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On the representability of actions of non-associative algebras

by Manuel MANCINI

We study the categorical-algebraic condition of internal actions being weakly repre-
sentable in the context of non-associative algebras over a field. It is known that such
varieties are action accessible if and only if they are Orzech categories of interest
and it is also known that both these conditions are implied by weakly representable
actions in this context.

Our first aim is to give a complete characterization of action accessible, operadic
quadratic varieties of non-associative algebras which satisfy an identity of degree
two (so commutative or anti-commutative algebras) and to study the representabil-
ity of actions for them. Moreover, we prove that the varieties of two-step nilpotent
commutative and anti-commutative algebras are weakly action representable.

Our second aim is to work towards the construction, still within the context of
algebras over a field, of a weakly representing object E(X) for the actions on (or split
extensions of) an object X of a variety of non-associative algebras V . We actually
obtain a partial algebra E(X), which we call external weak actor of X, together with a
natural monomorphism of functors SplExt(�, X) ⇢ HomPAlg(U(�), E((X)), where
PAlg is the category of partial algebras and U : V ! PAlg denotes the forgetful func-
tor, which we study in detail in the case of Leibniz algebras, where E(X) ⇠= Bider(X)
is the Leibniz algebra of biderivations of X. Furthermore, the relations between the
construction of the universal strict general actor USGA(X) and that of E(X) are thor-
oughly described.

Eventually, we study the representability of actions of the category of (non-
commutative) Poisson algebras, showing a possible direction for the construction
of the external weak actor for any action accessible variety of algebras with two non-
necessarily associative bilinear operations. We conclude with some open problems.
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Chapter 1

Introduction

Internal actions of the objects of a category were defined in [14] by F. Borceux,
G. Janelidze and G. M. Kelly with the aim of extending the correspondence be-
tween actions and split extensions from the context of groups and Lie algebras
to arbitrary semi-abelian categories [49]. In some of those categories, internal ac-
tions are exceptionally well behaved, in the sense that the actions on each object X
are representable: this means that there exists an object [X] such that the functor
Act(�, X) ⇠= SplExt(�, X) which sends an object B to the set of actions of B on
X (isomorphisms classes of split extensions of B by X) is naturally isomorphic to the
functor Hom(�, [X]). The context of action representable semi-abelian categories is
further studied in [15], where it is explained for instance that the category of com-
mutative associative algebras over a field is not action representable. Later it was
shown that the only action representable varieties of non-associative algebras over
an infinite field F of characteristic different from 2 are the category Lie of Lie alge-
bras and the category AbAlg of abelian algebras [44]. The relative strength of the
notion naturally led to the definition of closely related weaker notions.

In [21] D. Bourn and G. Janelidze introduced the concept of action accessible cat-
egory in order to include relevant examples that do not fit into the frame of action
representable categories (such as rings, associative algebras and Leibniz algebras
amongst others). A. Montoli proved in [63] that all Orzech categories of interest [66]
are action accessible. On the other hand, in [26] the authors showed that a weaker
notion of actor (namely, the universal strict general actor, USGA for short) is available
for any Orzech category of interest C.

The present work focuses on a notion which have been more recently introduced,
by G. Janelidze in [47]: weakly representable actions. Instead of asking that for each ob-
ject X in a semi-abelian category C we have an object [X] and a natural isomorphism
Act(�, X) ⇠= HomC(�, [X]), we require the existence of an object T and a natural
monomorphism of functors

t : Act(�, X) ⇢ HomC(�, T).

Such an object T is then called a weak actor of X, and when each X admits a weak
actor, C is said to be weakly action representable. For instance, if in an Orzech category
of interest each USGA(X) is an object of the category, then this category is weakly
action representable [29]. This is the case of the category Assoc of associative al-
gebras over a field [47], where USGA(X) = Bim(X) is the associative algebra of
bimultipliers of X (see [59]), or the category Leib of Leibniz algebras [29] over a field,
where USGA(X) = Bider(X) is the Leibniz algebra of biderivations of X (see [58] and
[62]). J. R. A. Gray observed in [45] that an Orzech category of interest needs not be
weakly action representable.
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The main aim of this thesis is to study the representability of actions in the con-
text of varieties of non-associative algebras over a field. (We recall basic definitions
and results in Chapter 2 and Chapter 3.) It is known that a variety of non-associative
algebras is action accessible if and only if it is an Orzech category of interest [41, 42],
and it is also known that action accessibility is implied by weak action representabil-
ity [47].

In Chapter 4 we give a complete classification of action accessible, operadic
quadratic varieties of non-associative algebras with an identity of degree 2 (so com-
mutative or anti-commutative algebras) and we study the representability of actions
of each of them. Moreover, we prove that the variety of two-step nilpotent commu-
tative algebras and that of two-step nilpotent anti-commutative algebras are weakly
action representable, with a weak actor being in both cases an abelian algebras.

In Chapter 5, the representability of actions of the variety Leib of Leibniz alge-
bras is studied: we prove that Leib is weakly action representable with a weak actor
of an object g being the Leibniz algebra Bider(g) of biderivations of g [29]. More-
over, we give the complete classifications of the Leibniz algebras of biderivations
of low-dimensional (right) Leibniz algebras over a field F, with char(F) 6= 2, and
we introduce an algorithm for finding biderivations of a Leibniz algebra as pairs of
matrices with respect to a fixed basis [62].

In Chapter 6 we generalize the study of Chapter 4 and Chapter 5 to a general
variety of non-associative algebras over a field: more in detail, we work towards the
construction, still within the context of algebras over a field, of a weakly representing
object E(X) for the actions on (split extensions by) an object X. We actually obtain
a partial algebra E(X), which we call external weak actor of X [43], together with a
monomorphism of functors

Act(�, X) ⇢ HomPAlg(U(�), E(X)),

where PAlg is the category of partial algebras over F (see Section 3.2.4) and U : V !
PAlg denotes the forgetful functor. Furthermore, we describe in detail the relations
between the construction of E(X) and the one of the universal strict general actor
USGA(X) given in [26].

In Chapter 7 we study the representability of actions of the category Pois of (non-
commutative) Poisson algebras. We describe explicitly an external weak actor E(V),
which turns out to be also a universal strict general actor, for any Poisson algebra V,
and the corresponding monomorphism of functors

t : Act(�, V) ⇢ HomAlg2
(U(�), E(V)),

where Alg2 is the category of algebras over F with two non-necessarily associative
bilinear operations and U : Pois ! Alg2 denotes the forgetful functor. This shows
a possible direction for the construction of an external weak actor for any variety of
algebras with two bilinear operations.

In Chapter 8 we end our work with some open problems and possible future
directions.
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Chapter 2

The semi-abelian context

Most of this work takes place in the context of semi-abelian categories which were
introduced in [49] by G. Janelidze, L. Márki and W. Tholen in order to capture
categorical-algebraic properties of non-abelian algebraic structures, such as groups,
rings and algebras. A category is semi-abelian if it is pointed, admits finite coprod-
ucts, is Barr exact and Bourn protomodular. Pointed means that it has a zero object:
an initial object that is also a terminal object. A category is Barr exact if it is regu-
lar (finitely complete with coequalizers of kernel pairs and pullback-stable regular
epimorphisms) and such that any internal equivalence relation is a kernel pair [9].
A pointed and regular category is Bourn protomodular when the Short Five Lemma
holds: for any commutative diagram

K0 E0 B0

K E B

k0

u

p0

v w

k p

where p and p0 are regular epimorphisms, (K, k) and (K0, k0) are their kernels, if u
and w being isomorphisms then so is v [19].

Well-known examples of semi-abelian categories are the category Grp of groups,
the category Rng of not necessarily unitary rings, any variety V of non-associative
algebras over a field F, or any abelian category. A counterexample is given by the
category Ring of unitary rings, which is not pointed (the initial object is the ring of
integers Z and the terminal one is the zero ring 0).

2.1 Semi-abelian categories

In this section we give an overview of the categorical structures relevant to our work.
We consider their most important properties and examples, and the connections be-
tween them. We refer to [9], [17], [19] and [49] for the definitions and the main results
in this section.

2.1.1 Pointed categories

In an abelian category one frequently considers kernels and cokernels of morphisms,
but in an arbitrary category, no such concepts exist. Pointed categories form the
context where a categorical definition of kernels and cokernels is possible.

Definition 2.1. [17] A category C is pointed if it has an initial object 0 that is also
terminal (i.e., the unique arrow 0 ! 1 is an isomorphism).
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Remark 2.2. There are two dual ways of turning a category C into a pointed category.
If it has a terminal object 1, the coslice category 1/C is pointed; it is usually called the
category of pointed objects in C. For instance, the category of pointed sets Set⇤ arises
this way: if 1 = {⇤} is the singleton, then a function 1 ! X chooses a basepoint in X,
and a morphism in 1/Set is a function which preserves the basepoint. Analogously,
if C has an initial object 0, we shall call category of copointed objects in C the slice
category C/0.

Definition 2.3. [17] Let C be a pointed category. Given a pullback square

K[ f ] A

0 B

ker f

f

we call Ker f := (K[ f ], ker f ) a kernel of f . Given a pushout square

A B

0 Q[ f ]

f

coker f

we call Coker f := (Q[ f ], coker f ) a cokernel of f .

Definition 2.4. [17] A morphism A ! B that factors trough 0 is denoted 0 : A ! B
and is called a zero morphism. At most one such morphism exists.

Most of the time, we shall refer to a kernel Ker f or a cokernel Coker f by just
naming the object part K[ f ], Q[ f ] or the morphism part ker f , coker f .
Remark 2.5. In a diagram, an arrow A ⇢ B denotes a monomorphism and an arrow
A ⇣ B denotes an epimorphism.

We recall from [17] that a regular epimorphism is a coequalizer of some parallel
pair of morphisms.
Remark 2.6. Note that ker f is a monomorphism, since it is an equalizer of f : A ! B
and 0 : A ! B. Indeed, f � ker f is the zero morphism and for any other k : K ! A
such that f � k = 0 : K ! B, there exists a unique arrow u : K ! K[ f ] such that
k = ker f � u:

K[ f ] A B

K

ker f f

0
9! u

k

Analogously, coker f is a regular epimorphism since it is a coequalizer of f : A ! B
and 0 : A ! B. In fact, coker f � f is the zero morphism and for any other q : B ! Q
such that q � f = 0 : A ! Q, there exists a unique morphism v : Q[ f ] ! Q such that
q = v � coker f :

A B Q[ f ]

Q

f

0

coker f

q 9! v

We further recall the following definitions from [60].
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Definition 2.7. [60] A category C is finitely (co)complete if it admits all finite (co)limits.

Definition 2.8. [60] A morphism p : E ! B in a finitely complete category C is a
strong epimorphism when for every commutative square

E A

B X

p i

with i being a monomorphism, there exists a (unique) diagonal making the whole
diagram commute.

2.1.2 Regular and Barr exact categories

Another useful feature of abelian categories is the existence of image factorizations:
any morphism may be factored as a cokernel followed by a kernel. But in the cate-
gory Grp this is no longer possible, as shows the example of the injection H ⇢ G
of a subgroup H that is not normal in the group G. However, every group homo-
morphism has, up to isomorphism, a unique factorization as a regular epimorphism
followed by a monomorphism. A category where such a factorization always exists
is called regular.

Definition 2.9. [17] Given a pullback diagram

Eq( f ) A

A B

k1

k0 f

f

the triple (Eq( f ), k0, k1) is called a kernel pair of f .
A finitely complete category C with coequalizers of kernel pairs is said to be

regular when the pullback of a regular epimorphism along an arbitrary arrow is a
regular epimorphism.

In a regular category, the image factorization Im f � p of a map f : A ! B is ob-
tained as follows: p is a coequalizer of a kernel pair k0, k1 : Eq( f ) ! A and the
image Im f : I[ f ] ! B is the universally induced arrow [9, 12, 13]. Image factoriza-
tions are unique up to isomorphism and may be chosen in a functorial way. Using
the image factorization, one can see that in a regular category, regular and strong
epimorphisms coincide.

A related notion is that of direct images.

Definition 2.10. [17] In a regular category C, consider a monomorphism m : D ! E
and a regular epimorphism p : E ! B. Taking the image factorization

D p(D)

E B

m p(m)=Im(p�m)

p

of p � m yields a monomorphism p(m) : p(D) ⇢ B called the direct image of m along
p.
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We mentioned before that, even in a pointed and regular category like Grp, not
every morphism factors as a regular epimorphism followed by a kernel. Neverthe-
less, this can happen for some of them.

Definition 2.11. [16] A morphism f in a pointed and regular category is called proper
when its image Im f is a kernel. We call a subobject proper when any representing
monomorphism is proper, i.e. it is a kernel.

Remark 2.12. In a pointed and finitely cocomplete regular category, the image Im f
of a proper morphism f has a cokernel. It is easily seen that this cokernel is also a
cokernel of f . Moreover, Im f is a kernel of coker f .

A regular epimorphism is proper if and only if its codomain is copointed. For
this to be the case, it is sufficient that such is its domain.

Another important aspect of regular categories is the behaviour of internal re-
lations: they compose associatively. Recall from [17] that, in a category with finite
limits, a relation

R = (R, r0, r1) : A B

from A to B is a subobject (r0, r1) : R ! A ⇥ B. For instance, a kernel pair of some
morphism f : A ! B may be construed as a relation (Eq( f ), k0, k1) from A to A (on
A) called the kernel relation of f . If a map (x0, x1) : X ! A ⇥ B factors through (r0, r1),
then the map h : X ! R with (x0, x1) = (r0, r1) � h is necessarily unique; we denote
the situation by x0(R)x1. In a regular category, SR : A C denotes the composition
of R : A B with S : B C.

Proposition 2.13. [25] . Let C be a regular category.

(1) A morphism b : X ! B factorizes through the image of a morphism f : A ! B if and
only if there is a regular epimorphism p : Y ⇣ X and an arrow a : Y ! A with b �
p = f � a;

(2) given relations R : A B and S : B C and morphisms a : X ! A and
c : X ! C, c(SR)a if and only if there is a regular epimorphism p : Y ⇣ X and an
arrow b : Y ! B with b(R)a � p and c � p(S)b.

It follows from (2) that in a regular category, the composition of relations is asso-
ciative.

Recall from [60] that an object P in a category C is called (regular) projective when
for every regular epimorphism p : E ⇣ B in C, the function

p � � = HomC(P, p) : HomC(P, E) ! HomC(P, B)

is a surjection. A category C is said to have enough (regular) projectives when for every
object A in C there exists a projective object P and a regular epimorphism p : P ⇣ A.

Remark 2.14. In a regular category some arguments, which would otherwise involve
projectives, may be avoided, and thus the requirement that sufficiently many pro-
jective objects exist.

For instance, given the assumptions of (2) in Proposition 2.13, in case X is a pro-
jective object, one easily sees that a morphism b : X ! B exists such that b(R)a and
c(S)b. If now X is arbitrary, but C has enough projectives, one may take a projective
object Y and a regular epimorphism p : Y ⇣ X to get the conclusion of (2). In case C
lacks projectives, this property needs an alternative proof; the regularity of C allows
us to prove it using the first statement of Proposition 2.13.
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As for ordinary relations, the notion of equivalence relation has an internal cat-
egorical counterpart. Note that for every object X in a finitely complete category C,
the Hom functor HomC(X,�) : C ! Set maps internal relations in C to relations in
Set.

Definition 2.15. [17] A relation R on an object A of a finitely complete category C is
called an equivalence relation if, for every object X of C, its image through HomC(X,�)
is an equivalence relation on the set HomC(X, A). We denote by Eq(C) the category
of internal equivalence relations in C

In a similar way, one can define the notions of reflexive, symmetric and transitive
relations. It is easily seen that a kernel relation is always an equivalence relation.
Such an equivalence relation is called effective. But in general, the converse is not
necessarily true, whence the following definition.

Definition 2.16. [9] A regular category C is called Barr exact when in C, every equiv-
alence relation is a kernel pair.

Examples 2.17. Any category of algebras and any slice or coslice category in a Barr
exact category is again Barr exact (in particular, Setop

⇤ = Setop/{⇤}).
The category Cat of small categories, i.e. that categories where both the object

classes and the hom classes are sets, and functors between them is not regular, since
regular epimorphisms are not pullback-stable. This is also the case of the category
Top of topological spaces and continuous maps [12]. However, both the category
CompHaus of compact Hausdorff spaces and its dual (the category of commutative
C⇤ algebras) are Barr exact [9].

Two examples of categories that are regular but not Barr exact are the category
of torsion-free abelian groups [20] and that of topological groups [25].

2.1.3 Bourn protomodular categories

The last important ingredient for the semi-abelian context is Bourn protomodularity.
This notion due to D. Bourn [19] is perhaps the most difficult and elusive ingredient.
For a pointed category, it implies that every regular epimorphism is a cokernel; for a
pointed and regular category, it is equivalent to the validity of the Short Five Lemma.

Definition 2.18. [60] A split epimorphism or retraction is a morphism p : A ! B such
that there is a morphism s : B ! A (called a splitting of p) satisfying p � s = 1B.
Dually, then s is a split monomorphism.

Definition 2.19. [19, 20] A finitely complete category is called (Bourn) protomodular
when, given a commutative diagram

A0 B0 C0

A B C

f

a

h

b g

g l

s

where b is a split epimorphism and s is a splitting of p, if the outer rectangle and the
left hand side square are pullbacks, then so is the right hand side square.
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Proposition 2.20. [13, 20] A pointed and regular category is protomodular if and only if
the Short Five Lemma holds. This means that for any commutative diagram

K[p0] E0 B0

K[p] E B

ker p0

u

p0

v w

ker p p

where p and p0 are regular epimorphisms, if u and w being isomorphisms then so is v.

The categories of (abelian) groups, non-unitary rings, Lie algebras, crossed mod-
ules are all examples of protomodular categories.
Remark 2.21. In a finitely complete and pointed protomodular category, every regu-
lar epimorphism is a cokernel (of its kernel).

In a protomodular category C, an intrinsic notion of normal monomorphism ex-
ists.

Definition 2.22. [18] An arrow k : K ! A in a finitely complete category C is normal
to an equivalence relation R on A when k�1(R) is the largest equivalence relation rK =
(K ⇥ K, p1, p2) on K and the induced map rK ! R in the category Eq(C) of internal
equivalence relations in C is a discrete fibration.

This means that

(1) there is a morphism k̃ : K ⇥ K ! R in C such that the diagram

K ⇥ K k̃
//

p2
✏✏

p1
✏✏

R
d1
✏✏

d0
✏✏

K
k
// A

commutes;

(2) all the commutative squares in the diagram above are pullbacks.

One may prove that the arrow k is then necessarily a monomorphism; further-
more, when the category C is protomodular, a monomorphism can be normal to
at most one equivalence relation, so that the fact of being normal becomes a prop-
erty [18]. The notion of normal monomorphism gives an intrinsic way to express the
fact that K is an equivalence class of R.

In a pointed finitely complete category every kernel is normal. In particular, ker f
is normal with respect to R[ f ]. The converse is not true: if B is not copointed then
the morphism 1B is not a kernel, although it is normal with respect to rB. In the
pointed exact protomodular case, normal monomorphisms and kernels coincide.

There is a natural way to associate, with any equivalence relation (R, d0, d1) in
a pointed and finitely complete category, a normal monomorphism kR, called the
normalization of R, or the normal subobject associated with R. It is defined as the com-
position kR = d1 � ker d0

K[d0] R A.ker d0 d1

In the exact protomodular case, this construction determines a bijection between
the (effective) equivalence relations on A and the proper subobjects of A (a proper
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monomorphism corresponds to the kernel pair of its cokernel). In the pointed proto-
modular case, it determines a bijection between the equivalence relations on A and
the normal subobjects of A [18].

Proposition 2.23. [17] Consider, in a regular and protomodular category, a commutative
square with horizontal regular epimorphisms

A0

v
✏✏

f 0
// // B0

w
✏✏

A
f
// // B.

If w is a monomorphism and v a normal monomorphism, then w is normal.

In the pointed and exact case, it implies that the direct image of a kernel is a
kernel.

2.1.4 Semi-abelian and abelian categories

As mentioned above, the ideal context for the results of this work is that of semi-
abelian categories.

Definition 2.24. [49] A category C is semi-abelian when it is pointed, Barr exact, Bourn
protomodular with finite coproducts.

There is an historical reason for the importance of this notion. Indeed, introduc-
ing semi-abelian categories, G. Janelidze, L. Márki and W. Tholen solved Mac Lane’s
long standing problem [61] of finding a framework that reflects the categorical prop-
erties of non-abelian groups as nicely as abelian categories do for abelian groups.
But over the years, many different people came up with partial solutions to this
problem, proving theorems starting from various sets of axioms, which all require
“good behaviour” of normal monomorphisms and epimorphisms. In [49], the rela-
tionship between these “old-style” axioms and the semi-abelian context is explained,
and thus the old results are incorporated into the new theory.

As we see in the next sections, in semi-abelian categories there is an intrinsic
notion of internal action [14] and semi-direct product [22].

Finally, we give a quick overview of those techniques (one uses in the abelian
context) that, when valid in a semi-abelian category, make it abelian.

Definition 2.25. [40] A category C is abelian when it is pointed, has finite products
and coproducts, has kernels and cokernels, and is such that every monomorphism
is a kernel and every epimorphism is a cokernel.

Examples of abelian categories include all categories of modules over a ring, such
as the category Ab of abelian groups.

One has that a category is abelian if and only if it is Barr exact and additive [72],
i.e. it has finite coproducts and it is pre-additive (which means that each hom sets
HomC(X, Y) is endowed with the structure of an abelian group such that the com-
position

HomC(X, Y)⇥ HomC(Y, Z) ! HomC(X, Z)

is bilinear).
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Hence, since a pointed category is additive if and only if it is protomodular and
any monomorphism is normal (see [17, Proposition 6.2.3]), if in a semi-abelian cate-
gory C every monomorphism is a kernel, then C is abelian.

The category AbTop of abelian topological groups is an example of a category
that is additive and regular, though not Barr exact.

2.2 Internal actions and their representability

From now on, when we consider a category C, we assume it to be semi-abelian.
When the objects of C are non-associative algebras over a field F, we assume that F

is fixed, so that we may drop it from our notation.
A central notion which appears in the semi-abelian context is that of internal

actions. We refer to [14], [15], [21] and [47] for the main results in this section.

For an object B in a semi-abelian category C, let (B[X, kB,X) denote the kernel of
the arrow [1B, 0] : B + X ! B induced by the identity morphism of B and the zero
morphism 0: X ! B, where B + X is the coproduct of B and X. We can define the
functor

B[(�) : C ! C : X 7! B[X,

which maps any object X of C to the object B[X, and the natural transformations
hB : 1C ! B[(�) and µB : B[(B[(�)) ! B[(�) in the following way: for any object
X of C, the component µB

X is a restriction of the codiagonal (B+ B) + X ! B+ X, i.e.
it maps B[(B[X) to B[X, and hB

X sends an element of X to B[X, i.e. it is the morphism
induced by the coproduct injection X ! B + X.

Definition 2.26. [14] Let C be a semi-abelian category and let B be a object of C. An
(internal) B-action is a B[(�)-algebra, which is a pair (X, x) consisting of an object X
of C and a morphism x : B[X ! X, called an action of B on X, such that the diagrams

X

1X
!!

hB
X
// B[X

x
✏✏

X

and

B[(B[X)

1B[x
✏✏

µB
X
// B[X

x

✏✏

B[X
x

// X

commute.

We write ActC(B, X) for the set of (internal) actions of B on X. When there is no
ambiguity on the category C, we denote it by Act(B, X). If we fix an object X of C,
actions on X give rise to a functor

Act(�, X) : Cop ! Set

which assigns to any object B of C, the set Act(B, X) and, given any morphism
f : B0 ! B, Act( f , X) sends an action x : B[X ! X to

Act( f , X)x := x � ( f [X) : B0[X ! X.

where f [X : B0[X ! B[X is the unique morphism in C such that kB,X � ( f [X) =
( f + X) � kB0,X, where f + X : B0 + X ! B + X is induced by f on B and by 1X on X.
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One equivalent way of viewing actions is to use split extensions. We recall from
[14] that a split extension of B by X, or with kernel X, is a diagram in C

0 // X i
// A

p
// B

s
oo

// 0 (2.2.1)

such that p � s = 1B and (X, i) is the kernel of p. Notice that protomodularity
implies that the pair (i, s) is jointly strongly epic and p is indeed the cokernel of i. We
recall from [28] that a cospan ( f , g) over an object Z, i.e. a pair of morphisms having
the same codomain Z, in an arbitrary category C is said to be jointly strongly epic, or
jointly strongly epimorphic, when for each commutative diagram

M
m
✏✏

P

X
f
//

f 0

99

Z

f

OO

Y

g0

ee

g
oo

if m is a monomorphism, then there exists a unique morphism j : Z ! M such that
m � j = f.

A morphism of split extensions from

0 X A B 0i p

s

to

0 X0 A0 B0 0i0 p0

s0

is a triple of morphisms in C

( f : X ! X0, q : A ! A0, g : B ! B0)

such that the following diagram commutes

0 X A B 0

0 X0 A0 B0 0

i

f

p

q
s

g

i0 p0

s0

Let us observe that q = s0 � g � p is uniquely determined by g and, again by proto-
modularity, a morphism of split extensions fixing X and B is necessarily an isomor-
phism.

For an object X of C, we define the functor

SplExtC(�, X) : Cop ! Set

which assigns to any object B of C, the set SplExtC(B, X) of isomorphism classes
of split extensions of B by X in C and to any arrow f : B0 ! B the change of base
f ⇤ := SplExtC( f , X) : SplExtC(B, X) ! SplExtC(B0, X) given by pulling back along
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f . Again, if it is not confusing, we use the notation SplExt(�, X).

The connection between internal actions and split extensions in a semi-abelian
category is explained by the following.

Lemma 2.27. [14, 22] Given two objects B and X in C, there is a bijection

tB : SplExt(B, X) ⇠= Act(B, X).

Proof. The bijection tB sends any split extension

0 // X i
// A

p
// B

s
oo

// 0 (2.2.2)

in C to the action x : B[X ! X, where x is the unique morphism for which
i � x : B[X ! A is equal to the composition

B[X
kB,X
// B + X

[s,i]
// A .

Its inverse sends an action x : B[X ! X to the split extension

0 // X
i0(X,x)

// B nx X
p0
(X,x)
// B

s0(X,x)

oo

// 0

where B nx X is defined, together with a morphism s(X,x) : B + X ! B nx X, via the
coequalizer diagram

B + (B[X)
[iB,X ,kB,X ]

//

1B+x
// B + X

s(X,x)
// B nx X , (2.2.3)

where 1B + x is induced by 1B on B and by x on B[X. Moreover, iB,X : B ! B + X
is the coproduct injection, s0(X,x) = s(X,x) � iB,X, p0

(X,x) is uniquely determined by
p0
(X,x) � s(X,x) = pB,X, where pB,X = [1B, 0] : B + X ! B, and i0(X,x) is the kernel of

p0
(X,x).

Finally the diagram

0 X B nx X B 0

0 X A B 0

i0(X,x)

1X

p0
(X,x)

q

s0(X,x)
1B

i p

s

where q = s � p0
(X,x), defines an isomorphism of split extensions between (2.2.3) and

(2.2.2).

Definition 2.28. [14] The object B nx X is called the semi-direct product of B with
(X, x), or the semi-direct product of B and X with respect to x.

In [15] the authors proved that the bijection tB of Lemma 2.27 is natural in B.

Proposition 2.29. [15] The bijection tB extends to a natural isomorphism

t : SplExt(�, X) ⇠= Act(�, X).
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Proof. Let f : B0 ! B be a morphism in C and suppose that f ⇤ = SplExt( f , X) takes
the isomorphism class of

0 // X i
// A

p
// B

s
oo

// 0

to that of

0 // X i0
// A0 p0

// B0
s0
oo

// 0 . (2.2.4)

As above, the image of (2.2.4) under tB0 is the action x 0 : B0[X ! X where i0 � x 0 =
[s0, i0] � kB0,X. It follows that x 0 is equal to the composition

B0[X
f [X
// B[X

x
// X

since

i � x � ( f [X) = [s, i] � kB,X � ( f [X) =

= [s, i] � ( f + X) � kB0,X =

= q � [s0, i0] � kB0,X = q � i0 � x 0 = i � x 0,

where q : A0 ! A is given by the functoriality of SplExt(�, X). Thus x 0 = Act( f , X)x
and we have a natural isomorphism

SplExt(�, X) ⇠= Act(�, X).

2.2.1 Action representable and action accessible categories

In [14] F. Borceux, J. Janelidze and G. M. Kelly introduced the notions of representable
action and action representable category.

Definition 2.30. [14] A semi-abelian category C is said to be action representable if
for every object X in it the functor Act(�, X) is representable. In other words, there
exists an object [X] in C, called the actor of X, and a natural isomorphism of functors

Act(�, X) ⇠= HomC(�, [X]).

Basic examples of action representable categories are the category Grp of groups
with the actor of X being the group of automorphisms Aut(X), the category Lie of
Lie algebras with the actor of X being the Lie algebra of derivations Der(X), and any
abelian category with the actor of X being the zero object.
Example 2.31. Recall that an (external) action of a group B on a group X is a map

x : B ⇥ X ! X : (b, x) 7! b · x

such that (bb0) · x = b · (b0 · x), 1B · x = x and b · (xx0) = (b · x)(b · x0), for any b, b0 2 B
and for any x, x0 2 X (we use the multiplicative notation both for B and X).

Given an action x of B on X in Grp, one can construct the semi-direct product BnX
of B and X with respect to x, that is the group whose underline set is the cartesian
product B ⇥ X and the multiplication is determined by

(b, x)(b0, x0) = (bb0, x(b · x0)),
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with 1BnX = (1B, 1X) and (b, x)�1 = (b�1, b�1 · x�1). Thus, we can associate with x
the split extension in Grp

1 X B n X B 1i2 p1

i1
(2.2.5)

where 1 denotes the trival group and i1, i2 and p1 are the canonical injections and
projection.

Conversely, if we start with a split extension in Grp

1 X A B 1i p

s
(2.2.6)

then we can define an action of B on X by

B ⇥ X ! X : (b, x) 7! s(b)i(x)s(b)�1 (2.2.7)

and there is an isomorphism of split extension

1 X B n X B 1

1 X A B 1

i2

1X

p1

q

s1
1B

i p

s

where B n X is the semi-direct product associated with (2.2.7) and q(b, x) = s(b) +
i(x).

