumarolic 

gases. The efficiency in trapping elements is dependent on the sampling technique used. The 

analysis itself is not trivial, with some elements close to detection limits or with high 

uncertainties. Moreover, natural variations in fumarolic gas composition within short time scales 

can also lead to varying abundances. Trace element data for fumarolic gases should therefore be 

treated mindfully, our results suggesting a meaningful and reasonable range of one order of 

magnitude to be expected for most elements. 

 

5.2.  Trace element speciation in volcanic gas 
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The transport behavior of trace elements in volcanic gases is primarily influenced by the 

complexation of these elements with various ligands (Symonds et al., 1987, Wahrenberger et al., 

2002, Henley and Seward, 2018, Mandon et al., 2020, Mason et al., 2021). Among the major 

ligands present in the volcanic gas at Vulcano are water, sulfur, chlorine, fluorine, and carbon. 

The concentrations of major species, and consequently the concentration of ligands, remain 

relatively constant during decompression and cooling as the gas ascends from depth to the 

surface (Fig. 4). Water (H2O) stands out as the dominant gaseous species. Regarding chlorine, 

fluorine, and carbon, HCl, HF, and CO2 predominate across the entire temperature and pressure 

range, with other Cl, F, and C species being of minor importance. As for sulfur, SO2 dominates 

at higher temperatures, while H2S becomes more significant as the temperature decreases, 

eventually leading to an SO2/H2S mole ratio of ~1 at temperatures below 350°C. The volcanic 

gas exhibits a reduced state, with measurable concentrations of H2 (Table 1). However, precise 

modeling of the H2 concentration, and indeed the relative abundance of redox-sensitive species 

(CO2, CO, CH4, SO2, H2S, H2), depends greatly on the initial H2 composition of the magmatic 

gas. In this context, we have established a value of 3000 µmol/mol to replicate H2 concentrations 

(10
-3

 - 10
-2

 µmol/mol) and SO2/H2S ratios (0.7-35) at the sampling temperatures (~200-400°C) 

(Fig. 4). This magma value aligns with the measured H2 content of arc magmas (Giggenbach and 

Guern, 1976, Taran et al., 1995, Fischer et al., 1998a, Henley and Hughes, 2016). 

In contrast to major elements, the speciation of trace elements varies and depends on 

temperature (Fig. 5). Alkali metals are primarily transported as simple metal-chloride gaseous 

species, such as LiCl(g), KCl(g), NaCl(g), RbCl(g), and CsCl(g), from magmatic to surface 

temperatures. Fluorine becomes increasingly significant at lower temperatures, forming simple 

KF(g) species or more complex LiAlF4(g) compounds (Fig. 5, Table 2). On the other hand, 

alkaline earth metals are transported as chloride, hydrated, or mixed hydroxo-chloro compounds, 

including Be(OH)2(g), Mg(OH)2(g), MgCl2(g), CaCl2(g), SrCl2(g), and CaCl(OH)(g). 

Most transition metals exist as hydroxide and/or chloride gaseous species at high 

temperatures, with chloride species becoming predominant as temperature decreases (Fig. 5). 

Additionally, sulfur and elemental species are present, and mixed hydroxo-chloro species are 

predicted to occur. These mixed species include TiOCl2(g), VOCl(g), VOCl2(g), VOCl3(g), and 

NbOCl3(g), while the transition from hydroxide to chloride species includes Cr(OH)3(g) to 

CrCl3(g), Fe(OH)2(g) to FeCl2(g), Co(OH)2(g) to CoCl2(g), Ni(OH)2(g) to NiCl2(g), Cd(OH)2(g) to 

CdCl2(g), and Re(OH)3(g) to ReCl3(g). Other transition metals are observed as single species from 

magmatic to surface temperatures, complexed with chloride, fluoride, hydroxide, and sulfide, or 

exist as elemental gas. These include MnCl2(g), CuCl(g), ZnCl2(g), AgCl(g), WO2(OH)2(g), AuS(g), 

and Hg(g). 

Post-transition metals, metalloids, and non-metals exhibit significantly more variability in 

gaseous speciation distribution compared to alkali, alkaline earth, and transition metals. Only a 

few are transported solely as hydrated or oxide gaseous species, such as Al(OH)3(g), Si(OH)4(g), 

B(OH)3(g), and TlO(g), along with chloride species like GaCl3(g) and SbCl(g). The remaining trace 

element groups show varying species occurrence depending on temperature. These include PbS(g) 

and PbCl2(g), BiS(g), Bi(g), and BiCl3(g), AsS(g), AsO(g), and As2S3(g), TeS(g) and TeCl2(g), as well as 

SeH(g) and SeS(g). However, concerning the gaseous speciation of rare earth elements and 

actinides, limited data are available, and these are not included in the thermodynamic database 

used for the present work. 

