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Abstract—Goal: The network representation is becoming in-
creasingly popular for the description of cardiovascular in-
teractions based on the analysis of multiple simultaneously
collected variables. However, the traditional methods to assess
network links based on pairwise interaction measures cannot
reveal high-order effects involving more than two nodes, and
are not appropriate to infer the underlying network topology.
To address these limitations, here we introduce a framework
which combines the assessment of high-order interactions with
statistical inference for the characterization of the functional
links sustaining physiological networks. Methods: The framework
develops information-theoretic measures quantifying how two
nodes interact in a redundant or synergistic way with the rest
of the network, and employs these measures for reconstructing
the functional structure of the network. The measures are
implemented for both static and dynamic networks mapped re-
spectively by random variables and random processes using plug-
in and model-based entropy estimators. Results: The validation
on theoretical and numerical simulated networks documents the
ability of the framework to represent high-order interactions as
networks and to detect statistical structures associated to cascade,
common drive and common target effects. The application to
cardiovascular networks mapped by the beat-to-beat variability of
heart rate, respiration, arterial pressure, cardiac output and vas-
cular resistance allowed noninvasive characterization of several
mechanisms of cardiovascular control operating in resting state
and during orthostatic stress. Conclusion: Our approach brings
to new comprehensive assessment of physiological interactions
and complements existing strategies for the classification of
pathophysiological states.

Index Terms—cardiovascular variability, higher-order interac-
tions, information theory, network physiology, redundancy and
synergy
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tivariate time series analysis which allows to reconstruct the
topology of physiological networks and to assess redundant
and synergistic high-order interactions among cardiovascular
parameters.

I. INTRODUCTION

In recent years, there has been a growing focus on exploring
interactions within the cardiovascular and respiratory systems
aimed at gaining insights into diverse pathophysiological mech-
anisms [1]. This surge of interest is driven by fast advance-
ments in the techniques for recording and processing biomedi-
cal signals, which nowadays offer unprecedented opportunities
for the simultaneous monitoring of multiple cardiovascular
parameters. In turn, biomedical signal processing methods are
shifting towards the multivariate analysis of several parameters,
which naturally leads to representing physiological systems as
interconnected networks whose nodes and links are associated
respectively to the parameters and to the interactions between
them. This representation is very popular in the field of Net-
work Physiology [2] where cardiovascular, cardiorespiratory
interactions and others are studied in a wide range of healthy
and diseased states [3]–[6].

The analysis of physiological networks typically relies on
pairwise measures, i.e. measures that quantify the existence
and strength of a link focusing exclusively on the activity of
the two nodes connected by it. Pairwise measures such as
the linear correlation, the spectral coherence or the mutual
information (MI) and MI rate (MIR) have been successfully
applied to assess link strength in cardiovascular and respiratory
networks [1], [3], [7]–[9]. Nevertheless, these measures suffer
from two main limitations: they are not appropriate to infer the
topological structure of the analyzed functional network, be-
cause they do not allow to distinguish direct relations between
two nodes from indirect relations caused by common drive
or cascade effects [10], [11]; and they cannot assess functional
high-order interactions (HOIs), i.e. interactions that result from
the combined activity of more than two nodes and encompass
the statistical concepts of synergy and redundancy [12], [13].
To address these limitations, several approaches have been
proposed which separately consider static or dynamic network
systems, i.e. systems where the temporal correlations within
and between the node activities are neglected or investigated.
In particular, the inference of network structure has been faced
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combining correlation and partial correlation [11] for static
systems, and exploiting the concept of multivariate Granger
causality [14] for dynamic systems. The analysis of HOIs
is performed via emerging information-theoretic methods like
the partial information decomposition [15] or the so-called O-
information [12], originally proposed for random variables and
recently extended to dynamic systems [16], [17]. Interestingly,
while network reconstruction and HOIs assessment are both
grounded on multivariate analysis, their interrelationships re-
main unexplored, and a unified approach for examining HOIs
at the level of the network links which can be exploited also
for structural inference is currently absent.

The present study introduces a comprehensive approach that
combines the assessment of HOIs with statistical inference
for the characterization of the functional links in complex
physiological networks. The approach is designed for generic
network systems by using information-theoretic concepts, and
is then contextualized to static systems mapped by random
variables and dynamic systems mapped by random processes,
respectively using measures of entropy and entropy rate. Data-
efficient estimators are implemented for the proposed interac-
tion measures, which are thoroughly validated on simulated
network systems. Then, the framework is applied to cardio-
vascular networks identified measuring several physiological
parameters reflecting the heart period or its variation, the res-
piratory amplitude or phase, the systolic and diastolic pressure,
the cardiac output and the vascular resistance. Applications are
focused on showing the usefulness of analyzing HOIs at the
level of the network links to characterize both well-established
and less explored cardiovascular regulatory mechanisms in
different physiological conditions.

II. METHODS

In this work, given a network system composed of several
possibly interconnected units, we consider the problem of
quantifying the link between the units in a probabilistic frame-
work. Sect. II.A introduces the measures used to investigate
the interaction between any two system units while taking
into account the rest of the network, provides an information-
theoretic explanation of these measures and illustrates their use
for network inference. Sect. II.B describes how these measures
can be formalized in terms of the entropy of random variables
in the case of static systems observed regardless of the flow
of time, or in terms of the entropy rate of random processes
in the case of dynamic systems evolving in time. Sect. II.C
describes the practical computation based on plug-in estimators
for discrete random variables and parametric estimators for
continuous random processes.

A. Measuring Interactions in Network Systems

Let us consider an observer measuring a system composed
by M units, S = {S1, . . . ,SM}, and focus on the two units
X = Si and Y = Sj while collecting the remaining M−2 units
in the group Z = S \{X ,Y}. In the framework of information
theory, the interaction between X and Y is assessed quantifying
the information shared (IS) between them, or the conditional
information shared (cIS) between them but not with Z; while

these quantities are kept generic for now, in the next section
they will be expressed by using mutual information or mutual
information rate, respectively when contextualized to static or
dynamic systems.

