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Abstract. Let F be a field of characteristic zero. In [25] it was proved that UJ2, the Jordan algebra

of 2 × 2 upper triangular matrices, can be endowed up to isomorphism with either the trivial grading or
three distinct non-trivial Z2-gradings or by a Z2 × Z2-grading. In this paper we prove that the variety of

Jordan algebras generated by UJ2 endowed with any G-grading has the Specht property, i.e., every TG-ideal

containing the graded identities of UJ2 is finitely based. Moreover, we prove an analogue result about the
ordinary identities of A1, a suitable infinitely generated metabelian Jordan algebra defined in [27].

1. Introduction

Given a set X of indeterminates and a field F , it is possible to construct an F -algebra F{X} which is
free in a variety C of algebras. The objects of that free algebra are usually called “C-polynomials”. The
ideals of F{X} invariant under C-homomorphisms are called T -ideals. The study of T -ideals leads to the
so-called Specht problem, whether every T -ideal is finitely generated as a T -ideal. In the case C is the class
of associative algebras and F is a field of characteristic 0, the Specht problem has a positive answer given
by Kemer [22] whereas it fails in positive characteristic as showed by several authors such as Kanel-Belov
in [3], Grishin in [17] (ground field of characteristic 2) and Shchigolev in [30]. It is a remarkable fact that
the three papers cited above have been published in the same issue of the same journal and it seems their
authors presented such results in 1998 at the Seminar of Latyshev at the Moscow State University in the
order cited above. We also want to cite the paper by Gupta and Krasilnikov [18] which presented a simple
counterexample in characteristic 2 and a paper by Shchigolev (see [29]) about non-finitely generated T -
spaces. If the class C coincides with the class of Lie algebras in characteristic 0 we have a result by Iltyakov
[20] in which he proved that the Specht problem has a positive solution for finite dimensional Lie algebras.
Moreover in [4] the authors proved that a Lie algebra has the Specht property if its codimension sequence
is polinomially bounded. In the general case we have no definite answer in characteristic 0 although we
have counterexamples in the case of positive characteristic. For the purpose, see the works by Vaughan-Lee
[33] (characteristic 2) and Drensky [11] (characteristic p > 0). Recently in [14] the authors were able to
construct a variety of non-associative algebras which does not satisfy the Specht property via a sofisticated
construction of varieties of algebras with slow growth of their codimension sequence. The latter examples
have the additional exotic property that the codimension grows as n3+α, where α is any positive real number
strictly less than 1. Carrying on with examples of non-Spechtian varieties, a very interesting examples was
obtained by Drenski in [10]. In particular the author gave an example of an anticommutative algebra whose
variety generated by is of quadratic growth although non-finitely based.

Even if C is the class of Jordan algebras, one can get only partial answers to the Specht problem. Indeed,
in [34] Vais and Zelmanov proved that any finitely generated Jordan algebra in characteristic 0 has the
Specht property by showing that it has the same identities of a finite dimensional generalized Jordan pair.
Unfortunately, we do not know yet whether the answer is positive nor negative in case of infinitely generated
Jordan algebras.

We can also generalize the Specht problem for classes of algebras graded by a group G. In particular, in
case of associative G-graded algebras in characteristic 0, where G is any finite group, a positive answer to the
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problem was found in [1] and [32], whereas in case of G-graded Lie or Jordan algebras we have experimental
results, such as in [13] in which the authors proved the Specht property of sl2(F )G, the Lie algebra of 2× 2
traceless matrices over a field F of characteristic 0 graded by any finite abelian group G, or in [31] in which
a similar result was achieved for Bn, the finite dimensional Jordan algebra of a non-degenerate symmetric
bilinear form graded by Z2, the cyclic group of order 2, always in characteristic 0.

The goal of this paper is twofold. On one hand, we get a positive solution to the Specht problem in case
of UJ2(F ), the Jordan algebra of 2×2 upper triangular matrices over a field F of characteristic zero, graded
by any finite abelian group. In particular, we shall consider the classification of the G-gradings on UJ2(F )
given in [25], that is a particular case of a latter result by Koshlukov and Yukihide in which the authors gave
such a classification for UJn(F ), n ≥ 2 (see [24]).

