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Abstract: The Mediterranean diet features plant-based foods renowned for their health benefits de-
rived from bioactive compounds. This review aims to provide an overview of the bioactive molecules
present in some representative Mediterranean diet plants, examining their human nutrigenomic
effects and health benefits as well as the environmental advantages and sustainability derived from
their cultivation. Additionally, it explores the facilitation of producing fortified foods aided by soil
and plant microbiota properties. Well-studied examples, such as extra virgin olive oil and citrus
fruits, have demonstrated significant health advantages, including anti-cancer, anti-inflammatory,
and neuroprotective effects. Other less renowned plants are presented in the scientific literature with
their beneficial traits on human health highlighted. Prickly pear’s indicaxanthin exhibits antioxidant
properties and potential anticancer traits, while capers kaempferol and quercetin support cardio-
vascular health and prevent cancer. Oregano and thyme, containing terpenoids like carvacrol and
γ-terpinene, exhibit antimicrobial effects. Besides their nutrigenomic effects, these plants thrive in
arid environments, offering benefits associated with their cultivation. Their microbiota, particularly
Plant Growth Promoting (PGP) microorganisms, enhance plant growth and stress tolerance, offering
biotechnological opportunities for sustainable agriculture. In conclusion, leveraging plant microbiota
could revolutionize agricultural practices and increase sustainability as climate change threatens
biodiversity. These edible plant species may have crucial importance, not only as healthy products
but also for increasing the sustainability of agricultural systems.

Keywords: plant-derived compounds; nutrigenomics; functional food; biofortified food; environ-
mental factors; healthy diet; microbiome

1. Introduction

Italy is one of the richest European countries in terms of plant species: in fact, this
country has about half of the recognized plant species in Europe, including edible plants,
which grow wild thanks to the mild climate and soil fertility. From a nutritional point
of view, the healthful properties of Mediterranean species are due to a perfect balance of
essential nutrients, such as vitamins and minerals, and the presence of beneficial bioactive
compounds [1].

As reported in different reviews specifically focusing on their ecological, phylogenic,
and evolutionary characteristics [2–4], Mediterranean plants generally consist of a complex
mixture of taxa having various biogeographical origins and evolutionary histories, with
approximately 50% of them considered endemic. Although very diverse, Mediterranean
plants are stress-tolerant species, including evergreen trees and shrubs, semi-deciduous
shrubs, geophytes, and winter annual herbs. These plants share morphological, anatomical,
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and phenological traits according to an evolutionary convergence driven by environmental
conditions, such as climate.

In particular, we focused our attention on some wild and spontaneous Mediterranean
edible plants, which represent a great resource, fitting fully into nutritional plans as in-
gredients in many traditional culinary recipes. In particular, this review addresses two
Mediterranean aromatic herbs (Thymus vulgaris. and Origanum vulgare) endowed with
extraordinary antioxidants, antibacterial, anti-inflammatory properties [5], and at the same
time, tasty ingredients for our cuisine, and two xerophilous cultivated and naturalized
drought-resistant shrubs, Opuntia ficus indica and Capparis spinosa, of promising potentiali-
ties to cope with emerging climatic change in the Mediterranean countries. This manuscript
focuses on some products from the plant’s secondary metabolism, a group of reactions that
the plant uses to interrelate with the external environment. The reaction products are the
secondary metabolites, of which bioactive compounds like phenols, terpenes, and alkaloids
are part.

These edible wild plants are rich in many metabolites that are often referred to as
secondary since they are generally not essential for the growth of the producer organism (at
least under controlled conditions) and are produced in smaller quantities than the primary
metabolites. However, they play a key role in the interactions between plant organisms
and the biotic and abiotic environment in which plants live. In particular, it is known that
secondary metabolites act as protection factors against microbial pathogens [6], facilitate
reproductive processes, and act as defense mechanisms against abiotic stresses [7]. It has
become increasingly clear that these compounds are involved in numerous biochemical
and physiological processes and that they can play a role as protective health factors in
improving plant growth and development.

In addition, polyphenols, carotenoids, and terpenes have been shown in various
experimental studies to exert preventive action against chronic degenerative diseases in
human beings [8] thanks to their antioxidant activity, which is mainly expressed in opposing
oxidative processes.