For concreteness, let us denote with HX and HY the
information contained in the units X and Y , and with HX ,Y
the joint information contained in the two units taken together.
Then, the IS between X and Y is given by

IX ;Y = HX +HY −HX ,Y , (1)

while the cIS between X and Y given Z is given by

IX ;Y|Z = IX ;Y,Z − IX ;Z . (2)

The measures in (1) and (2) quantify the link between the
two analyzed units from a bivariate or multivariate perspective,
and are illustrated by using Venn diagrams in Fig. 1a. Impor-
tantly, the comparison between these two quantities highlights
the balance between the statistical concepts of redundancy and
synergy in the observed network system. In particular, the net
information shared (nIS) between {X ,Y} and Z , defined as

IX ;Y;Z = IX ;Y − IX ;Y|Z . (3)

quantifies the interaction between the two analyzed units and
the rest of the system, and can be either positive or negative
denoting respectively the prevalence of redundancy or synergy.
Specifically, when IX ;Y;Z > 0, the knowledge of Z reduces
the information shared by X and Y , thus indicating that (part
of) the statistical dependence between X and Y is suppressed
when Z is observed. On the contrary, when IX ;Y;Z < 0, the
knowledge of Z increases the information shared by X and Y ,
thus indicating that (part of) the statistical dependence between
X and Y emerges when Z is observed.

To emphasize the balance between redundancy and synergy
in the interaction among the two observed units X and Y and
the rest of the system Z , and to retrieve information about
the network topology from such interaction, we define the so-
called B-index (shorthand for redundancy/synergy balance) by
normalizing the nIS as follows:

BX ;Y =
IX ;Y;Z

max{IX ;Y , IX ;Y|Z}
. (4)

In (4), the B-index is computed dividing the difference be-
tween IX ;Y and IX ;Y|Z to their maximum, so as to obtain a
measure ranging between -1 and 1 (see Fig. 1b). The limit
values highlight a full imbalance between redundancy and
synergy that relates to specific network topologies: BX ;Y = 1
corresponds to maximum redundancy, occurring when the
interaction between X and Y is fully explained by the rest
of the network and reflecting a relation of common driver
or cascade (Fig. 1b, case 1); BX ;Y = −1 corresponds to
maximum synergy, occurring when the interaction between
X and Y arises fully from their effect on Z and reflecting
a common target relation (Fig. 1b, case 2). In both cases, the
nodes mapped by X and Y are topologically disconnected. The
two nodes are disconnected also when both IX ;Y and IX ;Y|Z
are null, resulting in non-defined B-index and describing a
situation in which at least one between X and Y is isolated

This article has been accepted for publication in IEEE Open Journal of Engineering in Medicine and Biology. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/OJEMB.2024.3374956

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/



Technology

b)

Synergy Vs. 

Redundancy

B-index

structure

possible underlying 

structure

maximum 

redundancy 

perfect 

balance 

maximum 

synergy 

I
X;Y;Z

 = I
X;Y

 B
X;Y

 = 1 

I
X;Y;Z

 = 0 

0 < I
X;Y;Z

 < I
X;Y

  

I
X;Y;Z

 = 0 

B
X;Y

 = -1 YZX

YZX

YZX

YZX

YZX

YZX

YZX

B
X;Y

 = NaN 

prevalence of

redundancy 

prevalence of 

synergy 

0 < B
X;Y

 < 1 

-1 < B
X;Y

 < 0 

B
X;Y

 = 0 I
X;Y

 = I
X;Y Z 

> 0 

 

YX

YX

YX

YX

YX

YX

ZYX

YZX

I
X;Y

 > I
X;Y Z 

> 0 

 I
X;Y Z 

> I
X;Y

 > 0 

I
X;Y

 = 0; I
X;Y Z 

> 0 

I
X;Y

 = I
X;Y Z 

= 0 

I
X;Y

 > 0; I
X;Y Z 

= 0 

B-indexnISIS; cIS

common driver cascade common target isolated node(s) isolated link 
diverse possible 

configurations

1

2

3

4

a)

H
X
 H

Y
 

H
Z
 

IS:

cIS:

nIS:

H
X,Y

 

absent

-I
X;Y Z

<I
X;Y;Z

< 0  

I
X;Y;Z

 = -I
X;Y Z

 

Figure 1. Illustration of the measures proposed to assess high-order links between two units X and Y of a network system. (a) Venn diagram explaining
the derivation of the measures of information shared between X and Y (IS, IX ;Y ), conditional IS between X and Y given the rest of the network Z (cIS,
IX ;Y|Z ), and the net information shared (nIS, IX ;Y;Z ), from the information contained in the units (HX , HY , HZ , information of X , Y , Z; HX ,Y , joint
information of X and Y). b) Classification of the redundant/synergistic nature of the interactions and of the types of possible underlying structural mechanisms,
based on the assessment of zero and strictly positive values of IS and cIS leading to characteristic values of the B-index.

from the rest of the network (Fig. 1b, case 3). Intermediate
values of the B-index (−1 < BX ;Y < 1) are obtained
when both IX ;Y and IX ;Y|Z are non-null (Fig. 1b, case 4).
In this situation, larger values of IX ;Y denote prevalence of
redundancy, while larger values of IX ;Y|Z denote prevalence
of synergy, which topologically corresponds to many possible
configurations; the case of identical non-null values denotes
perfect balance between synergy and redundancy, indicating
that the two nodes are linked to each other but disconnected
from the rest of the network.

The configurations described above will be illustrated in the
theoretical and simulated examples of Sect. III. Note that, in
practical analysis, the presence of strictly positive or null values
of IX ;Y and IX ;Y|Z leading to the limit values of the B-index,
is tested by surrogate data approaches (Sect. II.C).

B. Implementation for Static and Dynamic Systems

In this section, the concept of information shared between
the units of a generic network system is contextualized to
make it usable in real-world applications. Specifically, if the
quantities used to observe the system states do not depend
on time (e.g., they are indexes measured across subjects), the
system is denoted as static and is described in terms of random
variables. On the contrary, a dynamic system evolves in time
and, as such, is described by random processes, i.e. collections
of random variables sorted in temporal order.

In practice, a static system S composed by M units is
described by the M−dimensional random variable S =
[S1 · · ·SM ], and the states assumed by the units X , Y and
Z are mapped by the random variables X , Y and Z. In this
case, the information contained in the unit X is quantified

by the entropy of the variable X , H(X) = −E[log p(x)],
where p(x) is the probability density of X and E[·] is the
expectation operator (the same holds for Y and Z). Then,
the information shared between the variables X and Y is
quantified by the mutual information (MI), which is computed
by using the entropies in (1) for IS to get I(X;Y ) =
H(X) +H(Y )−H(X,Y ), while the cIS between X and Y
given Z is quantified by the conditional MI (cMI) obtained as
I(X;Y |Z) = I(X;Y,Z)−I(X;Z) [18]. The MI and cMI are
then readily inserted in (3) and (4) to obtain the nIS and the
B-index relevant to the analyzed network of random variables.
Note that, in this setting where it is computed for random
variables, the nIS corresponds to the well known interaction
information [19]; this measure, used as in our case to describe
how two units of a network system interact with the remaining
units, is referred to as the local O-Information [12].