On the other hand, we shall prove the Specht property for varieties of Jordan algebras with trivial grading
of almost polynomial growth. Recall that a variety V has almost polynomial growth if its codimension
sequence is exponentially bounded and for any proper subvariety U ( V, its codimension sequence cn(U)
grows polynomially. In a forthcoming paper by Martino (see [26]), it was proved that up to equivalence,
the only variety of finite dimensional special Jordan algebras of almost polynomial growth is generated by
UJ2(F ). Moreover, in [27] the authors introduced an infinitely generated metabelian Jordan algebra, denoted
by A1 that generates another variety of almost polynomial growth. Thus, in the last sections we shall prove
that var(UJ2) and var(A1) have the Specth property. We highlight that the first part of this statement, i.e.,
any T -ideal containing that of UJ2(F ) is finitely generated, is a particular case of [34]. We chose to include
it here since its proof involves some interesting non-trivial techniques. In particular, all results are stated in
the language of well-quasi-ordered sets used for the first time by the author in [7] to establish positive results
on the Specht problem for groups. Later this method, also known as the Higman-Cohen method, was used
for groups, Lie and associative algebras.

2. Preliminaries

All fields we refer to are of characteristic 0 unless explicitely written.
Let X be a countable set of indeterminates and let J (X) be the free Jordan algebra generated by the

set X over F . We say that a polynomial f(x1, . . . , xn) ∈ J (X) is a polynomial identity for the Jordan
algebra J if f(a1, . . . , an) = 0 for all a1, . . . , an ∈ J. In this case we write f ≡ 0. The identities of J form a
T -ideal of J (X), i.e., an ideal closed under all endomorphisms of the free Jordan algebra. Let us denote by
Id(J) = {f ∈ J (X)| f ≡ 0 on J} the T -ideal of polynomial identities of J. It is well-known (see for example
[15, Theorem 1.3.7]) that, in characteristic 0, Id(J) is determined by the multilinear polynomials it contains.
Recall that a multilinear polynomial is an element of the vector subspace

Pn = spanF 〈
{
xσ(1)xσ(2) · · ·xσ(n)| σ ∈ Sn

}
〉,

where Sn is the symmetric group and xσ(1)xσ(2) · · ·xσ(n) stands for a monomial with all possible brackets

arrangement. Thus, the relatively free algebra J (X)

Id(J)
is determined by the sequence of vector subspaces

Pn(J) =
Pn

Pn ∩ Id(J)
, n ≥ 1.

In this way, we can attach to the Jordan algebra J a numerical sequence cn(J) called the codimension
sequence, by defining

cn(J) = dimF Pn(J).

Remark that in general the codimensions are bounded only by an over-exponential function

cn(J) ≤ 1

n

(
2n− 2

n− 1

)
n!,

where 1
n

(
2n−2
n−1

)
is the Catalan number. Nevertheless, one can improve this bound in some special settings.

For instance, in [28] a celebrated theorem of Regev states that any associative algebra satisfying a non-trivial
polynomial identity (PI-algebra) has the sequence of codimensions exponentially bounded. A similar result
was obtained in the setting of finite dimensional Jordan algebras (see [12] and [16]). We shall refer to the
growth of the Jordan algebra J as the asymptotic behaviour of its codimension sequence.
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Given a non-empty set S ⊆ J (X), the class of all Jordan algebras J such that f ≡ 0 on J for all f ∈ S, is
called variety V = V(S) determined by S. Similarly, given a Jordan algebra J , the variety of Jordan algebras
generated by J, var(J), is the class of all Jordan algebras satisfying the identities of J. Hence we say that
A ∈ var(J) if and only if Id(J) ⊆ Id(A). It is clear that there exists a one-to-one correspondence between
T -ideals and varieties, thus given a variety V, we can naturally define Id(V), Pn(V) and cn(V). The growth
of V will be the asymptotic behaviour of cn(V). Moreover, we say that V has almost polynomial growth if
its codimension sequence is exponentially (but not polynomially) bounded and for any proper subvariety
U ( V, cn(U) grows polynomially.