The need, therefore, came about to draw up a diet that included these plants. The
precious contribution they give to a healthy diet is schematically shown in an Eating
Pyramid presented by Mantzioris and Villani [9], indicative of the purposes of complete
and balanced nutrition. The pyramid is divided on the size of the sector, which indicates
the frequency of intake/relative quantity ratio for each specific food depicted. According
to the information presented, it can certainly be said that no restrictions are imposed
regarding fruits, to which the prickly pear belongs, and spices, such as oregano and
rosemary, the consumption of which is free from any restrictions. Thus, a balanced mix
of healthy nutrients and benefits for human health constitutes what we commonly call
the “Mediterranean diet”, a UNESCO World Heritage Site since 2010. Numerous studies
link it to longevity and protective effects against several diseases, including a nutritional-
epigenetic effect on cancer cells [10–12].

In order to provide an insight into some of the best-known flavonoids and terpenoids
that can be extracted from Mediterranean plants, a precise bibliographic choice has been
made as functional for the purpose of the review. Four xerophilous Mediterranean species
that naturally inhabit semi-arid environments and are rich in bioactive molecules have
been selected as models of economic crops that can fulfill both environmental and health
purposes.

Indeed, except for an essential part of historical articles peculiar to some concepts,
most of the selected papers (over 70%) are no older than 2014. The results highlighted a
widespread scientific interest in flavonoids and terpenoids mainly produced from edible
Mediterranean plants, whose major characteristics are described and discussed below.
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2. Mediterranean Edible Plant Bioactive Molecules: An Arsenal of Pigments,
Flavonoids, and Terpenoids

Bioactive molecules are naturally contained in a huge number of foods, mostly plants,
and are grouped into classes based on structural or biosynthetic characteristics. They
can improve certain functions of the organism, which is why they are suggesting more
interest in the scientific community, and can positively influence a physiological benefit
and/or reduce the risk of developing certain diseases [13,14]. Secondary metabolites, which
bioactive molecules belong to, are not essential for the development of the plant or the
reproduction of the organism but represent useful products for beneficial purposes [15,16]
or are involved in protective functions against infections [17,18] or physiological stresses
like UV radiation [19]. Most plants have not yet been examined for secondary metabolites,
and new compounds are being discovered day by day. It can, therefore, be said that
bioactive molecules are still a rich but unexplored world that gains charm when generic
bioactivity can be explicated in power to modulate gene expression in cells. The purpose
of the following sub-paragraphs is to inform about the structure, activity, and application
potential of determined biomolecules contained in prominent Mediterranean edible plant
species growing on semi-arid soils, as well as investigate their healthy properties.

2.1. Indicaxanthin: The Yellow Pigment of Prickly Pear Fruit

The prickly pear, or Opuntia ficus-indica L. Mill, is an iconic symbol of Southern Italy
and holds within it a treasure of nutrients [20]. O. ficus-indica L. Mill (order Caryophyllales
family Cactaceae) is native to Mexico but naturalized and widely cultivated in Mediter-
ranean countries. Plants of this genus prefer hot and dry climates, which is why Mediter-
ranean countries are an ideal habitat for their growth, to such an extent that they have been
considered invasive in Sicily. There are many varieties of the prickly pear: it is multicol-
ored, and the pulp can be orange, green, white, yellow, or red. The outward appearance,
besides being a well-studied Physico-chemical phenomenon described above, provides a
considerable quality parameter of the products. Hence, the consumer is naturally inclined
to choose a more colorful product as it is more appealing. Prickly pear extracts contain
a large amount of these biomolecules, which is why they have always been tested for
their antioxidant capabilities, yielding promising results [21,22]. Moreover, fruits and their
juices have always been recommended for their diuretic, hypoglycemic, analgesic, and
anti-inflammatory effects, as well as for gastritis relief [20]. Regarding the use of the isolated
molecules, there are extensive studies on betanin, which is shown to have great antioxidant
activity in inhibiting lipid peroxidation of membranes [23]. Among the phytochemicals,
indicaxanthin has attracted the scientific community’s attention. The molecule belongs to
the family of betaxanthin of the betalain class: vacuolar pigments composed of a central ni-
trogenous structure, betalamic acid [24]. Betalamic acid condenses with imine compounds
to form betacyanins or betaxanthins. More specifically, indicaxanthin derives from the
condensation of betaine with L-proline [25]. Since it belongs to the plant pigment class, it is
a light-adsorbing unit and must, therefore, be preserved from exposure to direct light to
avoid damage to the structure. It is also susceptible to enzymatic reactions and temperature
fluctuations. The same is said of Indicaxanthin, where we note its properties as a redox
agent [26], as a protector against hemolysis [27], and as a pigment capable of crossing the
blood-brain barrier when administered in nutritionally relevant quantities [28]. Recent
studies have also shown the role of indicaxanthin as a modulator of DNA methylation in
Caco2 cells, making this molecule a good candidate for an anticancer drug [12], and its
pro-autophagic potential in human colorectal cancer cells [29].