When the analyzed system S is dynamic, it is more properly
described by a vector random process Sn = [S1,n, . . . , SM,n],
where the temporal dependence is denoted by the time counter
n and Si,n denotes the variable sampling the ith process at
the nth time step (i = 1, . . . ,M ;n ∈ Z for discrete-time
processes); the equivalent notation evidencing the dynamics
of the units {X ,Y,Z} is Sn = [Xn, Yn, Zn]. In this case,
the information-theoretic measure typically used to analyze
the temporal evolution of the unit X is the entropy rate,
defined for a stationary process using the conditional entropy
HX = H(Xn|Xn−1, Xn−2, . . .). The entropy rate quantifies
the rate of generation of new information in the process X;
when combined with the entropy rate of Y , HY , and with the
joint entropy rate of X and Y , HX,Y , it reveals the IS of the
two processes measured by the so-called mutual information
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rate (MIR), IX;Y = HX +HY −HX,Y [20]. Based on these
definitions, in a network of random processes the cIS becomes
the conditional MIR (cMIR) IX;Y |Z obtained using IX;Y,Z and
IX;Z in (2), the nIS becomes the interaction information rate
IX;Y ;Z obtained using IX;Y and IX;Y |Z in (3), and the B-
index becomes a ”B-index rate” BX;Y obtained using IX;Y ;Z ,
IX;Y and IX;Y |Z in (4).

C. Practical Computation

This section describes how the interaction measures defined
in Sect. II.A and particularized to static or dynamic systems in
Sect. II.B can be computed in practice from observations of the
states assumed by the units composing the observed network
system. In particular, we show how the static measures based
on MI can be obtained from observations of discrete random
variables collected as sequences of symbols using plug-in
entropy estimators, and how the dynamic measures based on
MIR can be obtained from realizations of continuous random
processes collected as time series using parametric estimators.

1) Discrete Random Variables: When X , Y , and each
component of the vector Z are discrete random variables taking
values in the sets AX ,AY , and AZ , formed respectively by
QX , QY and QZ symbols, the computation of MI and cMI
follows the well-known formulations [18]:

I(X;Y ) =
∑

x∈AX ,y∈AY

p(x, y) log
p(x, y)

p(x)p(y)
,

(5a)

I(X;Y |Z) =
∑

x∈AX ,y∈AY ,z∈AZ

p(x, y, z) log
p(x, y|z)

p(x|z)p(y|z)
,

(5b)

where p(·), p(·, ·), and p(·|·) denote the marginal, joint, and
conditional probability density of the analyzed variables. Given
the MI and cMI measures in (5), the interaction information
and the B-index are obtained using (3) and (4).

In practical analysis, the network measures are computed
from observations of the random variables X , Y and Z
available in the form of synchronous sequences of symbols
first estimating the probabilities as the frequency of occurrence
of the relevant combination of symbols within the sequences,
and then plugging the probability estimates into (5) to obtain
estimates of MI and cMI.

2) Continuous Random Processes: When the system units
are represented by a vector random process S = {X,Y, Z}, a
common approach to describe the process dynamics is to use
the linear vector autoregressive (VAR) model [21]

Sn =

p∑
k=1

AkSn−k + Un, (6)

where Sn and Sn−k are the M−dimensional variables sam-
pling the process at the present time step n and at k steps in
the past, Ak is an M ×M coefficient matrix and U is an i.i.d.
innovation process with M ×M covariance matrix ΣU .

Given the full-model (6), it is possible to define restricted
models which describe the dynamics of subsets of processes.
In particular, the individual dynamics of the processes X and

Y , and their joint dynamics described by the bivariate process
W = {X,Y }, are captured by the restricted models

Xn =

q∑
k=1

A
(x)
k Xn−k + Ux,n, (7a)

Yn =

q∑
k=1

A
(y)
k Yn−k + Uy,n, (7b)

Wn =

q∑
k=1

A(w)
k Wn−k + Uw,n, (7c)

where q is the order of the restricted model (theoretically
q →∞). The parameters of the restricted models, i.e. the co-
efficients A

(x)
k , A(y)

k , A(w)
k , and the covariance of the residuals

ΣUx
, ΣUy

, ΣUw
, can be derived from the parameters of the

full model (6) Ak and ΣU , through a procedure that solves
the Yule-Walker equations to derive the covariance structure
of S and then reorganizes such structure to relate it to the
covariances of X , Y or W (the procedure is described in
detail in Ref. [22]; an alternative approach based on state-space
model is presented in Ref. [17]). Then, under the assumption
of joint Gaussianity for the overall process S, the information
measures capturing the network interactions can be derived
straightly from the covariances of the residuals of the restricted
models. Specifically, the entropy rates of X , Y and W are
obtained as

HX =
1

2
log 2πeΣUx

, (8a)

HY =
1

2
log 2πeΣUy

, (8b)

HX,Y =
1

2
log(2πe)2|ΣUw |, (8c)

from which the MIR is computed as

IX;Y = HX +HY −HW =
1

2
log

ΣUx
ΣUy

|ΣUw
|
. (9)

The procedure described above can be repeated to define
restricted models capturing the dynamics of the vector process
Z as well as of the joint processes V = {X,Z} and R =
{Y,Z} using VAR formulations as in (7), and then to compute
the entropy rates of Z, V and R as in (8). This allows to obtain
formulations of the MIR terms IX;Z and IX;Y,Z = IX;R

IX;Z = HX +HZ −HV =
1

2
log

ΣUx |ΣUz |
|ΣUv

|
, (10a)

IX;Y,Z = HX +HR −HS =
1

2
log

ΣUx
|ΣUr

|
|ΣU |

, (10b)

from which the cIS IX;Y |Z is computed as in (2) subtracting
(10a) from (10b), and the nIS IX;Y ;Z and B-index BX;Y are
computed as in (3) and (4).