Let now define an action of the symmetric group Sn on Pn : if σ ∈ Sn and f(x1, . . . , xn) ∈ Pn, then
σ ·f(x1, . . . , xn) = f(xσ(1), . . . , xσ(n)). Such an action induces a natural Sn-action on Pn(J) that becomes an
Sn-module. Hence a Sn-character arises denoted by χn(J) and called n-th cocharacter of J . For all n ≥ 1
the sequence {χn(J)}n≥1 is called cocharacter sequence of J. Since charF = 0, by complete reducibility
χn(J) can be written as

χn(J) =
∑
λ`n

mλχλ,

where χλ is the character associated to the partition λ and mλ is the corresponding multiplicity.
Finally, from now on let us denote by G any finite abelian group and by J a G-graded Jordan algebra

over F . Recall that J is a G-graded Jordan algebra if J =
⊕

g∈G Jg is a direct sum of subspaces such that
JgJh ⊆ Jgh, for all g, h ∈ G.

The free G-graded Jordan algebra JG(X) is the G-graded Jordan algebra freely generated by the set
X =

⋃
g∈GX

g, where for any g ∈ G the sets Xg = {xgi | i ≥ 1} of variables of homogeneous degree g

are countable and pairwise disjoint. A polynomial f of J (X) is a G-graded polynomial identity of J if it
vanishes under all graded substitutions, i.e., for any g ∈ G, we evaluate the variables xgi by elements of the

homogeneous component Jg. We denote by IdG(J) the ideal of JG(X) of G-graded polynomial identities of

J . It is easily checked that IdG(J) is a TG-ideal, i.e., an ideal invariant under all G-graded endomorphisms

of JG(X). We say that J is a graded PI-algebra if IdG(J) 6= 0. As in the ordinary case, one can define
VG = VG(S) the variety of G-graded Jordan algebras defined by the set S ⊆ JG(X) as the set of all
G-graded Jordan algebras such that f ≡ 0 for all f ∈ S.

Furthermore, one can define PGn as the vector space spanned by all multilinear monomials x
gσ(1)
σ(1) · · ·x

gσ(n)

σ(n) ,

σ ∈ Sn, g1, . . . , gn ∈ G, in the graded variables of the set X and by PGn (J) the quotient vector space
PGn

PGn ∩Id
G
(J)

.

Let n ≥ 1 and write n = n1 + · · · + ns as a sum of non-negative integers. Define Pn1,...,ns ⊆ PGn as
the space of multilinear graded polynomials in which the first n1 variables xg11 , . . . , x

g1
n1

are of homogeneous
degree g1,. . ., the last ns variables xgsn−ns+1, . . . , x

gs
n are of homogeneous degree gs. Notice that given such

n1, . . . , ns, there are
(

n
n1,...,ns

)
subspaces isomorphic to Pn1,...,ns where

(
n

n1,...,ns

)
denotes the multinomial

coefficient. It is clear that PGn is the direct sum of such subspaces with n1 + · · · + ns = n. Moreover such

decomposition is inherited by PGn ∩ IdG(J) and we consider the spaces Pn1,...,ns ∩ IdG(J). In light of these
remarks, one defines

Pn1,...,ns(J) =
Pn1,...,ns

Pn1,...,ns ∩ IdG(J)
.

The space Pn1,...,ns(J) is naturally endowed with a structure of Sn1×· · ·×Sns - module in the following way:
the group Sn1

× · · · × Sns acts on the left on Pn1,...,ns by permuting the variables of the same homogeneous
degree; hence Sn1

permutes the variables of homogeneous degree g1, Sn2
those of homogeneous degree g2

and so on. Since IdG(J) is invariant under this action, Pn1,...,ns(J) has a structure of Sn1
×· · ·×Sns - module

and we denote by χGn (J) its character.
If λ(1) ` n1, . . . , λ(s) ` ns, are partitions, then we write 〈λ〉 = (λ(1), . . . , λ(s)) ` (n1, . . . , ns) and we say

that 〈λ〉 is a multipartition of n = n1 + · · ·+ ns.
Since charF = 0, by complete reducibility, χGn (J) can be written as a sum of irreducible characters in the

following way:

χGn (J) =
∑
〈λ〉`n

m〈λ〉χλ(1) ⊗ · · · ⊗ χλ(s),
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where m〈λ〉 is the multiplicity of χλ(1) ⊗ · · · ⊗ χλ(s) in χGn (J). We call χGn (J) the n-th graded cocharacter of
J .