Our findings regarding the speciation of trace elements in volcanic gas align with 

previous studies (e.g., Symonds et al., 1987, Symonds et al., 1992, Wahrenberger et al., 2002, 
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Henley and Seward, 2018). However, the outcomes of both current and past research are 

contingent upon the thermodynamic database employed, the thermodynamic formulation 

applied, and the inclusion of gaseous species (Williams-Jones and Heinrich, 2005, Pokrovski et 

al., 2013). Thermodynamic data for trace elements are often insufficiently defined and missing 

for many elements and compounds in low-density water vapor characteristic of volcanic gases 

(ρw < 300 kg/m
3
 at a few kilometers depth, ρw ~ 1 kg/m

3
 at the surface)(e.g., Kestin et al., 1984, 

Palmer et al., 2004). Furthermore, water vapor at elevated temperatures is not simply hydrogen-

bonded dielectric solvent, nor is it merely a gas. Instead, it comprises aggregates of water 

molecules held together by hydrogen bonding, forming water clusters. The size of these clusters 

increases with pressure at a given temperature as density increases, eventually exhibiting 

properties similar to liquid water. Conversely, decreasing pressure reduces the number of water 

molecules in the cluster until they approach unity, causing water vapor to approach the behavior 

of a gas (e.g., Lemke and Seward, 2018). The measured solubility of compounds in water vapor 

is notably higher than that predicted from the vapor pressure of the same compound over its 

respective crystalline solid melt. For instance, the sublimation solubility of NaCl(s) is xNaCl = 

5·10
- 8

 at 500°C and 1 bar, rising to xNaCl = 10
-4

 at 300 bar. This phenomenon suggests hydration 

of NaCl to form hydrated NaCl·(H2O)n compounds, with the number of water molecules in the 

compound increasing with pressure (Pitzer and Pabalan, 1986, Lemke and Seward, 2018, 

Velizhanin et al., 2020). Similar trends have been observed for other elements in water vapor, 

such as Fe, Zn, Cu (Pokrovski et al., 2005, Velizhanin et al., 2020), La, Nd, and Er (Alcorn et al., 

2022). Consequently, the dominant gas species of trace elements may not be represented by a 

single gas compound (e.g. CuCl), as commonly assumed, including in this study. Instead, they 

may exist as a series of hydrated metal-ligand compounds (e.g. CuCl·nH2O). Extrapolating 

thermodynamic properties from liquid-like to vapor-like water, or from a low gaseous state to 

water vapor, may not be applicable for such fluids. It follows that the fundamental assumptions 

of the approaches used in the present study and previous work may be invalid, encompassing 

both the thermodynamic equations and the thermodynamic values (i.e., the thermodynamic 

database). These calculations heavily rely on extrapolating thermodynamic properties of gaseous 

compounds at low pressures to higher pressures, where hydration significantly impacts gas-

species thermodynamic stabilities. However, the general lack of experimental data currently 

hinders the generation of such a thermodynamic database despite their importance for 

understanding, for example, element transport in volcanic water-rich vapor. 

 

5.3. Gas-solid interaction 

 

Thermodynamic calculations were further employed to gain insight into the gas-solid interaction 

and the condensation or formation of secondary mineral phases upon cooling and decompression 

of the magmatic gas. 

Most trace elements were found to reach equilibrium with solid phases between 100-

1000°C. At high temperatures, the reactions typically involve the formation of oxides, aluminum 

silicates, and sulfides (Figs. 6-8, Table 3). Quartz, Ca-Na-K feldspars, and Mg-pyroxene are 

predicted to be the most abundant at temperatures of ~700-1000°C, forming via reactions such 

as: 

 

Si(OH)4(g) = SiO2(s) + 2H2O(g) 

NaCl(g) + Al(OH)3(g) + 3Si(OH)4(g) =NaAlSi3O8(s) + HCl(g) + 7H2O(g) 
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KCl(g) + Al(OH)3(g) + 3Si(OH)4(g) =KAlSi3O8(s) + HCl(g) + 7H2O(g) 

CaCl2(g) + 2Al(OH)3(g) + 2Si(OH)4(g) = CaAl2Si2O8(s) + 2HCl(g) + 6H2O(g) 

Mg(OH)2(g) + Si(OH)4(g) = MgSiO3(s) +3H2O(g) 

 

The feldspars and pyroxene may potentially contain traces of other alkali and alkaline earth 

metals (Rb, Cs, Sr, and Ba) according to the thermodynamic calculations. Further decrease in 

temperature to below ~600-700°C results in abundant magnetite formation, along with other less 

abundant metal (V, Cr, Ga, W, and Sn) oxides: 

 

3FeCl2(g) +4H2O(g) = Fe3O4(s) + 6HCl(g) + H2(g) 

 

Decreasing temperature also leads to sulfide mineral formation, with the most abundant 

being Fe, Cu, and Cu-Fe containing sulfides (pyrite, chalcocite, and chalcopyrite): 

 

FeCl2(g) + 2H2S(g) = FeS2(s) +2HCl(g) + H2(g) 

2CuCl(g) + 2H2S(g) = Cu2S(s) + 2HCl(g) 

CuCl(g) + FeCl2(g) + 2H2S(g) = CuFeS2(s) + 3HCl(g) + ½H2(g) 

 

Traces of other metal sulfides (Zn, Pb, Ni, Co, Cd, Mo, Ag, As, and Bi) are also present.  

As the volcanic gas approaches the surface and further cools, decompression and gas 

expansion occur, along with sulfur oxidation and disproportionation. This results in characteristic 

argillic alteration with sulfates and sulfosalts becoming the most abundant secondary minerals 

from the volcanic gas, including alkali (Li, K, Na, Rb, and Cs), alkaline earth metals (Be, Mg, 

Ca, Sr, and Ba), transition metals (Mn, Fe, Zn,), and post-transition metals (Sn, Pb, and Bi) 

containing sulfates. 