In practical analysis, the network measures are computed
from realizations of the random processes X , Y and Z
available in the form of synchronous time series estimating
the parameters of the full model (6) by means of least squares
identification [21], deriving the covariances of the residuals of
the restricted models by the procedure described in [22], and
then plugging these covariances into (9) and (10) to obtain
estimates of the MIR and the conditional MIR. The order

This article has been accepted for publication in IEEE Open Journal of Engineering in Medicine and Biology. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/OJEMB.2024.3374956

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/



Technology
p of the full model is typically estimated using information-
theoretic criteria [23], while the order q of the restricted models
is set at high values to capture the decay of the correlations at
increasing lags [22].

3) Statistical Significance: An important issue in practical
analysis, which has relevance for the identification of limit
values of the B-index and for the corresponding inference
of the network structure, is the assessment of the statistical
significance of the IS and cIS measures. Such assessment was
performed in this work using the method of surrogate data
[24]. This method is based on generating, from the measured
data relevant to the analyzed network S = {X ,Y,Z}, sets
of surrogate data which mimic the individual properties of the
units X and Y , but destroy the interaction between them. Under
the null hypothesis of absence of IS (IX ;Y = 0) or absence
of cIS (IX ;Y|Z = 0), the values of IS and cIS computed
from the original data are compared with the distribution of
IS/cIS computed from the surrogate sets using a test based on
percentiles, run with significance α (in this work, α = 0.05);
then, the null hypothesis is rejected (accepted) and the original
IS/cIS measure is deemed as statistically significant (non-
significant) if the original values of IS or cIS are larger
(smaller) than the (1 − α)th percentile of the corresponding
surrogate distribution. Accordingly, when the estimates of IS
and/or cIS are detected as non significant the B-index is set to
1, −1, or to NaN according to Fig. 1b.

In the analysis of static systems mapped by random vari-
ables, the procedure described above was implemented using
the MI or the cMI as discriminating statistic for the quantifi-
cation of IS or cIS. In this case, realizations of the multiple
observed random variables are available in the form of numeric
sequences, and surrogate data are generated by independently
shuffling in random order the sequences relevant to each vari-
able, so as to make the surrogate variables independent while
preserving their marginal distributions. On the other hand, in
the analysis of dynamic systems mapped by random processes
whose realizations are multivariate time series, the MIR or the
cMIR were used as discriminating statistic and surrogate time
series were generated using the iterative amplitude-adjusted
Fourier Transform (iAAFT) procedure [24] which preserves
the individual properties of each time series while destroying
the interactions among them.

III. VALIDATION

In this Section we illustrate the proposed framework for
assessing network interactions in simulations of static systems
mapped by binary variables and dynamic systems mapped by
continuous processes. The measures presented in Sect. II.A
are first described in a theoretical example for which their
values can be computed analytically, and then validated on
finite-length realizations of simulated network activities.

A. Theoretical Example

We consider the simple case of a system with three units
whose interactions are imposed, so as to allow computation
of the exact theoretical values of the IS and cIS measures.
First, a static system is simulated defining three binary random

variables S1, S2, S3, which interact as depicted in Fig. 2a: S1

is a binary variable with equiprobable symbols, influencing the
state of S2 with probability α (p({s2 = s1}) = α), while both
S1 and S2 influence the state of S3 with probabilities β and γ,
resulting in the conditional probabilities indicated in Fig. 2a.
Then, a dynamic system with the same causal connections is
simulated (Fig. 2b) defining a trivariate VAR process fed by
independent Gaussian innovations as in (6), where M = 3, p =
1 and the time-lagged effects are determined by the coefficient
matrix A1.

The analysis was conducted first computing IS, cIS, and
nIS between each pair of network nodes at increasing the
coupling S1 → S2 and simultaneously decreasing the coupling
S2 → S3, with stable coupling S1 → S3; this was achieved
by setting α ∈ [0.5, 1], γ = 1.5− α and β = 0.9 for the static
system, and a ∈ [0, 1], c = 1 − a and b = 1 for the dynamic
system. The results in Fig. 2c,d evidence an increase of IS
between S1 and S2 from 0 to high values, a decrease towards
zero of cIS between S2 and S3 given S1, and a shift of nIS from
negative to positive values; note that, in these networks with
only three nodes, the synergy/redundancy balance nIS is the
same for all links. To further illustrate the shift from synergy
to redundancy, the B-index and the corresponding network
structure inferred after pruning the links for which both IS and
cIS are null were calculated for three representative sets of
parameters, reported in Fig. 2e,f. These conditions correspond
to the existence of unique common target effects (α = 0.5 or
a = 0), complete synergy/redundancy balance (α = 0.575 or
a = 0.5), or unique common drive effects (γ = 0.5 or c = 0).
As shown in Fig. 2e,f, these three conditions are characterized
respectively by highly synergistic interactions (blue colors in
the B-index matrix) with absence of the link between S1 and
S2, null B-index (white colors) with fully connected network,
and highly redundant interactions (red colors) with absence of
the link between S2 and S3. Thus, these results illustrate how
the proposed framework can detect the structure and the nature
of high-order links in simple static or dynamic networks.

B. Simulated data

In the following, we present the validation of the proposed
framework in simulations of static and dynamic systems stud-
ied by generating the output data of each network node and
estimating the network measures as described in Sect. II.C.
Analyses were performed iterating each simulation 100 times
and generating datasets of N ∈ {250, 500, 1000} observations,
from which the estimator performance was assessed in terms
of sensitivity and specificity of the reconstruction of the known
network topology.

1) Binary variables: The first simulation reproduces a net-
work with M = 10 nodes connected as depicted in Fig. 3a.
The node activities are mapped by binary random variables in-
terconnected as follows: S1, S3, S4, S5 and S9 are i.i.d. binary
variables with equiprobable symbols; S10 is a noisy copy of S9

with coupling strength γ3 = 0.8, (i.e., p({s10 = s9}) = γ3); S6

and S7 are noisy copies of S5 with coupling strength γ2 = 0.9;
S8 is defined via a noisy OR gate from S6 and S7, while S2 is
defined via a noisy OR gate from S3, S4 and S5 (noisy gates
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Figure 2. Theoretical analysis of a simulated network system with three units mapped by binary random variables (a, static system) or by continuous random
processes (b, dynamic system); the strength of the network links is modulated by the probabilities α, β, γ in (a), and by the VAR model coefficients a, b, c in
(b). The metrics of information shared (IS), conditional information shared (cIS), and net information shared (nIS) are plotted for each network link at varying
α = 1.5− γ for the static system (c) or varying a = 1 − c for the dynamic system (d); this simulates the transition from common target to common driver
conditions, mirrored by a shift from synergistic to redundant interaction for both systems. The matrix of normalized B-index values and the corresponding
network structure obtained after pruning non-significant links are shown for three representative coupling conditions obtained setting fixed values of α, β,
and γ (e) or a, b, and c (f): common target effects reflect pure synergy (left), a fully connected network highlights more balanced synergy/redundancy effects
(middle), and common driver effects reflect pure redundancy (right).

have coupling strength γ1 = 0.9 and are defined according to
the conditional probabilities given in Fig. 3a).