2.2. Kaempferol and Quercetin: Flavonoids in Caper Plant

Flavonoids are a large class of phenolic compounds. They can exert a variety of
beneficial biological activities and have proven to be fundamental for health, especially in
the prevention of degenerative diseases, cardiovascular disorders, and cancers [30]. From a
chemical point of view, most flavonoids consist of a core structure composed of 15 carbon
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atoms (C-15) distributed over three rings: two benzyls and one heterocyclic. Kaempferol
(C15H10O6) and quercetin (C15H10O7) are two flavonols with very similar structures, as can
be seen in Figure 1.
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flavonoids renowned for their beneficial properties.

Preliminary studies have shown that crude extracts containing flavonoids (including
quercetin and kaempferol derivatives) of certain plants have anticoagulant and antioxi-
dant properties in human plasma [31]. It is crucial to control oxidation reactions because,
although they are physiological, they can produce excess free radicals. These, when over-
expressed, are responsible for cellular damage. In this, antioxidants play a crucial role,
acting as reducing agents and stopping these reactions [32]. The caper plant (Capparis
spinosa L. order Brassicales, family Capparaceae), widespread throughout the Mediter-
ranean basin, is rich in quercetin and kaempferol. As reported by the USDA Database for
the Flavonoid Content of Selected Foods [33], the caper plant classifies among the best
plant species in terms of quercetin and kaempferol content by total weight. This makes it
an ideal candidate for future studies and application, especially in Type 2 Diabetes Mellitus
treatment (T2DM). Some interesting results demonstrate, in fact, that quercetin, among
all, interacts with DNA and shows protective effects in relation to T2DM [34,35]. In 2020,
Anachuna et al. investigated the nutrigenomic effects of quercetin and kaempferol con-
cerning their impact on prenatal and postnatal food deprivation-induced developmental
anomalies in rats. Both compounds demonstrated significant effects in mitigating the
alterations induced by these food restrictions [36]. These findings suggest that quercetin
and kaempferol have nutritional genomic properties, which would counteract the negative
effects of prenatal and postnatal malnutrition on pregnancy outcomes and developmental
trajectories. The nutrigenomic effects of quercetin and kaempferol have also been observed
in studies focusing on cancer pathways [37]. These flavonoids exert their effects by affecting
gene expression, particularly concerning DNA methylation and histone acetylation, and
have been shown to modulate genes related to cell growth regulation and apoptosis in
other mechanisms of cancer progression [37,38]. Moreover, these agents increase genomic
stability, inhibit VEGF signaling, and have been reported to have antiviral activity [39]. In
addition, these flavonoids have shown promise in inhibiting histone deacetylases (HDACs)
that affect histone acetylation and gene expression [40]. This inhibition leads to increased
histone acetylation, downregulation of specific genes, and cell cycle arrest/induction of
apoptosis. In summary, quercetin and kaempferol, present also in the caper plant, exhibit
nutrigenomic effects by influencing gene expression through mechanisms like DNA methy-
lation regulation, histone acetylation inhibition, and promoting genomic stability. The
epigenetic effects of these flavonoids selectively target cancer cells while inhibiting normal
cell proliferation.



Int. J. Mol. Sci. 2024, 25, 2235 5 of 14

2.3. Carvacrol and γ-Terpinene: Antimicrobial Terpenoids in Oregano and Thymus

Aromatic spices such as oregano and thyme are used every day to flavor dishes of the
Mediterranean diet. Both aromatic herbs, Thymus spp. and Origanum spp., belong to the
order Lamiales in the family Lamiaceae. They are well known for their antioxidant effects
when appropriately accompanied by cooked dishes [41,42].