A variety of minerals have been identified at Vulcano in association with high-

temperature fumarole emissions (100-600°C) (Garavelli and Vurro, 1994, Garavelli et al., 1997, 

Vurro et al., 1999, Cheynet et al., 2000, Garavelli et al., 2005, Pinto et al., 2014). These minerals 

include elemental sulfur (S), salammoniac (NH4Cl), sassolite (H3BO3), various sulfides, and 

sulfosalts particularly enriched in certain metals (Pb, Bi, Zn, and Fe), oxychlorides. Examples of 

these minerals are bismuthinite (Bi2S3), cannizzarite (Pb48Bi56S132), galenobismutite (PbBi2S4), 

lillianite (Pb3Bi2S6), cosalite (Pb2Bi2S5), galena (PbS), sphalerite (ZnS), wurtzite ((Zn,Fe)S), 

pyrite (FeS2), anglesite (PbSO4), baliczunicite (Bi2O(SO4)2), bismoclite (BiOCl), among others. 

Small amounts of Se and Cd also occur in the sulfides. Our gas-solid modeling suggests the 

formation of such sulfides at temperatures below ~400-500°C and sulfosalts at temperatures 

below ~200-300°C, including galena, anglesite, bismuthinite, pyrite, sphalerite, and bismuth 

sulfate. However, the thermodynamic modeling fails to reproduce the detailed compositional 

variations of the observed sulfides, as well as the observed formation temperatures. For example, 

the modeling indicates galena as the predominant Pb-containing mineral over a relatively large 

temperature range of ~250-500°C, whereas galena is observed in natural sublimates collected in 

silica tubes inserted in fumaroles at narrow temperature range of ~400-500°C (Garavelli et al., 

1997).This small discrepancy may be explained by different major gas composition between our 

study and that of Garavelli et al. (1997). Additionally, our modeling does not always replicate the 

observed mineral paragenesis, especially for rare minerals or those with complex formula. 

Similar controversies between gas-solid modeling and observations have been reported 

previously (Symonds and Reed, 1993, Wahrenberger et al., 2002). These are considered to result 
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from the limited number of minerals included in the thermodynamic database (e.g. no Pb-Bi 

sulfide species) used for the calculations, excluding most solid solutions, as well as the 

potentially inaccurate thermodynamic properties of many gaseous species. These differences in 

modeled versus observed mineralogy clearly indicate the need for improved thermodynamics of 

gas species in geologically relevant vapor phases. 

The thermodynamic modeling and resulting mineral paragenesis are resembling what is 

observed in porphyry ore-forming environments. At high temperatures, feldspar alteration is 

predicted, similar to that observed along with abundant quartz, following significant sulfide 

mineralization at lower temperatures. These sulfides are enriched in Cu and Fe, along with other 

metals such as Pb, Zn, Cd, Co, Ni, Ag, Bi, and As. The volcanic fluids are acidic, which may be 

reflected in a more Na-Ca type alteration potentially lacking ore minerals, rather than the typical 

potassic alteration associated with high ore grades. Furthermore, the lower-temperature argillic 

alteration predicted as a consequence of cooling and oxidation is also typically observed at later 

stages and shallower depths relative to the sulfide mineralization (e.g., Seedorff et al., 2005). 

 Comparison of observed concentrations and those predicted by thermodynamic modeling 

further reveals important discrepancies. Trace element concentrations often display similar 

concentration despite large range in sampling temperature (100-550°C) whereas the 

thermodynamic modeling suggests rapid decrease in concentration resulting from mineralization 

upon cooling and decompression (Figs. 6-8). This trend suggests that trace element abundance in 

volcanic gases may not reflect gas-solid equilibria at sampling temperatures, but instead, the 

initial volcanic gas composition and/or gas-solid equilibria at higher temperatures than those 

reflecting the sampling conditions. For instance, the Si concentrations measured in fumarole 

emissions is typically ~2·10
4
 nmol/mol (6·10

2
 to 1.8·10

5
 nmol/mol), resembling experimentally 

measured quartz solubility in water vapor at >800°C and >10 bar (Fig. 9), or higher equilibrium 

temperatures and pressures than those measured in fumarole emissions – more like the expected 

conditions within the gases at depth. Contribution from solid particles <0.2 μm transported 

alongside the gas phase cannot be ruled out, as our samples were not filtered for smaller 

particles. However, it is unlikely that all particles formed during the gas rise from source to 

surface are <0.2 μm in size and that none of them are deposited along the way. This suggests that 

the volcanic gas may indeed be in gas-solid equilibrium, at least for some major minerals, and 

that rapid expansion of the gas under close-to-surface conditions result in gas cooling, reflected 

in variable sampling temperatures, without quantitative mineral precipitation from the volcanic 

gas phase. 

 

5.4. Trace element fluxes 

 
Individual trace element fluxes were estimated based on their concentration to SO2 ratio and SO2 

flux measurements. Sulfur dioxide emissions have been continuously monitored at Vulcano (Vita 

et al., 2012, Inguaggiato et al., 2022), with a value of 12±1 t/day during 2008-2012 and a sharp 

increase during the 2021-2022 unrest, with 79 t/day in 2022 (Aiuppa et al., 2022, Inguaggiato et 

al., 2022). 

The four-year average survey of 2008-2012 reveals fluxes >100 kg/d for B and Al, 

between 10 and 100 kg/d for Fe and Si, between 1 and 10 kg/d for Zn, K, Bi, Ti, As, Ca, Mg, and 

Pb, between 0.1 and 1 kg/d for Sb, Li, Ni, Rb, Tl, Ta, Cr, Cu, Sr, Mn, Ba, and Na, and <0.1 kg/d 

for all other elements (Table 4, Fig. 10). Trace element emission rates are up to two orders of 

magnitude higher during the 2022 unrest compared to 2008-2012, except for B, As, Zn, Sb, Tl, 
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Se, Sn and Mo which exhibit similar fluxes. Notably, Vulcano emitted > 10 kg/d of Pb and Bi in 

February 2022. Most rock-forming elements display elevated emission rates during the 2022 

unrest, but these are uncertain and subject to contamination related to mineral dissolution upon 

sample storage. 