Fig. 3b reports, for a simulation with N = 1000 obser-
vations, the matrix of the B-index values computed using
the plug-in estimator; non-significant estimates of MI or cMI
leading to B = 1, B = −1 or B = NaN were assessed using
random shuffling surrogates, and the network was reconstructed
pruning the links with non-significant MI and/or cMI. The
B-index correctly identified the presence and nature of the
interactions imposed between pairs of variables, recovering for
instance the existing isolated link (B(S9;S10) = 0, white) and
the expected synergistic (e.g., B(S2;S3) < 0, B(S2;S4) < 0,
blue) and redundant links (e.g., B(S5;S6) > 0, B(S5;S7) > 0,
red). Moreover, it allowed to correctly prune out of the re-
constructed network several links that would be detected by
using only MI due to common drive or cascade effects (e.g.,
B(S2;S6) = 1, B(S5;S8) = 1; dark red), or by using only
cMI due to common target effects (e.g., B(S3;S5) = −1; dark
blue). However, a false positive link was detected between the
nodes S6 and S7: in spite of the lack of a direct connection,
the two nodes result as connected because they have both
a common drive (S6 ← S5 → S7) and a common target
(S6 → S8 ← S7), inducing significant values for both MI
and cMI and thus determining −1 < B(S6;S7) < 1. This

highlights a limitation of the B-index, which cannot guarantee
the elimination of all spurious links.

To quantify the ability to correctly identify the presence and
absence of links in the reconstructed network, we assessed
the sensitivity and specificity of the B-index at varying the
size N of the data collected. Sensitivity and specificity, which
measure respectively the impact of false negatives and false
positives, were assessed over 100 simulation runs. The results
in Fig. 3c highlight that the sensitivity increased markedly
with the data length, approaching the expected value of 100%
when N = 1000. On the contrary, the specificity showed less
dependence on N , as it remained consistently high exhibiting
minimal variations around the expected value of 97%.

2) Gaussian variables: The second simulation reproduces a
network comprising M = 6 nodes, whose activity is mapped
by a multivariate random process defined by the VAR model (6)
implemented with ΣU = I, p = 2, and time lagged coefficients
reported in Fig. 4a,b. These settings produce two different
connectivity structures, both characterized by two highly con-
nected nodes (hubs, processes S1 and S6) interacting with
four nodes with lower connectivity degree (leaves, processes
S2 − S5). The hub S1 acts as a source sending information
to the leaves; the hub S6 acts either as a source or as a sink,
respectively sending information to the leaves which behave
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Figure 3. Experimental analysis of a simulated static system with ten units
mapped by binary variables interconnected via the graph and probability rules
shown in (a). The matrix of B-index values computed from N = 1000
observations of the variables and the corresponding connectivity graph (b)
evidence the synergistic/redundant nature of the links as well as the proper
reconstruction of the network structure, with correct pruning of absent links
(isolated nodes/links: B = NaN, grey; common drive, cascade: B = 1,
dark red; common target: B = −1, dark blue), except for the false positive
detection of a connection between S6 and S7. The performance of network
reconstruction, assessed over 100 simulation runs at varying the data length N
(c), reveals that sensitivity depends on N , while specificity is high but affected
by the single false-positive detection for any data length.

as receivers (Fig. 4a), or receiving information from the leaves
which behave as mediators (Fig. 4b).

Fig. 4c,d reports, for different process realizations obtained
as multivariate time series with N = 1000 samples, the
matrix of the B-index rates computed through linear parametric
estimator. Computations were performed by setting the order
of the full VAR model to p = 2, corresponding to the true order
imposed in the simulation, and setting the order of the reduced
models to q = 20 to capture the decay of correlations at in-
creasing lags. Non-significant values of the estimated MIR and
cMIR leading to B = 1, B = −1 or B = NaN were assessed
by using iAAFT surrogates, and the reconstructed network
structure obtained by pruning the links with non-significant
MIR and/or cMIR. The analyzed realizations reproduce the typ-
ical structures of hub-leaves interactions which are described
and analyzed in the following. A single star structure (right-
positioned) with the hub S6 connected to the leaves S2−S5 is
obtained when a1i = 0, i = 2, . . . , 5; the hub acts as a source
in Fig. 4c and as a sink in Fig. 4d. These two configurations
are correctly detected in terms of structure (S1 is isolated and
S6 is connected to all leaves), and are differentiated by the
clear redundancy (red) and synergy (blue) evidenced by the B-
index rate in the two cases. The configuration with hub sending
information to the leaves, which results as fully redundant due
to the dominance of common drive effects, is reproduced also
when ai6 = 0 (i = 2, . . . , 5, left-positioned star), as shown
in Fig. 4e,f where S1 is the hub and S6 is isolated. The most
rich configurations are those obtained setting nonzero values

for all thee coefficients defining the structures in Fig. 4a,b.
Specifically, when we set a1i = ai6 = 0.5 in Fig. 4a, a
configuration with two competing star structures where two
hubs send information to the same leaves is obtained; in this
case, all links are redundant due to the dominance of common-
drive effects (except the link between the two hubs which
is fully synergistic due to common target effects towards all
leaves), and the network is reconstructed without errors (Fig.
4g). On the other hand, setting a1i = ai6 = 0.5 in Fig.
4b, we obtain a configuration with propagation between two
stars where one hub sends information to the other through
mediation of the leaves; in this case, the links are again
dominantly redundant due to the abundance of common drive
and cascade effects, but the network reconstruction suffers from
false-positive detections of links between the leaves caused by
the simultaneous presence of common drive and common target
effects determining significant MIR and cMIR.