Carvacrol and γ-terpinene, whose structures are shown in Figure 2, are two terpenoids
that can be produced by the above-mentioned species. Carvacrol is one of the components
in thyme and oregano essential oil with the highest microbial activity. It is known for its
ability to inhibit flagellum development in Escherichia coli and to trigger heat shock proteins
during infections [43,44].
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Γ-terpinene has a similar function to carvacrol. Unlike the former, it must be inoculated
with other terpenoids in bactericidal assays to have an appreciable effect [45]. Possibly,
its reduced activity, compared to carvacrol, is due to the less detectable amount in the
extracted essential oils.

Carvacrol has also been demonstrated to have nutrigenomic action in changing the
host ileum microbial population dynamics to increase the abundance of some healthy
bacterial species in the chicken gut [46].

Reference should be made to the class of terpenoids: the oxygenated derivatives of
terpenes. These are hydrocarbons consisting of one or more isoprene units, depending
on whether they are monoterpenes, sesquiterpenes, diterpenes, polyterpenes, etc. The
aforementioned class of compounds is widely represented in both the plant and animal
worlds [47,48]. In particular, monoterpenes, sesquiterpenes, and diterpenes are abundant
in the essential oils of plants and have a marked antimicrobial function [49,50] and give
each plant a characteristic odor or aroma. D-Limonene, among all, is a major constituent
of Citrus essential oils, also used as a cancer chemotherapeutic compound; it shows its
principal nutrigenomic effect on dividing cells, preventing assembly of mitotic spindle
microtubules affecting chromosome segregation and cytokinesis, thus causing aneuploidy
and genomic instability [51].

3. Mediterranean Functional Food and Biofortified Products

Mediterranean plants are a rich source of secondary metabolism products, in particular
phenols, terpenes, and alkaloids [52]. They provide a model for the design of the so-called
"Biofortified Foods," which are enriched foods supplemented with bioactive molecules
(antioxidants, fiber, and omega-3 fatty acids), of which plants are active producers.
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Functional foods are described as foods that positively affect one or more physiological
functions. A fundamental prerogative of these foods is to help preserve or improve health
status and/or reduce the risk of occurrence of diet-related diseases. Mediterranean diet,
already known for its numerous beneficial properties, is rich in these functional foods since
bioactive components are naturally present in the plant species under discussion [53]. These
foods, although they differ from each other, share a common goal: to provide nutritious,
healthy benefits.

Fortified foods, on the other hand, although they bring beneficial properties to human
health, are those that are enriched with specific nutrients that are deficient in the diet.
The enrichment is made through conventional cultural techniques or through genetic
modifications aimed at increasing essential nutrients (vitamins, minerals, and amino acids)
in crops [54].

The Mediterranean diet, renowned for its health benefits, offers a rich source of
functional and/or biofortified foods. The health effects of these functional foods have been
investigated in many scientific studies. A wide variety of fortified foods is rich in bioactive
metabolites such as phytochemicals, antioxidants, fibers, probiotics, or omega-3 fatty acids.
Indeed, these substances can help prevent various chronic diseases such as cardiovascular
problems, diabetes, and cancer.

An example is a study by Visioli and colleagues (1998) that highlighted the cardio-
vascular benefits of consuming dietary fats such as extra virgin olive oil [55]. The current
literature counts many studies that have shown that phenolic compounds in olive oil (in
particular extra virgin olive oil: EVOO) are bioactive molecules with anti-cancer, anti-
inflammatory, anti-aging, and neuroprotective properties, and its ability to induce changes
in DNA methylation patterns have been highlighted [56]. It must also be considered that
it is able to genetically modulate cellular pathways related to oxidative mechanisms. A
review was proposed by Serreli 2020 [57] highlighting the existing literature regarding the
interaction between EVOO polyphenols and the NF-κB and Nrf-2 signaling pathways, two
important modulators of age-related disorders and aging.

Polyphenols can induce changes in chromatin structure by interacting with DNA
methyltransferases and histone-modifying enzymes, affecting gene expression associated
with inflammation, oxidative stress, and cellular metabolism [16,58].

In addition, a study conducted by Sesso and colleagues (2003) examined the association
between the consumption of lycopene, contained primarily in tomatoes, and the reduced
risk of cardiovascular disease (CVD) [59].

Another notable example includes the work of Ghanim and colleagues (2011), who
have related orange juice intake to a high-fat, high-carbohydrate meal (HFHC), demonstrat-
ing antioxidant and anti-inflammatory effects of citrus flavonoids in attenuating metabolic
complications related to the syndrome [60]. These observations may help to explain the
mechanisms underlying oxidative stress and postprandial inflammation, the pathogenesis
of both insulin resistance and atherosclerosis.