Emission rates obtained in this study fall within the range of those measured previously 

in 1993 (Cheynet et al., 2000) for As, Bi, Cd, Pb, Tl, and Zn, indicating consistency over the past 

30 years of activity. However, these fluxes are minor compared to nearby Stromboli and Etna, 

where SO2 emission rates of 300 and 1000-4560 t/d, respectively, have been recorded (Buat-

Ménard and Arnold, 1978, Bergametti et al., 1984, Andres et al., 1993, Gauthier and Le Cloarec, 

1998, Allard et al., 2000, Calabrese et al., 2011, Calabrese et al., 2015) and subsequently much 

greater trace element fluxes (Fig. 10). Trace element emission rates at these volcanoes exceed 

those of Vulcano by over 100 times and sometimes over 1000 times for elements such as Li, K, 

Na, Rb, Cs, Mg, Ca, Sr, Ba, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Mo, Ag, Cd, W, Re, Au, Hg, Tl, Sn, 

and Se. In contrast, fluxes of Pb, Bi, B, As, Sb, and Te are not as dwarfed by those of Stromboli 

and Etna, with at most an order and a half of magnitude difference. Therefore, despite its 

relatively low SO2 fluxes, Vulcano should be considered a high-emission volcano for these 

elements. 

 

 

6. Conclusions 

 

The geochemistry of trace elements in volcanic gas at Vulcano (Sicily, Italy) was 

investigated through the analysis of fumarole emissions (94 to 412°C), coupled with 

thermodynamic modeling. Trace element concentrations vary across ten orders of magnitude, 

ranging from ~0.01 pmol/mol to ~300 µmol/mol, with certain metalloids being the most 

abundant. They are followed by alkali and alkaline earth metals, along with specific transition 

metals, while rare earth elements and actinides typically exhibit the lowest concentrations. 

Determining trace element concentrations in volcanic gas emissions depends on the 

sampling and sample storage methods employed. Condensates are susceptible to post-sampling 

alterations unless treated immediately. Sampling into alkaline condensate (NH4OH) may lead to 

precipitation and the loss of certain elements during sample storage. Conversely, trapping using 

oxidizing agents (NaOCl) results in effective sampling of volatile elements, albeit with analytical 

challenges due to the complex sample matrix. 

Thermodynamic modeling suggests that most trace elements are transported as chloride, 

hydroxide, and mixed hydroxy-chloro gas species, with sulfides, hydrates, and elemental gas 

species also playing significant roles for some elements. However, the gaseous speciation of 

many trace elements remains uncertain or unknown due to a lack of thermodynamic data. 

Upon cooling and decompression of the volcanic gas, most trace elements are expected to 

reach gas-solid equilibrium, leading to the formation of secondary minerals. At high 

temperatures (~700-1000°C), the dominant mineral assemblage comprises quartz, Ca-Na-K 

feldspars, and Mg-pyroxene, with minor concentrations of other alkali and alkaline earth metals. 

Subsequent cooling and decompression result in the formation of magnetite, pyrite, chalcocite, 

and chalcopyrite, alongside other less abundant oxides. Eventually, a range of sulfates and 

sulfosalts is formed at the lowest temperatures (~100-300°C). For most trace elements, fumarole 

emission concentrations reflect higher gas-solid equilibrium temperatures than those observed 

during sampling, indicating gas-solid equilibria at high temperatures followed by incomplete re-
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equilibration upon further cooling near the surface. By mass, only a small portion of the trace 

elements are condensing to form minerals, the majority staying in the gas phase until emission at 

the fumarole outlet. 

Trace element fluxes span over seven orders of magnitude, ranging from approximately 

1·10-6 kg/day to >100 kg/day, and are consistent with previous reports. Silica, Al, and B 

consistently exhibit the highest fluxes, followed by alkali and alkaline earth metals, various 

transition metals and metalloids, with rare earth elements and actinides displaying the lowest 

fluxes. Overall, the trace element fluxes are lower compared to neighboring Stromboli and Etna, 

except for Pb, Bi, B, As, Sb, and Te. 
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Fig. 1. Location of the study area of La Fossa, Vulcano (Sicily, Italy). A) Vulcano island and the 

location of fumaroles sampled at the La Fossa crater. B) Sampling setup for direct condensation, 

C) sampling setup for pre-evacuated gas bottles containing ~25% NH4OH (30 ml per 100 ml 

bottle), D) sampling setup for in-line traps consisting of direct condensation followed by two 

traps containing 0.3M NaOCl with flow maintained at the end of the line using an air-pump. 
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Fig. 2. Trace element concentrations of fumarolic emissions from Vulcano (Sicily, Italy). Shown 

are the results of variable sampling methods, whether samples were collected during a period of 

repose or unrest, and analytical detection limits.  
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Fig. 3. Comparison between concentrations of trace elements from fumarole F2 (12-VUL-2) 

collected in pre-evacuated gas sampling bottles containing 25% NH4OH (~30 ml in 100 ml 

bottle) and samples collected with a condenser and two traps containing 0.3M NaOCl. 
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Fig. 4. The concentration of major gas species in volcanic gases at Vulcano (Sicily) as a function 

of temperature and decompression from magmatic temperatures (1000°C and 1 kbar) to surface 