Moreover, split extensions of groups are in bijection with the group homomor-
phisms B ! Aut(X), where Aut(X) denotes the group of automorphisms of X: given
a split extension of groups as in (2.2.6), one can define the group homomorphism

j : B ! Aut(X) : b 7! jb,

where jb(x) = s(b)i(x)s(b)�1. Conversely, any homomorphism j : B ! Aut(X)
defines a semi-direct product B n X with

(b, x)(b0, x0) = (bb0, xjb(x0))

and thus a split extension of B by X as in (2.2.5).
This bijection is natural in B, since the diagram in Grp

SplExt(B, X) Hom(B, Aut(X))

SplExt(B0, X) Hom(B0, Aut(X))

SplExt( f ,X) Hom( f ,Aut(X))

is commutative, for any group homomorphism f : B0 ! B. Thus, Aut(X) is the actor
of X and the category Grp is action representable.

Example 2.32. The same argument can be used for the category of Lie algebras, re-
placing Aut(X) with the Lie algebra Der(X).
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Recall from [38] that a Lie F-algebra (X, [�,�]) is a vector space X over a field F

(we assume char(F) 6= 2) together with a bilinear map

[�,�] : B ⇥ X ! X,

called commutator or Lie bracket, which is alternating, i.e. [x, x] = 0 for any x 2 X, or
equivalently anti-commutative [x, y] = �[y, x], and which satisfies the Jacobi identity

[x, [y, z]] + [y, [z, x]] + [z, [x, y]] = 0, 8x, y, z 2 X.

Denote by Lie the category of Lie algebras over F, whose morphisms are the F-linear
maps which preserve the Lie bracket.

An action of a Lie algebra B on another Lie algebra X is given by a pair of bilinear
maps

l : B ⇥ X ! X, r : X ⇥ B ! X,

denoted by [[b, x]] = l(b, x) and [[x, b]] = r(x, b), such that

· [[x, b]] = �[[b, x]];

· [[b, [x, x0]]] = [[[b, x]], y] + [x, [[b, x0]]];

· [[[b, b0], x]] = [[b, [[b0, x]]]]� [[b0, [[b, x]]]],

for any b, b0 2 B and for any x, x0 2 X; the corresponding semi-direct product B n X
is the Lie algebra defined on the direct sum of vector spaces B � X with commutator

[(b, x), (b0, x0)] = ([b, b0], [x, x0] + [[b, x0]]� [[b0, x]]).

Thus, we can associate with the action (l, r) the split extension in Lie

0 X B n X B 0i2 p1

i1
(2.2.8)

where i1, i2 and p1 are the canonical injections and projection.
Conversely, if we start with a split extension in Lie

0 X A B 0i p

s
(2.2.9)

then we can define an action of B on X by

[[b, x]] = [s(b), i(x)]A, [[x, b]] = �[s(b), i(x)]A. (2.2.10)

and there is an isomorphism of split extension

0 X B n X B 0

0 X A B 0

i2

1X

p1

q

s1
1B

i p

s

where B n X is the semi-direct product associated with (2.2.10) and q(b, x) = s(b) +
i(x).

We recall from [38] that a derivation of a Lie algebra X is a linear endomorphism
d : X ! X such that d([x, y]) = [d(x), y] + [x, d(y)], for any x, y 2 X, and the vector



16 Chapter 2. The semi-abelian context

space Der(X) of derivations of X is a Lie algebra with respect to the Lie bracket
[d, d0] = d � d0 � d0 � d.

We have that the split extensions of Lie algebras are in bijection with the Lie
algebra homomorphisms B ! Der(X): given a split extension of Lie algebra as in
(2.2.9), one can define the Lie algebra homomorphism

j : B ! Der(X) : b 7! jb,

where jb(x) = [s(b), i(x)]A. Conversely, any homomorphism j : B ! Der(X) de-
fines a semi-direct product B n X with

[(b, x), (b0, x0)] = ([b, b0], [x, x0] + jb(x0)� jb0(x))

and thus a split extension of B by X as in (2.2.8).
This bijection is natural in B, since the diagram in Lie

SplExt(B, X) Hom(B, Der(X))

SplExt(B0, X) Hom(B0, Der(X))

SplExt( f ,X) Hom( f ,Der(X))

is commutative, for any Lie algebra homomorphism f : B0 ! B. Thus, Der(X) is the
actor of X and the category Lie is action representable.

A first example of a category which is not action representable is the category
CAssoc of commutative associative algebras over a field F: in [15] the authors
proved that, for a commutative associative algebra X, there exists a natural isomor-
phism

SplExtCAssoc(�, X) ⇠= HomAssoc(U(�), M(X))

where U : CAssoc ! Assoc denotes the forgetful functor and

M(X) := { f 2 End(X) | f (xy) = f (x)y, 8x 2 X}

is the associative algebra of multipliers of X [59], endowed with the usual composi-
tion of functions (see Lemma 4.4 for a detailed proof). Moreover, they proved that
M(X) is a commutative algebra if and only if the functor SplExtCAssoc(�, X) is repre-
sentable (see [15, Theorem 2.6]). Since there are examples of commutative associative
algebras X such that M(X) is not commutative, such as the abelian two-dimensional
algebra where M(X) = End(X), it follows that the category CAssoc is not action
representable. We give a detailed proof of this result in Chapter 4.

Remark 2.33. We recall from [60] that the category of elements el(F) of a functor F : C !
Set is the category whose objects are the pairs (X, x), where X is an object of C and
x 2 F(X), and the morphisms (X, x) ! (Y, y) are morphisms f : X ! Y in C such
that F( f )(x) = y.

Moreover, a functor F : C ! Set is representable, i.e. there exists a natural iso-
morphism t : HomC(I,�) ⇠= F for some object I of C, if and only its category of
elements el(F) has an initial object, which is the pair (I, i) with i = tI(1I).

Dually, a functor Cop ! Set is representable if and only its category of elements
has a terminal object (see [14]) and thus action representability is equivalent to the
condition that for any object X in C, the category SplExt(X) of split extensions in C



2.2. Internal actions and their representability 17

with kernel X has a terminal object of the form

0 // X // [X]n X // [X]oo

// 0.

More precisely we have the following.

Theorem 2.34. [14] A semi-abelian category C is action representable if and only if for
every object X of C, there exists an object [X] of C and an internal action of [X] on X with
the following universal property: for any object B of X and for every split extension

0 // X i
// A

p
// B

s
oo

// 0

there is a unique morphism B ! [X] such that there exists a morphism A ! [X] n X
making the following diagram commutative

0 X B n X B 0

0 X [X]n X [X] 0.

i

1X

p

s

Proof. Let C be a semi-abelian action representable category. Let X be an object of C
and let [X] be its actor. Then the identity morphism 1[X] defines an internal action x
of [X] on X. Denote by

0 X [X]n X [X] 0iX
pX

sX

the split extension of [X] by X associated with x, which is given by h�1
[X](x), where

h[X] is the bijection of of Lemma 2.27.
The existence of a terminal object in el(SplExt(�, X)) implies that, for any object

B of C and for any split extension in C

0 X A B 0i p

s

there exists a unique morphism b : B ! [X] such that the following diagram com-
mutes

0 X B n X B 0

0 X [X]n X [X] 0

i

1X

p

q

s
b

iX
pX

sX

where q = sX � b � p. We observe that the right hand side square is a pullback.
Conversely, if for any object X of C there exists an object [X] of C acting on X and

which satisfies the universal property described above, then [X] is the actor of X and
a representation of the functor SplExt(�, X) ⇠= Act(�, X) is given by

t : SplExt(�, X) ⇠= HomC(�, [X]),

where, for any other object B of X, tB sends an isomorphism class of split extensions
of B by X to the unique morphism B ! [X] given by the univeral property.
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Example 2.35. Let C = Grp and let X be a group. Then Aut(X) acts on X with

Aut(X)⇥ X ! X : (j, x) 7! j(x).

The corresponding semidirect product Aut(X)n X, which is called the holomorph of
G and it is dentoted by Hol(G), has the multiplication

(j, x)(j0, x0) = (j � j0, xj(x0)).

Example 2.36. Let C = Lie and let X be a Lie algebra. The action of the Lie algebra
Der(X) on X is defined by the pair of bilinear maps

Der(X)⇥ X ! X : (d, x) 7! d(x)

and
X ⇥ Der(X) ! X : (x, d) 7! �d(x).

The Lie bracket on the associated semi-direct product Der(X)n X is

[(d, x), (d0, x0)] = (d � d0 � d0 � d, [x, x0] + d(x0)� d0(x)).

We can weaken the condition of representable action, assuming instead that, for
any object X of a semi-abelian category C, every object in SplExt(X) is accessible, i.e.
it has a morphism into a so-called subterminal or faithful object [21], that is an object
whjch admits at most one morphism into it.

Definition 2.37. [21] A semi-abelian category C is action accessible if for any object X
of it, every object of SplExt(X) is accessible.

The notion of action accessibility, which was introduced by D. Bourn and
G. Janelidze in [21] in order to calculate centralizers of normal subobjects or of equiv-
alence relations, allows us to encompass a wider class of categories which are not
action representable, such as the category CAssoc of commutative associative alge-
bras, the category Pois of (non-commutative) Poisson algebras (see Chapter 7) and,
more in general, all Orzech catgories of interest (see Theorem 3.28).
Remark 2.38. By definition, the existence of a terminal object in SplExt(X) is stronger
than every object being accessible. Thus, it immediately follows that

action representability ) action accessibility.

2.2.2 Weakly action representable categories

Recently in [47], G. Janelidze introduced the notion of weakly representable actions.

Definition 2.39. [47] A semi-abelian category C is said to be weakly action representable
if for every object X in it, there exists an object T of C and a natural monomorphism
of functors

t : Act(�, X) ⇢ HomC(�, T).

The pair (T, t) is called a weak representation of Act(�, X), the object T is called a
weak actor of X and morphism j : B ! T in the image of tB is called acting morphism.

Remark 2.40. It is clear from Definition 2.39 that a weak actor needs not be unique.
Indeed, if (T, t) is a weak representation of Act(�, X) and there is a monomorphism
in C

i : T ⇢ T0,
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then i induces a monomorphism of functors

i⇤ : HomC(�, T) ⇢ HomC(�, T0)

and (T0, i⇤ � t) is another weak representation of Act(�, X).

Example 2.41. Every action representable category is weakly action representable. In
this case T = [X] is the actor of X, t is a natural isomorphism and every arrow
j : B ! [X] is an acting morphism.

In [47] it is proven that the category Assoc of associative algebras over a field F

is weakly action representable.

Example 2.42. Given a split extension in Assoc

0 X A B 0i p

s
(2.2.11)

we may define the pair of bilinear maps

l : B ⇥ X ! X, r : X ⇥ B ! X

by
b ⇤ x = s(b)i(x), x ⇤ b = i(x)s(b), 8b 2 B, 8x 2 X

where b ⇤ � = l(b,�) and � ⇤ b = r(�, b).
Moreover, we can endow the direct sum of vector spaces B � X with the bilinear

multiplication
(b, x) · (b0, x0) = (bb0, xx0 + b ⇤ x0 + x ⇤ b0). (2.2.12)

Then (B � X, ·) is an associative algebra, which is called the semi-direct product of B
and X with respect to (l, r) and it is denoted by B n X, and the diagram

0 X B n X B 0i2 p1

i1

with i2(x) = (0, x), i1(b) = (b, 0) and p1(b, x) = b, defines a split extension in Assoc
which is isomorphic to (2.2.11) via

0 X B n X B 0

0 X A B 0

i2

1X

p1

q
i1

1B

i p

s

where q(b, x) = s(b) + i(x), for any (b, x) 2 B � X.

The representability of actions of the category Assoc of associative algebras over
F was studied in [44, Proposition 1.11], where the authors proved the following.

Proposition 2.43. [44] The category Assoc is not action representable.

Proof. Suppose that the category Assoc is action representable, with the actor of X
being the associative algebra [X].

The natural isomorphism Act(�, X) ⇠= HomAssoc(�, [X]) implies that

Act(B1 + B2, X) ⇠= Act(B1, X)⇥ Act(B2, X),
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for any objects B1, B2 of Assoc, which can be understood as the condition that having
an action of the coproduct B1 + B2 on X is the same as having two actions on X, one
of B1 and the other of B2. It follows that (B1 + B2)n X is an object of Assoc.

Now, let B1 and B2 be the abelian one-dimensional algebras spanned by b1 and b2
respectively. Let X be the abelian algebra spanned by the elements x, y1, y2, z12, z21.
We consider the pair of bilinear maps

li : Bi ⇥ X ! X, ri : X ⇥ Bi ! X, i = 1, 2

defined by

bi ⇤ x = x ⇤ bi = yi, bi ⇤ yj = yj ⇤ bi =

(
zij, if i 6= j
0, if i = j

and bi ⇤ zjk = zjk ⇤ bi = 0

for any i, j, k 2 {1, 2} and j 6= k, where bi ⇤ � = li(bi,�) and � ⇤ bi = ri(�, bi). These
choices determine two split extension in Assoc

0 X Bi n X Bi 0,
ji,2 pi,1

ji,1

where ji,1, ji,2 and pi,1 are the canonical injections and projection and the bilinear
multiplication on Bi n X is defined by

(abi, x) · (a0bi, x0) = (0, abi ⇤ x0 + a0x ⇤ bi),

for any a, a0 2 F, x, x0 2 X and i = 1, 2. Thus, by Lemma 2.27, we have well-defined
actions of Bi on X.

Since we supposed that Assoc is action representable, also the algebra B1 + B2
acts on X. But the corresponding semi-direct product (B1 + B2)n X is not an asso-
ciative algebra, since

b1 ⇤ (x ⇤ b2) = z12 6= z21 = (b1 ⇤ x) ⇤ b2

and then

(b1, 0) · [(0, x) · (b2, 0)] = (0, z12) 6= (0, z21) = [(b1, 0) · (0, x)] · (b2, 0).

Thus, we have a contradiction and Assoc is not action representable.

We want now to prove that Assoc is a weakly action representable category.
We observe that the associativity of the operation (2.2.12) implies that the follow-

ing equalities hold:

(i) b ⇤ (xx0) = (b ⇤ x)x0;

(ii) (xx0) ⇤ b = x(x0 ⇤ b);

(iii) x(b ⇤ x0) = (x ⇤ b) ⇤ x0;

(iv) (bb0) ⇤ x = b ⇤ (b0 ⇤ x);

(v) x ⇤ (bb0) = (x ⇤ b) ⇤ b0;

(vi) b ⇤ (x ⇤ b0) = (b ⇤ x) ⇤ b0,
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for any b, b0 2 B and for any x, x0 2 X. In fact, equation (i)-(vi) are equivalent to the
following:

(i’) (b, 0) · [(0, x) · (0, x0)] = [(b, 0) · (0, x))] · (0, x0);

(ii’) [(0, x) · (0, x0)] · (b, 0) = (0, x) · [(0, x0) · (b, 0)];

(iii’) (0, x) · [(b, 0) · (0, x0)] = [(0, x) · (b, 0)] · (0, x0);

(iv’) [(b, 0) · (b0, 0)] · (0, x) = (b, 0) · [(b0, 0) · (0, x)];

(v’) (0, x) · [(b, 0) · (b0, 0)] = [(0, x) · (b, 0)] · (b0, 0);

(vi’) (b, 0) · [(0, x) · (b0, 0)] = [(b, 0) · (0, x)] · (b0, 0),

for any b, b0 2 B and for any x, x0 2 X.

The first three equalities state that the pair (b ⇤�,�⇤ b) belongs to the associative
algebra

Bim(X) = {( f ⇤ �,� ⇤ f ) 2 End(X)⇥ End(X)op | · · ·

· · · | f ⇤ (xy) = ( f ⇤ x)y, (xy) ⇤ f = x(y ⇤ f ), x( f ⇤ y) = (x ⇤ f )y, 8x, y 2 X}

of bimultipliers, or bimultiplications of X [59], which is endowed with the bilinear
multiplication

( f ⇤ �,� ⇤ f ) · (g ⇤ �,� ⇤ g) = ( f ⇤ (g ⇤ �), (� ⇤ f ) ⇤ g).

From equations (iii)-(iv), we have that the linear map

B ! Bim(X) : b 7! (b ⇤ �,� ⇤ b)

is a homomorphism of associative algebras. Indeed

((bb0) ⇤ �,� ⇤ (bb0)) = (b ⇤ (b0 ⇤ �), (� ⇤ b) ⇤ b0) = (b ⇤ �,� ⇤ b) · (b0 ⇤ �,� ⇤ b0),

for any b, b0 2 B. Moreover, thi homomorphism satisfies (vi), which states that the
left multiplier b ⇤ � and the right multiplier � ⇤ b0 are permutable.

On the other hand, given an associative algebra homomorphism

j : B ! Bim(X) : b 7! (b ⇤j �,� ⇤j b)

satisfying b ⇤j (x ⇤j b0) = (b ⇤j x) ⇤j b0, we can associate the split extension in Assoc

0 X (B � X, ·j) B 0i2 p1

i1

where the associative algebra structure of B � X is given by

(b, x) ·j (b0, x0) = (bb0, xx0 + b ⇤j x0 + x ⇤j b0).

Remark 2.44. A generic homomorphism from B to Bim(X) needs not give rise to a
split extension. For instance, if B = F{b} and X = F{e1, e2} are abelian algebras (i.e.
the multiplications of B and X are trivial), then Bim(X) = End(X)⇥ End(X)op and
the homomorphism j : B ! Bim(X) defined by

b ⇤j e1 = e2, b ⇤j e2 = 0, e1 ⇤j b = e1, e2 ⇤j b = e1
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does not satisfy (vi) since

(b ⇤j e1) ⇤j b = e2 ⇤j b = e1 6= e2 = b ⇤j e1 = b ⇤j (e1 ⇤j b).

We can now prove the following.

Theorem 2.45. [47] Let B and X be Leibniz algebras over F.

(1) The set of isomorphism classes of split extensions of B by X is in bijection with the set
of associative algebra homomorphisms

B ! Bim(X) : b 7! (b ⇤ �,� ⇤ b)

which satisfy the condition

b ⇤ (x ⇤ b0) = (b ⇤ x) ⇤ b0, 8b 2 B, x 2 X. (2.2.13)

(2) The category Assoc of associative algebras over F is weakly action representable and
weak actor of an objectX of Assoc is the associative algebra Bim(X).

Proof.

(1) The first statement follows from the analysis above.

(2) Given any associative algebra X, we take T = Bim(X) and we define t in the
following way: for every associative algebra B, the component

tB : SplExt(B, X) ! HomAssoc(B, Bim(X)),

where SplExt(�, X) = SplExtAssoc(�, X), is the morphism in Set which asso-
ciates with any split extension

0 X A B 0i p

s

the homomorphism B ! Bim(X) : b 7! (b ⇤ �,� ⇤ b) as above. The trans-
formation t is natural. Indeed, for every associative algebra homomorphism
f : B0 ! B, the following diagram in Set

SplExt(B, X) Hom(B, Bim(X))

SplExt(B0, X) Hom(B0, Bider(X))

tB

SplExt( f ,X) Hom( f ,Bim(X))

tB0

is commutative. Moreover, for every associative algebra B, the morphism tB is
an injection since every element of SplExt(B, X) is uniquely determined by the
corresponding pair of bilinear maps

l : B ⇥ X ! X, r : X ⇥ B ! X .

Thus t is a natural monomorphism of functors and the category Assoc is
weakly action representable, with a weak actor of X being the associative alge-
bra Bim(X).
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Equation (2.2.13) can be used to characterize the class of acting morphisms in the
category Assoc. In [59] S. Mac Lane described, for a ring L, the L�bimodule struc-
tures over an abelian group K in terms of ring homomorphisms from L to the ring
of bimultipliers of K. The following is a straightforward generalization to actions on
an object which is not necessarily abelian.

Proposition 2.46. [29] Let B and X be associative algebras over F and let

j : B ! Bim(X) : b 7! (b ⇤j �,� ⇤j b)

be an morphism in Assoc. Then j is an acting morphism if and only if

b ⇤j (x ⇤j b0) = (b ⇤j x) ⇤j b0 (2.2.14)

for every b, b0 2 B and for every x 2 X.

Proof. It follows from Theorem 2.45 that a morphism j 2 HomAssoc(B, Bim(X)) is
an acting morphism if and only if it defines a split extension of B by X in Assoc, i.e.
if and only if it satisfies Equation (2.2.14).

Remark 2.47. As observed in Remark 2.44, there are examples of associative algebra
homomorphisms which do not satisfy Equation (2.2.14), i.e. which are not acting
morphisms. Nevertheless, it is possible to find examples of associative algebras such
that Equation (2.2.14) is always satisfied [26].

For instance, let X be an associative algebra such that the annihilator

Ann(X) = {x 2 X | xy = yx = 0, 8y 2 X}

is trivial, or such that X is a perfect algebra, i.e. X2 = X, where X2 is the subalgebra
of X spanned by {xy | x, y 2 X}. In this case we have

f ⇤ (x ⇤ f 0) = ( f ⇤ x) ⇤ f 0 (2.2.15)

for every ( f ⇤ �,� ⇤ f ), ( f 0 ⇤ �,� ⇤ f 0) 2 Bim(X) and x 2 X.
In fact, if Ann(X) = 0, then given ( f ⇤ �,� ⇤ f ), ( f 0 ⇤ �,� ⇤ f 0) 2 Bim(X), one

has

f ⇤ (x ⇤ f 0)y = f ((x ⇤ f 0)y) = f ⇤ (x( f 0 ⇤ y)) = ( f ⇤ x)( f 0 ⇤ y) = (( f ⇤ x) ⇤ f 0)y

for any x, y 2 X. Thus f ⇤ (x ⇤ f 0)� ( f ⇤ x) ⇤ f 0 2 Ann(X) = 0 for any x 2 X, i.e.
Equation (2.2.14) is satisfied.

In a similar way, if X2 = X we have

f ⇤ ((xy) ⇤ f 0) = f ⇤ (x(y ⇤ f 0)) = ( f ⇤ x)(y ⇤ f 0) = (( f ⇤ x)y) ⇤ f 0 = ( f ⇤ (xy)) ⇤ f 0

for any x, y 2 X and f ⇤ (x ⇤ f 0) = ( f ⇤ x) ⇤ f 0.
In both cases, for any other associative algebra B, every arrow

j : B ! Bim(X)

is an acting morphism and we have a natural isomorphism

SplExt(�, X) ⇠= HomAssoc(�, Bim(X)),

i.e. Bim(X) is the actor of X.
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Remark 2.48. [47] Let C be a weakly action representable category. From Defini-
tion 2.39 it follows that, given two objects in SplExt(X) and a morphism between
them

0 X A B 0

0 X A0 B0 0,

i

1X

p

q
s

f

i0 p0

s0

if j : B ! T and j0 : B0 ! T are the corresponding acting morphisms, with T be-
ing a weak actor of X, then j = j0 � f . This is an immediate consequence of the
commutativity of the diagram

SplExt(B0, X)

f ⇤

✏✏

tB0
// HomC(B0, T)

HomC ( f ,T)
✏✏

SplExt(B, X) tB
// HomC(B, T)

where f ⇤ = SplExt( f , X).
Another important observation made by G. Janelidze in [47] is the following.

Theorem 2.49. [47] Every weakly action representable category C is action accessible.

To prove this, we need two intermediate results.

Lemma 2.50. [47] Let C be a weakly action representable category and let

0 // X i
// A

p
// B

s
oo

// 0 (2.2.16)

be a split extension in C with associated acting morphism j : B ! T, where T is a weak
actor of X. If j is a monomorphism, then the split extension (2.2.16) is faithful.

Proof. Let

0 // X i0
// A0 p0

// B0
s0
oo

// 0 (2.2.17)

be another split extension in C and suppose there exist two morphisms of split ex-
tensions

0 X A0 B0 0

0 X A B 0.

i0

1X

p0

q q0
s

f g

i p

s

(2.2.18)

If j0 : B0 ! T is the acting morphism associated with (2.2.17), then j0 = j � f = j � g
with j being a monomorphism. Thus f = g, q = q0 = s � f � p0 and (2.2.17) is a
faithful object in the category SplExt(X).

Lemma 2.51. [47] Let C be a weakly action representable category. Let B, B0, X be objects
of C and let T be a weak actor of X. If f : B ⇣ B0 is a regular epimorphism, then a morphism
j0 : B0 ! T is an acting morphism if so is the composition j0 � f .

Proof. Let j := j0 � f be an acting morphism and let

0 // X i
// A

p
// B

s
oo

// 0 (2.2.19)
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be the associated split extension. Since f is a regular epimorphism, the diagram

SplExt(B0, X)

f ⇤

✏✏

tB0
// HomC(B0, T)

HomC ( f ,T)
✏✏

SplExt(B, X) tB
// HomC(B, T)

is a pullback. This means there exists a split extension

0 X A0 B0 0i0 p0

s0
(2.2.20)

such that f ⇤ takes the isomorphism class of (2.2.20) to that of (2.2.19) and j0 is the
acting morphism associated with (2.2.20).

We are now ready to prove Theorem 2.49.

Proof. Let X be an object of C and let

t : SplExt(�, X) ⇢ HomC(�, T)

be a weak representation of SplExt(�, X). Let

0 X A B 0i p

s

be a split extension in C with associated acting morphism j : B ! T. We want to
construct a morphism of split extensions

0 X A B 0

0 X A0 B0 0

i

1X

p

q
s

f

i0 p0

s0

(2.2.21)

with a faithful codomain.. We take B0 = j(B) and f : B ⇣ B0 to be the corestriction
of j to its image, so that j = j0 � f where j0 : B0 ⇢ T is given by the epi-mono
factorization of j.

By Lemma 2.51, j0 is an acting morphism; thus it defines a split extension

0 X A0 B0 0i0 p0

s0
(2.2.22)

Finally the split extension (2.2.22) is faithful since the acting morphism j0 is a
monomorphism (see Lemma 2.50) and the category C is action accessible.

We thus have that

action representability ) weak action representability ) action accessibility.

This allows us to present an example of a category which is not weakly action repre-
sentable in the context of varieties of algebras: the category Jord of Jordan algebras.
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Definition 2.52. A Jordan algebra over a field F is a non-associative commutative
F-algebra (X, ·) over F which satisfies the Jordan identity

(xy)x2 = x(yx2), 8x, y 2 X,

where the powers have precedence on the multiplications.

In [30] it was observed that the category Jord is not action accessible, hence it is
not weakly action representable.

A first class of examples of categories which are action accessible but not weakly
action representable was given by J. R. A. Gray in [45].
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Chapter 3

Actions in categories of algebras

In this chapter, we explain how to describe internal actions and their representability
in Orzech categories of interest [66] and varieties of non-associative algebras over a field
[56].

3.1 Orzech categories of interest

We refer to [26], [29, Section 3], [34], [63] and [66] for the definitions and the results
in this section.

Let C be a category of groups with a set of operations W and with a set of identities E,
such that E includes the group laws and the following conditions hold: if Wi is the
set of i-ary operations in W, then

(i) W = W0 [ W1 [ W2;

(ii) the group operations (written additively 0, � and +) are elements of W0, W1
and W2 respectively. Let W0

2 = W2 \ {+}, W0
1 = W1 \ {�} and assume that if

⇤ 2 W0
2, then W0

2 contain ⇤op defined by x ⇤op y := y ⇤ x. Assume further that
W0 = {0};

(iii) for any ⇤ 2 W0
2, E includes the identity x ⇤ (y + z) = x ⇤ y + x ⇤ z;

(iv) for any w 2 W0
1 and ⇤ 2 W0

2, E contains the identities w(x + y) = w(x) + w(y)
and w(x ⇤ y) = w(x) ⇤ y.

For an object X of C and x1, x2, x3 2 X, we define

(v) Axiom 1: x1 + (x2 ⇤ x3) = (x2 ⇤ x3) + x1, for each ⇤ 2 W0
2;

(vi) Axiom 2: for each ordered pairs (⇤, ⇤̄) 2 W2 ⇥ W2, there exists a word W in the
variables

x1(x2x3), x1(x3x2), (x2x3)x1, (x3x2)x1, x2(x1x3), x2(x3x1), (x1x3)x2, (x3x1)x2,

where each juxtaposition represents the operation ⇤ or the operation ⇤̄, and
which we denote by W(x1; x2, x3; ⇤, ⇤̄), such that

(x1 ⇤ x2)⇤̄x3 = W(x1; x2, x3; ⇤, ⇤̄).

Definition 3.1. [66] A category of groups with operations satisfying conditions (i)-
(vi) is called an Orzech category of interest, or simply a category of interest.
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Let E
0 be the subset of identities of E which includes the group laws and the

identities (iii) and (iv) and let C 0 be the corresponding category of groups with oper-
ations. Thus we have a full inclusion functor C ,! C 0. C 0 is called the general category
of groups with operations of the Orzech category of interest C.

Remark 3.2. If C is a category of abelian groups with operations, i.e. the group oper-
ation + is commutative, then Axiom 1 is automatically satisfied.

We describe now some examples (and counterexamples) of Orzech categories of
interest.

Example 3.3. The categories Grp of groups and Ab of abelian groups are Orzech
categories of interest, with W0

1 = W0
2 = ∆.

Example 3.4. The categories Rng of (not necessarily unitary) rings and CRng of
commutative (not necessarily unitary) rings are Orzech categories of interst, with
W0

1 = ∆, W0
2 = {⇤, ⇤op}, where ⇤ denotes the multiplication of a ring, and Axiom 2 is

the associativity of ⇤.

Example 3.5. Let C = Alg be the category of non-associative algebras over a field F:
its objects are F-vector spaces X endowed with a bilinear operation

⇤ : X ⇥ X ! X : (x, y) 7! x ⇤ y.

and the morphism are F-linear maps which preserve the bilinear operation (see
Examples 3.46). Then Alg is a category of abelian groups with operations, with
W0

1 = ∆, W0
2 = {⇤, ⇤op}, but it is not an Orzech category of interest since Axiom 2

fails.

Example 3.6. The category Assoc of associative F-algebras over a field F is an Orzech
category of interest: the group operation + is commutative, W0

1 = ∆, W0
2 = {⇤, ⇤op},

where ⇤ denotes the associative multiplication, and Axiom 2 is the associativity

(x1 ⇤ x2) ⇤ x3 = x1 ⇤ (x2 ⇤ x3).