Recall that the multiplicities in the cocharacter sequence are equal to the maximal number of linearly
independent highest weight vectors, according to the representation theory of GLn. We also recall that a
highest weight vector is obtained from the polynomial corresponding to an essential idempotent by identifying
the variables whose indices lie in the same row of the corresponding Young tableaux (see [8, Chapter 12] for
more details).

3. Finite basis property for sets

The finite basis property for sets was first studied in [19] by G. Higman and in an unpublished manuscript
by P. Erdos and R. Rado. Authors like B. H. Neumann and J. B. Kruskal also studied the finite basis
property for sets which is also known as theory of well-quasi-ordering.

A binary relation ≤ on a set A is a quasi-order if ≤ is reflexive and transitive, i.e., (i) a ≤ a for all a ∈ A,
and (ii) a ≤ b and b ≤ c imply a ≤ c. Every partial order is a quasi-order but not worth the contrary. For
example, if f , g ∈ JG(X) then

(1) f ≤ g ⇔ g ∈ 〈f〉TG ,

where 〈f〉TG denotes the TG-ideal generated by f, is a quasi-order in JG(X) but it is not in general a partial
order. If B is a subset of a quasi-ordered set A, the closure of B is defined as

B = {a ∈ A | exists b ∈ B such that b ≤ a}.

A closed subset is a set that coincides with its own closure, i.e., B = B. We say that the quasi-ordered set
A has the finite basis property (f.b.p.) if every closed subset of A is the closure of a finite set. Every
well-ordered set has f.b.p. (because every non-empty subset is the closure of a single element). In particular
N the set of natural numbers with standard ordering has f.b.p.. However, Z the set of integers has not the
f.b.p.. In general a totally ordered set A has f.b.p. if and only if A is a well-ordered set. Below we present
some equivalent definitions for f.b.p..

Theorem 1. [19, Theorem 2.1] The following conditions on a quasi-ordered set A are equivalent.

(1) Every closed subset of A is the closure of a finite subset;
(2) If B is any subset of A, there is a finite B0 such that B0 ⊂ B ⊂ B0;
(3) Every infinite sequence of elements {ai}i≥0 of A has an infinite ascending subsequence

ai1 ≤ ai2 ≤ · · · ≤ aik ≤ · · · ;

(4) There exists neither an infinite strictly descending sequence in A nor an infinite of mutually incom-
parable elements of A.

It is a consequence of the above theorem that every subset B of a quasi-ordered set A that satisfies f.b.p.
has finite minimal elements (from which the name well-quasi-ordering).

The next proposition will be very often used in this work.

Proposition 1. Let (A1,≤A1
), (A2,≤A2

), . . ., (Ak,≤Ak) be quasi-ordered sets satisfying f.b.p.

(1) The disjoint union of A1, A2, . . ., Ak endowed with the quasi-order where a ≤ b if and only if a,
b ∈ Ai and a ≤Ai b for some i ∈ {1, 2, . . . , k} satisfies f.b.p.

(2) The cartesian product A1 × A2 × · · · × Ak endowed with the quasi-order where (a1, a2, . . . , ak) ≤
(b1, b2, . . . , bk) if and only if ai ≤Ai bi for any i ∈ {1, 2, . . . , k} satisfies f.b.p.

Let S(A) be the set of finite subsets of A where A is a quasi-ordered set. We define for P , Q ∈ S(A),
P ≤ Q if and only if there is one-to-one increasing map of P into Q. For instance if A = N the set of non-
negative integers we define a quasi-order on the set S(N) of finite sequences of non-negative integers in the
following way: a = (a1, . . . , an) ≤ (a′1, . . . , a

′
n′) = a′ if and only if there is a subsequence a′′ = (a′i1 , . . . , a

′
in

) of
a′ (i1 < · · · < in′) such that aj ≤ a′ij for all j ∈ {1, . . . , n}. Then Erdos and Rado proved in an unpublished

manuscript the following result which can be found in [19] too:

Theorem 2. If A has the f.b.p., so has S(A).
4



As seen above the free graded Jordan algebra JG(X) is a quasi-ordered set if we define for f, g ∈ JG(X),
f ≤ g if and only if g ∈ 〈f〉TG . If I is a TG-ideal of JG(X), the quasi-order on JG(X) is inherited by

JG(X)

I
. Hence, if f, g ∈ JG(X), we set

(2) f ≤ g if and only if g ∈ 〈{f} ∪ I〉TG .
In this case we say that g is a consequence of f modulo I or simply that g is a consequence of f . When
f ≤ g and g ≤ f we say that f is equivalent to g and we write f ≡ g. We observe that if B ⊆ JG(X) then
B ⊆ 〈B〉TG modulo I and consequently 〈 B 〉TG = 〈B〉TG modulo I where B is a closure of B.