Finally, the accuracy of network reconstruction was investi-
gated for different time series length N at increasing the weight
of the connections from the hub S1 to the leaves S2 − S5

while simultaneously decreasing the weight of the connections
between the leaves and the hub S6 (a1i ∈ [0.1, 0.9], ai6 =
1 − a1i), so as to gradually move from single-star to two-
star structures and back. The results reported in Fig. 4i,j show
that the sensitivity depends on the data length and on the
link strength, reaching the expected value of 100% when the
links are balanced in strength. The specificity was very high
and substantially unaffected by the data length in the case of
competing stars (Fig. 4i), while it was higher than expected for
unbalanced link strength and approaching the expected value
of 14.3% only for balanced link strength and high N (Fig. 4j).
These results confirm the good performance of the B-index
in reconstructing the statistical structure underlying directed
networks, with the limitations related to its inability to resolve
conditions of contemporaneous common drive and common
target effects impinging on a link.

IV. APPLICATIONS TO CARDIOVASCULAR NETWORKS

This section reports the application of the proposed method-
ology to physiological networks probed measuring simulta-
neously the spontaneous variability of several cardiovascular
(cardiac and hemodynamic) and respiratory variables during
different physiological states. Specifically, in the first applica-
tion we perform a static analysis of the discrete random vari-
ables representative of the activity of the cardio, vascular and
respiratory systems, whose observations describe respectively
the acceleration/deceleration of the heart rate, the variation
of blood pressure as the basic parameter of hemodynamics
and the phase of the respiratory cycle (inspiration/expiration).
In the second application we perform a dynamic analysis of
five continuous random processes descriptive of the beat-to-
beat variability of heart period, systolic and diastolic pressure,
cardiac output and peripheral resistance. Both analyses are
performed considering short-term cardiovascular variability in
groups of healthy subjects monitored in resting state and during
postural stress [22], [25].
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Figure 4. Experimental analysis of a simulated dynamic system with six units mapped by Gaussian processes connected via the the diagrams and VAR
coefficients shown in (a) and (b). The B-index rate matrix computed from multivariate time series (N = 1000) and the corresponding reconstructed structures
are investigated for peculiar parameter setting realizing: single star structures where the hub sends information to four leaves, observing accurate reconstruction
of redundant links (c, e, f); a single star structure where the hub receives information from the leaves, observing accurate reconstruction of synergistic links (d);
two competing star structures where both hubs send information to the same leaves, observing accurate reconstruction of redundant links (g); two interacting
star structures with information propagated from one hub to the other via mediation of the leaves, observing reconstruction of redundant structures with false
positive links among the leaves (h). The performance of network reconstruction, assessed over 100 simulation runs at varying the series length N shows that
sensitivity depends on N and on link strength, while specificity is affected by simultaneous common drive and common target effects (i, j).

A. Subjects and Experimental Protocols

Analyses were performed on two groups of young healthy
volunteers, both recruited at the Jessenius Faculty of Medicine,
Comenius University, Martin, Slovakia, where ethics approval
and informed consent were obtained. For both studies, subjects
were monitored following the same experimental protocol
consisting of recording cardiovascular signals for 15 minutes
in the resting supine position (REST), followed by further 8
minutes of recordings in the upright position (TILT) reached
after tilting the subjects to 45 degrees the motor-driven bed
table to evoke mild orthostatic stress. Details about the protocol
can be found in Refs. [22], [26] and [25].

The first study involved 61 volunteers (37 females, 17.5±2.4
years), in whom the electrocardiogram (ECG), the continuous
finger arterial blood pressure (ABP) collected noninvasively by
the photoplethysmographic volume-clamp method, and the res-
piratory signal (RESP) obtained via inductive plethysmography
using thoracic and abdominal belts were recorded simultane-
ously. The second study involved 39 volunteers (22 women,
age 19.4 ± 2.3 years), in whom the ECG and ABP signals
were measured as before simultaneously with the impedance
cardiography signal. In both cases, signals were digitized with

1 KHz sampling rate.

B. Data Analysis

In the first application, the beat-to-beat time series of the
heart period (HP ), systolic pressure (SP ) and respiratory
amplitude (RA) were measured from the ECG, ABP and RESP
signals acquired for each subject and condition respectively as
the sequences of the temporal distances between consecutive R
peaks, the maximum ABP values within each detected R-R in-
terval, and the RESP values taken at the onset of each detected
R-R interval, according to a well-established measurement
convention [22], [26]. For each of these sequences measured
synchronously over N consecutive heartbeats, realizations of
the three discrete random variables considered for the static
analysis were obtained as follows (n = 2, . . . , N − 1). The
heart rate variation HV was obtained observing the sign of
the difference between the duration of two consecutive heart
periods: HVn = 0 if HPn+1 ≤ HPn (acceleration), HVn = 1
if HPn+1 > HPn (deceleration). The systolic pressure varia-
tion SV was obtained similarly: SVn = 0 if SPn ≤ SPn−1,
SVn = 1 if SPn > SPn−1. The respiration phase RPn

was obtained by discretizing the respiration amplitude RAn+1;
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Figure 5. a) Bio-signal processing and measurement convention for the
extraction of the time series used in the static analysis of cardiovascular
and respiratory interactions. (a) The ECG, ABP and RESP signals are used
to measure the beat-to-beat parameters corresponding to heart period HP ,
systolic pressure SP and respiration amplitude RA. (b) These parameters are
then used to build observations of the three discrete random variables analyzed
in the static analysis, i.e. the heart rate variation HV , the systolic pressure
variation SV , and the respiratory phase RP .

specifically RPn = RAn+1, where RAi = 0 if RAi ≤ RAi+1

and RAi = 1 if RAi > RAi+1.
The adopted measurement convention and the rules set to

measure the three discrete variables are illustrated in Fig. 5a.
For each subject, realizations of the variables HV , SV and RP
were obtained as described above from sequences of N = 300
consecutive HP , SP and RA values selected during stationary
epochs of the REST and TILT phases (an example is reported
Fig. 5b). Then, the static analysis of the network with M =
3 nodes was performed estimating MI and cMI through the
plug-in method, assessing their significance through the use of
100 random shuffling surrogates (significance α = 0.05), and
finally computing the B-index from the thresholded MI and
cMI.