(100-300°C and 2 bar). Note the non-linearity of the pressure scale, following the P-T path used 

for thermodynamic modelling and detailed in Supplementary material. The results of the 

thermodynamic calculations are shown as lines and the measured composition of fumarole 

discharges as symbols (diamond, this study, Table 1; star, data from Wahrenberger (1997)).  
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Fig. 5. The results of equilibrium gaseous species distribution of trace elements in volcanic gases 

at Vulcano (Sicily) at magmatic temperature and pressure (1000°C and 1 kbar), in the gas 

conduit (600°C and 20 bar) and at surface (300°C and 2 bar). The gaseous species have been 

grouped according to the predominant ligands of various species. 
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Fig. 6. The results of gas speciation and solid precipitation from thermodynamic modeling as a 

function of temperature and decompression from magmatic conditions (1000°C and 1 kbar) to 
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surface (100-300°C and 2 bar) for alkali (Li, Na, K, Rb, Cs) and alkaline earth (Be, Mg, Ca, Sr, 

Ba) metals. Curves show the concentrations of various gaseous species and solids and the 

diamonds the measured concentration in fumarole emissions (this study in red and Wahrenberger 

(1997) in blue).  
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Fig. 7 
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Fig. 7. The results of gas speciation and solid precipitation from thermodynamic modeling as a 

function of temperature and decompression from magmatic conditions (1000°C and 1 kbar) to 

surface (100-300°C and 2 bar) for transition metals (Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Zr, Nb, 

Mo, Ag, Cd, W, Re, Au, Hg). Curves show the concentrations of various gaseous species and 

solids and the diamonds the measured concentration in fumarole emissions (this study in red and 

Wahrenberger (1997) in blue). 
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Fig. 8 
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Fig. 8. The results of gas speciation and solid precipitation from thermodynamic modeling as a 

function of temperature and decompression from magmatic conditions (1000°C and 1 kbar) to 

surface (100-300°C and 2 bar) for post-transition metals, metalloids and non-metals. Curves 

show the concentrations of various gaseous species and solids and the diamonds the measured 

concentration in fumarole emissions (this study in red and Wahrenberger (1997) in blue). 
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Fig. 9. The concentrations of silica in the volcanic gas fumarole emissions (dots) and in water 

vapor in equilibrium with quartz (curves) as a function of temperature and pressure (Rendel and 

Mountain, 2023). 
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Fig. 10. Trace element emission rates from Vulcano in kg/d. Average fluxes for 2008-2012 and 

2022. The grey shaded area delineates the emission rates from Etna and Stromboli (Buat-Ménard 

and Arnold, 1978, Bergametti et al., 1984, Andres et al., 1993, Gauthier and Le Cloarec, 1998, 

Allard et al., 2000, Calabrese et al., 2011, Calabrese et al., 2015). 
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Table 1 The chemical compostion of major and trace elements in fumarole vapor emissions from Vulcano, Italy 
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Table 2 

Dominant gaseous compound predicted from thermodynamic calculations 

  300°C 600°C 1000 °C 

Alkali metals 

  Li LiCl, LiAlF4 LiCl LiCl, LiOH 

Na NaCl, NaF NaCl NaCl 

K KF, KCl KCl, KF KCl 

Rb RbCl RbCl RbCl 

Cs CsCl CsCl CsCl 

Alkaline earth metals 
  Be Be(OH)2 Be(OH)2 Be(OH)2 
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Mg MgCl2 MgCl2, Mg(OH)2 Mg(OH)2, MgCl2 

Ca CaCl2 CaCl2 CaCl(OH), CaCl2, Ca(OH)2 

Sr SrCl2 SrCl2 SrCl(OH), SrCl2 

Ba BaCl2 BaCl2 BaCl2, BaCl(OH) 