On the other hand, biofortified Mediterranean foods are intentionally improved to
increase their nutritional contents. Among these, wheat, like many other staple grains,
contains low levels of essential micronutrients: iron and zinc. Filippa Borrill’s (2014) [61]
review discusses some approaches to improve the content of the two aforementioned
micronutrients, using the existing knowledge on model herbs.

The inclusion of these kinds of products in daily consumption would be a successful
strategy to fight malnutrition, which is particularly widespread in poorly industrialized
countries. Promising effects have been observed when biofortified cereals such as zinc-
fortified wheat or iron-fortified rice are given to patients affected by anemia. In particular,
they exert an effect on the metabolic pathways and reduce the risk of nutrition-related
diseases [62]. In addition, supplementation of biofortified foods not only provides numer-
ous nutritional benefits but also contributes to a slower occurrence of non-communicable
diseases (NCDs) such as diabetes, obesity, and neurodegenerative diseases. Studies by
Gomez-Galera et al. (2010) highlight the positive impacts of consuming biofortified crops,
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in particular rice and wheat, on improving cognitive function and reducing the risk of
age-related cognitive decline. [63] It also highlights the positive impacts of consuming bio-
fortified crops, particularly rice and wheat, on improving cognitive function and reducing
the risk of age-related cognitive decline.

4. Drought-Resistant Plants in the Mediterranean Diet: An Opportunity to Mitigate the
Effects of Climate Change

Mediterranean diet plants are known for their ability to adapt to aridity. Many varieties
in the area must implement different strategies to survive when water is short: one of
the best known is "drought escape," a strategy implemented by annual plants to ensure
growth and reproduction. With climate changes, the plants that inhabit the Mediterranean
brush are constantly subjected to new challenges and, therefore, must prove not only
resilient but also equally productive in order to preserve the varieties’ survival. Some
species, particularly shrubs to which aromatic plants belong, have a protective role for the
soil; in fact, they are used in areal cover to screen it from raindrops and as protection for
erosion [64,65].

Soil is involved in physicochemical phenomena that depend on climate and interaction
with living organisms. The environmental aspects influence soil fertility, acting on the
productive potential of the cultivated and wild plants. As observed in several studies, all
this results in changes in the level of primary and secondary metabolism. Mehalaine S. and
colleagues (2020) studied the effect of soil properties on the accumulation of essential oils
in two spontaneous plants growing in the Algerian semi-arid region, thyme and rosemary,
and noted that pH and nitrogen:phosphorus ratio (N:P) had a positive correlation with the
concentration of essential oils in both species. The two elements, nitrogen and phosphorus,
exert their synergistic effect on the assimilation of primary metabolites and, consequently,
of secondary metabolites [66].

In addition to having beneficial effects on plant growth and health, the microbiota
can influence plant metabolites qualitatively and/or quantitatively. Some bacteria, the
already known Plant Growth Promoting Bacteria (PGPB), can produce hormones, provide
siderophores to the host plant, trigger a cross-talk modulating the production of phytohor-
mones, or even increase the tolerance of the plant to reported stress (for example, drought).
It then triggers a mutualism in which the plant produces the initial unit of the biosynthetic
pathways, and the endophytes complete the remaining biosynthetic phases until the final
compound [67].

The species belonging to the Mediterranean area are interesting not only from a
nutritional point of view but also from an ecological and adaptive point of view since
they grow well in arid environments. In a period where rising temperatures are changing
weather models and threatening biodiversity, the need to find strong, adaptable species
such as aromatics and shrubs is becoming more and more concrete. Various attempts are
made to exploit the available sources to better face this problem, especially on the agro-
alimentary front, where increasingly eco-sustainable approaches are preferred to optimize
the available resources as much as possible [68]. Now more than ever, it is fundamental
to focus on those autochthonous plants adapted to arid climates. These plants survive
in climates where water shortages are frequent, and this is going to be more and more
frequent in the Mediterranean regions where drought periods are becoming longer, and
rains are heavier and reduced to shorter periods throughout the year. Many selective factors
contribute to increasing the yield of plants in these harsh conditions, and the soil microbiota
plays an increasingly decisive role [69]. Sicily, a southern region of Italy located at the
center of the Mediterranean basin, is one of the regions more affected by desertification
and, at the same time, a hotspot of plant diversity and the home of many plants resistant to
drought and adapted to high temperatures.