Definition 1. Let A be a G-graded Jordan algebra. We say that IdG(A) has the Specht property if any

TG-ideal I such that I ⊇ IdG(A), has a finite basis, that is, I is finitely generated as a TG-ideal. Moreover,
we say that a variety V has the Specht property if the corresponding TG-ideal has the Specht property.

The following remark draws up the technique that we will apply in order to prove the Specht property
for a variety of G-graded Jordan algebras.

Remark 1. Fix a variety V of graded Jordan algebras such that IdG(V) is finitely generated and let L =
JG(X)

IdG(V)
be the corresponding relatively free algebra. A strategy to give a positive answer to the Specht problem

for V is:

(1) Find a set of polynomials B ⊆ L (not necessarily finite) such that for every TG-ideal I of L,

I = 〈B′〉TG for some B′ ⊆ B.

(2) Show that (B,≤) satisfies f.b.p. where ≤ is the quasi-order given by the consequence, i.e., f ≤ g if
and only if g is a consequence of f in L.

In fact, suppose that there is a set B satisfying (1) and (2) and let I be a TG-ideal of L. There exists
B′ ⊆ B such that I = 〈B′〉TG . Since (B,≤) satisfies f.b.p. by Theorem 1, there exists a finite set B0 ⊆ B′

such that B0 ⊆ B′ ⊆ B0. Therefore

I = 〈B′〉TG = 〈 B0 〉TG = 〈B0〉TG .

If F is a field of characteristic 0 and IdG(V) is finitely generated, a natural set that satisfies step (1) is a set
of highest weight vectors generating irreducible modules whose characters appear with non-zero multiplicity
in the decomposition of the cocharacter of the variety V. If a concrete list of highest weight vectors for V is
known, the next step is to show that this list satisfies f.b.p. with the quasi-order inherited by L.

In the proof of the main results of this paper our strategy is showing that for any set S of highest weight
vectors there is a finite subset S0 such that all elements in S follow from those in S0. When handling highest
weight vectors corresponding to multipartitions appearing with multiplicity 1 in the cocharacter sequence,
in order to prove the Specht property it suffices using Remark 1. Otherwise the usual way to handle the
problem is the following. We argue for the ungraded case only being the generalization to the graded case a
simple restatement.

Step 1. If the highest weight vectors of degree n are linear combination of fn1 , . . . , f
n
k , k = k(n), we order

linearly the fi’s in order to select a leading term namely fni0 .
Step 2. We define a partial quasi-order on the set of all fni ’s (for any n and any i = 1, . . . , k(n)) and we

prove the set of these highest weight vectors satisfies f.b.p. with respect to the partial quasi-order above.
Step 3. We prove that if

fn1 =

k1∑
i=1

αif
n1
i , fn2 =

k2∑
j=1

βjf
n2
j , αi, βj ∈ F,

are two highest weight vectors with leading terms fn1
i0

, fn2
j0

respectively, and fn1
i0
≤ fn2

j0
, then there exists a

highest weight vector

vn2 =

k2∑
j=1

γjf
n2
j , γj ∈ F,
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which is a consequence of fn1 and its leading term is exactly fn2
j0

.
Step 4. We consider the set L of all leading terms of the set S of all highest weight vectors in the T -ideal.

By Step 2, L has a finite subset L0 such that every element in L is bigger than some element of L0. Let
S0 ⊆ S be the finite subset with leading terms in L0. Let fn1 ∈ S0 and fn2 ∈ S such that their leading
terms fn1

i0
, fn2

j0
respectively, are such that fn1

i0
≤ fn2

j0
. By Step 3 the leading term of

fn2
j0
− βj0
γj0

v

is smaller than the leading term of fn2
j0

and by inductive arguments is a consequence of S0.

4. Specht property for G-graded identities of UJ2

In this section we prove the Specht property for G-graded identities of UJ2, where G is any finite abelian
group.