Transition metals 
  Ti TiOCl4 TiOCl2 TiOCl2 

V VOCl2, VOCl3 VOCl2 VOCl, VOCl2 

Cr CrCl3 Cr(OH)3, CrCl3 Cr(OH)3 

Mn MnCl2 MnCl2 MnCl2 

Fe FeCl2 FeCl2, Fe(OH)2 Fe(OH)2, FeCl2 

Co CoCl2 CoCl2, Co(OH)2 Co(OH)2, CoCl2 

Ni NiCl2 NiCl2, Ni(OH)2 Ni(OH)2, NiCl2 

Cu CuCl CuCl CuCl 

Zn ZnCl2 ZnCl2 ZnCl2, Zn(OH)2, Zn 

Zr ZrF4 ZrF4, ZrCl4 ZrCl4, ZrF4 

Nb NbOF3, NbOCl3 NbOF3, NbOCl3 NbOCl3, NbOF3 

Mo MoO2F2 MoO2F2 MoO2(OH)2, MoO2F2 

Ag AgCl AgCl AgCl, Ag 

Cd CdCl2, Cd(OH)2 Cd, Cd(OH)2 Cd(OH)2, Cd 

W WO2(OH)2, WO2Cl2 WO2(OH)2 WO2(OH)2 

Re ReCl3 ReCl3, ReO3 ReO3, ReCl3 

Au  AuS  AuS AuS 

Hg Hg Hg Hg 

Post-transition metals 

  Al Al(OH)3, AlF(OH)2 Al(OH)3 Al(OH)3 

Ga GaCl3 GaCl, GaCl3 GaCl 

Tl TlO TlO TlO 

Sn SnCl2 SnS, SnCl2 SnS, SnCl2 

Pb PbCl2 PbS, PbCl2 PbS, PbCl, PbCl2 

Bi BiCl3 BiS, Bi BiS, Bi, BiCl, BiCl2 

B B(OH)3 B(OH)3 B(OH)3 

Metalloids and non-metals 

  Si Si(OH)4 Si(OH)4 Si(OH)4 

Ge GeCl4, GeS GeS, GeO GeS, GeO 

As As2S3 As2S3, AsS, As2 AsS, As2, AsO 

Sb SbCl, SbCl3 SbCl SbCl 

Te TeS, TeCl2 TeS TeS, TeH, Te 

P H3PO4 H3PO4 H3PO4 

Se SeH2, SeS, Se2 SeH2, SeS SeH2, SeS 

Table 3 

Gas-solid reactions 

  Gas-solid reaction Mineral formation temperature 

Alkali metals 

 
Li 2LiCl(g) + SO2(g) + 2H2O(g) = Li2SO4(s) + 2HCl(g) + H2(g) 100-500°C 

Na 2NaCl(g) + SO2(g) + 2H2O(g) = K2SO4(s) + 2HCl(g) + H2(g) 100-200°C 

 
NaCl(g) + Al(OH)3(g) + 3Si(OH)4(g) =NaAlSi3O8(s) + HCl(g) + 7H2O(g) 200-900°C 

K 2KCl(g) + SO2(g) + 2H2O(g) = K2SO4(s) + 2HCl(g) + H2(g) 100-200°C 

 
KCl(g) + Al(OH)3(g) + 3Si(OH)4(g) = KAlSi3O8(s) + HCl(g) + 7H2O(g) 200-750°C 

Rb 2RbCl(g) + SO2(g) + 2H2O(g) = Rb2SO4(s) + 2HCl(g) + H2O(g) 100-200°C 

 

RbCl(g) = RbCl(s) 200-400°C 

Cs CsCl(g) + Al(OH)3(g) + 2SO2(g) + H2O(g) = CsAl(SO4)2(s) + HCl(g) + 2H2(g) 100-250°C 

 

CsPO3(g) = CsPO3(s) 280-320°C 

 
CsCl(g) + Al(OH)3(g) + Si(OH)4 = CsAlSiO4(s) + 3H2O(g) + HCl(g) 400-550°C 

Alkaline earth metals 
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Be Be(OH)2(g) + SO2(g) = BeSO4(s)  + H2(g) 100°C 

 

3Be(OH)2(g) + 2Al(OH)3(g) + 6Si(OH)4(g) = Be3Al2Si6O18(s) + 18H2O(g) 150-800°C 

Mg MgCl2(g) + SO2(g) + 2H2O(g) = MgSO4(s) + 2HCl(g) + H2(g) 100-250°C 

 

MgCl2(g) + Si(OH)4(g) = MgSiO3(s) + 2HCl(g) + H2O(g) 250-700°C 

 

Mg(OH)2(g) + Si(OH)4(g) = MgSiO3(s) +3H2O(g) 700-900°C 

Ca CaCl2(g) + 2Al(OH)3(g) + 2Si(OH)4(g) = CaAl2Si2O8(s) + 2HCl(g) + 6H2O(g) 250-1000°C 

 

CaCl2(g) + SO2(g) + 2H2O(g) = CaSO4(g) + 2HCl(g) + H2(g) 100-250°C 

Sr SrCl2(g) + 2Al(OH)3(g) + 2Si(OH)4(g) = SrAl2Si2O8(s) + 2HCl(g) + 6H2O(g) 250-1000°C 

 

SrCl2(g) + SO2(g) + 2H2O(g) = SrSO4(g) + 2HCl(g) + H2(g) 100-250°C 

Ba BaCl2(g) + 2Al(OH)3(g) + 2Si(OH)4(g) = BaAl2Si2O8(s) + 2HCl(g) + 6H2O(g) 300-900°C 

 

BaCl2(g) + SO2(g) + 2H2O(g) = BaSO4(g) + 2HCl(g) + H2(g) 100-300°C 

Transition metals 

 
Ti TiOCl2(g) + H2O(g) = TiO2(s) + 2HCl(g) 100-1000°C 

V 2VOCl2(g) + 3/2O2(g) + 4H2(g) = V2O3(s) + 4HCl(g) + 2H2O(g) 300-950°C 

 

2VOCl3(g) + 3/2O2(g) + 5H2(g) = V2O3(s) + 6HCl(g) + 2H2O(g) 100-300°C 

Cr Cr(OH)3(g) = CrO2(s) + H2O(g) + 1/2H2(g) 700-850°C 

 

Cr(OH)3(g) +HCl(g) = CrClO(s) + 2H2O(g) 550-700°C 

 

CrCl3(g) + H2O(g) = CrClO(s) + 2HCl(g) 100-550°C 

Mn MnCl2(g) + Si(OH)4(g) = MnSiO3(s) + 2HCl(g) + H2O(g) 300-850°C 

 

MnCl2(s) + SO2(g) + 2H2O(g) = MnSO4(s)+ 2HCl(g) + H2(g) 100-300°C 

Fe 3Fe(OH)2(g) = Fe3O4(s) + 2H2O(g) + H2(g) 700-1000°C 

 

3FeCl2(g) +4H2O(g) = Fe3O4(s) + 6HCl(g) + H2(g) 450-700°C 

 