Among them, O. Ficus indica L. Mill is one of the most widespread wild and culti-
vated drought-resistant species rich in bioactive molecules, whose fruits (prickly pears)
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are known for both their pleasant taste and beneficial properties, especially in the nutrige-
nomic/epigenetics field [70–72].

Beyond Opuntia, spices and aromatic herbs are important products since they have
been cultivated and used in everyday life for millennia [73]. Especially in Sicily, they have
been fundamental in the evolution of recipes and traditional cuisine. The most common
species include oregano (Origanum vulgare), thyme (Thymus vulgaris), rosemary (Rosmarinus
officinalis), mainly used to flavor meat and side dishes; and the caper plant (Capparis spinosa)
whose buds and fruits are added to salads. All these xerophilous species are considered
multi-value and promising crops with high potentialities for agrosystems under the threat
of global warming [74].

Therefore, these species combine two key aspects: being particularly beneficial from a
nutritional and salutary point of view and being optimal candidates for the valorization
and protection of soils under desertification risk.

5. Mediterranean Diet Plant Microbiome: A Need, a Source, a Perspective for the One
Health Approach

Interactions between plants and soil microorganisms are most of the time beneficial
to their growth and adaptation. Several studies have shown that when interactions are
established, both living species take part in this collaboration: plants improve nutrient
assimilation and tolerance to abiotic and biotic stresses, while microbiota members take
advantage of the presence of organic compounds produced by plants [75].

With the advancement of genomic technologies, it is possible to characterize both
the soil and plant metagenomes, which provides detailed information about the resident
microbial population. In this regard, the most used approach is metataxonomics which
analyses metagenomic DNA content to infer microbiota structures differing according to
plant species, soil chemical physical variables, soil cover, and climate [76,77].

In the rhizosphere, particularly favorable conditions are created for the life of numer-
ous plant-useful microorganisms, such as the most studied soil bacteria called rhizobia.
They settle in the roots of legume hosts, inducing the formation of typical root nodules,
and here, they fix nitrogen while using organic compounds and mineral salts from the host.
Meanwhile, they produce nitrogen-assimilable compounds, which are exploited as a source
by the plant. Many different bacterial species known as plant growth promoters (PGP)
favor plant’s rooting and boost the uptake of macroelements (N, P, K) and microelements
present in the soil; beyond bacteria, mycorrhizal fungi, are essential to more than 80% plant
species. These micro-organisms perform their specific action, which is made available to the
plant and exploited massively thanks to the large root system. The best results for crops are
obtained from the ternary association of roots-mycorrhizae-useful micro-organisms [78,79].

Plant-associated microorganisms are also often classified on the type of association
they establish: endophytic when they thrive in the plant tissues of hypogeal (i.e., roots)
or epigeal (i.e., shoots, leaves) organs of a plant [80]; symbiotic each time they establish a
close and long-term interaction with a biological organism. Symbiotic interaction confers
an advantage for both bacteria and plants since the former uses nutrients for their growth,
and the latter influences the enrichment of the soil microbiome. Many studies investigate
this topic: one, in particular, focuses on how bacteria establish symbiotic relationships with
Vetiver roots, wild grass whose essential oil is fragrant and widely used in perfumery [81],
and another one puts the attention on the role of endophytes in enhancing the production
of bioactive secondary metabolites The host-specific secondary metabolites produced by
endophytes, their therapeutic properties and host-endophytes interaction with production
of bioactive secondary metabolites and the role of endophytes in enhancing the production
of bioactive secondary metabolites is discussed [82].

The microbial diversity of Mediterranean plants has been observed and analyzed
through the years, and although there are still not many studies to support it, a basic
microbiological identity can still be defined for most of the plant species considered. Table 1
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lists some of the most abundant bacterial taxa found in the Mediterranean plants considered
in this minireview, divided into the plant compartments analyzed.

Table 1. Microbiota of the four Mediterranean plant species presented in this review.

Mediterranean
Plant Family Compartment Most Abundant Taxa References

Origanum vulgare
L.