Other examples are the category Lie of Lie F-algebras, with W0
1 = ∆, W0

2 =
{[�,�], [�,�]op}, where [�,�] denotes the Lie bracket, and Axiom 2 is the Jacobi
identity

[x1, [x2, x3]] + [x2, [x3, x1]] + [x3, [x1, x2]] = 0,

or the category Leib of Leibniz F-algebras (see Chapter 5). Moreover, we have that
Assoc0 = Lie0 = Leib0 = Alg. More precisely, V 0 = Alg for any variety V of
non-associative algebras over a field which is an Orzech category of interest (see
Section 3.2).

Example 3.7. The category Jord of Jordan F-algebras is not an Orzech category of in-
terest since Axiom 2 fails. In Section 3.2 we see that for any variety of non-associative
algebras over a field, action accessibility is equivalent to being an Orzech category
of interest (see Theorem 3.51).

3.1.1 Derived actions in Orzech categories of interest

All the categories of groups with operations are semi-abelian and thus, split exten-
sions are in natural bijection with internal actions. However, in this context, it is
more convenient to describe internal actions in terms of the so-called derived actions.
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Definition 3.8. Let C be a category of groups with operations and let

0 X A B 0i p

s
(3.1.1)

be a split extension in C. The collection of maps

f⇤ : B ⇥ X ! X, 8⇤ 2 W2.

defined by
b · x = s(b) + i(x)� s(b), b ⇤ x = s(b) ⇤ i(x),

where
b · x := f+(b, x), b ⇤ x := f⇤(b, x), 8⇤ 2 W0

2,

is called the derived action of B on X associated with (3.1.1).

Given two objects B, X of C and a collection of maps { f⇤}⇤2W2 denoted by

b · x := f+(b, x), b ⇤ x := f⇤(b, x), 8⇤ 2 W0
2,

we may define the binary operations on the cartesian product B ⇥ X

(b, x) + (b0, x0) = (b + b0, x + b · x0)

and
(b, x) ⇤ (b0, x0) = (b ⇤ b0, x ⇤ x0 + b ⇤ x0 + x ⇤ b0),

for any ⇤ 2 W0
2, where x ⇤ b0 := b0 ⇤op x.

Definition 3.9. (B ⇥ X,+, {⇤}⇤2W0
2
) is called the semidirect product of B and X with

respect to { f⇤}⇤2W2 , and it is denoted by B n X.

Then, the collection { f⇤}⇤2W2 defines a derived action of B on X if and only if
B n X is an object of C. In this case, one can construct the split extension in C

0 X B n X B 0i2 p1

i1
(3.1.2)

with i2(x) = (0, x), i1(b) = (b, 0), p1(b, x) = b, and { f⇤}⇤2W2 is precisely the derived
action associated with (3.1.2).
Remark 3.10. When the group operation + is commutative, we have

(b, x) + (b0, x0) = (b0, x0) + (b, x).

Thus
b · x = x, 8b 2 B, 8x 2 X

and a derived action of B on X is given by a collection of maps { f⇤}⇤2W0
2
.

Example 3.11. Let C = Alg. Then, for any objects B, X of Alg, a pair of maps

f⇤ : B ⇥ X ! X, f⇤op : B ⇥ X ! X.

defines a derived action of B on X if and only if the vector space B � X ⇠= B ⇥ X,
endowed with the binary operation

(b, x) ⇤ (b0, x0) = (b ⇤ b0, x ⇤ x0 + b ⇤ x0 + x ⇤ b0),



30 Chapter 3. Actions in categories of algebras

is a non-associative algebra over F. This happens if and only if the above operation
is bilinear, i.e. if and only if f⇤ and f⇤op are bilinear maps.

When C is an Orzech category of interest and B, X are object of C, then { f⇤}⇤2W2

defines a derived action of B on X in C if and only if the maps f⇤, ⇤ 2 W2, satisfy a
set of suitable conditions, as explained in the following.

Proposition 3.12. [34] Let C be an Orzech category of interest and let B, X be objects of C.
The collection of maps { f⇤}⇤2W2 , denoted by

b · x := f+(b, x), b ⇤ x := f⇤(b, x), 8⇤ 2 W0
2,

defines a derived action of B on X in C if and only if the following conditions are satisfied:

(1) 0 · x = x;

(2) b · (x + x0) = b · x + b · x0;

(3) (b + b0) · x = b · (b0 · x);

(4) b ⇤ (x + x0) = b ⇤ x + b ⇤ x0;

(5) (b + b0) ⇤ x = b ⇤ x + b0 ⇤ x;

(6) b · (x ⇤ x0) = x ⇤ x0;

(7) b · (x ⇤ b0) = x ⇤ b0;

(8) (b ⇤ b0) · x = x;

(9) x ⇤ (b · x0) = x ⇤ x0;

(10) b ⇤ (b0 · x) = b ⇤ x;

(11) w(b · x) = w(b) · w(x);

(12) w(x ⇤ b) = w(x) ⇤ b = x ⇤ w(b);

(13) a + b ⇤ g = b ⇤ g + a;

(14) for each ordered pairs (⇤, ⇤̄) 2 W2 ⇥ W2, there exists a word W such that

(x1 ⇤ x2)⇤̄x3 = W(x1; x2, x3; ⇤, ⇤̄),

for any w 2 W0
1, ⇤ 2 W0

2, b, b0 2 B, x, x0 2 A, a, b, g 2 B [ X such that each side of (14) is
well defined and x1, x2, x3 2 B [ X.

Proof. Let { f⇤}⇤2W2 be a derived action of B on X in C and let B n X be the corre-
sponding semi-direct product, which is an object of C. We thus have:

(1) (0, 0) + (0, x) = (0, x) + (0, 0) implies 0 · x = x;

(2) from [(b, 0) + (0, x)] + (0, x0) = (b, 0) + (0, x + x0), we obtain b · (x + x0) =
b · x + b · x0;

(3) from (b + b0, 0) + (0, x) = (b, 0) + [(b0, 0) + (0, x)], we have (b + b0) · x = b ·
(b0 · x);

(4) from (iii) of Definition 3.1, we have (b, 0) ⇤ [(0, x) + (0, x0)] = (b, 0) ⇤ (0, x) +
(b, 0) ⇤ (0, x0) and thus b ⇤ (x + x0) = b ⇤ x + b ⇤ x0;
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(5) again from (iii) of Definition 3.1, [(b, 0) + (b0, 0)] ⇤ (0, x) = (b, 0) ⇤ (0, x) +
(b0, 0) ⇤ (0, x) and (b + b0) ⇤ x = b ⇤ x + b0 ⇤ x;

(6) from Axiom 1, we have (b, 0) + [(0, x) ⇤ (0, x0)] = [(0, x) ⇤ (0, x0)] + (b, 0) and
thus b · (x ⇤ x0) = x ⇤ x0;

(7) again from Axiom 1, (b, 0) + [(0, x) ⇤ (b0, 0)] = [(0, x) ⇤ (b0, 0)] + (b, 0) and thus
b · (x ⇤ b0) = x ⇤ b0;

(8) in the same way, from (0, x) + [(b, 0) ⇤ (b0, 0)] = [(b, 0) ⇤ (b0, 0)] + (0, x) we
obtain (b ⇤ b0) · x = x;

(9) from (iii) of Definition 3.1, we have (0, x) ⇤ [(b, 0) + (0, x0)] = (0, x) ⇤ (b, 0) +
(0, x) ⇤ (0, x0) and thus x ⇤ (b · x0) = x ⇤ x0;

(10) in the same way, (b, 0) ⇤ [(b0, 0) + (0, x)] = (b, 0) ⇤ (b00) + (b, 0) ⇤ (0, x) implies
b ⇤ (b0 · x) = b ⇤ x;

(11) from (iv) of Definition 3.1, we have w[(b, x) + (b0, x0)] = w(b, x) +w(b0, x0) and
thus w(b · x) = w(b) · w(x);

(12) again from (iv) of Definition 3.1, w[(b, x) ⇤ (b0, x0)] = w(b, x) ⇤ (b0, x0) = (b, x) ⇤
w(b0, x0) and w(x ⇤ b) = w(x) ⇤ b = x ⇤ w(b);

(13) from Axiom 1, we obtain a + b ⇤ g = b ⇤ g + a, for any a, b, g 2 B [ X such
that each side of the equation is well defined;

(14) from Axiom 2, we have that for each ordered pairs (⇤, ⇤̄) 2 W2 ⇥ W2, there
exists a word W such that

(x1 ⇤ x2)⇤̄x3 = W(x1; x2, x3; ⇤, ⇤̄),

for any x1, x2, x3 2 B [ X.

Conversely, if the collection of maps { f⇤}⇤2W2 satisfies Equations (1)-(14), then the
corresponding semi-direct product B n X is an object of C and { f⇤}⇤2W2 is the de-
rived action of B on X in C associated with the split extension (3.1.2).

Remark 3.13. We observe that an analogous result can be obtained for a category
of groups with operations C, as shown in [34, Proposition 1.1]. In this case, we
have to ask that { f⇤}⇤2W2 satisfies conditions (1)-(5) and (9)-(12) of Proposition 3.12;
moreover conditions (6)-(8) are replaced by

(b ⇤ b0) · (x ⇤ x0) = x ⇤ x0

and
(b ⇤ b0) · (x ⇤ b00) = x ⇤ b00

for any b, b0, b00 2 B and x, x0 2 X, and (13) is replaced by

a ⇤ b + g ⇤ d = g ⇤ d + a ⇤ b

for any a, b, g, d 2 B [ X such that both sides of the equation make sense. Note that
(6)-(7)-(8) and (13) are consequences of Axiom 1, while (14) is implied by Axiom 2.

Corollary 3.14. Let C be an Orzech category of interest whose objects are abelian groups
with operations and let B, X be objects of C. The collection { f⇤}⇤2W0

2
defines a derived action

of B on X in C if and only if it satisfies conditions (4)-(5)-(11)-(12)-(14) of Proposition 3.12.
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Proof. The proof is an immediate consequence of Remark 3.10 and Proposition 3.12.

Example 3.15. Let C = Lie. The group operation + is commutative and a derived
action of B on X is a pair of bilinear maps

f[�,�] : B ⇥ X ! X, f[�,�]op : B ⇥ X ! X

such that the bilinear operation

[(b, x), (b0, x0)] = ([b, b0], [x, x0] + [b, x0] + [x, b0])

where [b, x] := f[�,�](b, x) and [x, b] := f[�,�]op(b, x), defines a Lie algebra structure
on the vector space B � X ⇠= B ⇥ X. By Corollary 3.14, this happens if and only if

(1) [x, b] = �[b, x];

(2) [b, [x, x0]] = [[b, x], x0] + [x, [b, x0]];

(3) [[b, b0], x] = [b, [b0, x]]� [b0, [b, x]];

for any b, b0 2 B and x, x0 2 X.
For instance, if B = Der(X) is the Lie algebra of derivations of X, the canonical

action of Der(X) on X defined by

[d, x] := d(x), [x, d] := �d(x), 8d 2 Der(X), 8x 2 X

is a derived action in Lie, since the semi-direct product Der(X)n X is a Lie algebra.
This is not true for the canonical action of Bim(X) on X in the category Assoc,

where the action is defined by

( f ⇤ �,� ⇤ f ) ⇤ x := f ⇤ x

and
x ⇤ ( f ⇤ �,� ⇤ f ) := x ⇤ f ,

for any ( f ⇤ �,� ⇤ f ) 2 Bim(X) and for any x 2 X. In this case a derived action of B
on X in Assoc is given by a pair of bilinear maps

f⇤ : B ⇥ X ! X, f⇤op : B ⇥ X ! X,

with b ⇤ x := f⇤(b, x) and x ⇤ b := f⇤op(b, x), such that

(1) (b ⇤ b0) ⇤ x = b ⇤ (b0 ⇤ x);

(2) x ⇤ (b ⇤ b0) = (x ⇤ b) ⇤ b0;

(3) (b ⇤ x) ⇤ b0 = b ⇤ (x ⇤ b0);

(4) b ⇤ (x ⇤ x0) = (b ⇤ x) ⇤ x0;

(5) (x ⇤ x0) ⇤ b = x ⇤ (x0 ⇤ b);

(6) x ⇤ (b ⇤ x0) = (x ⇤ b) ⇤ x0,

for any b, b0 2 B and x, x0 2 X.
We observe that, given two bimultipliers ( f ⇤�,�⇤ f ), ( f 0 ⇤�,�⇤ f 0) 2 Bim(X),

Equation (3) needs not in general be satisfied. For instance, let X = F{e1, e2} be an
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abelian algebra (i.e. x ⇤ x0 = 0, for any x, x0 2 X) and let ( f ⇤ �,� ⇤ f ) 2 Bim(X) =
End(X)⇥ End(X)op defined by

f ⇤ e1 = e2, f ⇤ e2 = 0, e1 ⇤ f = e1, e2 ⇤ f = e1.

Then
( f ⇤ e1) ⇤ f = e2 ⇤ f = e1 6= e2 = f ⇤ e1 = f ⇤ (e1 ⇤ f ),

(3) is not satisfied and the semi-direct product Bim(X) n X is non an associative
algebra. We thus have an example of a derived action in Assoc0 = Alg which is not
a derived action in Assoc.

Remark 3.16. Summarizing, we defined derived actions in any category of groups
with operations C and we saw that we can use them to describe split extensions /
internal actions.

Starting with a split extension in C

0 // X i
// A

p
// B

s
oo

// 0 , (3.1.3)

we can associate the derived action { f⇤}⇤2W2 of B on X given by

b · x = s(b) + i(x)� s(b), b ⇤ x = s(b) ⇤ i(x),

for any b 2 B, x 2 X and ⇤ 2 W0
2. Conversely, given any collection of maps { f⇤}⇤2W2 ,

denoted by
b · x := f+(b, x), b ⇤ x := f⇤(b, x), 8⇤ 2 W0

2,

one can construct the semi-direct product B n X as above and { f⇤}⇤2W2 is a derived
action of B on X if and only if B n X is an object of C. In this case, { f⇤}⇤2W2 is the
derived action associated with the split extension in C

0 // X i2
// B n X

p1
// B

i1
oo

// 0 (3.1.4)

where i1, i2 and p1 are the canonical injections and projection, and the diagram

0 X B n X B 0

0 X A B 0

i2

1X

p1

q
i1

1B

i p

s

where q(b, x) = s(b) + i(x), defines an isomorphism of split extensions between
(3.1.3) and (3.1.4).

We thus have a bijection

hB : SplExt(B, X) ⇠= DAct(B, X)

between the set SplExt(B, X) of isomorphism classes of split extensions of B by X
and the set DAct(B, X) = DActC(B, X) of derived actions of B on X in any category
C of groups with operations.

Now denote by DAct(�, X) the functor from Cop to Set which assigns to any
object B of C, the set of DAct(B, X) and, for any morphism g : B0 ! B, DAct(g, X)
sends a derived action { f⇤}⇤2W2 of B on X to the derived action { f 0⇤}⇤2W2 of B0 on X,
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where f 0⇤ := f � (g ⇥ 1X), i.e.

f 0+(b
0, x) = f+(g(b0), x), f 0⇤(b, x) = f⇤(g(b0), x), (3.1.5)

for any ⇤ 2 W0
2 and for any b0 2 B0, x 2 X. We want to show that, if { f⇤}⇤2W2 is the

derived action associated with a split extension

0 // X i
// A

p
// B

s
oo

// 0 (3.1.6)

then { f 0⇤}⇤2W2 is the derived action associated with the split extension

0 // X i0
// A0 p0

// B0
s0
oo

// 0 (3.1.7)

given by g⇤ = SplExt(g, X). In other words, we have the following.

Proposition 3.17. The bijection hB extends to a natural isomorphism of functors

h : SplExt(�, X) ⇠= DAct(�, X).

Proof. Let g : B0 ! B be a morphism in C and suppose that

(1) g⇤ = SplExt(g, X) takes the isomorphism class of (3.1.6) to that of (3.1.7);

(2) DAct(g, X) sends the derived action { f⇤}⇤2W2 associated with (3.1.6) to
{ f 0⇤}⇤2W2 defined as in (3.1.5).

We observe that, if q : A0 ! A is given by pulling back along g, then q � s0 = s � g
and q � i0 = i.

We have to show that the bijection µB is natural in B, i.e. the following diagram
in Set

SplExt(B, X)

g⇤

✏✏

µB
// DAct(B, X)

DAct(g,X)
✏✏

SplExt(B0, X) µB0
// DAct(B0, X)

is commutative.
The composition µ0

B � g⇤ sends (3.1.6) to the derived action of B0 on X associated
with (3.1.7), which is given by

F0
+(b

0, x) = s0(b0) + i0(x)� s0(b0), F0
⇤(b

0, x) = s0(b0) ⇤ i0(x), 8⇤ 2 W0
2.

We thus have

i(F0
+(b

0, x)) = q(i0(s0(b0) + i0(x)� s0(b0))) =
= i(s(g(b0)) + i(x)� s(g(b0))) = i( f+(g(b0), x)) = i( f 0+(b

0, x))

and

i(F0
⇤(b

0, x)) = q(i0(s0(b0) ⇤ i0(x))) =
= i(s(g(b0)) ⇤ i(x)) = i( f⇤(g(b0), x)) = i( f 0⇤(b

0, x))

for any ⇤ 2 W0
2, i.e.

F0
+(b

0, x) = f+(g(b0), x) = f 0+(b
0, x), F0

⇤(b
0, x) = f⇤(g(b0), x) = f 0⇤(b

0, x)
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for any ⇤ 2 W0
2, and µ0

B � f ⇤ = DAct(g, X) � µB, i.e. we have a natural isomorphism

µ : SplExt(�, X) ⇠= DAct(�, X).

Finally, since any category of groups with operations C is semi-abelian, for any
objects X of C we also have a natural isomorphism

t : Act(�, X) ⇠= SplExt(�, X),

as shown in Proposition 2.29. Since the composition of natural isomorphisms is still
a natural isomorphism, we have that

h � t�1 : Act(�, X) ⇠= DAct(�, X),

i.e. internal actions are in natural bijection with derived actions.

We end this section by recalling two definitions and a result which are useful
later.

Definition 3.18. [26] Let B, X be objects of a category of groups with operations C.
A derived action of B on X is said to be strict if for any b, b0 2 B the conditions
b · x = b0 · x, w(b) · x = w(b0) · x and b ⇤ x = b0 ⇤ x, for any x 2 X, w 2 W0

1 and
⇤ 2 W0

2, we have that b = b0.

Definition 3.19. [63] Let B, X be objects of a category of groups with operations C.
A derived action of B on X is said to be super-strict if for any b, b0 2 B the conditions
b · x = b0 · x and b ⇤ x = b0 ⇤ x, for any x 2 X and ⇤ 2 W0

2, we have that b = b0.

Remark 3.20. It is immediate to observe that a derived action of B on X is strict if and
only if, for any b 2 B such that b · x = x, w(b) · x = x and b ⇤ x = 0 for any x 2 X,
w 2 W0

1 and ⇤ 2 W0
2, we have b = 0.

Analogously, a derived action of B on X is super-strict if and only if, for any
b 2 B such that b · x = x and b ⇤ x = 0, for any x 2 X and ⇤ 2 W0

2, we have b = 0.

For the next proposition, we need to recall the notion of free object on a set, which
is available for any concrete category.

Definition 3.21. [60] Let C and D be locally small categories (i.e. the hom-classes of C
and D are sets). A functor F : C ! D is faithful (resp. fully, resp. fully faithful) if the
induced functions

FX,Y : HomC(X, Y) ! HomD(F(X), F(Y)) : f 7! F( f )

are injections (resp. surjections, resp. bijections), for any pairs of object X, Y of C.

Definition 3.22. [1] A category C is said to be concrete if it has a faithful functor
U : C ! Set.

For instance, any category of groups with operations is concrete with U being the
usual forgetful functor.

Definition 3.23. [2] Let C be a concrete category. A free object on a set X is a an object
A = F(X) of C together with a function i : X ! U(A), called the canonical injection,
which satisfy the following universal property: for any object B of C and any map
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g : X ! U(B), there exists a unique morphism f : A ! B in C such that g = U( f ) � i,
i.e. the following diagram commutes:

X

g
!!

i
// U(A)

U( f )
✏✏

U(B)

If free objects exist in C, the universal property implies that every function be-
tween two sets induces a unique morphism between the associated free objects, and
this defines a functor F : Set ! C, called the free functor.

This relation between the functors F and U is more clear when we recall the
following general definition, of one of the key notions in Category Theory:

Definition 3.24. [60] Consider a pair of functors L : C ! D and R : D ! C. Then L is
said to be left adjoint to R, and R is said to be right adjoint to L, when for every object
C of C there exists a morphism hC : C ! R(L(C)) in C, such that for every object D of
D and every morphism f : C ! R(D) there exists a unique morphism f : L(C) ! D
in D such that the triangle

C
hC

//

f
��

R(L(C))

R( f )
��

R(D)

commutes in C. In other words, for every objects C of C and D of D, we have a
natural bijection

HomC(C, R(D)) ⇠= HomD(L(C), D).

The adjunction is denoted by L a R. When they exist, adjoints are unique (up to
isomorphism), so we may say that R has a left adjoint or L has a right adjoint. The
collection of morphisms {hC}C is called the unit of the adjunction, and always forms
a natural transformation from 1C to R � L, which means that for every morphism
c : C ! C0 in C, the square

C

c
✏✏

hC
// R(L(C))

R(L(c))
✏✏

C0
hC0
// R(L(C0))

in C is commutative.

We thus have that F a U, i.e. there exists a bijection

HomSet(X, U(B)) ⇠= HomC(F(X), B)

for any set X and any object B of C.
In Section 3.2.1 we describe in detail the construction of the free object on a set

for the categories Mag of magmas and Alg of non-associative algebras over a field.

We are now ready to prove the following.
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Proposition 3.25. [63] Let

0 // X i
// A

p
// B

s
oo

// 0 (3.1.8)

be a split extension in an Orzech category of interest C. The following are equivalent:

(i) the derived actions associated with (3.1.8) is super-strict;

(ii) the derived actions associated with (3.1.8) is strict;

(iii) the split extension (3.1.8) is a faithful object in the category SplExt(X) of split exten-
sions in C with kernel X.

Proof. (i) ) (ii). Obvious.
(ii) ) (iii). We recall from [21] that an object is said to be faithful if it admits at

most one morphism onto it. Consider another split extension in C

0 // X i0
// A0 p0

// B0
s0
oo

// 0

and a pair of morphisms

0 X A0 B0 0

0 X A B 0.

i0

1X

p0

q q0
s0

g g0

i p

s

(3.1.9)

We have to prove that g = g0 and q = q0.
Since the derived action of B on X is strict, one has the following equalities, for

any b0 2 B0 and x 2 X:

(a) s(g(b0)) + i(x)� s(g(b0)) = s(g0(b0)) + i(x)� s(g0(b0));

(b) s(w(g(b0))) + i(x)� s(w(g(b0))) = s(w(g0(b0))) + l(x)� s(w(g0(b0))), for any
w 2 W0

1;

(c) s(g(b0)) ⇤ x = s(g0(b0)) ⇤ x, 8⇤ 2 W0
2.

The equality (i) is equivalent to

�s(g(b0)) + s(g0(b0)) + i(x)� s(g(b0)) + s(g0(b0)) = i(x);

since s � g = q � s0, s � g0 = q0 � s0 and i = q � i0 = q0 � i0, we obtain:

�q0(s0(b0)) + q(s0(b0)) + q(i0(x))� q(s0(b0)) + q0(s0(b0)) = q0(i0(x)),

that is:
�q0(s0(b0)) + q(s0(b0) + i0(x)� s0(b0)) + q0(s0(b0)) = q(i0(x)).

We have that s0(b0) + i0(x)� s0(b0) 2 i0(X), so there exists y 2 X such that s0(b0) +
i0(x)� s0(b0) = i0(y) and

�q0(s0(b0)) + q(i0(y)) + q0(s0(b0)) = q0(i0(x))

if and only if
�q0(s0(b0)) + q0(i0(y)) + q0(s0(b0)) = q0(i0(x))
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if and only if
q0(�s0(b0) + i0(y) + s0(b0)) = q0(i0(x)).

But

�s0(b0) + i0(y) + s0(b0) = �s0(b0) +�s0(b0) + i0(x) + s0(b0) + s0(b) = i0(x)

and then the equality (i) holds for any x 2 X.
Condition (b) is very similar to (a). In fact, we have

s(w(g(b0))) + i(x)� s(w(g(b0))) = s(w(g0(b0))) + i(x)� s(w(g0(b0)))

if and only if

�s(w(g0(b0))) + s(w(g(b0))) + i(x)� s(w(g(b0))) + s(w(g0(b0))) = i(x);

but g � w = w � g and g0 � w = w � g0. Thus the equality becomes

�s(g0(w(b0))) + s(g(w(b0))) + i(x)� s(g(w(b0))) + s(g0(w(b0))) = i(x)

if and only if

�q0(s0(w(b0))) + q(s0(w(b0))) + q(i0(x))� q0(s0(w(b0))) + q0(s0(w(b0))) = q0(i0(x))

if and only if

�q0(s0(w(b0))) + q(s0(w(b0)) + i0(x)� s0(w(b0))) + q0(s0(w(b0))) = q0(i0(x)).

Again, s0(w(b0)) + i0(x) � s0(w(b0)) 2 i0(X), so there exists z 2 i0(X) such that
s0(w(b0)) + i0(x)� s0(w(b0)) = i0(z) and

�q0(s0(w(b0))) + q(i0(z)) + q0(s0(w(b0))) = q0(i0(x))

if and only if

�q0(s0(w(b0))) + q0(i0(z)) + q0(s0(w(b0)))) = q0(i0(x))

if and only if
q0(�s0(w(b0)) + i0(z) + s0(w(b0))) = q0(i0(x)).

Since

� s0(w(b0)) + i0(z) + s0(w(b0)) =
=� s0(w(b0)) + s0(w(b0)) + i0x()� s0(w(b0)) + s0(w(b0)) = i0(x),

the equality (b) holds for any x 2 X.
Concerning (c), we have

p0(s0(b) ⇤ i0(x)) = p0(s0(b0)) ⇤ p0(i0(x)) = p0(s0(b0)) ⇤ 0 = 0,

thus there exists y 2 X such that i0(y) = s0(b0) ⇤ i0(x) and then

s(g(b0)) ⇤ i(x) = q(s0(b0)) ⇤ q(i0(x)) = q(s0(b0) ⇤ i0(x)) = q(i0(y)) =
=q0(i0(y)) = q0(s0(b0) ⇤ i0(x)) = q0(s0(b0)) ⇤ q(i0(x)) = s(g0(b0)) ⇤ i(x).
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Since the derived action of B on X is strict, we also have that g(b) = g0(b), for any
b 2 B, and this completes the proof, since f is uniquely determined by g.

(iii) ) (i). Fixed b 2 B, it is possible to construct a split extension in C

0 // X i0
// A0 p0

// B0
s0
oo

// 0

and a morphism

0 X A0 B0 0

0 X A B 0.

i0

1X

p0

q
s

g

i p

s

such that

· B0 is the free object in C on the singleton {z} (as observed [66], free objects exist
in any Orzech category of interest).

· g is the unique morphism such that g(z) = b (whose existence and unicity is
given by the universal property of B0);

· A0 = B0 n X, where the derived action of B0 on X is induced, via g, by the
action of B on X, that is

b0 · x := g(b)0 · x, b0 ⇤ x := g(b0) ⇤ x, 8⇤ 2 W0
2.

Hence, the operation in A0 are defined as follows:

(b01, x1) + (b02, x2) = (b01 + b02, x1 + b01 · x2)

and
(b01, x1) ⇤ (b02, x2) = (b01 ⇤ b02, x1 ⇤ x2 + b01 ⇤ x2 + x1 ⇤ b02),

where x1 ⇤ b02 = b02 ⇤op x1;

· p0(b0, x) = b, s0(b0) = (b0, 0) i0(x) = (0, x) and q(b0, x) = s(g(b0)) + i(x), for
any b0 2 B0 and x 2 X.

Now, let us construct another split extension

0 // X i00
// A00 p00

// B00
s00
oo

// 0

and a morphism

0 X A0 B00 0

0 X A B 0.

i00

1X

p00

q0
s0

g0

i p

s

as above, but choosing another element b 2 B instead of b. We prove that, if b
and b act in the same way on X, then the two split extensions defined above coincide.
Of course B0 = B as objects in C, p0 = p00, s0 = s00, k0 = k00 and A0 = A00 as sets; it
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remains to prove that A0 = A00 as objects of C, i.e. that the operations defined on A0

and A00 are the same. This is a consequence of the identities

(1) s(g(b0)) + i(x)� s(g(b0)) = s(g0(b0)) + i(x)� s(g0(b0));

(2) s(g(b0)) ⇤ i(x) = s(g0(b0)) ⇤ i(x),

which hold for any b0 2 B0, x 2 X and ⇤ 2 W0
2. Indeed, by the hypothesis on b and

b , (a) and (b) are satisfied for b0 = z. Moreover, the set Z of those elements b0 2 B0

for which (i) and (ii) hold for every x 2 X, is a subobject of B0, i.e. it is a subgroup
closed under the operations in B0.

Indeed, let b1, b2 2 Z, then for any x 2 X

s(g(b1 � b2)) + i(x)� s(g(b1 � b2)) =

=s(g(b1))� s(g(b2)) + i(x) + s(g(b2))� s(g(b1)) =

=s(g(b1))� s(g0(b2)) + i(x) + s(g0(b2))� s(g(b1)) =

=s(g0(b1))� s(g0(b2)) + i(x) + s(g0(b2))� s(g0(b1)) =

=s(g0(b1 � b2)) + i(x)� s(g0(b1 � b2)),

where the third equality holds because �s(g0(b2)) + i(x) + s(g0(b2)) 2 l(X) and

s(g(b1 � b2)) + i(x) = [s(g(b1))� s(g(b2))] ⇤ i(x) =
=s(g(b1)) ⇤ i(x)� s(g(b2)) ⇤ i(x) = s(g0(b1)) ⇤ i(x)� s(g0(b2)) ⇤ i(x) =
=[s(g0(b1))� s(g0(b1))] ⇤ i(x) = s(g0(b1 � b2)) ⇤ i(x).