Throughout the paper we let UJ2(F ) = UJ2 be the Jordan algebra of upper triangular matrices of order

2 over the field F with the product x ◦ y =
xy + yx

2
for all x, y ∈ UJ2. We fix the basis

1 =

(
1 0
0 1

)
, a =

(
1 0
0 −1

)
, b =

(
0 1
0 0

)
,

of J = UJ2. Hence a ◦ a = a2 = 1, b2 = b ◦ b = 0 and a ◦ b = 0. Here we simply write F to denote the scalar
matrices in J . Up to isomorphism, J can be endowed with the following non isomorphic gradings (see [25,
Theorem 1]):

1. G = {0} The trivial grading: J0 = J ;
2. G = Z2:

(a) The scalar grading: J0 = F, J1 = Fa⊕ Fb;
(b) The associative grading: J0 = F ⊕ Fb, J1 = Fa;
(c) The classical grading: J0 = F ⊕ Fa, J1 = Fb.

3. G = Z2 × Z2 (The Klein grading): J(0,0) = F , J(0,1) = Fa, J(1,0) = Fb, J(1,1) = {0}.
We denote by S, A, C and K the scalar, associative, classical and Klein grading, respectively. Thus, for
instance, IdC(UJ2) and varC(UJ2) will denote the T2-ideal of graded identities and the variety of Z2-graded
Jordan algebras generated by UJ2 endowed with the classical grading, respectively.

4.1. The S-grading. In this section we consider the scalar grading on J = UJ2, i.e., G = Z2 and J = J0⊕J1
where J0 = F and J1 = Fa⊕Fb. As above we write X = Y ∪Z where the variables yi ∈ Y have homogeneous
degree 0, the variables zi ∈ Z have homogeneous degree 1.

A basis of the graded identities of UJ2 and its cocharacter sequence with the S-grading is described below.
On this purpose we recall the definition of associator between three elements u1, u2, u3 of a given algebra:

(u1, u2, u3) := (u1u2)u3 − u1(u2u3).

Of course we have an analogous definition for associators of length n, where n is an odd number greater than
3.

Theorem 3. [23, Proposition 8] The following polynomials are a basis of IdS(UJ2)

(y1, y2, y3), (y, z1, z2), (z1, y, z2), (z1, z2, z3)z4.

The next theorem describes the graded cocharacter sequence.

Theorem 4. [6, Theorem 2] Let n ≥ 0 and let

χSn(UJ2) =
∑
λ,µ

mλ,µχλ,µ

be the S-graded cocharacter of UJ2. Then mλ,µ = 1 if and only if λ = (r) and µ = (s), where r+ s = n and
r, s not simultaneously equal to 0. In all other cases mλ,µ = 0.
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As a consequence of the previous result, we have the description of the highest weight vectors whose
characters appear with non-zero multiplicity in the decomposition of χSn(UJ2). In particular, the highest
weight vectors are of the form:

yrzs

for all r, s not simultaneously equal to 0. Let B be a set of all highest weight vectors and let B ⊆ N2 be the
set of pars (r, s) such that yrzs ∈ B. By Proposition 1, B has f.b.p. if we define a natural quasi-order by
saying that (r, s) ≤ (r′, s′) if and only if r ≤ r′ and s ≤ s′.

We shall show that the quasi-order ≤ in B induces the quasi-order in B. More precisely we have the
following result.

Lemma 1. For all r, s not simultaneously equal to 0, if (r, s) ≤ (r′, s′) then yrzs ≤ yr′zs′ .

Proof. The statement readily follows from the fact that yr
′
zs

′ ≡ [yr
′−r(yrzs)]zs

′−s, since the even variables

y lie in the associative and commutative center of the relatively free graded algebra J〈X〉
IdS(UJ2)

. �

Now we can prove the Specht property for IdS(UJ2).

Theorem 5. Let F be a field of characteristic 0. Then varS(UJ2) has the Specht property.

Proof. Let U be a subvariety of varS(UJ2) and let I be the corresponding T2-ideal of graded identities. If

U = varS(UJ2), i.e., I = IdS(UJ2), then the result follows from Theorem 3.