FeCl2(g) + 2H2S(g) = FeS2(s) +2HCl(g) + H2(g) 250-400°C 

 

CuCl(g) + FeCl2(g) + 2H2S(g) = CuFeS2(s) + 3HCl(g) + 1/2H2(g) 300-600°C 

 

FeCl2(g) + SO2(g) + 2H2O(g) = FeSO4(s) + 2HCl(g) + H2(g) 100-250°C 

Co CoCl2(g) + H2S(g) = CoS(s) + 2HCl(g) 550-750°C 

 

CoCl2(g) + 2H2S(g) = CoS2(g) + 2HCl(g) + H2(g) 100-550°C 

Ni Ni(OH)2(g) + H2S(g) = NiS(s) + 2H2O(g) 800-950°C 

 

NiCl2(g) + H2S(g) = NiS(s) + 2HCl(g) 450-800°C 

 

NiCl2(g) + 2H2S(g) = NiS2(s) + 2HCl(g) + H2(g) 100-450°C 

Cu 2CuCl(g) +  2H2S(g) = Cu2S(s) + 2HCl(g) 600-1000°C 

 

CuCl(g) + FeCl2(g) + 2H2S(g) = CuFeS2(s) + 3HCl(g) + 1/2H2(g) 300-600°C 

 

6CuCl(g) + As2S3(g) + 5H2S(g) = 2Cu3AsS4(s) + 6HCl(g) + 2H2(g) 100-300°C 

Zn ZnCl2(g) + H2S(g) = ZnS(s) + HCl(g) 100-700°C 

 

ZnCl2(g) + SO2(g) + 2H2O(g)= ZnSO4(s) + 2HCl(g) + H2(g) 100°C 

Zr ZrCl4(g) + 4H2O(g) = Zr(OH)4(s) + 4HCl 100°C 

 

ZrCl4(g) + Si(OH)4(g) = ZrSiO4(s) + 4HCl(g) 100-700°C 

Nb 2NbOCl3(g) + 3H2O(g) = Nb2O5(s) + 3HCl(g)    100-1000°C 

Mo MoF2O2(g) + 2H2S(g) + H2(g) = MoS2(s) + 2HF(g) + 2H2O(g) 100-250°C 

Ag 2AgCl(g) + H2S(g) = Ag2S(s) + 2HCl(g) 100-500°C 

Cd CdCl2(g) + 2H2S(g) = CdS2(s) + 2HCl(g) + H2(g) 100-500°C 

W WH2O4(g) = WO3(s) + H2O(g) 150-400°C 

 

WO2Cl2(g) 2H2O(g) = H2WO4(s) + 2HCl(g) 100°C 

Re ReCl3(g) + 2H2S(g) = ReS2(s) +3HCl(g) + 1/2H2(g) 300-750°C 

 

2ReCl3(g) + 7H2S(g) = Re2S7(s) + 6HCl(g) + 4H2(g) 300°C 

Au AuS(g) + H2(g) = Au(s) + H2S(g) 250-450°C 

 

AuS(g) + SeH2(g) = AuSe(s) + H2S(g) 100-250°C 

Hg Hg(g) +2HS2S(g) = HgS(s) + H2(g) 100-150°C 
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Post-transition metals 
 

Al NaCl(g) + Al(OH)3(g) + 3Si(OH)4(g) =NaAlSi3O8(s) + HCl(g) + 7H2O(g) 200-900°C 

 
KCl(g) + Al(OH)3(g) + 3Si(OH)4(g) = KAlSi3O8(s) + HCl(g) + 7H2O(g) 200-750°C 

 

CaCl2(g) + 2Al(OH)3(g) + 2Si(OH)4(g) = CaAl2Si2O8(s) + 2HCl(g) + 6H2O(g) 250-1000°C 

 
Al(OH)3(g) +3HF(g) = AlF3(s) + 3H2O(g) 100-500°C 

Ga 2GaCl(g) + 3H2O(g) = Ga2O3(s) + 2HCl(g) + 2H2(g) 550-750°C 

 
2GaCl3(g) + 3H2O(g) = Ga2O3(s) + 6HCl(g) 400-550°C 

 

2GaCl3(g) + 3H2S(g) = Ga2S3(s) + 6HCl(g) 100-400°C 

Tl No mineral formed 

 
Sn SnCl2(g) + 2H2O(g) = SnO2(g) + 2HCl(g) + H2(g) 400-550°C 

 

SnCl2(g) +SO2(g) + 2H2O(g) = SnSO4(s) = 2HCl(g) + H2(g) 100-450°C 

Pb PbCl2(g) + H2S(g) = PbS(s) + HCl(g) 250-500°C 

 

PbCl2(g) + SO2(g) + 2H2O(g) = PbSO4(s) + 2HCl(g) + H2(g) 100-250°C 

Bi 2BiS(g) +H2S(g) = Bi2S3(s) + H2(g) 400-500°C 

 

2BiCl3(g) + 3H2S(g) = Bi2S3(s) + 6HCl(g) 250-400°C 

 

2BiCl3(g) +2SO2(g) + 4H2O(g) = Bi2(SO4)2(s) + 6HCl(g) + H2(g) 100-250°C 

B No mineral formed 

 Metalloids and non-metals 

 
Si Si(OH)4(g) = SiO2(s) + 2H2O(g) 100-850°C 

Ge GeS(g) + 2H2O(g) = GeO2(s) + H2S(g) + H2(g) 350-450°C 

 