Then b1 � b2 2 Z and Z is a subgroup of B. Moreover, if b1, b2 2 Z, x 2 X and
⇤ 2 W0

2, then

s(g(b1 ⇤ b2)) + i(x)� s(g(b1 ⇤ b2)) = [s(g(b1)) ⇤ s(g(b2))] + i(x)� [s(g(b1)) ⇤ s(g(b2))] =

=i(x) + [s(g(b1)) ⇤ s(g(b2))]� [s(g(b1)) ⇤ s(g(b2))] = i(x) =
=i(x) + [s(g0(b1)) ⇤ s(g0(b2))]� [s(g0(b1)) ⇤ s(g0(b2))] =

=[s(g0(b1)) ⇤ s(g0(b2))] + i(x)� [s(g0(b1)) ⇤ s(g0(b2))] =

=s(g0(b1 ⇤ b2)) + i(x)� s(g(b1 ⇤ b2)),

where the second and the fifth equalities follow from Axiom 1, and

s(g(b1 ⇤ b2)) ⇤ i(x) = [s(g(b1)) ⇤ s(g(b2))] ⇤ i(x) =
=W(s(g(b1))(s(g(b2))i(x)), (s(g(b1))(i(x)s(g(b2))),
(s(g(b2))i(x))(s(g(b1)), (i(x)s(g(b2)))(s(g(b1)),
tg(b2)((s(g(b1))i(x)), s(g0(b2))(i(x)(s(g(b1))),
((s(g(b1))i(x))s(g(b2)), (i(x)(s(g(b1)))s(g(b2))) =

=W((s(g0(b1))(tg0(b2)i(x)), s(g0(b1))(i(x)s(g0(b2))),
(s(g0(b2))i(x))s(g0(b1)), (i(x)tg0(b2))s(g0(b1)),
s(g0(b2))(s(g0(b1))i(x)), s(g0(b2))(i(x)s(g0(b1))),
(s(g0(b1))i(x))s(g0(b2)), (i(x)s(g0(b1)))s(g0(b2))) =

=[s(g0(b1)) ⇤ s(g0(b2))] ⇤ i(x) = s(g(b1 ⇤ b2)) ⇤ i(x),

where we are using Axiom 2 and the fact that i(X) is an ideal of A. Hence Z is a
subobject of B0 and then Z = B0.
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Since the split extension (3.1.8) is faithful and the two split extensions defined
above are the same, it follows that g = g0. Thus b = b0 and the derived action of B
on X is super-strict.

3.1.2 The universal strict general actor

In [26] the problem of the representability of actions for an Orzech category of inter-
est was studied with a different approach than [47]

The authors of [26] proved that, for every object X in an Orzech category of in-
terest C, there exists an object USGA(X) of C 0, called universal strict general actor of
X, with the following properties:

(1) USGA(X) is a general actor of X, i.e. USGA(X) has a derived action on X in
C 0 and for any other object B in C and for every derived action { f⇤}⇤2W2 of B
on X in C, there exists a unique morphism j : B ! USGA(X) in C 0 such that
{ f⇤}⇤2W2 is uniquely determined by the action of j(B) on X, i.e.

b · x = j(b) · x, b ⇤ x = j(b) ⇤ x, 8⇤ 2 W0
2, 8b 2 B, 8x 2 X.

(2) The derived action of USGA(X) on X is strict.

(3) Let {Bj}j2J be the set of all objects of C which have a derived action on X in
C and let jj : Bj ! USGA(X) be the corresponding unique morphisms com-
ing from the definition of general actor. The elements of USGA(X) satisfy the
following equality:

(ji(b) ⇤ jj(b0))⇤̄x = W(ji(b); jj(b0), x; ⇤, ⇤̄)

for any b 2 Bi, b0 2 Bj, ⇤ 2 W2 and i, j 2 J.

(4) USGA(X) satisfies the following universal property: for any strict general ac-
tor SGA(X) satisfying (3), there exists a unique morphism h : USGA(X) !
SGA(X) in C 0, with h � jj = yj, for any j 2 J, where jj : Bj ! USGA(X)
and yj : Bj ! SGA(X) denote the corresponding unique morphisms from the
definition of a general actor.

Remark 3.26. The condition (3) is formulated in terms of identities which are conse-
quences of Axiom 2. For any Orzech category of interest C we can have different
equivalent presentations, since the identities in Axiom 2 can be chosen in differ-
ent equivalent ways; but the equalities in the corresponding condition (3) are not
equivalent in general. Thus, universal strict general actors corresponding to differ-
ent equivalent presentations of the same category C can be not isomorphic. This is
the case of the category Leib of Leibniz algebras (see Example 6.6).

It was clear from the investigation of [26] that Orzech categories of interest are
not action representable in general. In fact the authors proved that an object X in
an Orzech category of interest C admits an actor [X] if and only if [X] ⇠= USGA(X).
More precisely, we have the following.

Theorem 3.27. [26] Let C be an Orzech category of interest and let X be an object of C. X
admits an actor [X] if and only if the semidirect product USGA(X)n X is an object of C. If
it is the case, then [X] = USGA(X).
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Proof. If X has an actor [X], then given any universal strict general actor USGA(X),
the unique morphism h : USGA(X) ! [X] is an isomorphism. Thus, USGA(X) is
an actor as well and therefore USGA(X)n X is an object of C.

Conversely, suppose that USGA(X) n X is an object of C. Then, if i2 : X !
USGA(X)n X denotes the canonical injection on the second component, we have
that USGA(X) = Coker i and thus it is an object of C. Moreover, USGA(X) has a
derived action on X in C and, from the universal property as a general actor, we
have that for any object B of C and for any derived action of B on X in C, there exists
a unique morphism in C 0 (which is obviously a morphism in C) j : B ! USGA(X)
such that b ⇤ x = j(b) ⇤ x, for any b 2 B, x 2 X and ⇤ 2 W0

2. Thus, USGA(X) is the
actor of X.

It was then proven by A. Montoli in [63, Theorem 4.7] that any Orzech category
of interest is action accessible.

Theorem 3.28. [63] Every Orzech category of interest C is action accessible.

Proof. Let

0 // X k
// A

p
// B

s
oo

// 0 (3.1.10)

be a split extension in C. We have to construct a morphism

0 X A B 0

0 X A0 B0 0

k

1X

p

j
s

g

k00 p0

s0

with faithful codomain. Consider the subset of B

I := {i 2 B | s(i) + k(x)� s(i) = k(x), s(i) ⇤ k(x) = 0, 8x 2 X, 8⇤ 2 W0
2}.

We show that I is an ideal of B, i.e. I is a normal subgroup of B and i ⇤ b 2 I, for any
i 2 I, b 2 B and for any ⇤ 2 W0

2.
Let i1, i2 2 I. Then

s(i1 � i2) + k(x)� s(i1 � i2) = s(i1)� s(i2) + k(x) + s(i2)� s(i1) = k(x),

since s(ij) + k(x)� s(ij) = k(x), for any j = 1, 2,

s(i1 � i2) ⇤ k(x) = (s(i1)� s(i2)) ⇤ k(x) =
= s(i1) ⇤ k(x)� s(i2) ⇤ k(x) = 0 � 0 = 0

and I is a subgroup of B. If i 2 I and b 2 B, then

s(b + i � b) + k(x)� s(b + i � b) = s(b) + s(i)� s(b) + k(x) + s(b)� s(i)� s(b);

moreover �s(b) + k(x) + s(b) 2 k(X) (since k(X) is a normal subgroup of A), so
�s(b) + k(x) + s(b) = k(y) for some y 2 X; then

s(b) + s(i)� s(b) + k(x) + s(b)� s(i)� s(b) = s(b) + k(y)� s(b) = k(x),
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where the first equality holds because i 2 I; furthermore

s(b + i � b) ⇤ k(x) = (s(b) + s(i)� s(b)) ⇤ k(x) =
= s(b) ⇤ k(x) + s(i) ⇤ k(x)� s(b) ⇤ k(x) = 0

since i 2 I. Then I is a normal subgroup of B. Finally, let i 2 I, b 2 B and ⇤ 2 W0
2;

then

s(i ⇤ b) + k(x)� s(i ⇤ b) = (s(i) ⇤ s(b)) + k(x)� (s(i) ⇤ s(b)) =
= k(x) + (s(i) ⇤ s(b))� (s(i) ⇤ s(b)) = k(x),

where the second equality follows from Axiom 1 of the definition of Orzech category
of interest. Furthermore, for any ⇤0 2 W0

2, s(i ⇤ b) ⇤0 k(x) = 0 since, by Axiom 2, we
have

s(i ⇤ b) ⇤0 k(x) = (s(i) ⇤ s(b)) ⇤0 k(x) =
= W(s(i)(s(b)k(x)), s(i)(k(x)s(b)), (s(b)k(x))s(i), (k(x)s(b))s(i),

s(b)(s(i)k(x)), s(b)(k(x)s(i)), (s(i)k(x))s(b), (k(x)s(i))s(b)),

and, in any component of the word W, s(i) operates, with respect to the operations
in W0

2, on elements of k(X), then any component is 0, so that W = 0. Thus, I is an
ideal of B. We consider the quotien B/I = {b + I | b 2 B}: it is an object of C with
operations defined as

(b + I) + (b0 + I) := (b + b0) + I, (b + I) ⇤ (b0 + I) := b ⇤ b0 + I

for any b + I, b0 + I 2 B/I and ⇤ 2 W0
2.

Let us define now a derived action of B/I on X in C in the following way:

(b + I) · x = b · x = s(b) + k(x)� s(b)

and
(b + I) ⇤ x = b ⇤ x = s(b) ⇤ k(x),

for any b + I 2 B/I, x 2 X and ⇤ 2 W0
2. The maps are well-defined; indeed, if

b1 + I = b2 + I, i.e. b1 � b2 2 I, then

(s(b1) + k(x)� s(b1))� (s(b2) + k(x)� s(b2)) =

=s(b1) + k(x)� s(b1) + s(b2)� k(x)� s(b2) =

=s(b2)� s(b2) + s(b1) + k(x)� s(b1) + s(b2)� k(x)� s(b2) =

= s(b2) + s(�b2 + b1) + k(x)� s(�b2 + b1)� k(x)� s(b2) =

=s(b2) + k(x)� k(x)� s(b2) = 0

and then
s(b1) + k(x)� s(b1) = s(b2) + k(x)� s(b2).

In a similar way

s(b1) ⇤ k(x)� s(b2) ⇤ k(x) = (s(b1)� s(b2)) ⇤ k(x) = s(b1 � b2) ⇤ k(x) = 0

and thus
s(b1) ⇤ k(x) = s(b2) ⇤ k(x), 8⇤ 2 W0

2.
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The collection of maps above is in fact a derived action of B/I on X, since the con-
ditions needed to be satisfied are the same already satisfied by the action of B on X
associated with (3.1.10):

b · x = s(b) + k(x)� s(b), b ⇤ x = s(b) ⇤ k(x), 8⇤ 2 W0
2.

More precisely, it is the derived action associated with the split extension in C

0 X B/I n X B/I 0i2 p1

i1

where i1(b + I) = (b + I, 0), i2(x) = (0, x) and p1(b + I, x) = b + I. We define
then B0 = B/I, A0 = B/I n X, with respect to the derived action defined above,
g = pB : B ! B/I to be the canonical projection and j = (pB ⇥ 1X) � q, where q is
the canonical isomorphism A ⇠= Bn X of Remark 3.16. We thus have a morphism of
split extension

0 X A B 0

0 X B/I n X B/I 0

i

1X

p

j
s

pB

i2 p1

i1

and it only remains to show that the codomain is a faithful object in the cate-
gory SplExt(X). Thanks to Proposition 3.25, this is equivalent to showing that
the derived action of B/I on X is super-strict, i.e. for any b + I 2 B/I such that
(b + I) · x = x and (b + I) ⇤ x = 0, for any x 2 X and ⇤ 2 W0

2, we have b + I = I.
But, if s(b) + k(x)� s(b) = k(x) and s(b) ⇤ k(x) = 0 for any x 2 X and ⇤ 2 W0

2, then
b 2 I, i.e. b + I = I. Thus, the split extension

0 X B/I n X B/I 0i2 p1

i1

is faithful and this concludes the proof.

More recently J. R. A. Gray showed in [45] that an Orzech category of interest
may not even be weakly action representable. In fact, he proved that the categories
of n-solvable groups, n � 3, are not weakly action representable. However, by the
results in [26], we can deduce the following.

Proposition 3.29. [29] Let C be an Orzech category of interest and let X be an object of C.
Then there exists a monomorphism of functors

µ : SplExt(�, X) ⇢ HomC 0(U(�), USGA(X)),

where SplExt(�, X) = SplExtC(�, X) and U : C ! C 0 denotes the forgetful functor. If
moreover USGA(X) is an object of C, then the pair (USGA(X), µ) is a weak representation
of SplExt(�, X).

Proof. By the above discussion, for every object B in C, there exists an injection

µB : SplExt(B, X) ⇢ HomC 0(B, USGA(X)),



3.2. Varieties of non-associative algebras 45

which sends a derived action of B on X to the corresponding (unique) morphism
j : B ! USGA(X) in C 0 that comes out from the definition of general actor. We want
to prove that the collection {tB}B2C gives rise to a natural transformation t.

Consider in C a morphism g : B0 ! B and a split extension of B by X with as-
sociated derived action x = { f⇤}⇤2W2 . The naturality of µ is equivalent to saying
that

µB0(g⇤(x)) = (µB(x)) � g,

for every such g and x, where g⇤ = SplExt(g, X) and we identify the derived action x
with its corresponding split extension. This follows immediately from the definition
of general actor.

Since C is a full subcategory of C 0, when USGA(X) belongs to C, the pair
(USGA(X), µ) is a weak representation of the functor Act(�, X).

Corollary 3.30. [29] Let C be an Orzech category of interest. If USGA(X) is an object of C
for every X in C, then C is a weakly action representable category.

Remark 3.31. We observe that in the proof of Proposition 3.29 we only used the con-
dition (1) of the definition of universal strict general actor. Thus, Proposition 3.29
and Corollary 3.30 can be extended to any general actor GA(X) of any object X of C.

In view of the last results, an explicit description of a universal strict general
actor in concrete cases is very useful for studying the representability of actions.
Two examples were given in [26]:

· the category Assoc of associative algebras, where USGA(X) = Bim(X) is the
associative algebra of bimultipliers of X (see Example 2.42);

· the category Leib of Leibniz algebras, where USGA(g) = Bider(g) is the Leib-
niz algebra of biderivations of g (see Chapter 5).

In Chapter 7 we present the construction of a universal strict general actor for
the category Pois of Poisson algebras.

3.2 Varieties of non-associative algebras

We now describe the algebraic setting we are working in: varieties of non-associative
algebras over a field F. We think of those as collections of algebras satisfying a chosen
set of polynomial equations. We refer to [41], [42], [43, Section 1], [44] and [56] for
the definitions and the main results in this section.

Definition 3.32. [56] A (non-associative) algebra (X, ·) is vector space X over a field F

equipped with a bilinear operation · : X ⇥ X ! X : (x, y) 7! x · y which we call the
multiplication or the product.

Sometimes, as in the case of Lie and Leibniz algebras (see Chapter 5), we refer at
the multiplication as the commutator or the bracket and we denote it by [x, y]. Other-
wise, unless when this would be confusing, we denote the multiplication x · y by xy
and we write X for an algebra (X, ·).

The existence of a unit element is not assumed, nor are any other conditions
on the multiplication besides its bilinearity. Let Alg denote the category of non-
associative algebras where morphisms are the F-linear maps f : X ! Y which pre-
serve the multiplication:

f (x + y) = f (x) + f (y), f (lx) = l f (x), f (xy) = f (x) f (y),
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for any x, y 2 X and l 2 F.

3.2.1 Free non-associative algebras, polynomials and identities

Definition 3.33. A magma is a set X endowed with a binary operation

· : X ⇥ X ! X : x 7! xy.

A morphism of magmas f : (X, ·) ! (Y, ⇤) is a function f : X ! Y which preserves
the binary operation: f (xy) = f (x) ⇤ f (y), for any x, y 2 X. Magmas and their
morphisms form a category denoted Mag.

We observe that any non-associative algebra X has two underlying magma struc-
tures (associated with + and ·).

We want now to describe in detail the construction of the free object on a set (see
Definition 3.23) in the categories Mag and Alg.

Definition 3.34. [56] Let S be a set. A non-associative word in the alphabet S is a finite
sequence of elements of S (called the letters of the word) and brackets “(” and “)” of
the following kinds (and no others):

(1) for every element 2 S, (s) is a non-associative word;

(2) if w1 and w2 are non-associative words, then the string (w1w2) is a non-
associative word.

To avoid a rapidly increasing number of brackets, we don’t write the outer brack-
ets in a non-associative word.

We write M(S) for the set of non-associative words in the alphabet S. The text of
a word is the number of letters (in S, brackets don’t count) that it consists of, and the
degree of a letter is the number of times it occurs in the given word. We sometimes
write j(x1, . . . , xn) for a word in which the elements x1, . . . , xn of S (and no others)
appear.

The rule (2) allows us to define a binary operation (·) on M(S) making it into a
magma which we call the free magma on S. The canonical inclusion of S into M(S)
obtained from (1) is written hS : S ! M(S).

Example 3.35. If S = {x, y, z}, the strings x, xy, (xy)z, x(yz), x(xy), (x(yz))x and
(xy)(zx) are elements of M(S). The strings x(yz)x and xyz are not in M(S), and
neither is the string (). (This “empty string” appears when considering free unitary
magmas.)

Proposition 3.36. [56] For every magma (X, ·) and every function f : S ! X there exists
a unique morphism of magmas f : (M(S), ·) ! (X, ·) such that the triangle

S

f
!!

hS
//M(S)

f̄
✏✏

X

commutes.

Proof. The function f must send a word (s), where s 2 S, to f (s) in order to make
the triangle commute. It must preserve products, so a string w1w2 is sent to f (w1) ·
f (w2).



3.2. Varieties of non-associative algebras 47

The free magma determines a functor M: Set ! Mag which sends a set S to
M(S), and a function f : S ! T to the morphism of magmas M( f ) : M(S) ! M(T)
induced by hT � f : S ! M(T). On the other hand, there is the forgetful functor
Mag ! Set which forgets about multiplications, taking a magma and sending it to
its underlying set.

In other words, the free magma functor is left adjoint to the forgetful functor to
Set, and in fact this is the reason why it carries that name: it plays the same role as
the free group functor, for instance.

There are many equivalent ways to phrase adjointness, and going into the gen-
eral theory of adjunctions here would lead us too far. However, we meet some exam-
ples, starting with the following one, which makes one of the relationships between
non-associative algebras and magmas explicit.

Example 3.37. For any field F, the forgetful functor Alg ! Mag, which takes an
algebra (X, ·) and sends it to the underlying set of the vector space X, equipped
with the multiplication (·), has a left adjoint denoted F[�] : Mag ! Alg and called
the magma algebra functor.

The functor F[�] takes a magma (X, ·) and sends it to the F-vector space F[X]
with basis X, whose elements are finite linear combinations of the elements of X,
equipped with the multiplication · : F[X]⇥ F[X] ! F[X] defined by

(
n

Â
i=1

lixi,
k

Â
j=1

µjyj) 7!
n

Â
i=1

k

Â
j=1

liµj(xi · yj)

for any xi, yj 2 X and li, µj 2 F, i = 1, . . . , n, j = 1, . . . , k. Note that its bilinearity is
obvious.

F[�] satisfies the universal property of a left adjoint, because for the natural
inclusion h̃(X,·) : (X, ·) ! (F[X], ·), we have that any given morphism of magmas
f : X ! A, where (A, ·) is a non-associative algebra, extends to a unique morphism
of algebras f 0 : F[X] ! A such that f 0 � h̃X = f in Mag. Indeed, this just follows
from the fact that X is a basis of F[X] and the definition of the multiplication of that
algebra. As in the case of magmas, this determines how the functor F[�] should act
on morphisms.

Example 3.38. The composition of adjunctions is again an adjiunction, and thus we
find the construction of the free non-associative F-algebra on a set:

Set
M
//

? Mag
F[�]

//

?
Forget
oo

Alg
Forget
oo

The functors to the left first forget the vector space structure of an algebra X, then
the multiplication of the underlying magma (X, ·), so that we obtain the underlying
set of X. Looking at the diagram in Set

S
hS

//

f
$$

M(S)

f
✏✏

h̃M(S)
// F[M(S)]

f 0
zz

X

it is easy to see that the composite functor to the right does indeed satisfy the uni-
versal property of a left adjoint.
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Summarizing, we constructed the free algebra functor F[M(�)] : Set ! Alg
which sends a set S to the free algebra generated by elements of S. This functor has
the forgetful functor as a right adjoint. Moreover, it factorises through the free magma
functor M: Set ! Mag, which sends a set S to the magma M(S) of non-associative
words in S, and the magma algebra functor F[�] : Mag ! Alg.

For a given set S, an element of F[M(S)] is an F-linear combination of non-
associative words in the alphabet S. In other words we have the following.

Definition 3.39. [56] Let S be a set. An element j of F[M(S)] is called a non-associative
polynomial on S. We say that such a polynomial is a monomial if it is a scalar multiple
of an element in M(S).

For example, if S = {x, y, z, t}, then (xy)t + (zy)x, xx + yz and (xt)(yz) are poly-
nomials in S and only the last one is a monomial.

For a monomial j on a set {x1, . . . , xn}, we define its type as the n-tuple
(k1, . . . , kn) 2 N

n, where ki is the number of times xi appears in j, and its degree
as the natural number k1 + · · ·+ kn. A polynomial is said to be

(1) homogeneous if all its monomials are of the same type;

(2) multilinear if all its monomials are of the type (1, . . . , 1).

Among the examples above, only the last one is multilinear.

Remark 3.40. Our algebras need not have units, and so our polynomials have no
constant terms.

Definition 3.41. [56] A (polynomial) identity of a non-associative algebra X is a non-
associative polynomial j = j(x1, . . . , xn) such that j(x1, . . . , xn) = 0, for every
x1, . . . , xn 2 X. We say that the algebra A satisfies the identity j.

Definition 3.42. [56] Let I be a subset of F[M(S)] with S being a set of variables. The
variety of non-associative algebras V determined by I is the class of all algebras which
satisfy all the identities in I. We say that a variety of non-associative algebra satisfies
the identities in I if all algebras in this variety satisfy the given identities.

Definition 3.43. Let V be a variety non-associative of algebras. We say that

(1) V is operadic [70] if it is determined by a set of multilinear polynomials;

(2) V is quadratic [37] if there exists a set of identities of degree 2 and 3 that generate
all the identities of V .

Of course, any variety of non-associative V algebras can be seen as a category
where the morphisms are the same ones as in Alg and we have a full inclusion
functor V ,! Alg. In particular, any such variety is a semi-abelian category.

Remark 3.44. Whenever the characteristic of the field F is zero, any variety of non-
associative algebras over F is operadic. This is due to the well-known multilineari-
sation process, see [67, Corollary 3.7].

Remark 3.45. We recall that, when we consider a variety of non-associative algebras
V , we assume the field F is fixed, so that we may drop it from our notation.

Examples 3.46.
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(1) We write AbAlg for the variety of abelian algebras determined by the identity
xy = 0 [56]. Seen as a category, this variety is isomorphic to the category Vec
of vector spaces over F and thus it is an abelian category; this explains the
terminology.

In fact, any vector space V may be considered as a non-associative algebra,
by imposing a trivial multiplication xy = 0. If the functor that equips a vec-
tor space with the trivial multiplication is denoted by T : Vec ! AbAlg, and
U : AbAlg ! Vec is the functor which forgets the multiplication of a trivial
algebra, then clearly T � U = 1AbAlg and U � T = 1Vec.

We observe that AbAlg is the only variety of non-associative algebras which is
an abelian category. In fact, let V be a variety of non-associative algebras and
suppose that V 6= AbAlg. Then, there exists a non-abelian algebra X which is
an object of V .

If V is an abelian category, then V is action representable and

SplExt(�, X) ⇠= HomV (�, 0)

where 0 denotes the zero algebra. Thus, for any other object B of V , any split
extension of B by X in V is represented by the zero-morphism B ! 0. In other
words, since V is a category of group with operations and split extensions
are in bijection with semi-direct products (see Remark 3.16), this is equivalent
to saying that the only semi-direct product B n X which is an object of V is
the direct product B ⇥ X, i.e. the direct sum of vector spaces B � X with the
multiplication defined by (b, x) · (b0, x0) = (bb0, xx0).

We reach a contraddiction, since the semi-direct product X n X = (X � X, ·)
defined by

(x, y) · (x0, y0) = (xx0, yy0 + xy0 + yx0)

is always an object of V (because it satisfies all the identities which define the
variety V since X is an object of V) and it is not the direct product X ⇥ X since
X is not an abelian algebra (i.e. there exists x, y 2 X such that xy 6= 0 and thus
(x, 0)(0, y) = (0, xy) 6= (0, 0)).

(2) We write Assoc for the variety of associative algebras determined by the iden-
tity of associativity which is x(yz)� (xy)z = 0, or equivalently x(yz) = (xy)z.
Relevant examples of associative algebras are given by the vector space Mn(F)
of n ⇥ n matrices over F endowed with the usual multiplication between ma-
trices and, for any vector space V, by the space End(V) of linear endomor-
phisms of V, endowed with the usual composition of functions. We recall that,
if dimF V = n, fixed a basis {e1, . . . , en} of V, there exists a canonical isomor-
phism between End(V) and Mn(F).

(3) We write AAssoc for the variety of anti-associative algebras, determined by the
anti-associative identity x(yz) + (xy)z = 0, or equivalently x(yz) = �(xy)z.

(4) We write Com for the variety of commutative algebras determined by the iden-
tity of commutativity which is xy � yx = 0, or equivalently xy = yx.

(5) We write ACom for the variety of anti-commutative algebras determined by
anti-commutativity which is xy + yx = 0, or equivalently xy = �yx.

(6) We write CAssoc for the variety of commutative associative algebras.
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(7) We write Lie for the variety of Lie algebras determined by x2 = 0 (i.e. the al-
gebra is alternating or skew-symmetric) and the Jacobi identity x(yz) + y(zx) +
z(xy) = 0. If char(F) 6= 2, skew-symmetry is equivalent to anti-commutativity
xy + yx = 0: if x2 = 0 for every x in X, then

0 = (x + y)(x + y) = x2 + xy + yx + y2 = xy + yx

for all x, y 2 X. Conversely, since we can take x = y, the equation xy = �yx
implies x2 = �x2, hence 0 = x2 + x2 = 2x2. So unless 0 = 2 in the field F, this
implies that x2 = 0.
However, the two identities are not equivalent in general: the simplest exam-
ple of a field of characteristic 2 is the field F2 = {0, 1} of integers modulo 2.
Over F2, the two-dimensional vector space with basis {x, y} becomes an anti-
commutative algebra which is not alternating if we define its multiplication as
x2 = y and xy = yx = y2 = 0. Note that x2 = y = �y = �x2.
Lie algebras are notorious because of their connection with Lie groups, which
are smooth manifolds endowed with a (compatible) group structure. Actually,
each Lie group induces a Lie algebra over R, and this process gives rise to a
non-trivial equivalence between the category Lie and the category of simply-
connected real Lie groups.
Another source of Lie algebras (over any field) are those coming from associa-
tive algebras. There is a functor G : Assoc ! Lie which takes an associative
algebra (X, ·) and sends it to the couple (X, [�,�]) where

[�,�] : X ⇥ X ! X : (x, y) 7! [x, y] = xy � yx.

It is easy to check that this bracket does indeed define a Lie algebra structure
on X. The functor G sends a homomorphism of associative algebras to the
same linear map, now a homomorphism of Lie algebras, since it automatically
preserves the bracket.
For instance, gl(n, F) and gl(V) are the Lie algebras coming respectively from
the associative algebras Mn(F) and End(V), for some vector space V.
Note that two elements x, y of (X, ·) commute (xy = yx) if and only if their
bracket vanishes ([x, y] = 0); so the associative algebra (X, ·) is commutative if
and only if the Lie algebra (X, [�,�]) is abelian.
The functor G is not an equivalence of categories, but it has a left adjoint Lie !
Assoc which is called the universal enveloping algebra functor (see [38, Chapter
15]).
As mentioned in Example 2.32, another example of a Lie algebra is the Lie
algebra of derivations Der(X) of a non-associative algebra X. A derivation of X is
an F-linear map d : X ! X such that

d(xy) = d(x)y + xd(y), 8x, y 2 X.

Given d, d0 2 Der(X), their commutator [d, d0] = d � d0 � d0 � d is still a deriva-
tion. Thus, it is possible define the Lie algebra Der(X) as the Lie subalgebra
of gl(X) consisting of all derivations of X. We already saw that, for any Lie
algebra X, Der(X) is the actor of X.

(8) Instead of being alternating, we may ask that the multiplication of an alge-
bra satisfying the Jacobi identity is anti-commutative (xy = �yx). Then this
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algebra is called a quasi-Lie algebra. The variety qLie of quasi-Lie algebras co-
incides with Lie as long as the characteristic of the field F is different from 2.
However, when char(F) = 2, the variety Lie is strictly contained in qLie: the
algebra over F2 described above is a quasi-Lie algebra which is not a Lie alge-
bra.

(9) We write ACAAssoc for the variety of anti-commutative anti-associative al-
gebras. We observe that in this case, if char(F) 6= 2, anti-associativity
x(yz) + (xy)z = 0 is equivalent to the identity x(xy) = 0. In fact, starting
with x(yz) + (xy)z = 0 and x2 = 0, we obtain

x(xy) = �x2y = 0,

where the powers have precedence on the multiplications. We observe this
implies also y(xy) = 0. Conversely, the identity x(xy) = 0 implies that

0 =(x + y)[(x + y)z] = x[(x + y)z] + y[(x + y)z] =
=x(xz) + x(yz) + y(xz) + y(yz) = x(yz) + y(xz)

and thus, using anti-commutativity and x(yz) = �y(xz), we obtain

x(yz) = �y(xz) = y(zx) = �z(yx) = z(xy) = �(xy)z.

(10) One can see that all the previous examples are operadic varieties. Let us pro-
vide a non-operadic example: the variety Bool of Boolean rings, which may be
seen as associative F2-algebras satisfying x2 = x. This variety is action repre-
sentable with the actor of a Boolean ring X being the Boolean ring End(X) (see
[15, Proposition 3.1]).