Lamiaceae Seeds Pseudomonas;
Bacillus;Pantoea

[83,84]Stems Bacillus;
Curtobacterium

Leaves Arthrobacter; Bacillus

Flowers Pantoea; Pseudomonas;
Bacillus

Capparis spinosa Capparaceae Rhizosphere
Pseudomonas;

Agrobacterium;
Sphingobacterium;

[85]

Thymus vulgaris L. Lamiaceae Rhizosphere,
Roots, Leaves

Pseudomonas;
Enterobacteriaceae [86]

Opuntia ficus indica
L. Mill Cactaceae Endosphere,

Rhizosphere

Proteobacteria;
Actinobacteria;

Firmicutes;
Cyanobacteria

[87]

The microbiota thus constitutes a source of biodiversity and, at the same time, rep-
resents a biotechnological opportunity to develop alternative agricultural methods since
it exerts important effects on growth promotion in plants [88]. All good practices to en-
hance and safeguard the soil microbiota in agriculture are essential to stop the depletion of
our soils and our biodiversity. Thus, increasing the research and applications of PGP of
drought-resistant plants of the Mediterranean diet will fulfill the one health approach while
applying the Farm to Fork Strategy that aims to accelerate the transition to a sustainable
food system [89].

6. Conclusions

Mediterranean functional foods and biofortified items display nutrigenomic effects
by modulating gene expression. The ability of these bioactive compounds to influence
epigenetic mechanisms plays a crucial role in mitigating the risk of chronic diseases, such
as cardiovascular ailments, cancer, and metabolic disorders. Recently, consumer interest in
natural products has grown due to the increased awareness that a healthy lifestyle based
on the consumption of high-quality products contributes to longevity. Thus, the need to
underline the importance for consumers to take advantage of quality products began to
grow, and a focus on all those molecules that can be extracted from plants, even from the
less renowned, with specific climate standards was necessary.

Among the various bioactive molecules, those presented are part of a restricted pool,
limited to drought-resistant edible plants from the Mediterranean region, that, in addition
to presenting several beneficial biological effects, also have nutrigenomic activity, capable
of modulating gene expression of those cells with which they come into contact, most often
having beneficial purposes.

Two reasons were behind the choice to explore these aspects in depth: the first due
to the role that the Mediterranean diet holds within human lifestyles, and the second due
to the need to make the most of those sources that can naturally cope with the increasing
effects of climate change. A highlight on the microbiome of the presented species has
even been proposed, as it is widely assumed that microorganisms play an increasingly
pivotal role in soil quality and fertility and in contributing to plant resistance to biotic and
abiotic stresses.
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Although various application studies, especially in nutrition and medicine, are avail-
able, much remains undiscovered about these compounds, including their abundance and
distribution. Advances in nutrigenetic, nutrigenomic, and nutrigenetic knowledge [90] will
be necessary since they have recently achieved a prominent position in scientific and social
interest. The evident correlation between the use of these compounds and their beneficial
action against cancer, diabetes, and cardiovascular diseases will certainly stimulate new and
more detailed studies, and hopefully, in the near future, more in-depth knowledge can be
developed on what are the synergistic effects of microorganisms on the bioactive molecule
composition of plants, to produce drugs, essential oils targeted to humans for their personal
well-being. To gain more insights in those regards, coordinated and multidisciplinary
research projects are necessary, needing public and private financial support to carry out
high-throughput experiments, such as those based on omic technology, and mining their
interconnected significance. The large number of multidisciplinary contributions present
in the literature, also in the form of systematic reviews, represents a large reservoir of
data that, however, does not allow specificity. The choice made in this review to limit
the description to a few molecules and some plants has the precise objective of increasing
specificity in order to give visibility to specific virtuous pathways with a high degree of
correlation between their components, which can be candidates for high priority for future
integrated research.

In conclusion, functional foods and biofortified products derived from Mediterranean
foods play a pivotal role in promoting human health and preventing chronic diseases on one
side while increasing the sustainability of our agricultural systems. Interestingly, drought
tolerance and bioactive molecule production may be common factors in the specialized role
of Mediterranean plant microbiota. The diverse array of bioactive compounds and enriched
nutrients offer substantial health benefits, emphasizing the importance of integrating these
dietary components into a balanced and nutritious diet. Understanding the nutrigenomic
impact of these foods helps to develop targeted dietary strategies to promote human
health, prevent disease, or, more interestingly, achieve a modulation effect on DNA damage
resulting from exposure to genotoxic foods and drinks, a property already demonstrated
for stilbenoids [91].
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