GeCl4(g) + 2H2O(g) = GeO2(s) + 4HCl(g) 100-350°C 

As 6CuCl(g) + As2S3(g) + 5H2S(g) = 2Cu3AsS4(s) + 6HCl(g) + 2H2(g) 100-300°C 

 

As2S3(g) = As2S3(s) 100-150°C 

Sb No mineral formed 

 
Te TeCl2(g) + H2O(g) = TeO(s) + 2HCl(g) 100-250°C 

P H3PO4(g) = H3PO4(s) 100-200°C 

Se SeH2(g) = Se(s) + H2(g) 100-150°C 

  AuS(g) + SeH2(g) = AuSe(s) + H2S(g) 100-250°C 

Table 4 

Trace element emission rates from Vulcano, Stromboli and Etna (Italy) in kg/day unless specified otherwise. 

          

  

 

Vulcano Stromboli
*
 Etna

*
 

  2008-2012 2022     

SO2 (t/d) 12 ± 1 79 300 1000-4560 

Alkali metals 

     Li 0.007 ± 0.003 0.4 12 

 Na 0.7 ± 
  

1616 26000-36000 

K 1.3 ± 
  

2740 5992-32000 

Rb 0.003 ± 0.002 0.7 27 74-170 

Cs 0.001 ± 0.0005 0.05 4.1 3.8-12 

Alkaline earth metals 

    Be 0.0002 ± 0.0002 0.02 

  Mg 1.2 ± 0.9 18 

 

581-674 

Ca 4.7 ± 4.1 

  

3090-20000 

Sr 0.02 ± 0.02 1.5 

 

25-55 

Ba 0.05 ± 0.01 1.8 
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Transition metals 

     Sc 0.0001 ± 
    Ti 0.4 ± 0.4 11 

 

104-107 

V 0.02 ± 0.02 0.2 

 

24-33 

Cr 0.10 ± 0.06 0.7 164 20-173 

Mn 0.03 ± 0.03 1.8 

 

41-390 

Fe 1.4 ± 1.6 95 

 

1282-6700 

Co 0.006 ± 0.009 0.03 2.2 5.2-13 

Ni 0.06 ± 0.05 0.5 123 82-100 

Cu 0.09 ± 0.1 0.7 205 300-1600 

Zn 0.5 ± 0.2 2.6 356 10-13000 

Zr 0.008 ± 0.005 

   Nb 0.002 ± 0.002 

   Mo 0.02 ± 0.009 0.05 

 

19-230 

Ru 0.0002 ± 0.0002 

   Rh 0.0002 ± 0.0002 

   Pd 0.0005 ± 0.0002 

   Ag 0.001 ± 0.001 

 

0.2 4-9 

Cd 0.02 ± 0.02 

 

15 7.9-49 

Hf 0.001 ± 0.001 0.1 

  Ta 0.001 ± 0.001 0.8 

  W 

   

0.03 3.3 5 

Re 0.000001 ± 
   

0.52 

Ir 0.0001 ± 
    Pt 0.00004 ± 0.00004 

   Au 0.002 ± 0.003 

 

0.5 0.23-2.4 

Hg 0.003 ± 
 

0.1 

 

75 

Post-transition metals 

    Al 1.8 ± 1.7 345 1863 3556-19000 

Ga 0.002 ± 0.002 0.1 

  Tl 0.2 ± 0.2 0.1 

 

70-107 

Sn 0.06 ± 0.05 0.06 10 15-25 

Pb 0.8 ± 0.6 21 96 60-850 

Bi 0.06 ± 0.06 9.1 10 1.9-120 

B 80 ± 27 384 

 

1211 

Metalloids and non-metals 

   Si 77 ± 
    Ge 0.001 ± 0.0005 0.01 

  As 1.5 ± 0.60 8.8 60 60-110 

Sb 0.07 ± 0.07 0.2 1.3 10-24 

Te 0.007 ± 
 

0.09 1.4 

 P 0.10 ± 0.06 

   Se 0.04 ± 0.04 0.08 15 48-630 



Jo
ur

na
l P

re
-p

ro
of

Journal Pre-proof

Rear Earth Elements and Actinites 

  Y 0.0003 ± 0.0002 

   La 0.001 ± 0.001 

   Ce 0.003 ± 0.001 

   Pr 0.0001 ± 0.0001 

   Nd 0.0005 ± 0.0004 

   Sm 0.00004 ± 0.00003 

   Eu 0.00001 ± 0.000001 

   Gd 0.0001 ± 0.00004 

   Tb 0.000002 ± 
    Dy 0.00002 ± 
    Ho 0.0001 ± 0.0001 

   Er 0.00002 ± 0.00002 

   Tm 0.000002 ± 
    Yb 0.00001 ± 
    Lu 0.000002 ± 
    Th 0.001 ± 0.001 

   U 0.0002 ± 0.0001       
*Data from Stromboli and Etna: Buat-Ménard and Arnold, 1978; Bergametti et al., 1984; Andres et al., 1993; Gauthier and Le 

Cloarec, 1998; Allard et al., 2000; Calabrese et al., 2011; Calabrese et al., 2015 
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Highlights 

 

 For most trace elements, a meaningful range of one order of magnitude is expected 

 Improvement of thermodynamic data and models is needed for volcanic gas transport 

 Dominant transport as chloride, hydroxide, and mixed hydroxy-chloro gas species 

 Efficient precipitation of trace elements in the subsurface prevented by kinetics 