(11) We write Leib for the variety of (right) Leibniz algebras determined by the (right)
Leibniz identity which is (xy)z� (xz)y� x(yz) = 0. It is easy to see that an anti-
commutative algebra is a Leibniz algebra if and only if it is a quasi-Lie algebra.
We study in detail the representability of actions of Leib in Chapter 5.

(12) We write Jord for the variety of Jordan algebras determined by commutativity
and the Jordan identity (xy)x2 = x(yx2). This variety is not action accessible
[30] and, if we have an associative algebra X, then the bilinear map

(x, y) 7! x � y = xy + yx

define Jordan algebra structure on X.

(13) We write JJord for the variety of Jacobi-Jordan algebras which is determined
by commutativity and the Jacobi identity. Jacobi-Jordan algebras are the com-
mutative counterpart of Lie algebras and, over a field of characteristic 2, they
coincide with quasi-Lie algebras (since commutativity coincides with anti-
commutativity). In particular then, they are Jordan algebras: indeed, the Jacobi
identity implies that 3x(x2) = 0, so x(x2) = 0 and then

(xy)x2 = x(yx2) + (xx2)y = x(yx2).

This justifies the name of Jordan in the definition. Sometimes this variety is
also known as mock-Lie algebras.
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(14) We write Alt for the variety of alternative algebras [4], which is determined by
the identities (yx)x � yx2 = 0 and x(xy)� x2y = 0 . Every associative algebra
is obviously alternative and an example of an alternative algebra which is not
associative is given by the octonions O [7], that is the eight-dimensional algebra
with basis {e1, e2, e3, e4, e5, e6, e7, e8} and multiplication table

eiej =

8
><

>:

ej, if i = 1
ei, if j = 1
�dije1 + # ijkek, otherwise,

where dij is the Kronecker delta and # ijk a completely antisymmetric tensor with
value 1 when ijk = 123, 145, 176, 246, 257, 347, 365. Notice that e1 is the unit of
the algebra O.

Alternative algebras are strictly related with loop theory and quasigroup theory,
since the set of units of a commutative alternative algebras forms an algebraic
commutative Moufang loop (see [65, Section 5]).

When char(F) 6= 2, the multilinearisation process shows that Alt is equivalent
to the variety defined by

(xy)z + (xz)y � x(yz)� x(zy) = 0

and
(xy)z + (yx)z � x(yz)� y(xz) = 0.

Indeed, from (yx)x � yx2 = 0, we have

0 =[x(y + z)](y + z)� x(y + z)2 =

=[x(y + z)]y + [x(y + z)]z � xy2 � x(yz)� x(zy)� xz2 =

=(xy)y + (xz)y + (xy)z + (xz)z � xy2 � x(yz)� x(zy)� xz2 =

=(xz)y + (xy)z � x(yz)� x(zy).

In the same way, from x(xy)� x2y = 0, we obtain

0 =(x + y)[(x + y)z]� (x + y)2z =

=x[(x + y)z] + y[(x + y)z]� x2z � (xy)z � (yx)z � y2z =

=x(xz) + x(yz) + y(xz) + y(yz)� x2z � (xy)z � (yx)z � y2z =

=x(yz) + y(xz)� (xy)z � (yx)z.

Conversely, starting from (xy)z + (xz)y � x(yz)� x(zy) = 0, when z = y one
obtains

2[(xy)y � xy2] = 0.

Analogously, when y = x, the identity (xy)z + (yx)z � x(yz) � y(xz) = 0
becomes

2[x(xz)� x2z] = 0.

(15) The largest variety of non-associative F-algebras is Alg itself (no conditions)
and the smallest one is the trivial variety 0 (consisting of the zero algebra only,
satisfying all equations possible, including x = 0).

(15) Unitary (or unital) algebras, i.e. those algebras (X, ·) which have an element
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1 = 1X for which x · 1 = x = 1 · x, for any x 2 X) do not form a variety in our
sense, since the existence of 1 cannot be expressed as an equational condition.
This does not mean that an algebra cannot have a unit. On the other hand,
even between algebras with units, a priori there is no reason why a morphism
of algebras should preserve this unit.

(16) Taking any variety V , one can look at a subvariety of it by adding further iden-
tities to be satisfied. For example, let V be a variety determined by a set of
identities I and let k be any positive integer, then we write Nilk(V) for the
variety of k-step nilpotent algebras in V determined by the identities in I and
the identities of the form x1 . . . xk+1 = 0 with all possible choices of parenthe-
ses. We remark that, when V = Assoc, any proper subvariety of it is equal to
Nilk(V), for some positive integer k.

3.2.2 Actions in varieties of non-associative algebras

We now want to explain how to describe actions in a variety of non-associative al-
gebras. As we already mentioned before, in a semi-abelian category, actions are
in natural bijection with split extensions and, since any variety of non-associative
algebras over a field is a category of groups with operations, we can use derived ac-
tions in place of internal actions, since we have a natural isomorphism Act(�, X) ⇠=
DAct(�, X).

In Section 3.1, we already described explicitly what is a derived action in some
varieties of non-associative algebras, such as Alg, Assoc and Lie. We want now to
make this description more clear for a a general variety of non-associative algebras
over a field.

Definition 3.47. [34, 66] Let V be a variety of non-associative algebras and let

0 X A B 0i p

s
(3.2.1)

be a split extension in V . The pair of bilinear maps

l : B ⇥ X ! X, r : X ⇥ B ! X

defined by
b ⇤ x = s(b)i(x), x ⇤ b = i(x)s(b), 8b 2 B, 8x 2 X

where b ⇤ � = l(b,�) and � ⇤ b = r(�, b), is called the derived action of B on X
associated with (3.2.1).

Given a pair of bilinear maps

l : B ⇥ X ! X, r : X ⇥ B ! X

where B, X are objects of V , we may define a bilinear multiplication on the direct
sum / cartesian product of vector spaces B � X ⇠= B ⇥ X by

(b, x) · (b0, x0) = (bb0, xx0 + b ⇤ x0 + x ⇤ b0) (3.2.2)
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with b ⇤ x0 := l(b, x0) and x ⇤ b0 := r(x, b0). This construction allows us to build the
split extension in Alg

0 X (B � X, ·) B 0i2 p1

i1
(3.2.3)

with i2(x) = (0, x), i1(b) = (b, 0) and p1(b, x) = b. This is a split extension in V if
and only if (B�X, ·) is an object of V , i.e. it satisfies the identities which determine V .
In other words, we have the following result analogous to [34, Proposition 1.1], [44,
Lemma 1.8] and [66, Theorem 2.4]:

Lemma 3.48. [43] In a variety of non-associative algebras V , given a pair of bilinear maps

l : B ⇥ X ! X, r : X ⇥ B ! X,

we define the multiplication on B � X as above in (3.2.2). Then, the pair (l, r) is a derived
action of B on X if and only if (B � X, ·) is in V . In this case, we call (B � X, ·) the semi-
direct product of B and X (with respect to the derived action (l, r)) and we denote it by
B n X.

Proof. ()) If the pair (l, r) is a derived action of B on X associated with a split exten-
sion

0 X A B 0i p

s

in V , then the linear map

(B � X, ·) ! A : (b, x) ! s(b) + i(x)

is an isomorphism. Thus (B � X, ·) is an object of V .
(() Conversely, if (B � X, ·) is an object of V , then the derived action associated

with the split extension

0 X B n X B 0i2 p1

i1

where i1(b) = (b, 0), i2(x) = (0, x), p1(b, x) = b, is given by the pair (l, r).

Remark 3.49. As mentioned in Lemma 3.48, for any split extension (3.2.1) and the
corresponding derived action (l, r), there is an isomorphism of split extensions

0 X B n X B 0

0 X A B 0

i2

1X

p1

q
i1

1B

i p

s

where q(b, x) = s(b) + i(x), for any (b, x) 2 B � X. Thus, when we write b ⇤ x (resp.
x ⇤ b), one can think of it as the multiplication (b, 0) · (0, x) (resp. (0, x) · (b, 0)) in
B n X.

Remark 3.50. In order to prove that (B � X, ·) is an object of V , we need to check that
it satisfies all the identities j = j(a1, . . . , an) which determine the variety V . Since
B and X are objects of V and every element (b, x) 2 B � X can be written as the sum
(b, 0) + (0, x), it is sufficient to prove this when at least one of the a1, . . . , an is an
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element of the form (0, x), with x 2 X, and the others are of the form (b, 0), with
b 2 B.

For instance, using the notation of the previous remark, if V is a subvariety of
Com, then (B � X, ·) is commutative if and only if b ⇤ x = x ⇤ b, for any b 2 B and
x 2 X. Instead, if V is a subvariety of Assoc, then (B � X, ·) is an associative algebra
if and only if b ⇤ (xx0) = (b ⇤ x)x0, (xx0) ⇤ b = x(x0 ⇤ b), x(b ⇤ x) = (x ⇤ b)x and
b ⇤ (x ⇤ b0) = (b ⇤ x) ⇤ b0, for any b, b0 2 B and x, x0 2 X.

3.2.3 Categorical consequences

We recall from [28] that a semi-abelian category is algebraically coherent if for any
morphism f : X ! Y in C, the change of base functor

f ⇤ : PtY(C) ! PtX(C)

is coherent, which means that it preserves finite limits and jointly strongly epimor-
phic pairs of arrows. In the case of a variety of algebras V , this is equivalent to saying
that the comparison morphism

B[X + B[Y ! B[(X + Y)

is a surjective algebra homomorphism, fon any algebras B, X, Y of V (see [42]).
We explain two results which are useful for understanding the rest of the paper.

Theorem 3.51. [41, 42] Let V be an operadic variety of non-associative algebras. The
following conditions are equivalent:

(1) V is algebraically coherent;

(2) V is an Orzech category of interest;

(3) V is action accessible;

(4) there exist l1, . . . , l8, µ1, . . . , µ8 2 F such that

x(yz) = l1(xy)z + l2(yx)z + l3z(xy) + l4z(yx)
+ l5(xz)y + l6(zx)y + l7y(xz) + l8y(zx)

and

(yz)x = µ1(xy)z + µ2(yx)z + µ3z(xy) + µ4z(yx)
+ µ5(xz)y + µ6(zx)y + µ7y(xz) + µ8y(zx)

are identities in V .

Proof. From the results of [28] we have that (2) implies (1).
We address the reader to [41] for a detailed proof that (1) implies (4).
It follows immediately from the definition of an Orzech category of interest that

(4) implies (2).
We already proved in Theorem 3.28 that any Orzech category of interest is action

accessible, so that (2) implies (3).
Finally, as explained in Remark 2.3 of [44], a non-trivial use of [31, Lemma 2.9]

shows that (3) implies (1).
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Following [41] and [42], we call the two previous identities together the l/µ-
rules. Since the weak representability of actions implies action accessibility in gen-
eral, the existence of the l/µ-rules is a necessary condition for the variety V to be
weakly action representable.

Remark 3.52. When a variety of non-associative algebras V is an Orzech category of
interest, the corresponding category of groups with operations V 0 is the variety Alg
(see Example 3.6) and the notion of derived actions introduced in Definition 3.47
coincides with the one of Definition 3.8.

Theorem 3.53. [44] Let V be a variety of non-associative algebras over an infinite field F,
with char(F) 6= 2. The following conditions are equivalent:

(1) V is action representable;

(2) V is either the variety Lie or the variety AbAlg.

Proof. We already now that the both the varieties Lie and AbAlg are action repre-
sentable.

Now let V be an action representable variety of non-associative algebras and sup-
pose that V is not the variety AbAlg of abelian algebras. As shown in Proposition
3.1 and Proposition 3.4 of [44], V satisfies a non-trivial identity of degree two, i.e. V
is a variety of commutative or anti-commutative algebras.

If xy � yx = 0 is an identity of V , then considering the actions of the abelian
one-dimensional algebras Bi, i = 1, 2, 3, on the 79-dimensional algebra X defined
as in [44, Proposition 3.1], and the fact that (B1 + B2 + B3) n X is an object of V ,
one obtains that x(yz) = �(xy)z � y(xz) is also an identity of V and we have a
contradiction, since V 6= AbAlg (see [44, Proposition 4.1]).

If xy + yx = 0 is an identity of V , then using the same actions corrected for anti-
commutativity, one obtains that the Jacobi identity holds and V is a subvariety of
Lie (see [44, Proposition 4.3]). Finally, as shown in [44, Proposition 5.1], a proper
subvariety of Lie is action representable if and only if it is an abelian variety. Thus,
we can conclude that V = Lie.

Theorem 3.53 helps motivating our interest in the study of weakly representable
actions. In fact, in our context, there is only one non-trivial example of a variety
which is action representable. Therefore, in order to study the representability of
actions, it makes sense to weaken our assumptions.

The next results explains one way of understanding (weak) action representabil-
ity for any variety of non-associative algebras.

Proposition 3.54. [43] A variety of non-associative algebras V is weakly action repre-
sentable if and only if for any object X in it, there exists an object T = TX of V such that for
every derived action of an object B of V on X

l : B ⇥ X ! X, r : X ⇥ B ! X,

there exists a unique morphism j 2 HomV (B, T) and a derived action (l0, r0) of j(B) on X
such that

l0(j(b), x) = l(b, x), r0(x, j(b)) = r(x, b),

for every b 2 B and for every x 2 X.

Proof. ()) If V is weakly action representable, then for any object X in it there exists a
weak representation (T, t). Let B be an object of V which acts on X and let j : B ! T



3.2. Varieties of non-associative algebras 57

be the corresponding acting morphism. Consider the split extension diagram

0 X B n X B 0

0 X j(B)n X j(B) 0

i

1X

p

9!q
s

f

i0 p0

s0

(3.2.4)

where f is the corestriction of j to its image, i0(x) = (0, x), s0(j(b)) = (j(c), 0),
where (c, 0) = s(b), and q(b, x) = (j(b), x). Then the action of j(B) on X is defined
by the pair of bilinear maps

l0 : j(B)⇥ X ! X, r0 : X ⇥ j(B) ! X

where
l0(j(b), x) = s0(j(b))i0(x) = s(b)i(x) = l(b, x)

and
r0(j(b), x) = i(x)s0(j(b)) = i(x)s(b) = r(b, x),

for every b 2 B and for every x 2 X.
(() Conversely, given an object X of V , a weak representation of SplExt(�, X) is

given by (T, t), where the component

tB : SplExt(B, X) ⇢ HomV (B, T)

sends every action of B on X to the corresponding morphism j. Moreover, tB is an
injection since the morphism j is uniquely determined by the action of B on X. Thus
t is a monomorphism of functors.

When V is action representable, one can use the terminal object

0 // X // [X]n X // [X]oo

// 0.

of the category SplExt(X) to obtain the following.

Corollary 3.55. [44] A variety of non-associative algebras V is action representable if and
only if for any object X in it, there exists an object [X] of V acting on X with the following
property: for every derived action of an object B of V on X

l : B ⇥ X ! X, r : X ⇥ B ! X,

there exists a unique morphism j 2 HomV (B, [X]) such that

l(b, x) = j(b) ⇤ x, r(x, b) = x ⇤ j(b),

where j(b) ⇤ x and x ⇤ j(b) are given by the action of [X] on X.

Proof. ()) Let X be an object of C and let [X] be the actor of X. Let B be an object of
V which acts on X and let

0 X B n X B 0i p

s
(3.2.5)
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be the corresponding split extension. Then there exits a unique morphism

0 X B n X B 0

0 X [X]n X [X] 0

i

1X

p

q

s
j

and the action of B on X is uniquely determined by

l(b, x) = j(b) ⇤ x, r(x, b) = x ⇤ j(b).

(() Conversely, given an object X of V , one can define a natural transformation

t : SplExt(�, X) ! HomV (�, [X])

in the following way: for any object B of V , the component tB sends any action of B
on X to the unique morphism j : B ! [X]. The uniqueness of j implies that tB is an
injection. Moreover, tB is surjective since any morphism j 2 HomV (B, [X]) defines
a derived action (l, r) of B on X by

l(b, x) = j(b) ⇤ x, r(x, b) = x ⇤ j(b).

Thus t is a natural isomorphism and [X] is the actor of X.

3.2.4 Partial algebras

We end this chapter with a notion we shall use throughout the text.

Definition 3.56. [43] Let X be an F-vector space. A bilinear partial operation on X is a
map

· : W ! X,

where W is a vector subspace of X ⇥ X, which is bilinear on W, i.e.

(a1x1 + a2x2) · y = a1x1 · y + a2x2 · y

for any a1, a2 2 F and x1, x2, y 2 X such that (x1, y), (x2, y) 2 W and

x · (b1y1 + b2y2) = b1x · y1 + b2x · y2

for any b1, b2 2 F and x, y1, y2 2 X such that (x, y1), (x, y2) 2 W.

Definition 3.57. [43] A partial algebra over F is an F-vector space X endowed with a
bilinear partial operation

· : W ! X.

We denote it by (X, ·, W). When W = X ⇥ X we say that the algebra is total.

Let (X, ·, W) and (X0, ⇤, W0) be partial algebras over F. A homomorphism of par-
tial algebras is an F-linear map f : X ! X0 such that f (x · y) = f (x) ⇤ f (y) whenever
(x, y) 2 W, which tacitly implies that ( f (x), f (y)) 2 W0 (i.e. both x · y and f (x) ⇤ f (y)
are defined). We denote by PAlg the category whose objects are partial algebras and
whose morphisms are partial algebra homomorphisms.

Definition 3.58. [43] We say that a partial algebra (X, ·, W) satisfies an identity when
that identity holds wherever the bilinear partial operation is well defined.
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For instance, a partial algebra (X, ·, W) is associative if

x · (y · z) = (x · y) · z

for every x, y, z 2 X such that (x, y), (y, z), (x, yz), (xy, z) 2 W.

Remark 3.59. We observe that clearly any variety of non-associative algebras V has
an obvious forgetful functor U : V ! PAlg.
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Chapter 4

Commutative and
anti-commutative algebras

In this chapter we aim to study the representability of actions of some varieties of
non-associative algebras, over a field F with char(F) 6= 2, which satisfy the commu-
tative law or the anti-commutative law.

As explained in Chapter 3, we may assume our variety to satisfy the l/µ-rules,
or equivalently to be action accessible. When V is either a variety of commutative
or anti-commutative algebras, i.e. xy = #yx is an identity of V with # = ±1, the
l/µ-rules reduce to

x(yz) = a(xy)z + b(xz)y,

for some a, b 2 F and we have the following.

Proposition 4.1. [43] Let V be an action accessible, operadic variety of non-associative
algebras and suppose that V is not the variety AbAlg of abelian algebras.

(1) If V is a variety of commutative algebras, then V is a either a subvariety of CAssoc
or a subvariety of JJord.

(2) If V is a variety of anti-commutative algebras, then V is either a subvariety of Lie or
a subvariety of ACAAssoc.

Proof. For (1), let V be a variety of commutative algebras. If a = b = 0, then x(yz) =
0 and V is a subvariety of both CAssoc and JJord. If (a, b) 6= (0, 0), then

x(yz) = a(xy)z + b(xz)y,
y(xz) = a(yx)z + b(yz)x

and

(1 + b)x(yz) = (1 + b)(xz)y.

If b 6= �1, then x(zy) = x(yz) = (xz)y and V is a subvariety of CAssoc. If b = �1,
then

(1 + a)x(yz) = (1 + a)(xy)z.

If a 6= �1, then x(yz) = (xy)z as before. If a = �1, then the Jacobi identity holds
and V is a subvariety of JJord.

For the proof of (2), let V be a variety of anti-commutative algebras. Since
char(F) 6= 2, this is equivalent to saying that V is skew-symmetric, i.e. x2 = 0 is
an identity of V . If a = b = 0, then x(yz) = 0 and V is subvariety of both Lie and
ACAAssoc. If (a, b) 6= (0, 0), then

0 = xy2 = a(xy)y + b(xy)y,
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thus (a + b)(xy)y = 0. If b = �a, then

x(xz) = a
⇥
x2z � (xz)x

⇤
= �a(xz)x = ax(xz),

hence (a � 1)x(xz) = 0. If a = 1, then the Jacobi identity holds and V is a subvariety
of Lie. If x(xz) = 0 is an identity, then using the multilinearisation process we have

0 =(x + y)[(x + y)z] = x[(x + y)z] + y[(x + y)z] =
=x(xz) + x(yz) + y(xz) + y(yz) = x(yz) + y(xz)

and hence x(yz) + y(xz) = �x(zy)� (xz)y = 0. Thus x(zy) = �(xz)y and V is a
subvariety of ACAAssoc.

Finally, if (xy)y = 0, again using the multilinearisation process, we obtain

0 =[x(y + z)](y + z) = [x(y + z)]y + [x(y + z)]z =

=(xy)y + (xz)y + (xy)z + (xz)z = (xz)y + (xy)z.

Thus (xz)y + (xy)z = �(zx)y � z(xy) = 0 and again V is a subvariety of
ACAAssoc.

Remark 4.2. We observe that Nil2(Com) is a subvariety of both CAssoc and JJord:
in fact, from x(yz) = (xy)z = 0 we have that associativity holds and the Jacobi
identity is satisfied

x(yz) + y(zx) + z(xy) = 0 + 0 + 0 = 0.

If char(F) 6= 3, Nil2(Com) is precisely the intersection of the varieties CAssoc and
JJord. Indeed, let V be a subvariety of both CAssoc and JJord. Since commutativity,
associativity and the Jacobi identity hold in V , we have

(xy)z = x(yz) = �y(zx)� z(xy) = �x(yz)� (xy)z = �2(xy)z

and thus 3(xy)z = 3x(yz) = 0.
An example of an algebra which lies in the intersection of CAssoc and JJord but

which is not two-step nilpotent is the two-dimensional F3-algebra with basis {e1, e2}
and multiplication determined by

e2
1 = e1e2 = e2e1 = e2

2 = e2.

In a similar way, Nil2(ACom) is a subvariety of both Lie and ACAAssoc: in
fact, from x(yz) = (xy)z = 0 we have that anti-associativity holds and the Jacobi
identity is satisfied

x(yz) + y(zx) + z(xy) = 0 + 0 + 0 = 0.

If char(F) 6= 3, Nil2(ACom) coincides with the intersection of the varieties Lie and
ACAAssoc. Indeed, let V be a subvariety of both Lie and ACAAssoc. Since anti-
commutativity, anti-associativity and the Jacobi identity hold in V , we have

(xy)z = �x(yz) = �(xy)z � y(xz) = �(xy)z + (yx)z = �2(xy)z

and thus 3(xy)z = �3x(yz) = 0.
When char(F) = 3, it is possible to construct an algebra that lies in the intersec-

tion of Lie and ACAAssoc but which is not two-step nilpotent. Indeed, let g be the
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algebra of dimension 7 over F3 with basis

{e1, e2, e3, e4, e5, e6, e7}

and bilinear multiplication [�,�] : g⇥ g ! g determined by

[e1, e2] = �[e2, e1] = e4, [e1, e3] = �[e3, e1] = �e6, [e2, e3] = �[e3, e2] = e5

and
[e1, e5] = �[e5, e1] = [e2, e6] = �[e6, e2] = [e3, e4] = �[e4, e3] = e7.

Then (g, [�,�]) is a Lie algebra such that

[x, [x, y]] = 0

for any x, y 2 g (we recall this identity is equivalent to anti-associativity if the char-
acteristic of the field is different from 2). Indeed, let

x =
7

Â
i=1

aiei, y =
7

Â
i=1

biei

with ai, bi 2 F, for every i = 1, . . . , 7. Then

[x, y] = (a1b2 � a2b1)e4 + (a2b3 � a3b2)e5 + (a3b1 � a1b3)e6+

+ (a1b5 + a2b6 + a3b4 � a4b3 � a5b1 � a6b2)e7

and

[x, [x, y]] = [a3(a1b2 � a2b1) + a1(a2b3 � a3b2) + a2(�a1b3 + a3b1)]e7 = 0.

Furthermore, g is not two-step nilpotent since

[e1, [e2, e3]] = [e1, e5] = e7.

We thank Gabor P. Nagy for suggesting this example.

Corollary 4.3. [43] Let V be an action accessible, operadic, quadratic variety of non-
associative algebras and suppose that V is not the variety AbAlg of abelian algebras.

(1) If V is commutative, then it has to be one of the following varieties: CAssoc, JJord,
their intersection, or Nil2(Com).

(2) If V is anti-commutative, then it has to be one of the following varieties: Lie,
ACAAssoc, their intersection, or Nil2(ACom).

Proof.

(1) By Proposition 4.1, any identity of degree 3 in V is either associativity, or the
Jacobi identity or x(yz) = 0.

(2) Again by Proposition 4.1, any identity of degree 3 in V is either the Jacobi
identity, or the anti-associativity or x(yz) = 0.

We already know that Lie is action representable and that the actor of a Lie al-
gebra X is the Lie algebra Der(X) of derivations of X. Therefore, we shall study the
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representability of actions of the varieties CAssoc, JJord, Nil2(Com), ACAAssoc
and Nil2(ACom).

4.1 Commutative associative algebras

As already mentioned in Chapter 2, the representability of actions of the variety of
commutative associative algebras over a field was studied in [15], where F. Borceux,
G. Janelidze and G. M. Kelly proved that CAssoc is not action representable.

Lemma 4.4. [15] Let X be a commutative associative algebra. There exists a natural iso-
morphism

SplExt(�, X) ⇠= HomAssoc(U(�), M(X)),

where SplExt(�, X) = SplExtCAssoc(�, X), U : CAssoc ! Assoc denotes the forgetful
functor and

M(X) = { f 2 End(X) | f (xy) = f (x)y, 8x, y 2 X}

is the associative algebra of multipliers of X, endowed with a product induced by the usual
composition of functions (see [26, 59]).

Proof. Given a split extension

0 X A B 0i p

s
(4.1.1)

in CAssoc, there exists an isomorphism of commutative associative algebra split
extensions as in Remark 3.49 and A ⇠= B n X = (B � X, ·), where

(b, x) · (b0, x0) = (bb0, xx0 + b ⇤ x0 + b0 ⇤ x).

Thus we have a homomorphism of associative algebras

B ! M(X)

which maps an element b 2 B onto the linear map b ⇤ � given by the action of B on
X . On the other hand, starting with a homomorphism

B ! M(X) : b 7! b ⇤ �

we can build the split extension in CAssoc

0 X B n X B 0i2 p1

i1

where B n X = (B � X, ·) as before. Finally, one can check that the bijection
Act(B, X) ⇠= HomAssoc(U(B), M(X)) is natural in B since the diagram in Set

SplExt(B, X) Hom(U(B), M(X))

SplExt(B0, X) Hom(U(B0), M(X))

SplExt( f ,B) Hom(U( f ),M(X))

tB0

is commutative for any morphism f : B0 ! B in CAssoc.
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We observe that M(X) in general needs not be a commutative algebra. For in-
stance, let X = F

2 be the abelian two-dimensional algebra, then M(X) = End(X)
which is not commutative. However there are special cases where M(X) is an object
of CAssoc (see [15] and [26]), such as when the annihilator of X

Ann(X) = {x 2 X | xy = 0, 8y 2 X}

is trivial or when X2 = X, where X2 denotes the subalgebra of X generated by the
products xy, with x, y 2 X.

In fact, if Ann(X) = 0, then given two elements f , g 2 M(X), we have

f (g(x))y = f (g(x)y) = f (xg(y)) = f (x)g(y) = g( f (x))y

for any x, y 2 X. Thus f (g(x))� g( f (x)) 2 Ann(X) = 0, i.e. f � g = g � f .
Instead, if X2 = X we have

f (g(xy)) = f (xg(y)) = f (x)g(y) = g( f (x)y) = g( f (xy))

for any x, y 2 X. Again f � g = g � f and M(X) is a commutative associative algebra.
In [15, Theorem 2.6] the authors also proved the following characterization.

Theorem 4.5. [15] Let X be a commutative associative algebra. Then M(X) is a commuta-
tive associative algebra if and only if it the functor SplExt(�, X) is representable.

Proof. If M(X) is an object of CAssoc, then we deduce that

SplExt(�, X) = HomAssoc(U(�), U(M(X)))
⇠= HomCAssoc(�, M(X))

since the forgetful functor U : CAssoc ! Assoc is fully faithful. Thus, M(X) is the
actor of X and SplExt(�, X) is representable.

Conversely, suppose that the functor SplExt(�, X) is representable by a commu-
tative associative algebra [X]. Then we have that

HomCAssoc(�, [X]) ⇠= SplExt(�, X) ⇠= HomAssoc(U(�), M(X)).

In particular the identity morphism 1[X] by these bijections to an associative algebra
homomorphism u : [X] ! M(X). For any other commutative associative algebra B,
the composition with u induces thus a bijection

HomAssoc(U(B), U([X])) = HomCAssoc(�, [X]) ⇠= HomAssoc(U(�), M(X)).

The free non necessarily commutative associative algebra on one generator is the
algebra F

⇤[t] of polynomials with coefficients in F and a zero constant term. But
this algebra is also commutative, thus it can be chosen as the object B in the bijection
above. Since it is a strong generator in the category Assoc, it follows that u is an
isomorphism. Thus, M(X) is an object of CAssoc.

Since there are examples of commutative associative algebras X such that M(X)
is not commutative, it follows that the category CAssoc is not action representable.
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4.2 Jacobi-Jordan algebras

We know that every split extension of B by X in the category Lie is represented by
a Lie algebra homomorphism B ! Der(X). For Jacobi-Jordan algebras, the role the
derivations have in Lie is played by the so-called anti-derivations.

Definition 4.6. [24] Let X be a Jacobi-Jordan algebra. An anti-derivation is a linear
map d : X ! X such that

d(xy) = �d(x)y � d(y)x, 8x, y 2 X.

The (left) multiplications Lx, with x 2 X, are particular anti-derivations, called
inner anti-derivations. We denote by ADer(X) the space of anti-derivations of X and
by Inn(X) the subspace of the inner anti-derivations. Anti-derivations play a signif-
icant role in the study of cohomology of Jacobi-Jordan algebras: see [8] for further
details.

We now want to make explicit what are the derived actions in the category JJord
and how they are related with the anti-derivations. The following is an immediate
application of Lemma 3.48 and Remark 3.50.