In the second application, the analyzed beat-to-beat time
series were the HP , SP , diastolic pressure (DP ), cardiac
output (CO), and peripheral vascular resistance (PR) obtained
from the ECG, ABP and ICG signals as follows: HPn is the
duration of the current R-R interval; SPn is the maximum
ABP value measured within HPn; DPn is the minimum ABP
value measured between the occurrence times of SPn and
SPn+1; COn = 60 · SVn

HPn−1
, where the stroke volume is

computed as SVn = β · Z ′max
n · LV ETn, being LV ETn the

left ventricular ejection time, Z ′max
n the maximum of the time-

derivative of the impedance signal taken within HPn, and β
a correcting factor accounting for thorax volume and base
impedance; and PRn = MAPn

COn
, where MAPn is the mean

ABP measured as the average value of the ABP signal taken
over one diastolic cycle, i.e. between the times of occurrence
times of DPn−1 and DPn. This measurement convention
is typically adopted in computational physiology [26], [27]
and is illustrated in Fig. 6a. For each subject and condition,
stationary realizations of N = 300 points of the multivariate
process {HP,SP,DP,CO,PR} were obtained as described
above (an example is reported in Fig. 6b). Then, the dynamic
analysis of the network with M = 5 nodes was performed es-
timating MIR and cMIR through the regression-based method,
implemented setting the VAR model order through the Akaike
Information Criterion [23] and using q = 20 lags to identify the
restricted VAR models, assessing the significance of MIR and
cMIR through the use of 100 iAAFT surrogates (significance
α = 0.05), and finally computing the B-index rate from the
thresholded MIR and cMIR.

C. Results and Discussion

In the first application the processing of the HP , RA
and SP time series described in Sect. IV.B led us to in-
vestigate, through a simple static analysis of the discrete
random variables HV , SV and RP , three types of interaction
related to known physiological mechanisms, i.e. the arterial
baroreflex (link HV − SV ), the respiratory sinus arrhythmia
(link HV −RP ) and the mechanical effects of respiration on
arterial pressure (link RP − SV ) [3], [28].

The analysis of the information shared shows that the static
approach performed on short data sequences can reveal the
presence of statistically significant interactions between all
pairs of variables in both experimental conditions. Neverthe-
less, given the lower sensitivity observed in the simulated static
network with a small data size, it can be possible that certain
links might remain undetected. The dominant interactions are
identified by the links HV − RP and SV − RP at rest,
and by the link HV − SV during tilt, as documented by
the high and statistically significant values of both MI and
cMI (Fig. 7a,b). The prevalence of the interactions involving
the respiratory activity (variable RP ) in the resting condition
reflects the well known effect of respiration on the variability of
the heart rate. These effects appear weaker during the postural
challenge, likely reflecting the dampening of respiratory sinus
arrhythmia resulting from the parasympathetic inhibition with
postural stress [29], though remaining significant in more than
half of the subjects. On the other hand, the stronger interaction
HV − SV during postural stress can be ascribed to the
enhancement of the baroreflex control involvement associated
with orthostasis which determines acceleration (deceleration)
of the heart rate in correspondence with decrease (increase) of
the systolic pressure levels [4], [30].

The analyzed interactions were detected as significantly
synergistic during rest, and exhibiting a net balance between
synergy and redundancy during tilt (Fig. 7a,c; note that the
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Figure 6. Bio-signal processing and measurement convention for the extraction
of the time series used in the dynamic analysis of cardiovascular networks.
The signals and parameters used to build the five analyzed time series are
shown in (a): the ECG and ABP signals are used to measure the heart period
HP , the systolic pressure SP and the diastolic pressure DP ; the ICG signal
is differentiated to measure the local maxima of the impedance variations
Z′max and the left ventricular ejection time LV ET from which the cardiac
output CO is derived; and the ICG and ABP signals are combined to measure
CO and the mean arterial pressure (yellow shades) from which the peripheral
resistance PR is derived. Representative time series measured for a subject
monitored in the resting supine position are shown in (b).

nIS values are the same for all links in this application with
three variables analyzed). The small but statistically significant
prevalence of synergy in the resting state documents the
existence of a dominant common target effect (see also the
simulated systems of Fig. 2); in this application, the common
target situation arises likely by the simultaneous presence of
baroreflex effects from SV → HV and of direct respiratory
sinus arrhythmia RP → HV [30]. The balance between
redundancy and synergy induced by the postural stress might
indicate a balancing of the two pathways whereby respiration
affects the heart rate, resulting from a weakening of the non-
baroreflex respiratory sinus arrhythmia mechanisms (pathway
RP → HV ) and a strengthening of the baroreflex-mediated
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Figure 7. Results of the static analysis of cardiovascular and respiratory
interactions. (a) Distribution across 61 subjects of the mutual information (MI),
conditional MI (cMI) and net information shared (nIS = MI−cMI) between
the discrete variables representing heart rate variation (HV ), systolic pressure
variation (SV ) and respiratory phase (RP ) measured in the supine position
(REST) and during postural stress (TILT); asterisk and hash symbols denote
statistically significant differences between REST and TILT, and between MI
and cMI respectively (*,#: p < 0.05, **: p < 0.005 paired Wilcoxon test).
(b) Number of subjects for which both MI and cMI were not statistically
significant (B-index = NaN), only MI was significant (B = 1), only cMI
was significant (B = −1), or both MI and cMI were significant (|B| < 1)
in the two conditions; the significance was assessed using random shuffling
surrogates. (c) Reconstructed network structure where the link thickness is
associated to the number of subjects with significant MI and cMI and the link
color maps the average B-index.

respiratory sinus arrhythmia (pathway RP → SL→ HV ).
In the second application, the dynamic formulation of the

proposed framework was exploited to explore in detail the
interactions among several cardiovascular variables related to
cardiac rhythm and hemodynamics, including the regulation
of arterial pressure. The results in Fig. 8 indicate that four of
the nodes of this network, i.e. those mapping the variability
of PR, CO, DP and SP , form a fully connected subnetwork
which is stable in the two analyzed conditions. This finding is
documented by the statistically significant values of both MIR
and cMIR, as well as of their balance, consistently observed
at rest and during tilt for the links PR − CO, PR − SP ,
PR−DP , CO−SP and CO−DP (Fig. 8a,b). In particular,
the link between PR and CO is very strong and exhibits the
highest values of both MIR and cMIR, as a consequence of the
inverse relation existing between the two processes. Notably,
for this link cMIR is consistently higher than MIR, resulting
in significantly negative values of the interaction information
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rate; this statistically significant synergy reveals the existence
of a common target relation from PR and CO towards other
connected variables in the network, likely SP and especially
DP .