So let us suppose U ( varS(UJ2) and I ( IdS(UJ2). By Remark 1 it suffices to show that (B,≤) satisfies
f.b.p. where B is the set all highest weight vectors described above and ≤ is the quasi-order given by the
consequence. Let B′ be a subset of B and B′ a subset of B = {(r, s) : yrzs ∈ B} corresponding to B′, i.e.,
B′ = {(r, s) : yrzs ∈ B′}. Since B′ ⊆ B ⊆ N2 and by Proposition 1 N2 has f.b.p., there is a finite set
B0 ⊆ B′ such that B0 ⊆ B′ ⊆ B0. Consider B0 = {yrzs : (r, s) ∈ B0} ⊆ B′ and yrzs ∈ B′. This implies
that (r, s) ∈ B′ ⊆ B0 and therefore there is (r0, s0) ∈ B0 where (r0, s0) ≤ (r, s). By the previous lemma
yr0zs0 ≤ yrzs where yr0zs0 ∈ B0. Thus yrzs ∈ B0 and consequently B0 ⊆ B′ ⊆ B0 where B0 is a finite
set. �

4.2. The A-grading. Let us consider now the associative grading on J = UJ2, i.e., G = Z2 and J = J0⊕J1
where J0 = F ⊕ Fb and J1 = Fa.

As in the previous cases, let us recall the basis of the T2-ideal of UJ2 and its graded cocharacter sequence.

Theorem 6. [23, Proposition 6] The following polynomials are a basis of IdA(UJ2)

(y1, y2, y3), (z1, y, z2), (z1, z2, z3), (y1, z, y2), (z, y1, y2), (z1z2, x1, x2), (x1, z1z2, x2).

Theorem 7. [6, Theorem 3] Let n ≥ 0 and let

χAn =
∑
λ,µ

mλ,µχλ,µ

be the A-graded cocharacter of UJ2. Then mλ,µ = 1 if either

1) λ = (r), µ = (s), for all r ≥ 0, r + s = n and s odd.
2) λ = (n), µ = ∅.
3) λ = (r), µ = (s), for all r ≤ 1, r + s = n and s even.
4) λ = (1, 1), µ = (s), s even.
5) λ = (p+ q, p), µ = (s), for all 2p+ q > 2, 2p+ q + s = n and s even.

Moreover, mλ,µ = 2 if λ = (2) and µ = (s), where s is even, and mλ,µ = r− 2 if λ = (r) and µ = (s), where
r > 2 and s even. In all other cases mλ,µ = 0.

In the same paper, it was also proved that the highest weight vectors whose characters appear with
non-zero multiplicity in the decomposition of χAn (UJ2) are of the form (here we use the standard notation
y1 · · · y2 := y1 · · · y2 − y2 · · · y1):

(1a) (yrz)zs−1 for s odd;
(1b) yr for all r ≥ 1;
(1c) yrzs for r ∈ {0, 1} and s even;
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(1d) (((y1z)z)y2)zs−2 for s even;
(1e) ((((yq1 ȳ1 · · · ỹ1︸ ︷︷ ︸

p

)z)z) ȳ2 · · · ỹ2︸ ︷︷ ︸
p

)zs−2 for s even,

or a linear combination of the following ones:

(2a) (i) y2zs for s even;
(ii) ((y2z)z)zs−2 for s even ≥ 2;

(3a) (((yiz)z)yr−i)zs−2 for r > 2, s even, i ∈ {1, . . . , r − 2}.
Let us denote by

B1a, B1b, B1c, B1d, B1e, B2a(i), B2a(ii), B3a
the sets of highest weight vectors associated to (1a), (1b), (1c), (1d), (1e), (2a(i)), (2a(ii)) and (3a), respec-
tively. We consider the following sets which are clearly in one-to-one correspondence with the highest weight
vectors described above. These sets are the following:

B1a = {(r, s) : s is odd};
B1b = {r : r ≥ 1};
B1c = {(r, s) : 0 ≤ r ≤ 1, s is even};
B1d = {s : s is even};
B1e = {(q, p, s) : s is even};

B2a(i) = {s : s is even};
B2a(ii) = {s : s is even};
B3a = {(i, r − i, s) : 0 ≤ i ≤ r − 1, s is even, r > 2}

= {(i, j, s) : s is even and j ≥ 1}.