Proposition 4.7. [43] Let X and B be two Jacobi-Jordan algebras. Given a pair of bilinear
maps

l : B ⇥ X ! X, r : X ⇥ B ! X,

we construct (B � X, ·) as in Equation (3.2.2). Then (B � X, ·) is a Jacobi-Jordan algebra if
and only if

(1) b ⇤ x = x ⇤ b;

(2) b ⇤ (xx0) = �(b ⇤ x)x0 � (b ⇤ x0) ⇤ x;

(3) (bb0) ⇤ x = �b ⇤ (b0 ⇤ x)� b0 ⇤ (b ⇤ x);

for every b, b0 2 B and x, x0 2 X.

Proof. Using Remark 3.50, (B � X, ·) is a commutative algebra if and only if (1) is
satisfied. Moreover, the Jacobi identity holds in (B� X, ·) if and only if the following
equations are satisfied for any b, b0 2 B and x, x0 2 X:

· (b, 0) · [(0, x) · (0, x0)] = �[(b, 0) · (0, x)] · (0, x0)� [(b, 0) · (0, x0)] · (0, x), which
is equivalent to (2);

· [(b, 0) · (b0, 0)] · (0, x) = �(b, 0) · [(b0, 0) · (0, x)]� (b0, 0) · [(b, 0) · (0, x)], which
is equivalent to (3).

In an equivalent way, a derived action of B on X in the variety JJord is given by
a linear map

B ! ADer(X) : b 7! b ⇤ �

which satisfies
(bb0) ⇤ � = �hb ⇤ �, b0 ⇤ �i, 8b, b0 2 B, (4.2.1)

where

h�,�i : ADer(X)⇥ ADer(X) ! End(X), h f , f 0i = � f � f 0 � f 0 � f

denotes the anti-commutator between two anti-derivations of X.
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Remark 4.8. The vector space ADer(X) endowed with the anti-commutator is not
in general a Jacobi-Jordan algebra. For instance, if X = F is the abelian one-
dimensional algebra, then ADer(X) = End(X) ⇠= F (every linear endomorphism
of X is of the form ja : x 7! ax, for some a 2 F) does not satisfy the Jacobi identity.
Nevertheless, there are some subspaces of ADer(X) that are Jacobi-Jordan algebras.
For instance, the subspace Inn(X) of all inner anti-derivations of X. Indeed, the
linear map

X ! Inn(X) : x 7! Lx

is a Jacobi-Jordan algebra homomorphism. This is true in general for the image of
any linear map B ! ADer(X) satisfying Equation (4.2.1).

Thus we need to use an algebraic structure which includes the space of anti-
derivations endowed with the anti-commutator and which allows us to describe
categorically the representability of actions of the variety JJord. The answer is given
by partial algebras.

Indeed, the vector space ADer(X) endowed with the anti-commutator h�,�i is
a commutative partial algebra. In this case W is the preimage

h�,�i�1(ADer(X))

of the inclusion ADer(X) ,! End(X).

Theorem 4.9. [43] Let X be a Jacobi-Jordan algebra.

(1) There exists a natural isomorphism

r : SplExt(�, X) ⇠= HomPAlg(U(�), ADer(X)),

where SplExt(�, X) = SplExtJJord(�, X) and U : JJord ! PAlg denotes the for-
getful functor;

(2) if ADer(X) is a Jacobi-Jordan algebra, then the functor SplExt(�, X) is representable
and ADer(X) is the actor of X;

Proof. (1) For a Jacobi-Jordan algebra B, we define the component

rB : SplExt(B, X) ! HomPAlg(U(B), ADer(X))

as the functor which sends any split extension

0 X A B 0i p

s

to the homomorphism B ! ADer(X) : b 7! b ⇤ �. The transformation r is natural.
Indeed, for any Jacobi-Jordan algebra homomorphism f : B0 ! B, it is easy to check
that the diagram in Set

SplExt(B, X) Hom(U(B), ADer(X))

SplExt(B0, X) Hom(U(B0), ADer(X))

rB

SplExt( f ,X) Hom(U( f ),ADer(X))

rB0

where Hom(U(�),�) = HomPAlg(U(�),�), is commutative. Moreover, for
any Jacobi-Jordan algebra B, the morphism rB is an injection, as each element of
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SplExt(B, X) is uniquely determined by the corresponding action of B on X. Thus
r is a monomorphism of functors. Finally r is a natural isomorphism since, given
any Jacobi-Jordan algebra B and any homomorphism of partial algebras j : B !
ADer(X), the bilinear maps lj : B ⇥ X ! X : (b, x) 7! j(b)(x), rj = lj define a
(unique) derived action of B on X such that rB(lj, rj) = j.

(2) If ADer(X) is a Jacobi-Jordan algebra, then by (1) we have a natural isomor-
phism

SplExt(�, X) ⇠= HomJJord(�, ADer(X)),

hence ADer(X) is the actor of X.

4.3 Two-step nilpotent commutative algebras

We now analyse the case where V is the variety Nil2(Com) of two-step nilpotent
commutative algebras, i.e. V is determined by the identities xy = yx and x(yz) = 0.
An example of such an algebra is the Kronecker algebra k1 [53], which is the three-
dimensional algebra with basis {e1, e2, e3} and multiplication determined by e1e2 =
e2e1 = e3.

We shall show that Nil2(Com) is a weakly action representable, operadic,
quadratic variety of commutative algebras.

Proposition 4.10. [43] Let X and B be two algebras in Nil2(Com). Given a pair of bilinear
maps

l : B ⇥ X ! X, r : X ⇥ B ! X,

we construct (B � X, ·) as in Equation (3.2.2). Then (B � X, ·) is in Nil2(Com) if and
only if

(1) b ⇤ x = x ⇤ b;

(2) b ⇤ (xx0) = (b ⇤ x)x0 = 0;

(3) (bb0) ⇤ x = b ⇤ (b0 ⇤ x) = 0;

for every b, b0 2 B and x, x0 2 X.

Proof. The proof is a straightforward application of Lemma 3.48 and Remark 3.50.
In fact, the bilinear map (·) is commutative if and onyl if (1) is satisfied. Moreover,
(B � X, ·) is a two-step nilpotent algebra if and only the following equations hold
for any b, b0 2 B and x, x0 2 X:

· (b, 0) · [(0, x) · (0, x0)] = [(b, 0) · (0, x)] · (0, x0) = (0, 0), which is equivalent to
(2);

· [(b, 0) · (b0, 0)] · (0, x) = (b, 0) · [(b0, 0) · (0, x)] = (0, 0), which is equivalent to
(3).

The second equation of Proposition 4.10 states that, for every b 2 B, the linear
map b ⇤ � belongs to the vector space

[X]2 = { f 2 End(X) | f (xy) = f (x)y = 0, 8x 2 X}.
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Moreover, seeing [X]2 as an abelian algebra (i.e., we endow [X]2 with the bilinear
multiplication h f , gi = 0End(X), for any f , g 2 [X]2), from the third equation we
deduce that the linear map

B ! [X]2 : b 7! b ⇤ �

is an algebra homomorphism.
On the other hand, given a homomorphism of algebras

j : B ! [X]2, j(b) = b ⇤ �

satisfying
b ⇤ (b0 ⇤ x) = 0, 8b, b0 2 B, 8x 2 X,

we can consider the split extension

0 X (B � X, ⇤j) B 0i p

s

where the two-step nilpotent commutative algebra structure of B � X is given by

(b, x) ⇤j (b0, x0) = (bb0, xx0 + b ⇤ x0 + b0 ⇤ x), 8(b, x), (b0, x0) 2 B � X.

We can now claim the following result.

Theorem 4.11. [43]

(1) Let B and X be two-step nilpotent commutative algebras. The set of isomorphism
classes of split extensions of B by X is in bijection with set of the algebra homomor-
phisms

B ! [X]2 : b 7! b ⇤ �

satisfying
b ⇤ (b0 ⇤ x) = 0, 8b, b0 2 B, 8x 2 X. (4.3.1)

(2) The variety Nil2(Com) is weakly action representable. For any object X of
Nil2(Com), a weak representation of SplExt(�, X) = SplExtNil2(Com)(�, X) is
given by

t : SplExt(�, X) ⇢ HomNil2(Com)(�, [X]2),

where tB is the injection which sends any split extension of B by X to the corresponding
homomorphism B ! [X]2, defined by b 7! b ⇤ � as above.

(3) A homomorphism B ! [X]2 is an acting morphism if and only if it satisfies Equa-
tion (4.3.1).

Proof.

(1) It follows from the analysis above.

(2) We observe that t is a natural transformation. Indeed, for every morphism
f : B0 ! B in Nil2(Com), one can check that the diagram in Set

SplExt(B, X) Hom(B, [X]2)

SplExt(B0, X) Hom(B0, [X]2)

tB

SplExt( f ,X) Hom( f ,[X]2)

tB0
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is commutative. Moreover tB is an injection since every isomorphism class
of split extensions of B by X is uniquely determined by the corresponding
derived action. Thus t is a monomorphism of functors and Nil2(Com) is a
weakly action representable category.

(3) Finally, j : B ! [X]2 is an acting morphism if and only if it defines a split
extension of B by X in Nil2(Com), i.e. if and only if it satisfies Equation (4.3.1).

Let us observe that not every homomorphism B ! [X]2 defines a split extension
of B by X. For instance, if B = F{b, b0} and X = F{x} ⇠= F are abelian algebras,
then [X]2 = End(X) and the homomorphism j : B ! [X]2, defined by

j(b) = j(b0) = 1X

is not an acting morphism. Indeed,

j(b)(j(b0)(x)) = 1X(1X(x)) = x 6= 0.

4.4 Anti-commutative anti-associative algebras

For the variety ACAAssoc of anti-commutative anti-associative algebras, a similar
description of split extensions and derived actions can be made as for the variety
JJord. The role of the anti-derivations is played here by the endomorphisms in the
associative partial algebra

AM(X) := { f 2 End(X) | f (xy) = � f (x)y, 8x 2 X},

of anti-multipliers of X, whose bilinear partial operation is given by

h f , gi = � f � g.

It is easy to see that h�,�i does not define, in general, a total algebra structure
on AM(X), nor need it be anti-commutative or anti-associative. An example is given
by the abelian two-dimensional algebra X = F

2, where AM(X) = End(X).
We may check that a derived action of B by X in the variety ACAAssoc is the

same thing as a partial algebra homomorphism

B ! AM(X) : b 7! b ⇤ �

which satisfies
(bb0) ⇤ � = �b ⇤ (b0 ⇤ �), 8b, b0 2 B.

Moreover, we obtain the following result whose proof is similar to the one of Theo-
rem 4.9.

Theorem 4.12. [43] Let X be a an object of ACAAssoc.

(1) There exists a natural isomorphism

SplExt(�, X) ⇠= HomPAlg(U(�), AM(X)),

where SplExt(�, X) = SplExtACAAssoc(�, X) and U : ACAAssoc ! PAlg de-
notes the forgetful functor;
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(2) if [X] is an anti-commutative anti-associative algebra, then the functor SplExt(�, X)
is representable and AM(X) is the actor of X;

4.5 Two-step nilpotent anti-commutative algebras

We conclude this section by studying the representability of actions of the variety
Nil2(ACom), which is determined by the identities xy = �yx and x(yz) = 0. An
important example of a two-step nilpotent anti-commutative algebra is the (2n + 1)-
dimensional Heisenberg algebra h2n+1, that is the algebra with basis

{e1, . . . , en, f1, . . . , fn, h}

and non-trivial products ei fj = � f jei = dijh, for every i, j = 1, . . . , n, where dij is the
Kronecker delta.

A similar analysis can be done as in the case of two-step nilpotent commutative
algebras, so we may simply state the following theorem:

Theorem 4.13. [43]

(1) Let B and X be two-step nilpotent anti-commutative algebras. The set of isomorphism
classes of split extensions of B by X is in bijection with the of algebra homomorphisms

B ! [X]2 : b 7! b ⇤ �

where [X]2 is defined as in the commutative case, which satisfy the condition

b ⇤ (b0 ⇤ x) = 0, 8b, b0 2 B, 8x 2 X. (4.5.1)

(2) The variety Nil2(ACom) is weakly action representable. For any object X of
Nil2(ACom), a weak representation of SplExt(�, X) = SplExtNil2(ACom)(�, X)
is given by

t : SplExt(�, X) ⇢ HomNil2(ACom)(�, [X]2),

where tB is the injection which associates with any split extension of B by X, the
corresponding homomorphism B ! [X]2 : b 7! b ⇤ � as in (1).

(3) A homomorphism B ! [X]2 is an acting morphism if and only if it satisfies Equa-
tion (4.5.1).

Again, if B = F{b, b0} is the abelian two-dimensional algebra and X = F is the
abelian one-dimensional algebra, the linear map j : B ! [X]2 = End(X), defined
by j(b) = j(b0) = 1X is an example of a morphism in Nil2(ACom) which is not an
acting morphism.
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Chapter 5

Leibniz algebras

The aim of this chapter is to study the representability of actions of the variety Leib
of Leibniz algebras and to give another example of a weakly action representable
variety of non-associative algebras (see [29, Section 2]).

Leibniz algebras were introduced by J.-L. Loday in [58] as a not skew-symmetric
version of Lie algebras. Such algebraic structures were considered earlier by A.
Blokh, who called them D-algebras [11] for their strict connection with derivations.
Leibniz algebras play a significant role in several areas of mathematics and physics
(e.g. [10, 39, 50, 51, 57, 64]).

5.1 Definitions and main properties

Again, we assume that F is a field with char(F) 6= 2. We refer to [6] and [58] for the
definitions and the results in this section.

Definition 5.1. [58] A (right) Leibniz algebra over F is a vector space g over F endowed
with a bilinear map (called commutator or bracket) [�,�] : g⇥ g ! g which satisfies
the (right) Leibniz identity

[[x, y] , z] = [[x, z], y] + [x, [y, z]] , 8x, y, z 2 g.

In the same way we can define a left Leibniz algebra, using the left Leibniz iden-
tity

[x, [y, z]] = [[x, y] , z] + [y, [x, z]] , 8x, y, z 2 g.

A Leibniz algebra that is both left and right is called symmetric Leibniz algebra.

Every Lie algebra is a Leibniz algebra and every Leibniz algebra with skew-
symmetric commutator is a Lie algebra. The full inclusion i : Lie ! Leib has a
left adjoint p : Leib ! Lie that associates, with every Leibniz algebra g, its quotient
g/gann, where gann = h[x, x] | x 2 gi is called the Leibniz kernel of g.

We define the left and the right center of a Leibniz algebra

Zl(g) = {x 2 g | [x, g] = 0} , Zr(g) = {x 2 g | [g, x] = 0}

and we observe that they coincide when g is a Lie algebra. The center of g is Z(g) =
Zl(g) \ Zr(g). In general Zr(g) is an ideal of g, while the left center may not even be
a subalgebra. Note that gann ✓ Zr(g) since

[x, [y, y]] = [[x, y], y]� [[x, y], y] = 0

and thus gann is an abelian algebra.
Finally we recall the definitions of solvable and nilpotent Leibniz algebras.
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Definition 5.2. [6] Let g be a right Leibniz algebra over F and let

g0 = g, gk+1 = [gk, gk], 8k � 0,

be the derived series of g. g is n�step solvable if gn�1 6= 0 and gn = 0.

Definition 5.3. [6] Let g be a right Leibniz algebra over F and let

g(0) = g, L(k+1) = [g(k), g], 8k � 0,

be the lower central series of g. g is n�step nilpotent if g(n�1) 6= 0 and g(n) = 0.

Many results of Lie algebras are still valid for Leibniz algebras. One of them
is the Levi decomposition, which states that any Leibniz algebra g over a field F of
characteristic zero is the semidirect product of its radical rad(g), which is the largest
solvable ideal of g, and a semisimple Lie algebra. This clarifies the importance of the
problem of classification of solvable and nilpotent Leibniz algebras. For instance, in
[46], [52], [53] and [54] two-step nilpotent algebras and their derivations were studied
and classified, while in [35] and [36] the authors classified non-nilpotent Leibniz
algebras g with one-dimensional derived subalgebra [g, g].

5.2 Derivations, anti-derivations and biderivations

The definition of derivation for a Leibniz algebra is the same as in the case of Lie
algebras.

Definition 5.4. [58] Let g be a Leibniz algebra over F. A derivation of g is a linear
map d : g ! g such that

d([x, y]) = [d(x), y] + [x, d(y)] , 8x, y 2 g.

The right multiplications of g are particular derivations called inner derivations
and an equivalent way to define a Leibniz algebra is to say that the (right) adjoint
map adx = [�, x] is a derivation, for every x 2 g. On the other hand the left adjoint
maps are not derivations in general.

With the usual bracket [d1, d2] = d1 � d2 � d2 � d1, the set Der(g) is a Lie algebra
and the set Inn(g) of all inner derivations of g is an ideal of Der(g). Furthermore,
Aut(g) is a Lie group and the associated Lie algebra is Der(g).

The definitions of anti-derivation and biderivation for a Leibniz algebra were intro-
duced by J.-L. Loday in [58].

Definition 5.5. [58] Let g be a (right) Leibniz algebra. An anti-derivation of g is a
linear map D : g ! g such that

D([x, y]) = [D(x), y]� [D(y), x], 8x, y 2 g.

For a left Leibniz algebra g, we have to ask that

D([x, y]) = [x, D(y)]� [y, D(x)], 8x, y 2 g.

One can check that, for every x 2 g, the left multiplication Adx = [x,�] defines and
anti-derivation. We observe that in the case of Lie algebras, there is no difference
between a derivation and an anti-derivation.
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Remark 5.6. The set of anti-derivations of a Leibniz algebra g has a Der(g)-module
structure with the multiplication

d · D := [D, d] = D � d � d � D,

for every d 2 Der(g) and for every anti-derivation D.

Remark 5.7. Let D : g ! g be an anti-derivation. Then, for every x 2 g, we have

D([x, x]) = [D(x), x]� [D(x), x] = 0,

i.e. D(gann) = 0.

Definition 5.8. [58] Let g be a (right) Leibniz algebra. A biderivation of g is a pair
(d, D) where d is a derivation and D is an anti-derivation, such that

[x, d(y)] = [x, D(y)], 8x, y 2 g (5.2.1)

i.e. d(y)� D(y) 2 Zr(g), for any y 2 g.

Remark 5.9. For a left Leibniz algebra g, Equation (5.2.1) becomes

[d(x), y] = [D(x), y], 8x, y 2 g.

The set of all biderivations of g, denoted by Bider(g), has a Leibniz algebra struc-
ture with the bracket

[(d, D), (d0, D0)] = (d � d0 � d0 � d, D � d0 � d0 � D)

and it is possibile to define a Leibniz algebra homomorphism

g ! Bider(g) : x 7! (� adx, Adx).

The pair (� adx, Adx) is called the inner biderivation associated with x 2 g and the
set of all inner biderivations forms a Leibniz subalgebra of Bider(g).

Independently of its intrinsic interest, derivations and biderivations find con-
crete applications in representation theory (cf. [57]), (sub-)Riemannian geometry and
control theory (see [10] and the bibliography therein).

Now we give an example of computation of the biderivations of a Leibniz alge-
bra.

Example 5.10. Let d1 be the four-dimensional Dieudonné algebra (see [53] for more
details), i.e. d1 is the four-dimensional (symmetric) Leibniz algebra with basis
{e1, e2, e3, z} and non-zero commutators

[e1, e3] = [e2, e3] = �[e3, e1] = [e3, e2] = z.

We want to find the Leibniz algebra Bider(d1) of biderivations of d1. Let d 2 gl(d1)
be a derivation, then d is represented, with respect to the basis {e1, e2, e3, z}, by a
matrix of the type 0

BB@

a11 a12 a13 0
a21 a22 a23 0
a31 a32 a33 0
a1 a2 a3 g

1

CCA ,
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where D(z) = gz because [d1, d1] = F{z} and d([d1, d1]) ✓ [d1, d1]. The entries aij,
i, j = 1, 2, 3, satisfy the following set of equations

a31 + a32 = 0
a11 + a21 + a33 = g

a31 � a32 = 0
a32 = 0
a12 + a22 + a33 = g

�a11 + a21 � a33 = g

�a12 + a22 + a33 = g

a23 = 0.

Thus we have

Der(d1) =

8
>><

>>:

0

BB@

x 0 a 0
0 x 0 0
0 0 y 0
a1 a2 a3 x + y

1

CCA

�����x, y, a, a1, a2, a3 2 F

9
>>=

>>;
.

Now let D 2 gl(d1) be an anti-derivation, then D is represented by a matrix of the
type 0

BB@

a011 a012 a013 0
a021 a022 a023 0
a031 a032 a033 0
A1 A2 A3 0

1

CCA ,

where D(z) = 0 because Leib(d1) = [d1, d1] = Fz. The entries a0ij, i, j = 1, 2, 3, must
satisfy the following equations

a031 + a032 = 0
a011 + a021 + a033 = 0
a012 + a022 � a033 = 0

�a012 � a022 � a033 = 0.

Thus, a general anti-derivation of d1 is represented by
0

BB@

a011 a012 a013 0
a021 a011 + a021 � a012 a023 0
a031 �a031 a011 + a021 0
A1 A2 A3 0

1

CCA

and, by applying Equation (5.2.1), we obtain

a031 = 0, a = a013 � a023, y = a011 + a021

and
x = a011 � a021 = a011 + a021 � 2a012.
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We conclude that

Bider(d1) =

8
>><

>>:

0

BB@

0

BB@

x 0 a 0
0 x 0 0
0 0 y 0
a1 a2 a3 x + y

1

CCA ,

0

BB@

y+x
2

y�x
2 a + b 0

y�x
2

y+x
2 b 0

0 0 y 0
A1 A2 A3 0

1

CCA

1

CCA

�����x, y, a, b, ai, Aj 2 F

9
>>=

>>;

and the inner biderivations are represented by the pairs of matrices
0

BB@

0

BB@

0 0 0 0
0 0 0 0
0 0 0 0
a1 a1 a3 0

1

CCA ,

0

BB@

0 0 0 0
0 0 0 0
0 0 0 0
a1 �a1 A3 0

1

CCA

1

CCA .

5.3 Biderivations of low-dimensional Leibniz algebras

We present now the complete classification of the Leibniz algebras of biderivations
of low-dimensional Leibniz algebras over a general field F with char(F) 6= 2 [62].

There is no non-trivial Leibniz algebra in dimension 1, thus we start with two-
dimensional Leibniz algebras.

5.3.1 Biderivations of two-dimensional Leibniz algebras

Let dimF g = 2, i.e. g = F{e1, e2}. Then, as shown in [33] by C. Cuvier, up to
isomorphism we have only two non-Lie Leibniz algebra structures on g.

(1) g1 : nilpotent Leibniz algebra with non-trivial bracket [e2, e2] = e1;

(2) g2 : solvable Leibniz algebra with non-trivial brackets [e1, e2] = [e2, e2] = e1.

Notice that g1 is a symmetric Leibniz algebra, while g2 is only a right Leibniz
algebra. It turns out that

Der(g1) =

⇢✓
2a b
0 a

◆ ����a, b 2 F

�

and
Der(g2) =

⇢✓
a a
0 0

◆ ����a 2 F

�
.

Moreover it is easy to check that the set of anti-derivations of g1 and g2 are both
represented by the matrices of the form

✓
0 x
0 y

◆
.

Equation (5.2.1) implies that y = a for g1 and y = 0 for g2, thus we have

Bider(g1) =

⇢✓✓
2a b
0 a

◆
,
✓

0 x
0 a

◆◆ ����a, b, x 2 F

�

and
Bider(g2) =

⇢✓✓
a a
0 0

◆
,
✓

0 x
0 0

◆◆ ����a, x 2 F

�
.
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Finally the inner biderivations of g1 are represented by the pairs of matrices
✓✓

0 b
0 0

◆
,
✓

0 �b
0 0

◆◆
,

meanwhile the biderivations of g2 are all inner.

5.3.2 Biderivations of three-dimensional Leibniz algebras

Three-dimensional complex Leibniz algebras and their derivations were classified in
[27] and [68], while the more general classification of three-dimensional right Leibniz
algebras over a field F, with char(F) 6= 2, can be found in [5] and [69].

Let dimF g = 3 and let {e1, e2, e3} be a basis of g over F. The list of non-
isomorphic three-dimensional right Leibniz algebras over F is the following.

Leibniz algebra Non-zero brackets
g1 [e1, e3] = �2e1, [e2, e2] = e1, [e3, e2] = �[e2, e3] = e2
g2(a), a 6= 0 [e1, e3] = ae1, [e3, e2] = �[e2, e3] = e2
g3 [e3, e2] = �[e2, e3] = e2, [e3, e3] = �e1
g4 [e2, e2] = e1, [e3, e3] = e1
g5 [e2, e2] = e1, [e3, e3] = �e1
g7(a), a 6= 0 [e2, e2] = [e2, e3] = e1, [e3, e3] = ae1
g8 [e2, e3] = e1
g9 [e1, e3] = e2, [e2, e3] = e1
g10 [e1, e3] = e2, [e2, e3] = �e1
g12(a), a 6= 0 [e1, e3] = e2, [e2, e3] = ae1 + e2
g13 [e1, e3] = e1, [e2, e3] = e2
g14 [e1, e3] = e2, [e3, e3] = e1
g15 [e1, e3] = e1 + e2, [e3, e3] = e1

Here we use the same numbering of [5], but we do not report the algebras g6(a) and
g11(a), where a 6= 0, which are isomorphic to g4 and g9 respectively. We want to ex-
tend the results of [68] by completing the classification of the Lie algebras of deriva-
tions of three-dimensional Leibniz algebras over a general field F, with char(F) 6= 2,
and by finding the biderivations of this class of Leibniz algebras.

Remark 5.11. [62] We present the following algorithm for finding derivations and
anti-derivations. Let g be a Leibniz algebra and let (d, D) 2 Bider(g). Then, for
every x, y 2 g, we have

d([x, y]) = [d(x), y] + [x, d(y)], D([x, y]) = [D(x), y]� [D(y), x]

if and only if

(d � ady)(x) = (ady �d)(x) + add(y)(x), (D � ady)(x) = (ady �D)(x)� AdD(y)(x),

thus
[d, ady] = add(y), [D, ady] = �AdD(y) .

Fixed a basis {e1, . . . , en} of g, we have that the biderivation (d, D) is represented by
a pair of n ⇥ n matrices ((di,j)i,j, (Di,j)i,j) and for every i = 1, . . . , n

[d, adei ] = add(ei), [D, adei ] = �AdD(ei)
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which are equations in the entries of the matrices representing d and D. By solv-
ing this set of equations, and after imposing Equation (5.2.1), we find the matrices
(di,j)i,j, (Di,j)i,j.

A straightforward application of the above algorithm produces the following
complete classification of biderivations of three-dimensional right Leibniz algebras
over F. In particular we find that the dimension of these biderivation algebras lies
between three and six and there are only two parameterized families of Leibniz al-
gebra of biderivations of three-dimensional Leibniz algebras over F.

Theorem 5.12. [62] Let F be a field with char(F) 6= 2. The Leibniz algebras of biderivations
of three-dimensional right Leibniz algebras over F can be described as follows:

· Bider(g1) =

8
<

:

0

@

0

@
2x y 0
0 x y
0 0 0

1

A ,

0

@
0 �y a
0 x y
0 0 0

1

A

1

A
�����x, y, a 2 F

9
=

;;

· Bider(g2(a)) =

8
<

:

0

@

0

@
x 0 0
0 y z
0 0 0

1

A ,

0

@
0 a b
0 y z
0 0 0

1

A

1

A
�����x, y, z, a, b 2 F

9
=

;,

if a 6= �1 and

Bider(g2(�1)) =

8
<

:

0

@

0

@
x 0 0
0 y z
0 0 0

1

A ,

0

@
0 0 b
0 y z
0 0 0

1

A

1

A
�����x, y, z, b 2 F

9
=

;;

· Bider(g3) =

8
<

:

0

@

0

@
0 0 y
0 x z
0 0 0

1

A ,

0

@
0 0 a
0 x z
0 0 0

1

A

1

A
�����x, y, z, a 2 F

9
=

;;

· Bider(g4) =

8
<

:

0

@

0

@
2x y z
0 x 0
0 0 x

1

A ,

0

@
0 a b
0 x 0
0 0 x

1

A

1

A
�����x, y, z, a, b 2 F

9
=

;;

· Bider(g5) =

8
<

:

0

@

0

@
2x y t
0 x �z
0 z x

1

A ,

0

@
0 a b
0 x �z
0 z x

1

A

1

A
�����x, y, z, t, a, b 2 F

9
=

;;

· Bider(g7(a)) =

8
<

:

0

@

0

@
gx y z
0 x x

2
0 � x

2a (g � 1)x

1

A ,

0

@
0 a b
0 x x

2
0 � x

2a (g � 1)x

1

A

1

A
�����x, y, z, a, b 2 F

9
=

;,

where g =
4a � 1

2a
;

· Bider(g8) =

8
<

:

0

@

0

@
x + y z t

0 x 0
0 0 y

1

A ,

0

@
0 z t
0 0 a
0 0 y

1

A

1

A
�����x, y, z, t, a 2 F

9
=

;;

· Bider(g9) =

8
<

:

0

@

0

@
x y 0
y x 0
0 0 0

1

A ,

0

@
0 0 a
0 0 b
0 0 0

1

A

1

A
�����x, y, a, b 2 F

9
=

;;

· Bider(g10) =

8
<

:

0

@

0

@
x �y 0
y x 0
0 0 0

1

A ,

0

@
0 0 a
0 0 b
0 0 0

1

A

1

A
�����x, y, a, b 2 F

9
=

;;
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· Bider(g12(a)) =

8
<

:

0

@

0

@
x ay 0
y x + y 0
0 0 0

1

A ,

0

@
0 0 a
0 0 b
0 0 0

1

A

1

A
�����x, y, a, b 2 F

9
=

;;

· Bider(g13) =

8
<

:

0

@

0

@
x 0 0
0 y 0
0 0 0

1

A ,

0

@
0 0 a
0 0 b
0 0 0

1

A

1

A
�����x, y, a, b 2 F

9
=

;;

· Bider(g14) =

8
<

:

0

@

0

@
2x 0 y
y 3x z
0 0 x

1

A ,

0

@
0 0 a
0 0 b
0 0 x

1

A

1

A
�����x, y, z, a, b 2 F

9
=

;;

· Bider(g15) =

8
<

:

0

@

0

@
x 0 x
x 0 y
0 0 0

1

A ,

0

@
0 0 a
0 0 b
0 0 0

1

A

1

A
�����x, y, a, b 2 F

9
=

;.