Physiologically, this relation might be associated to the
effect of the variations in vasomotion characterized by the
vascular resistance dynamics on the blood pressure and arterial
compliance [31], [32]. Interestingly, when PR or CO are
analyzed together with one of the vascular processes (either
SP or DP ), the link becomes significantly redundant; this
suggests that HP plays a role through its tight relation
with SP and DP reflecting known physiological effects like
the baroreflex and the cardiac run-off [26]. The absence of
significant changes of nIS and B-index with tilt for these links
suggests that the underlying mechanisms are not modulated by
sympathetic activation or parasympathetic inhibiton associated
with orthostasis.

Different behaviors were observed when the links including
heart rate variability were considered. The links between HP
and PR or CO were detected in only half of the subjects
in both conditions (Fig. 8b), and were characterized by re-
dundancy (MIR > cMIR) which decreased moving from rest
to tilt due to decreased MIR and unaltered cMIR. The links
between HP and SP or DP were detected in the majority of
the subjects in both conditions, and were again characterized
by redundancy with a decrease from rest to tilt in the case of
HP−DP , and stable net redundancy in the case of HP−SP .
These results indicate that the sympathetic activation evoked by
tilt tends to make the interactions between HP and the other
cardiovascular processes less redundant. The known activation
of the baroreflex mechanism with tilt was not evidenced by the
link HP −SP , possibly because the symmetric measures used
here (MIR, cMIR) account for both feedback and feedforward
cardiovascular interactions [4]. The interaction SP − DP ,
which physiologically may be related to the Frank-Starling
effect [26], was significantly found as redundant in about half
of the population, with a tendency to decrease during tilt.

It is important to note that this application did not consider
respiration, due to the lack of availability of the respiratory
signal. Since it is well known that the respiratory activity
significantly influences the cardiovascular system, as reflected
by the respiration-related oscillations present in the cardiovas-
cular variables [3], future investigations should complement
the present results by including respiration as a node of the
analyzed network. Methodological extensions to our approach
could be also envisaged to make it frequency-specific [33], so
as to focus the assessment of high-order links on low-frequency
oscillations which are less affected by the respiratory activity.

V. CONCLUSIONS AND PERSPECTIVES

The framework proposed in this work for the analysis
of physiological networks is designed to evaluate how two
nodes are functionally connected and interact with the rest of
the network. This approach makes the proposed measures of
synergy/redundancy balance fundamentally different from the
existing ones. In fact, while HOI measures based on partial
information decomposition [15] concentrate on one network
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Figure 8. Results of the dynamic analysis of cardiovascular networks. (a)
Distribution across 39 subjects of the values of mutual information rate (MIR),
conditional MIR (cMIR) and net information shared (nIS = MIR−cMIR)
between the continuous processes representing the variability of heart period
(HP ), systolic pressure (SP ), diastolic pressure (DP ), cardiac output (CO)
and peripheral resistance (PR) measured in the supine position (REST) and
during postural stress (TILT); black and blue hash symbols denote statistically
significant differences between REST and TILT, and between MI and cMI
(p<0.05, paired Wilcoxon test). (b) Number of subjects for which both MIR
and cMIR were not statistically significant (B-index=NaN), only MIR was
significant (B = 1), only cMIR was significant (B = −1), or both MIR and
cMIR were significant (|B| < 1) in the two conditions; the significance was
assessed using random iAAFT surrogates. (c) Reconstructed network structure
where the link thickness is associated to the number of subjects with significant
MIR and cMIR and the link color maps the average B-index rate.

node and relate its activity to that of two or more other
nodes, and the recently proposed O-information measures [12],
[17] concentrate on the whole network analyzed collectively,
the nIS measure puts the focus on each specific link, thus
allowing to represent high-order effects as networks. Moreover,
the normalization leading to the B-index and the associated
analysis for statistical significance allow to prune the indi-
rect links determined by cascade/common drive or common
target relations, thus making it possible to exploit HOIs for
inferring the structure of the analyzed functional network.
These methodological advantages are particularly relevant in
the analysis of cardiovascular networks, which have been up
to now analyzed without accounting for high-order interactions
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[1], [25], [26] or considering them exclusively at the level of
the whole network [16], [17], [22], [33].

The validation of the framework on theoretical and nu-
merical simulated networks suggested its ability to catch the
balance between synergy and redundancy effects character-
izing the interactions between two nodes and the rest of
the network, as well as to reconstruct the network structure.
While the characterization of static and dynamic networks was
performed implementing respectively model-free and model-
based estimators, the two approaches can be applied to both
types of networks. Nevertheless, the estimation performance
degrades at decreasing the data size and increasing the network
size, especially for the model-free estimator, due to known
statistical effects and to the curse of dimensionality. Moreover,
even in optimal conditions, structural dependencies involving
both common drive and common target mechanisms cannot be
handled by the B-index and result in false positive detections.
This constitutes a limitation that could be solved theoretically
by accounting for all possible subset of nodes while testing
for conditional dependencies, but this becomes intractable in
practice when increasing the network size. These aspects could
be considered in extensions of the framework incorporating
refined entropy estimators [34] and implementing criteria for
dimensionality reduction [29]. Another limitation that should
be addressed by future studies is the impossibility of the present
formulation of our approach to dissect contributions related to
specific oscillations. This aspect, which is particularly relevant
in cardiovascular variability analysis, can be addressed making
reference to state-of-art methods for the spectral analysis of
pairwise and high-order interactions in physiological networks
[17], [33].

The application to physiological networks showed how the
proposed framework can elicit mechanisms of cardiovascular
regulation investigated at rest and in response to postural
stress. We purposely implemented both static and dynamic
analyses to illustrate the flexibility of our framework: while
in principle a dynamic analysis of random processes is more
complete and allows a more fine-grained characterization of
diverse interactions, the static analysis allows to track important
physiological mechanisms also starting from coarse-grained
parameters which can be obtained faster and more robustly.
Thus, depending on the applicative context, the use of the
proposed static and dynamic measures of synergy/redundancy
balance and link strength can favor a deeper investigation of
physiology as well as the discovery of new clinical markers.
These measures can also be exploited to complement existing
analyses for empowering the automatic classification of patho-
physiological states.
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