5.4 Representability of actions of Leibniz algebras

By studying biderivations of a Leibniz algebra h, we can classify the split extensions
with kernel h. This relies on the correspondence between actions and split extensions
available in any semi-abelian category, as explained in Section 2.2. Again, since the
variety of Leibniz algebra is an Orzech category of interest, we can use derived ac-
tions in place of internal actions.

Remark 5.13. We recall from Definition 3.47 that, given a split extension in the cate-
gory Leib

0 h ĝ g 0i p

s
(5.4.1)

the pair of bilinear maps

l : g⇥ h ! h, r : h⇥ g ! h

defined by
lx(b) = [s(x), i(b)], ry(a) = [i(a), s(y)]

where lx = l(x,�) and ry = r(�, y), is called the derived action of g on h associated
with (5.4.1).

Given a pair of bilinear maps

l : g⇥ h ! h, r : h⇥ g ! h,

we define a bilinear operation on the direct sum of vector spaces g� h

[(x, a), (y, b)](l,r) = ([x, y], [a, b] + lx(b) + ry(a)).

By Theorem 2.4 in [66], this defines a Leibniz algebra structure on g� h if and only if
the pair (l, r) is a derived action of g on h. This in turn is equivalent to the following
proposition, which is an application of Lemma 3.48 and Remark 3.50.

Proposition 5.14. [29] (g� h, [�,�](l,r)) is a Leibniz algebra if and only if

(L1) rx([a, b]) = [rx(a), b] + [a, rx(b)];
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(L2) lx([a, b]) = [lx(a), b]� [lx(b), a];

(L3) [a, rx(b) + lx(b)] = 0;

(L4) r[x,y] = [ry, rx] = ry � rx � rx � ry;

(L5) l[x,y] = [ry, lx] = ry � lx � lx � ry;

(L6) lx � (ly + ry) = 0;

for every x, y 2 g and for every a, b 2 h. The resulting Leibniz algebra is the semi-direct
product of g and h (with respect to the derived action (l, r)) and it is denoted by gn h.

Proof. By Remark 3.50, (g� h, [�,�](l,r)) is a Leibniz algebra if and only if it satisfies
the (right) Leibniz identity

[[a1, a2], a3] = [[a1, a3], a2] + [a1, [a2, a3]]

when at least one of the ai is an element of the form (x, 0), with x 2 g, and the others
are of the form (0, a), with a 2 h. Thus, we need to ask that the following equations
hold for any x, y 2 g and a, b 2 h:

· [[(0, a), (0, b)], (x, 0)] = [[(0, a), (x, 0)], (0, b)] + [(0, a), [(0, b), (x, 0)]], which is
equivalent to (L1);

· [[(x, 0), (0, a)], (0, b)] = [[(x, 0), (0, b)], (0, a)] + [(x, 0), [(0, a), (0, b)]], which is
equivalent to (L2);

· [[(0, a), (x, 0)], (0, b)] = [[(0, a), (0, b)], (x, 0)] + [(0, a), [(x, 0), (0, b)]], which in
turn is equivalent to rx([a, b]) = [rx(a), b]� [a, lx(b)]. Combining with (L1), we
deduce that (L3) holds;

· [[(0, a), (x, 0)], (y, 0)] = [[(0, a), (y, 0)], (x, 0)] + [(0, a), [(x, 0), (y, 0)]], which is
equivalent to (L4), i.e. r[x,y](a) = ry(rx(a))� rx(ry(a));

· [[(x, 0), (y, 0)], (0, a)] = [[(x, 0), (0, a)], (y, 0)] + [(x, 0), [(y, 0), (0, a)]], which is
equivalent to (L5), i.e. l[x,y](a) = ry(lx(a))� lx(ry(a));

· [[(x, 0), (y, 0)], (0, a)] = [[(x, 0), (0, a)], (y, 0)] + [(x, 0), [(y, 0), (0, a)]] which in
turn is equivalent to l[x,y] = ry � lx + lx � ly. Combining with (L5), we obtain
that (L6) holds.

Remark 5.15. The first three equations of Proposition 5.14 state that, for every x 2 g,
the pair

(�rx, lx)

is a biderivation of the Leibniz algebra h. Moreover, from equalities (L4)-(L5), we
have that the linear map

j : g ! Bider(h) : x 7! (�rx, lx)

is a Leibniz algebra homomorphism. Indeed

j([x, y]) = (�r[x,y], l[x,y]) = (�[ry, rx], [ry, lx])



82 Chapter 5. Leibniz algebras

and

[j(x), j(y)] = [(�rx, lx), (�ry, ly)] = ([�rx,�ry], [lx,�ry]) =

= ([rx, ry],�[lx, ry]) = (�[ry, rx], [ry, lx]).

On the other hand, given a Leibniz algebra homomorphism

j : g ! Bider(h) : x 7! ([[�, x]], [[x,�]])

satisfying
[[x, [[y, a]]� [[a, y]]]] = 0, 8x, y 2 g, 8a 2 h,

we can associate the split extension

0 h (g� h, [�,�]j) g 0i2 p1

i1

where i1, i2 and p1 are the canonical injections and projection, and the Leibniz alge-
bra structure of g� h is given by

[(x, a), (y, b)]j = ([x, y], [a, b] + [[x, b]]� [[a, y]]).

However a generic homomorphism from g to Bider(h) needs not give rise to a split
extension, as the following example shows.

Example 5.16. [32] Let g = F be the abelian one-dimensional algebra. Then the ho-
momorphism j : F ! Bider(F) = End(F)2 : a 7! (da, Da), where

da(x) = �ax, Da(x) = ax.

does not define a split extension of F by itself. Indeed in general

Da(Db(x)� db(x)) = a(bx � (�bx)) = 2abx 6= 0.

Example 5.17. Let g be a Leibniz algebra and consider the canonical action of g on
itself given by the pair of linear maps

rx = adx = [�, x], 8x 2 g,

ly = Ady = [y,�], 8y 2 g.

We have a split extension of g by itself with associated morphism

g ! Bider(g) : x 7! (� adx, Adx)

which obviously satisfies the condition

Adx �(Ady + ady) = 0, 8x, y 2 g.

Indeed, for every z 2 g

[x, [y, z] + [z, y]] = [x, [y, z]] + [x, [z, y]] =
= [[x, y], z]� [[x, z], y] + [[x, z], y]� [[x, y], z] = 0

Thus the Leibniz algebra homomorphism which defines the inner biderivations of g
is associated with the canonical extension of g by itself.
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Example 5.18. Let h be a Leibniz algebra. It is well known that, if h has trivial center
or if h is a perfect algebra, i.e. [h, h] = h, then

D(D0(x)� d0(x)) = 0,

for every x 2 h and for every (d, D), (d0, D0) 2 Bider(h) [26].
In fact, let Z(h) = 0 and let (d, D), (d0, D0) 2 Bider(h). Then

[y, D(D0(x))] = [y, d(D0(x))] = d([y, D0(x)])� [d(y), D0(x)] =
= d([y, d0(x)])� [d(y), d0(x)] = [y, d(d0(x))] = [y, D(d0(x))]

for any x, y 2 h. Thus D(D0(x)� d0(x)) 2 Zr(h), for any x 2 h. Similar computations
show that D(D0(x)� d0(x)) 2 Zl(h), thus D(D0(x)� d0(x)) = 0 and one can obtain
the same result starting with a perfect Leibniz algebra h.

Then, given any other Leibniz algebra g, we can associate a split extension of g
by h with any homomorphism

g ! Bider(h)

since equation (L6) is always satisfied and Bider(h) is the actor of h.

Remark 5.19. Let g and h be Lie algebras and let

0 h ĝ g 0i p

s

be a Lie algebra split extension. Then, as observed above, we have that

ĝ ⇠= (g� h, [�,�]r),

where the Lie bracket is defined by

[(x, a), (y, b)]r = ([x, y], [a, b]� rx(b) + ry(a)).

In this case anti-commutativity implies that the left component of the action of g on
h is defined by

lx(b) = �rx(b), 8x 2 g, 8b 2 h,

thus equation (L6) is automatically satisfied and every homomorphism

g ! Bider(h) : x 7! ([[�, x]], [[�, x]])

represents a split extension of g by h in the category Lie. Moreover the subalgebra
of Bider(h)

{(d, d) | d 2 Der(h)}

is a Lie algebra isomorphic to Der(h).

We can now claim the following result.

Theorem 5.20. [29] Let g and h be Leibniz algebras over F.

(1) The set of isomorphism classes of split extensions of g by h is in bijection with the set
of Leibniz algebra homomorphisms

j : g ! Bider(h) : x 7! ([[�, x]], [[x,�]])
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which satisfy the condition

[[x, [[y, a]]� [[a, y]]]] = 0, 8x, y 2 g, 8a 2 h. (5.4.2)

(2) The category Leib of Leibniz algebras over F is weakly action representable and a weak
actor of an object h in Leib is the Leibniz algebra Bider(h).

(3) j : g ! Bider(h) is an acting morphism if and only if it satisfies Equation (5.4.2).

Proof.

(1) The first statement follows from Remark 5.15.

(2) Given any Leibniz algebra h, we take T = Bider(h) and we define t in the
following way: for every Leibniz algebra g, the component

tg : SplExt(g, h) ! HomLeib(g, Bider(h))

is the morphism in Set which associates with any split extension

0 h ĝ g 0i p

s

the homomorphism j(l,r) : g ! Bider(h) : x 7! (�rx, lx) (see Remark 5.13). The
transformation t is natural. Indeed, for every Leibniz algebra homomorphism
f : g0 ! g, the following diagram in Set

SplExt(g, h) Hom(g, Bider(h))

SplExt(g0, h) Hom(g0, Bider(h))

tg

SplExt( f ,h) Hom( f ,Bider(h))
tg0

is commutative. Moreover, for every Leibniz algebra g, the morphism tg is
an injection since every element of SplExt(g, h) is uniquely determined by the
corresponding action of g on h, i.e. by the pair of bilinear maps

l : g⇥ h ! h, r : h⇥ g ! h .

Thus t is a monomorphism of functors, the category Leib is weakly action rep-
resentable and a weak actor of an object h is the Leibniz algebra of biderivations
Bider(h).

(3) Finally j 2 HomLeib(g, Bider(h)) is an acting morphism if and only if it defines
a split extension of g by h, i.e. if and only if it satisfies the condition

[[x, [[y, a]]� [[a, y]]]] = 0, 8x, y 2 g, 8a 2 h.



85

Chapter 6

Representability of actions of
non-associative algebras

We want to extend the results obtained in the previous chapters by studying the rep-
resentability of actions of a general variety of non-associative algebras over a field F

(see [43, Section 3]). Again, we assume that V is an action accessible, operadic variety
of non-associative algebras over F. Thus V satisfies a set of multilinear identities

Fk,i(x1, . . . , xk) = 0, i = 1, . . . , n,

where k is the degree of the polynomial Fk,i. We fix l1, . . . , l8, µ1, . . . , µ8 2 F which
determine a choice of l/µ rules, i.e.

x(yz) = l1(xy)z + l2(yx)z + l3z(xy) + l4z(yx)
+ l5(xz)y + l6(zx)y + l7y(xz) + l8y(zx)

and

(yz)x = µ1(xy)z + µ2(yx)z + µ3z(xy) + µ4z(yx)
+ µ5(xz)y + µ6(zx)y + µ7y(xz) + µ8y(zx)

which are identities in V . Note that these are not unique, but fixed for our purposes.

6.1 The external weak actor

Let V be a variety of non-associative algebras as above. For any object X of V , we
look for a vector space E(X) such that

Inn(X)  E(X)  End(X)2,

where Inn(X) = {(Lx, Rx) | x 2 X} is the vector space of left and right multiplica-
tions of X, and we want to endow it with a bilinear partial operation

h�,�i : W ! X,

where W is a vector subspace of X ⇥ X, such that we can associate in a natural way
a homomorphism of partial algebras B ! E(X), with every split extension of B by
X in V . To do this, we need to describe derived actions in V in a similar fashion as
in the previous sections.

Proposition 6.1. [43] Let X and B be two algebras in V . Given a pair of bilinear maps

l : B ⇥ X ! X, r : X ⇥ B ! X,
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we construct (B � X, ·) as in (3.2.2). Then (B � X, ·) is an object of V if and only if

Fk,i(a1, . . . , ak) = 0, 8i = 1, . . . , n,

where at least one of the a1, . . . , ak is an element of of the form (0, x), with x 2 X, and the
others are of the form (b, 0), with b 2 B. The resulting algebra is the semi-direct product
of B and X and it is denoted by B n X.

Proof. The proof is a straightforward application of Lemma 3.48 and Remark 3.50.

Using the same notation of Remark 3.49, we obtain the following:

Corollary 6.2. [43] When every identity of V can be deduced from the l/µ rules, (B� X, ·)
is an object of V if and only if

(1) b ⇤ (xx0) = l1(b ⇤ x)x0 + · · ·+ l8x(x0 ⇤ b);

(2) (xx0) ⇤ b = µ1(b ⇤ x)x0 + · · ·+ µ8x(x0 ⇤ b);

(3) x(x0 ⇤ b) = l1(xx0) ⇤ b + · · ·+ l8x0(b ⇤ x);

(4) (x0 ⇤ b)x = µ1(xx0) ⇤ b + · · ·+ µ8x0(b ⇤ x);

(5) x(b ⇤ x0) = l1(x ⇤ b)x0 + · · ·+ l8b ⇤ (x0x);

(6) (b ⇤ x0)x = µ1(x ⇤ b)x0 + · · ·+ µ8b ⇤ (x0x);

(7) x ⇤ (bb0) = l1(x ⇤ b) ⇤ b0 + · · ·+ l8b ⇤ (b0 ⇤ x);

(8) (bb0) ⇤ x = µ1(x ⇤ b) ⇤ b0 + · · ·+ µ8b ⇤ (b0 ⇤ x);

(9) b ⇤ (b0 ⇤ x) = l1(bb0) ⇤ x + · · ·+ l8b0 ⇤ (x ⇤ b);

(10) (b0 ⇤ x) ⇤ b = µ1(bb0) ⇤ x + · · ·+ µ8b0 ⇤ (x ⇤ b);

(11) b ⇤ (x ⇤ b0) = l1(b ⇤ x) ⇤ b0 + · · ·+ l8x ⇤ (b0b);

(12) (x ⇤ b) ⇤ b0 = µ1(b ⇤ x) ⇤ b0 + · · ·+ µ8x ⇤ (b0b),

for every b, b0 2 B and x, x0 2 X.

Definition 6.3. [43] For every object X of V , we define E(X) as the subset of all pairs
( f ⇤ �,� ⇤ f ) 2 End(X)2 satisfying

Fk,i(a1, . . . , ak) = 0, 8i = 1, . . . , n,

for each choice of aj = f and at 2 X, where t 6= j 2 {1, . . . , k} and f x := f ⇤ x,
x f := x ⇤ f . We observe that E(X) is a linear subspace of End(X)2 since it is non-
empty and it is determined by a collection of multilinear identities. We endow E(X)
with the bilinear map h�,�i : E(X)⇥ E(X) ! End(X)2

h( f ⇤ �,� ⇤ f ), (g ⇤ �,� ⇤ g)i = (h ⇤ �,� ⇤ h),

where

x ⇤ h = l1(x ⇤ f ) ⇤ g + l2( f ⇤ x) ⇤ g + l3g ⇤ (x ⇤ f ) + l4g ⇤ ( f ⇤ x)
+ l5(x ⇤ g) ⇤ f + l6(g ⇤ x) ⇤ f + l7 f ⇤ (x ⇤ g) + l8 f ⇤ (g ⇤ x)



6.1. The external weak actor 87

and

h ⇤ x = µ1(x ⇤ f ) ⇤ g + µ2( f ⇤ x) ⇤ g + µ3g ⇤ (x ⇤ f ) + µ4g ⇤ ( f ⇤ x)
+ µ5(x ⇤ g) ⇤ f + µ6(g ⇤ x) ⇤ f + µ7 f ⇤ (x ⇤ g) + µ8 f ⇤ (g ⇤ x).

When every identity of V is a consequence of the l/µ rules, E(X) becomes the
subspace of all pairs ( f ⇤ �,� ⇤ f ) 2 End(X)2 satisfying

(1) f ⇤ (xx0) = l1( f ⇤ x)x0 + · · ·+ l8x(x0 ⇤ f );

(2) (xx0) ⇤ f = µ1( f ⇤ x)x0 + · · ·+ µ8x(x0 ⇤ f );

(3) x(x0 ⇤ f ) = l1(xx0) ⇤ f + · · ·+ l8x0( f ⇤ x);

(4) (x0 ⇤ f )x = µ1(xx0) ⇤ f + · · ·+ µ8x0( f ⇤ x);

(5) x( f ⇤ x0) = l1(x ⇤ f )x0 + · · ·+ l8 f ⇤ (x0x);

(6) ( f ⇤ x0)x = µ1(x ⇤ f )x0 + · · ·+ µ8 f ⇤ (x0x),

for every x, x0 2 X.
Remark 6.4. Note that the choice of l/µ rules does not affect the definition of the
underlying vector space of E(X), but it does play an important role in the definition
of the bilinear map h�,�i.

In general, the vector space E(X) endowed with the bilinear map h�,�i is not
an object of V . It may happen that h�,�i does not even define a bilinear operation
on E(X), i.e. there exist ( f ⇤ �,� ⇤ f ),(g ⇤ �,� ⇤ g) 2 E(X) such that

h( f ⇤ �,� ⇤ f ), (g ⇤ �,� ⇤ g)i 62 E(X)

or that (E(X), h�,�i) is a non-associative algebra which does not satisfy some iden-
tity of V .
Example 6.5. If V = Assoc, then E(X) ⇠= Bim(X) as vector spaces. Moreover, with
the standard choice of l/µ rules l1 = µ8 = 1 and li = µj = 0, for any i 2 {2, . . . , 8}
and j 2 {1, . . . , 7}, we get also an isomorphism of associative algebras.
Example 6.6. If V = Leib, then

E(X) ={( f ⇤ �,� ⇤ f ) 2 End(X)2 | f ⇤ [x, y] = �[ f ⇤ x, y] + [ f ⇤ y, x],
[x, y] ⇤ f = [x ⇤ f , y] + [x, y ⇤ f ], [x, f ⇤ y] + [x, y ⇤ f ] = 0}

and Bider(X) ⇠= E(X) as vector spaces, where an explicit isomorphism is given by

(d, D) 7! (�D, d), 8(d, D) 2 Bider(X).

Choosing the l/µ rules as

[x, [y, z]] = [[x, y], z]� [[x, z], y],
[[y, z], x] = [[y, x], z]� [y, [x, z]],

we get the standard multiplication defined in Bider(X) as in [58], that defines a weak
actor in Leib (see Theorem 5.20). On the other hand, choosing the l/µ rules as

[x, [y, z]] = [[x, y], z]� [[x, z], y],
[[y, z], x] = [[y, x], z] + [y, [z, x]],
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we get the non-associative algebra structure defined in [26, Definition 5.2]

{(d, D), (d0, D0)} = (d � d0 � d0 � d, D � D0 + d0 � D)

which, in general, does not define a Leibniz algebra structure on Bider(X).

Example 6.7. If V = Nilk(Assoc), with k � 3, then

E(X) = {( f ⇤ �,� ⇤ f ) 2 Bim(X) | f ⇤ (x1 · · · xk) = (x1 · · · xk) ⇤ f = 0}.

With the same choice of l/µ rules as in Example 6.5, the bilinear map h�,�i be-
comes

h( f ⇤ �,� ⇤ f ), (g ⇤ �,� ⇤ g)i = ( f ⇤ (g ⇤ �), (� ⇤ f ) ⇤ g)

which makes E(X) an associative algebra, but not a k-step nilpotent algebra. For
instance, let X = F be the abelian one-dimensional algebra, then

E(X) = End(X)⇥ End(X)op ⇠= F
2

which is not nilpotent. Indeed, every linear endomorphism of X is of the form
ja : x 7! ax, for some a 2 F and

h(ja, jb), (ja0 , jb0)i = (ja � ja0 , jb0 � jb) = (jaa0 , jb0b).

Example 6.8. If V = Nil2(Alg) is the variety of two-step nilpotent algebras (see [52],
[53] and [54]), i.e. V is defined by the identities x(yz) = 0 = (yz)x, then

E(X) = {( f ⇤ �,� ⇤ f ) 2 End(X)2 | f ⇤ (xy) = (xy) ⇤ f = ( f ⇤ x)y = x(y ⇤ f ) = 0}

and the bilinear map is given by

h( f ⇤ �,� ⇤ f ), (g ⇤ �,� ⇤ g)i = (0, 0).

Thus E(X) is an abelian algebra.

Example 6.9. If V = Alt is the variety of alternative algebras over a field F with
char(F) 6= 2 (see Examples 3.46), then E(X) consists of the pairs ( f ⇤ �,� ⇤ f ) 2
End(X)2 satisfying

f ⇤ (xy) = (x ⇤ f )y + ( f ⇤ x)y � x( f ⇤ y),

(xy) ⇤ f = x( f ⇤ y) + x(y ⇤ f )� (x ⇤ f )y,

x(y ⇤ f ) = (yx) ⇤ f + (xy) ⇤ f � y(x ⇤ f )

and
( f ⇤ x)y = f ⇤ (yx) + f ⇤ (xy)� ( f ⇤ y)x

for any x, y 2 X, and the bilinear map

h( f ⇤ �,� ⇤ f ), (g ⇤ �,� ⇤ g)i = (h ⇤ �,� ⇤ h)

is given by
h ⇤ x = �( f ⇤ x) ⇤ g + f ⇤ (g ⇤ x) + f ⇤ (x ⇤ g)

and
x ⇤ h = (x ⇤ f ) ⇤ g + ( f ⇤ x) ⇤ g � f ⇤ (x ⇤ g).
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One can check that h�,�i does not define an algebra structure. Nevertheless, it is
possible to find examples where E(X) is an alternative algebra.

For instance, if X is a unitary alternative algebra (i.e. there exists an element e 2 X
such that xe = ex = x, for any x 2 X), such as the algebra of octonions O, then the
elements of E(X) satisfy the following set of equations

f ⇤ x =(x ⇤ f )e + ( f ⇤ x)e � x( f ⇤ e),
x ⇤ f =e( f ⇤ x) + e(x ⇤ f )� (e ⇤ f )x,
x ⇤ f =x ⇤ f + x ⇤ f � x(e ⇤ f ),
f ⇤ x = f ⇤ x + f ⇤ x � ( f ⇤ e)x,

for any x 2 X. Thus, if a := f ⇤ e and b := e ⇤ f , one has

f ⇤ x = ax = bx, x ⇤ f = xa = xb

and, for x = e, one obtains a = b. In other words, an element of E(X) is uniquely
determined by an element a = f ⇤ e = e ⇤ f of X, i.e.

E(X) ⇠= {(a, a) | a 2 X} ⇠= X.

is an object of Alt.

Remark 6.10. The same result can be obtained for unitary algebras in the variety
Assoc. In fact, let X be a unitary associative algebra and let ( f ⇤�,�⇤ f ) 2 Bim(X).
Thus

f ⇤ x = f ⇤ (ex) = ax,

x ⇤ f = (xe) ⇤ f = xb

and
xa = (x ⇤ f )e = xb,

where a := f ⇤ e and b := e ⇤ f . For x = e, we obtain a = b and

Bim(X) ⇠= {(a, a) | a 2 X} ⇠= X.

Since unitary algebras are perfect and with trivial center, from Remark 2.47 we have
a natural isomorphism

SplExt(�, X) ⇠= HomAssoc(�, X)

for any unitary associative algebra X.

The construction of E(X) gives rise to an alternative characterisation of split ex-
tensions in V . In fact, a split extension of B by X in V is the same as a linear map

B ! E(X) : b 7! (b ⇤ �,� ⇤ b),

such that ((bb0) ⇤ �,� ⇤ (bb0)) = h(b ⇤ �,� ⇤ b), (b0 ⇤ �,� ⇤ b0)i and

Fk,i(a1, . . . , ak) = 0, i = 1, . . . , n,

where a1, . . . , ak are as in Proposition 6.1.
We remark also that the bilinear map

h�,�i : E(X)⇥ E(X) ! End(X)2
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defines a partial operation h�,�i : W ! E(X), where W is the preimage

h�,�i�1(E(X))

of the inclusion E(X) ,! End(X)2.
Now we are ready to announce and prove our main result about the weak repre-

sentability of actions of non-associative algebras.

Theorem 6.11. [43] Let V be an action accessible, operadic variety of non-associative alge-
bras over a field F.

(1) Let X be an object of V . There exists a monomorphism of functors

t : SplExt(�, X) ⇢ HomPAlg(U(�), E(X)),

where SplExt(�, X) = SplExtV (�, X), U : V ! PAlg denotes the forgetful functor
and, for every B of V , tB is the injection which sends an element of SplExt(B, X) to
the corresponding partial algebra homomorphism

B ! E(X) : b 7! (b ⇤ �,� ⇤ b).

(2) Let B, X be objects of V . The homomorphism of partial algebras

B ! E(X) : b 7! (b ⇤ �,� ⇤ b)

belongs to Im(tB) if and only if Fk,i(a1, . . . , ak) = 0, as in Proposition 6.1.

(3) If (E(X), h�,�i) is an object of V , then (E(X), t) becomes a weak representation of
SplExt(�, X).

(4) If V is a variety of commutative or anti-commutative algebras, then E(X) is isomor-
phic to the partial algebra

{ f 2 End(X) | Fk,i( f , x2, . . . , xk) = 0, 8x2, . . . , xk 2 X}

endowed with the bilinear partial operation h f , gi = a( f � g) + b(g � f ), where
a, b 2 F are given by the l/µ rules.

Proof.

(1) The collection {tB}B gives rise to a natural transformation since, for every al-
gebra homomorphism f : B0 ! B, the diagram in Set

SplExt(B, X) Hom(U(B), E(X))

SplExt(B0, X) Hom(U(B0), E(X))

tB

SplExt(U( f ),X) Hom( f ,E(X))

tB0

where Hom(U(�),�) = HomPAlg(U(�),�), is commutative. Moreover,
for every object B of V , the map tB is an injection, since every element of
SplExt(B, X) is uniquely determined by the corresponding derived action of
B on X, i.e. by the pair of bilinear maps

l : B ⇥ X ! X, r : X ⇥ B ! X

defined as in Definition 3.47. Thus t is a monomorphism of functors.
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(2) Let B, X be objects of V . A homomorphism of partial algebras B ! E(X)
belongs to Im(tB) if and only if it defines a split extension of B by X in V . This
is equivalent to saying that

Fk,i(a1, . . . , ak) = 0, 8i = 1, . . . , n,

where a1, . . . , ak are as in Proposition 6.1.

(3) If (E(X), h�,�i) is an object of V , then we have a monomorphism of functors

t : SplExt(�, X) ⇢ HomV (�, E(X)),

and (E(X), t) is a weak representation of SplExt(�, X).

(4) If V is a variety of commutative (resp. anti-commutative) algebras, then for
every object X of V , E(X) consists of pairs of the form ( f ⇤ �,� ⇤ f ) with x ⇤
f = f ⇤ x (resp. x ⇤ f = � f ⇤ x), for every x 2 X. Thus, an explicit isomorphism

{ f 2 End(X) | Fk,i( f , x2, . . . , xk) = 0} ! E(X)

is given by f 7! ( f , f ) (resp. f 7! ( f ,� f )).

Because of these results, we can give the following definitions.

Definition 6.12. [43] Let X be an object of an action accessible and operadic variety
of non-associative algebras V with a choice of l/µ rules. The partial algebra E(X) is
called external weak actor of X. The pair (E(X), t) is called external weak representation
of the functor SplExt(�, X). When t is a natural isomorphism, we say that E(X) is
an external actor of X.

Proposition 6.13. Let V be an action accessible and operadic variety of non-associative
algebras over F and let X be an object of V . We have that, with the obvious choices of the
l/µ rules:

(1) if V = AbAlg, then E(X) = 0 is the actor of X;

(2) if V = CAssoc, then E(X) ⇠= M(X) is an external actor of X. Moreover, if X is
a perfect algebra or it has trivial center, such as when it is unitary, then E(X) is the
actor of X;

(3) if V = JJord, then E(X) is isomorphic to the commutative partial algebra ADer(X)
of anti-derivations of X and it is an external actor;

(4) if V = Lie, then E(X) ⇠= Der(X) is the actor of X;

(5) if V = ACAAssoc, then E(X) is isomorphic to the associative partial algebra
AM(X) of anti-multipliers of X and it is an external actor;

(6) if V = Nil2(Com) or V = Nil2(ACom), then E(X) ⇠= [X]2 is a weak actor of X;

(7) if V = Nil2(Alg), then E(X) is an abelian algebra and and it is a weak actor of X;

(8) if V = Alt over a field F with char(F) 6= 2 and X is unitary, then E(X) ⇠= X is an
alternative algebra and we have a natural isomorphism

SplExt(�, X) ⇠= HomAlt(�, X)
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i.e. X is the actor of itself. In particular, the algebra of octonions O has representable
actions.

Proof.

(1) Let X be an abelian algebra and let ( f ⇤ �,� ⇤ f ) 2 E(X). Then

f ⇤ x = x ⇤ f = 0,

for every x 2 X. Thus E(X) = 0 and we have a natural isomorphism

SplExt(�, X) ⇠= HomAbAlg(�, 0)

(see Examples 3.46), i.e. E(X) = 0 is the actor of X.

(2) It follows from Lemma 4.4. If X is perfect or it has trivial center, then we have
a natural isomorphism

SplExt(�, X) ⇠= HomCAssoc(�, M(X))

and E(X) ⇠= M(X) is the actor of X. In the case that X is unitary, then using
the same argument of Remark 6.10, one proves that E(X) ⇠= X.

(3) It is a consequence of Theorem 4.9.

(4) It follows from Example 2.32.

(5) It is an immediate consequence of Theorem 4.12.

(6) It follows from Theorem 4.11 and Theorem 4.13.

(7) It is an immediate consequence of Example 6.8;

(8) It easily follows from Example 6.9. In this case, every algebra homomorphism
B ! X defines a split extension of B by X and we have a natural isomorphism

SplExt(�, X) ⇠= HomAlt(�, X).

Finally, since O is a unitary alternative algebras, it has representable actions.

Remark 6.14. The construction of the vector space E(X) can be done also in a variety
of non-associative algebras V which is not action accessible. However, it is not clear
how to endow E(X) with a bilinear map h�,�i as in Definition 6.3. So we only have
a monomorphism of functors

t : SplExt(�, X) ⇢ HomVec(U(�), E(X))

where Vec is the category of F-vector spaces and U : V ! Vec denotes the forgetful
functor.
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6.2 Relations between the universal strict general actor and
the external weak actor

As described in Section 3.1.2, for every Orzech category of interest C and for every
object X of C, it is possible to define a monomorphism of functors

µ : SplExt(�, X) ⇢ HomC 0(V(�), USGA(X)),

where SplExt(�, X) = SplExtC(�, X), C 0 is a category which contains C as a full
subcategory, V : C ! C 0 denotes the forgetful functor and USGA(X) is an object of
C 0 called the universal strict general actor of X [26]. We further recall that USGA(X) is
unique up to isomorphism, once the presentation of the Orzech category of interest
C is fixed (see Remark 3.26).

We now claim the following.

Proposition 6.15. Let V be an action accessible and operadic variety of non-associative
algebras over a field F with a choice of constants l1, . . . , l8, µ1, . . . , µ8 2 F which determine
the l/µ rules. For any object X of V , there exist two monomorphism of functors

µ : SplExt(�, X) ⇢ HomAlg(V(�), USGA(X))

and
t : SplExt(�, X) ⇢ HomPAlg(U(�), E(X)),

where V : V ! Alg and U : V ! PAlg are the forgetful functors and E(X) is the external
weak actor of X. Moreover, if the bilinear partial operation h�,�i is well defined on E(X)⇥
E(X), then E(X) = USGA(X) and t = µ.

Proof. We recall from Theorem 3.51 that a variety of non-associative algebras is an
Orzech category of interest if and only if it is action accessible. In this case, a pre-
sentation of V is given by a choice of constants l1, . . . , l8, µ1, . . . , µ8 2 F which
determine the l/µ rules and, as observed in Example 3.6, it turns out that V 0 = Alg.
Thus, by Proposition 3.29, we have a monomorphism of functors

µ : SplExt(�, X) ⇢ HomAlg(V(�), USGA(X))

and, by Theorem 6.11, another monomorphism of functors

t : SplExt(�, X) ⇢ HomPAlg(U(�), E(X)).

When the bilinear partial operation h�,�i is well defined on E(X)⇥ E(X), i.e. when
E(X) is a total algebra, then USGA(X) = E(X) and t = µ. This happens, for in-
stance, in the varieties Assoc, Leib and Lie.

However, it is often more convenient to work with the external weak actor E(X),
since it is easier to construct than the universal strict general actor USGA(X) (see
[26, Section 4]).
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Chapter 7

Poisson algebras

In this chapter we aim to study the representability of actions of the variety of Pois-
son algebras by determining explicitly an external weak actor, which in this case is
also a universal strict general actor (see [29, Section 4]). This traces a possible direction
for the construction of the external weak actor for any action accessible and operadic
variety of algebras with two non-necessary associative bilinear operations.

Furthermore we prove that the full subcategory of commutative Poisson algebras
is not weakly action representable and we conclude with an open problem.

7.1 Definitions and main properties

Let F be a field with char(F) 6= 2. We denote by Alg2 the variety of algebras with
two non-necessary associative bilinear operations over F, i.e. the category whose
objects are F-vector spaces endowed with two bilinear maps and the morphisms are
the F-linear maps which preserve both of them.

Definition 7.1. [23] A Poisson algebra over F is a vector space P over F endowed with
two bilinear maps

· : P ⇥ P ! P

[�,�] : P ⇥ P ! P

such that (P, ·) is an associative algebra, (P, [�,�]) is a Lie algebra and the Poisson
identity holds:

[p, qt] = [p, q]t + q[p, t], 8p, q, t 2 P

i.e. the adjoint map adp := [p,�] : P ! P is a derivation of the associative alge-
bra (P, ·). A Poisson algebra P is said to be commutative if (P, ·) is a commutative
associative algebra.

We denote by Pois the category of Poisson algebras and by CPois the full sub-
category of commutative Poisson algebras.

Remark 7.2. Both Pois and CPois are Orzech categories of interest. Ideed, using the
notation of Section 3.1, they are both categories of abelian groups with operations,
where W0

1 = ∆, W0
2 = {·, ·op, [�,�], [�,�]op} and Axiom 2

(x1 ⇤ x2)⇤̄x3 = W(x1; x2, x3; ⇤, ⇤̄).

is given by associativity, when ⇤, ⇤̄ 2 {·, ·op}, by the Jacobi identity, when
⇤, ⇤̄ 2 {[�,�], [�,�]op}, and by the Poisson identity, if ⇤ 2 {·, ·op} and ⇤̄ 2
{[�,�], [�,�]op}, or vice-versa.

We can thus describe internal actions / split extension in terms of derived ac-
tions.
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Definition 7.3. [29, 34, 66] Let

0 V P̂ P 0i p

s
(7.1.1)

be a split extension of Poisson algebras. The triple of bilinear maps

l : P ⇥ V ! V, r : V ⇥ P ! V, [[�,�]] : P ⇥ V ! V

defined by

p ⇤ y = s(p) · i(y), x ⇤ q = i(x) · s(q), [[p, y]] = [s(p), i(x)]

where p ⇤ � = l(p,�) and � ⇤ q = r(�, q), is called the derived action of P on V
associated with (7.1.1).

Given a triple of bilinear maps

l : P ⇥ V ! V, r : V ⇥ P ! V, [[�,�]] : P ⇥ V ! V,

one can define two bilinear operations on P � V ⇠= P ⇥ V

(p, x) ⇧ (q, y) = (pq, xy + p ⇤ y + x ⇤ q)

and
{(p, x), (q, y)} = ([p, q], [x, y] + [[p, y]]� [[q, x]]),

for every (p, x), (q, y) 2 P � V, and this defines a Poisson algebra structure on the
vector space P �V if and only if the triple (l, r, [[�,�]]) is a derived action of P on V.

This is equivalent to a set of conditions on (l, r, [[�,�]]), as explained in the fol-
lowing proposition (again, see [34, Proposition 1.1] and [66, Theorem 2.4]).

Proposition 7.4. [29, 34, 66] (P � V, ⇧, {�,�}) is a Poisson algebra if and only if

(P1) (P � V, ⇧) is an associative algebra, i.e. the following equalities hold

· p ⇤ (xy) = (p ⇤ x)y;
· (xy) ⇤ p = x(y ⇤ p);
· x(p ⇤ y) = (x ⇤ p)y;
· (p ⇤ x) ⇤ q = p ⇤ (x ⇤ q);
· (pq) ⇤ x = p ⇤ (q ⇤ x);
· x ⇤ (pq) = (x ⇤ p) ⇤ q;

(P2) (P � V, {�,�}) is a Lie algebra, i.e.

· [[p, [x, y]]] = [[[p, x]], y] + [x, [[p, y]]];
· [[[p, q], x]] = [[p, [[q, x]]]]� [[q, [[p, x]]]];

(P3) [[pq, x]] = p ⇤ [[q, x]] + [[p, x]] ⇤ q;

(P4) [p, q] ⇤ x = p ⇤ [[q, x]]� [[q, p ⇤ x]];

(P5) x ⇤ [p, q] = [[q, x]] ⇤ p � [[q, x ⇤ p]];

(P6) p ⇤ [x, y] = [p ⇤ x, y]� [[p, y]]x;
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(P7) [x, y] ⇤ p = [x ⇤ p, y]� x[[p, y]];

(P8) [[p, xy]] = [[p, x]]y + x[[p, y]];

for every p, q 2 P and for every x, y 2 V. The resulting Poisson algebra is the semi-direct
product of P and V (with respect to the derived action (l, r, [[�,�]])) and it is denoted by
P n V.

Proof. We already know that (P � V, ⇧) is an associative algebra (resp. (P �
V, {�,�}) is a Lie algebra) if and only if the equations in (P1) (resp. (P2)) are satis-
fied. We only need to check that the Poisson identity

{a1, a2 ⇧ a3} = {a1, a2} ⇧ a3 + a2 ⇧ {a1, a3}

holds in (P � V, ⇧, {�,�}). Following a similar strategy of Remark 3.50, it is suffi-
cient to check the Poisson identity when at least one of the ai is of the form (p, 0),
with p 2 P, and the others are of the form (0, x), with x 2 V. Thus (P�V, ⇧, {�,�})
satisfies the Poisson identity if and only if the following equations hold, for any
p, q 2 P and x, y 2 V:

· {(0, x), (p, 0) ⇧ (q, 0)} = {(0, x), (p, 0)} ⇧ (q, 0) + (p, 0) ⇧ {(0, x), (q, 0)}, which
is equivalent to (P3);

· {(q, 0), (p, 0) ⇧ (0, x)} = {(q, 0), (p, 0)} ⇧ (0, x) + (p, 0) ⇧ {(q, 0), (0, x)}, which
is equivalent to (P4);

· {(q, 0), (0, x) ⇧ (p, 0)} = {(q, 0), (0, x)} ⇧ (p, 0) + (0, x) ⇧ {(q, 0), (p, 0)}, which
in turn is equivalent to (P5);

· {(0, y), (p, 0) ⇧ (0, x)} = {(0, y), (p, 0)} ⇧ (0, x) + (p, 0) ⇧ {(0, y), (0, x)}, which
is equivalent to (P6);

· {(0, y), (0, x) ⇧ (p, 0)} = {(0, y), (0, x)} ⇧ (p, 0) + (0, x) ⇧ {(0, y), (p, 0)}, which
is equivalent to (P7);

· {(p, 0), (0, x) ⇧ (0, y)} = {(p, 0), (0, x)} ⇧ (0, y) + (0, x) ⇧ {(p, 0)(0, y)}, which
in turn is equivalent to (P8).

We observe that an analogous study was done in [3] in the case of non-split ex-
tensions of Poisson algebras.

Remark 7.5. For any split extension (7.1.1), we have an isomorphism of split exten-
sions

0 V P n V P 0

0 V P̂ P 0

i2

1V

p1

q
i1

1P

i p

s

where i1, i2, p1 are the canonical injections and projection and q : P n V ! P̂ is de-
fined by q(p, x) = s(p) + i(x), for every (p, x) 2 P � V.
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7.2 Representability of actions of Poisson algebras

The category Pois has two obvious forgetful functors to the categories Assoc and
Lie. Now, the category of Lie algebras is action representable: any split extension
of a Lie algebra P by another Lie algebra V corresponds to a Lie algebra homo-
morphism j : P ! Der(V). On the other hand, we know that Assoc is a weakly
action representable category and a split extension of an associative algebra P by
another associative algebra V corresponds to an associative algebra homomorphism
j : P ! Bim(V). Notice that Der(V) is an actor, while Bim(V) is only a weak actor
(see [47]), in fact they are both universal strict general actors in the sense of [26]. It
is not clear whether the category Pois is weakly action representable, therefore we
start by describing an external weak actor, which in this case turns out to be also a
universal strict general actor. As explained in Section 3.1, in general the universal
strict general actor lies in a larger category C 0, which in this case is the category Alg2
of algebras over F with two not necessarily associative bilinear operations.

Given a Poisson algebra V, we look for a suitable subspace

E(V)  Bim(V)⇥ Der(V)

and this must be endowed with two bilinear operations

·E(V), [�,�]E(V) : E(V)⇥ E(V) ! E(V)

such that we can associate with every split extension of P by V in Pois a morphism
in Alg2

f : P ! E(V) : p 7! (p ⇤ �,� ⇤ p, [[p,�]]).

Thus
f(pq) = f(p) ·E(V) f(q)

and
f([p, q]) = [f(p), f(q)]E(V).

In other words, using Proposition 7.4, the operations in E(V) must satisfy the fol-
lowing conditions

· (p ⇤ �,� ⇤ p, [[p,�]]) ·E(V) (q ⇤ �,� ⇤ q, [[q,�]]) =
= ((pq) ⇤ �,� ⇤ (pq), p ⇤ [[q,�]] + [[p,�]] ⇤ q)

· [(p ⇤ �,� ⇤ p, [[p,�]]), (q ⇤ �,� ⇤ q, [[q,�]])]E(V) =
= (p ⇤ [[q,�]]� [[q, p ⇤ �]], [[q,�]] ⇤ p � [[q,� ⇤ p]], [[p, [[q,�]]]]� [[q, [[p,�]]]])

for every p, q 2 P.

Definition 7.6. [29] Let V be a Poisson algebra. We define E(V) as the subspace of
all triples ( f , F, d) of Bim(V)⇥ Der(V) satisfying the following set of equations:

(V1) f ([x, y]) = [ f (x), y]� d(y)x;

(V2) F([x, y]) = [F(x), y]� xd(y);

(V3) d(xy) = d(x)y + xd(y),

for every x, y 2 V.

Remark 7.7. The subspace E(V) is not empty, since

(Lx, Rx, adx) 2 E(V)
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for every x 2 V, where Lx and Rx denote respectively the left and the right mulit-
plication of the associative algebra (V, ·) and adx = [x,�]. These triples are called
inner multipliers of V.

Now we are ready to enunciate and prove the following.

Theorem 7.8. [29] Let V be a Poisson algebra.

(1) The vector space E(V) with the bilinear operations

( f , F, d) ·E(V) ( f 0, F0, d0) = ( f � f 0, F0 � F, f � d0 + F0 � d)

[( f , F, d), ( f 0, F0, d0)]E(V) = ( f � d0 � d0 � f , F � d0 � d0 � F, d � d0 � d0 � d)

is an object of Alg2;

(2) The set Inn(V) of all inner multipliers of V is a subalgebra of E(V) and it is a Poisson
algebra itself;

(3) For every object (P, ·, [�,�]) in Pois, the set of isomorphism classes of split extension
of P by V is in bijection with the set of homomorphisms

f = (f1, f2, f3) : P ! E(V)

in Alg2, such that (f1, f2) : P ! Bim(V) is an acting morphism in the category
Assoc.

(4) There exists a monomorphism of functors

t : SplExt(�, V) ⇢ HomAlg2
(U(�), E(V)),

where SplExt(�, V) = SplExtPois(�, V) and U : Pois ! Alg2 denotes the forget-
ful functor, such that an arrow (f : P ! E(V)) 2 Im(tP) if and only if (f1, f2) is
an acting morphism in Assoc.

(5) If (E(V), ·E(V), [�,�]E(V)) is a Poisson algebra, then the pair (E(V), t) becomes a
weak representation for the functor SplExt(�, V).

Proof.

(1) In order to show that E(V) is an object of Alg2, we have to prove that the
bilinear operations are well defined. We observe that

( f � d0 � d0 � f , F � d0 � d0 � F) 2 Bim(V)

and
f � d0 + F0 � d 2 Der(V),

for every ( f , F, d), ( f 0, F0, d0) 2 E(V). This follows from equations (V1)-(V2)-
(V3), since

( f � d0 � d0 � f )(xy) = ( f � d0 � d0 � f )(x)y,

(F � d0 � d0 � F)(xy) = x(F � d0 � d0 � F)(y),

x( f � d0 � d0 � f )(y) = (F � d0 � d0 � F)(x)y

and
( f � d0 + F0 � d)([x, y]) =
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= [( f � d0 + F0 � d)(x), y] + [x, ( f � d0 + F0 � d)(y)],

for every x, y 2 V. Moreover the resulting triples

( f � f 0, F0 � F, f � d0 + F0 � d)

( f � d0 � d0 � f , F � d0 � d0 � F, d � d0 � d0 � d)

belong to E(V), i.e. they satisfy equations (V1)-(V2)-(V3). Here we show this
statement only for the second triple, since for the first one the computations
are similar. We have that

( f � d0 � d0 � f )([x, y]) =
= f ([d0(x), y] + [x, d0(y)])� d0([ f (x), y]� d(y)x) =
=[ f (d0(x)), y]� d(y)d0(x) + [ f (x), d0(y)]� d(d0(y))x+
�[d0( f (x)), y]� [ f (x), d0(y)] + d0(d(y))x + d(y)d0(x) =
=[(F � d0 � d0 � F)(x), y]� (d � d0 � d0 � d)(y)x.

In the same way, one obtains

(F � d0 � d0 � F)([x, y]) =
=F([d0(x), y] + [x, d0(y)])� d0([F(x), y]� xd(y)) =
=[F(d0(x)), y]� d0(x)d(y) + [F(x), d0(y)]� xd(d0(y))+
�[d0(F(x)), y]� [F(x), d0(y)] + d0(x)d(y) + xd0(d(y)) =
=[(F � d0 � d0 � F)(x), y]� x(d � d0 � d0 � d)(y).

Finally

(d � d0 � d0 � d)(xy) =
=d(d0(x)y + xd0(y))� d0(d(x)y + xd(y)) =
=d(d0(x))y + xd(d0(y))� d0(d(x))y � xd0(d(y)) =
=(d � d0 � d0 � d)(x)y + x(d � d0 � d0 � d)(y).

Thus E(V) is an object of Alg2.

(2) The subspace Inn(V) is precisely the image of the homomorphism

Inn : V ! E(V) : x 7! (Lx, Rx, adx).

(3) We associate with any split extension.

0 V P̂ P 0i p

s

in the category Pois the homomorphism

P ! E(V) : p ! (p ⇤ �,� ⇤ p, [[p,�]])

where the bimultiplier (p ⇤ �,� ⇤ p) and the derivation [[p,�]] are as in Def-
inition 7.3. From the charaterization of the acting morphisms in the category
Assoc (see Proposition 2.46), we have that

p ⇤ (x ⇤ q) = (p ⇤ x) ⇤ q,
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for every p, q 2 P and x 2 V. Conversely, given a Poisson algebra P and a
homomorphism f = (f1, f2, f3) 2 HomNAlg2

(P, E(V)) defined by

f(p) = (p ⇤f �,� ⇤f p, [[p,�]]f), 8p 2 P,

such that (f1, f2) : P ! Bim(V) is an acting morphism in Assoc, we can asso-
ciate with f the split extension of Poisson algebras

0 V (P � V, ⇧(f1,f2), {�,�}f3) P 0i p

s

where
(p, x) ⇧(f1,f2) (q, y) = (pq, xy + p ⇤f y + x ⇤f q)

and
{(p, x), (q, y)}f3 = ([p, q], [x, y] + [[p, y]]f � [[q, x]]f),

for every (p, x), (q, y) 2 P � V. One can check that these bilinear operations
define a Poisson algebra structure on P � V.

(4) We define
t : SplExt(�, V) ⇢ HomAlg2

(U(�), E(V))

in the following way: for every object P in Pois, tP associates with any split
extensions of P by V the homomorphism

P ! E(V)

defined as in (3). By the description of split extensions in Definition 7.3, each
component tP is injective since every homomorphism which belongs to Im(tP)
determines a unique split extension of P by V. Moreover, the family of injec-
tions

tP : SplExt(P, V) ⇢ HomAlg2
(U(P), E(V))

is natural in P and by (iii), an arrow f = (f1, f2, f3) 2 HomAlg2
(U(P), E(V))

belongs to Im(tP) if and only if (f1, f2) 2 HomAssoc(Û(P), Bim(V)) is an act-
ing morphism, where Û : Pois ! Assoc denotes the forgetful functor.

(5) The last statement follows from Proposition 3.29, since the bilinear operations
of E(V) are well defined and E(V) = USGA(V).

The following example shows that (E(V), ·E(V), [�,�]E(V)) is not in general a
Poisson algebra.

Example 7.9. Let V = F
2 be the the abelian two-dimensional algebra (i.e. xy =

[x, y] = 0, for every x, y 2 V). It turns out that

E(V) = End(V)3 ⇠= M2(F)
3,

as vector spaces, since every linear endomorphism of V is represented by a 2 ⇥ 2
matrix with respect to a fixed basis. Then the bilinear operations of E(V) can be
represented as

(A, B, C) ·E(V) (A0, B0, C0) = (AA0, B0B, AC0 + B0C),
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[(A, B, C), (A0, B0, C0)]E(V) = (AC0 � C0A, BC0 � C0B, CC0 � C0C),

for every (A, B, C), (A0, B0, C0) 2 M2(F)3 and one can check that E(V) is not a Pois-
son algebra since, for instance, the bracket [�,�]E(V) is not skew-symmetric.

By Theorem 3.9 of [26], we can deduce that the category Pois is not action repre-
sentable. Indeed, since for a Poisson algebra V, E(V) = USGA(V) is not in general
a Poisson algebra, then V does not admit an actor.

The following remark shows that there are special cases where t becomes a nat-
ural isomorphism.

Remark 7.10. Let V be a Poisson algebra such that the annihilator

Ann(V) = {x 2 V | xy = yx = 0, 8y 2 V}

of the associative algebra (V, ·) is trivial or (V2, ·) = (V, ·). From Remark 2.47 we
have

f � F0 = F0 � f (7.2.1)

for any ( f , F), ( f 0, F0) 2 Bim(V). Thus, if P is another Poisson algebra, any homo-
moprhism

f : P ! E(V)

belongs to Im(tP) and we have a natural isomorphism

SplExt(�, V) ⇠= HomAlg2
(U(�), E(V)).

Notice that the conditions Ann(V) = 0 and V2 = V are not necessary to obtain
Equation (7.2.1). For instance, if V = F is the abelian one-dimensional algebra, then
Ann(V) = V, V2 = 0, E(V) ⇠= F

3 as vector spaces (every linear endomorphism of V
is of the form ja : x 7! ax, with a 2 F) and every left multiplier of V commutes with
every right multiplier. Moreover it turns out that the multiplication

(ja, jb, jc) ·E(V) (ja0 , jb0 , jc0) = (jaa0 , jb0b, jac0+b0c)

is associative and

[(ja, jb, jc), (ja0 , jb0 , jc0)]E(V) = (0, 0, 0).

Thus E(V) is a Poisson algebra and

SplExt(�, V) ⇠= HomPois(�, E(V)),

i.e. E(V) is the actor of V.

7.3 Commutative Poisson algebras

If V is a commutative Poisson algebra, an analogous description of derived actions
and split extensions can be done as in Definition 7.3 by asking that p ⇤ x = x ⇤ p.

Then we can define E(V) as the algebra of all pairs ( f , d) 2 M(V) ⇥ Der(V),
where M(V) is the associative algebra of multipliers of (V, ·), such that

(V1) f ([x, y]) = [ f (x), y]� xd(y);

(V2) d(xy) = d(x)y + xd(y);
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endowed with the two bilinear operations

( f , d) ·E(V) ( f 0, d0) = ( f � f 0, f � d0 + f 0 � d),

[( f , d), ( f 0, d0)]E(V) = ( f � d0 � d0 � f , d � d0 � d0 � d),

for every ( f , d), ( f 0, d0) 2 E(V).
Using the notation of Theorem 7.8, one can associate, with any split extension of

P by V in CPois, a morphism

f : P ! E(V) : p 7! (p ⇤ �, [[p,�]])

in Alg2. Conversely, if P and V are commutative Poisson algebras, every homomor-
phism f : P ! E(V) in Alg2 defines a commutative Poisson algebra split extension.
Indeed, by (iii) of Theorem 7.8, such f 2 Im(tP) if and only if p 7! p ⇤ � defines
an action in the category CAssoc of commutative associative algebra over F, and
moreover SplExtCAssoc(�, V) ⇠= HomAssoc(U(�), M(V)) (see Lemma 4.4), where
U : CAssoc ! Assoc denotes the forgetful functor. Thus there exists a natural iso-
morphism

SplExt(�, V) ⇠= HomAlg2
(Ũ(�), E(V)),

where SplExt(�, V) = SplExtCPois(�, V) and Ũ : CPois ! Alg2 is the forgetful
functor.

Finally, we observe that also in this case E(V) needs not be an object of CPois.
For instance, if V = F

2 is the abelian two-dimensional algebra, then

E(V) = M(V)⇥ Der(V) = End(V)2

as a vector space, and it is easy to check that the bilinear operation

( f , d) ·E(V) ( f 0, d0) = ( f � f 0, f � d0 + f 0 � d)

is not commutative.
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Chapter 8

Conclusions and future directions

In conclusion, we studied the representability of actions in the context of varieties of
non-associative algebras over a field.

We gave a complete characterization of action accessible, operadic quadratic va-
rieties of commutative and anti-commutative algebras and we studied the repre-
sentability of actions for each of them. Moreover, we proved the variety Nil2(Com)
of two-step nilpotent commutative algebras and the variety Nil2(ACom) of two-
step nilpotent anti-commutative algebras are weakly action representable with a
weak actor of an object X being in both cases the abelian algebra [X]2.

Then, for an action accessible and operadic variety of non-associative algebras V
and an object X of it, we proved that it is always possible to construct a partial alge-
bra E(X), called external weak actor of X, together with a monomorphism of functors

t : SplExt(�, X) ⇢ HomPAlg(U(�), E(X)),

where PAlg is the category of partial algebras over F and U : V ! PAlg denotes
the forgetful functor. The pair (E(X), t) is called external weak representation of the
functor Act(�, X). Moreover, for any other object B in V , we provided a complete
description of the morphisms

(B ! E(X)) 2 Im(tB),

i.e. of the homomorphisms of partial algebras which identify the actions of B on X
in V .

We described this construction in detail in the case of Leibniz algebras, where
E(X) ⇠= Bider(X) is the Leibniz algebra of biderivations of X and we proved that
the category Leib is weakly action representable. Furthermore, we provided the
complete classifications of the Leibniz algebras of biderivations of low-dimensional
Leibniz algebras over a field F, with char(F) 6= 2, introducing an algorithm for
finding biderivations of a Leibniz algebra as pairs of matrices with respect to a fixed
basis.

Finally, we studied the representability of actions of the categories Pois and
CPois of (commutative) Poisson algebras by determining explicitly an external weak
actor, which is also a universal strict general actor.

We want to conclude our work by presenting some potential future directions
for investigating the representability of actions in the context of non-associative al-
gebras.
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Converse of the implication "weakly action representable category ) ac-
tion accessible category"

We studied the representability of actions of a general operadic variety of non-
associative algebras over a field but we were not able to find an example of an action
accessible variety which is not weakly action representable. Does the converse of the
implication

weakly action representable category ) action accessible category

hold in this context?

Categorical properties of PAlg

It is easy to show that the category PAlg of partial algebras over a field is pointed
with the zero object being the zero algebra. One of the next goals is to investigate the
algebraic and categorical properties and to describe internal actions in the category
PAlg.

Representability of actions of CAssoc \ JJord and Lie \ ACAAssoc in
characteristic 3

We know that the variety Nil2(Com) (resp. Nil2(ACom)) coincides with the in-
tersection of CAssoc and JJord (resp. Lie and ACAAssoc) if char(F) 6= 3. One
could study the representability of actions of the varieties CAssoc \ JJord and
Lie \ ACAAssoc when char(F) = 3 to obtain other examples of weakly action rep-
resentable categories or new counterexamples of action accessible categories which
are not weakly action representable.

Converse to point (3) of Theorem 6.11

Let V be a variety of non-associative algebras over a field and let X be an object of V .
We know that if the external weak actor E(X) is an object of the variety V for each
X in V , then V is a weakly action representable category. Is the converse true? In
Example 6.7 and Example 6.9 we have two instances of this situation for the varieties
Nilk(Assoc) of k-step nilpotent algebras and Alt of alternative algebras and we are
not able to show if these are weakly action representable categories or not.

Representability of actions of subvarieties

We do not know how the condition of weakly representable actions behaves un-
der taking subvarieties (especially in the non-quadratic case when the degree of the
identities may be higher than 3). For instance, we know that the variety Assoc is
weakly action representable, but we do not know whether or not the subvariety
Nilk(Assoc) with k � 3 satisfies the same condition. We recall that in this case

E(X) = {( f ⇤ �,� ⇤ f ) 2 Bim(X) | f ⇤ (x1 · · · xk) = (x1 · · · xk) ⇤ f = 0}.

is an associative algebra, but it is not k-step nilpotent in general (see Example 6.7).
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External weak actor for varieties of algebras with two bilinear operations

Starting with the results obtained in Chapter 7 for Poisson algebras, we could try to
generalize the costruction of the external weak actor E(X) introduced in Chapter 6
to any operadic and action accessible variety of algebras with two not necessarily
associative bilinear operations.

Representability of actions of unitary algebras

In a recent paper [48], G. Janelidze introduced the notion of ideally exact category,
with the aim of generalizing semi-abelian categories and to include relevant exam-
ples of non-pointed categories, such as the categories Ring of rings with unit and
CRing of commutative rings with unit.

A category C is ideally exact when it is Barr-exact, Bourn-protomodular with finite
coproducts and the unique morphism 0 ! 1 in C is a regular epimorphism. Thus,
any semi-abelian category is a pointed ideally exact category.

G. Janelidze also extended the notions of action representabity and weak action
representability to ideally exact categories, showing that the categories Ring and
CRing are action representable, with the actor of a (commutative) unitary ring X
being isomoprhic to X itself. We do not recall the construction here, since it is essen-
tialy the same of what we saw for an associative algebra with unit in Remark 6.10.

We recall from [71] that a variety of non-associative algebras V is said to be uni-
tary closed, if for any object X ot it, the algebra X̃ spanned by X and the element 1,
together with the multiplication x · 1 = 1 · x = x for any x 2 X, is still an object of V .
For instance, Assoc and Alt are unitary closed (see Example 6.9 and Remark 6.10)
and the category Leib, or any variety of anti-commutative algebras over a field of
characteristic different from 2, such as Lie, are examples of non-unitary closed va-
rieties. Indeed, if there would exists a non-abelian Leibniz algebra with unit, then
from the Leibniz identity we would get

[[x, 1], 1] = [[x, 1], 1] + [x, [1, 1]]

and thus [x, 1] = 0, for any x 2 g. In a similar way, for any subvariety of ACom, the
condition x · 1 = 1 · x = x, together with anti-commutativity, would imply x · 1 = 0.
Thus, the condition of being unitary closed depends on the set of identities which
determine the variety V .

When a variety of algebras V is unitary closed, one can consider the subcategory
V1 of unitary algebras of V with the arrows being the algebra morphisms of V that
preserve the unit. Of course, V1 is an ideally-exact category and it is not pointed.

One of the next goal is to characterize the operadic varieties of non-associative
algebras which are unitary closed and to develop the study of representability of
actions for them. Moreover, we may study the representability of actions of the
ideally exact category MVAlg of MV-algebras [55], providing a new example outside
the context of varieties of non-associative algebras over a field.
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