As in the previous section, we shall show that the natural quasi-order ≤ in B1a ∪B1b ∪B1c ∪B1d ∪B1e ∪
B2a(i) ∪B2a(ii) ∪B3a induces the quasi-order ≤ in B1a ∪ B1b ∪ B1c ∪ B1d ∪ B1e ∪ B2a(i) ∪ B2a(ii) ∪ B3a where
f ≤ g if and only if f , g ∈ Bi for some i and g is a consequence of f . In order to reach the goal, first we
prove the following technical lemma.

Lemma 2. The following statements hold modulo IdA(UJ2).

(1) (zt(yz))z ≡ zt+1(yz) for all t ≥ 0.
(2) (Y1z)(yz) ≡ ((Y1y)z)z where Y1, Y2 are products of even variables.
(3) (((Y1z)z)Y2)zr ≤ (((Y1z)z)Y2y)zr where r is even ≥ 2 and Y1, Y2 are products of even variables.
(4) (((Y1z)z)Y2)zr ≤ ((((Y1y)z)z)Y2)zr where r is even ≥ 2 and Y1, Y2 are products of even variables.

Proof. First let us prove statement (1). If t = 0 then (1) trivially follows, so let us suppose t > 0. If t is odd,

then (zt(yz))z ≡ ((yz)z)zt ≡ (yz)zt+1 (mod IdA(UJ2)), since (z1, z2, z3) ≡ 0. Conversely, if t is even, then
due to (z1, y, z2) ≡ 0, zt = zzt−1 with t− 1 odd and (z1z2, x1, x2) ≡ 0, we get

(zt(yz))z ≡ ((yz)z)zt ≡ zt+1(yz) (mod IdA(UJ2)).

Furthermore, since (z1, y, z2), (y1, z, y2), (y1, y2, z) are graded identities of UJA2 it follows that

(Y1z)(yz) ≡ [(Y1z)y]z ≡ [Y1(yz)]z ≡ ((Y1y)z)z (mod IdA(UJ2)),

so we get statement (2).
Statement (3) is easily proved by remarking that because of r is even and (y1, y2, y3) ≡ 0, then

[(((Y1z)z)Y2)zr]y ≤ [((Y1z)z)Y2](yzr) ≤ [(((Y1z)z)Y2)y]zr ≤ [((Y1z)z)Y2y]zr

Finally, let us partially linearize the variable z of (((Y1z)z)Y2)zr. We get the following consequence:∑
σ∈Sr+2

(((((Y1zσ(1))zσ(2))Y2)(zσ(3) · · · zσ(r+2)).
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If we replace in the previous polynomial z1 by yz and zi by z for all i 6= 1, we obtain

(((Y1(yz))z)Y2)zr + (((Y1z)(yz))Y2)zr +

r∑
t=0

(((Y1z)z)Y2)((· · · ((zt(yz)) z) · · · z)z︸ ︷︷ ︸
r−t−1

).

By taking into account the previous statements, we have that (((Y1(yz))z)Y2)zr and (((Y1z)(yz))Y2)zr are

equivalent to ((((Y1y)z)z)Y2)zr modulo IdA(UJ2). Moreover, by (1) for all 0 ≤ t ≤ r,
(((Y1z)z)Y2)((· · · ((zt(yz)) z) · · · z)z︸ ︷︷ ︸

r−t−1

) ≡ (((Y1z)z)Y2)((yz)zr−1) (mod IdA(UJ2)).

Thus, in order to prove statement (4), it suffices to show that (((Y1z)z)Y2)((yz)zr−1) is equivalent to
((((Y1y)z)z)Y2)zr modulo Id(UJ2). Since r is even and (y1, y2, y3) is an identity, we have

(((Y1z)z)Y2)((yz)zr−1) ≡ [(((Y1z)z))(z
r−1(yz))]Y2 (mod IdA(UJ2)).

Now remark that

[(((Y1z)z))(z
r−1(yz))]Y2 ≡ [((Y1z)z)z

r−1](yz)]Y2 ≡ [[(Y1z)z
r](yz)]Y2 ≡ [(zr(Y1z))(yz)]Y2 (mod IdA(UJ2)),

since (z1z2, x1, x2) and (z1, z2, z3) are identities and r − 1 is odd. Moreover, due to the fact that r is even
and greater than 2, zr = zzr−1 and (z1z2, x1, x2) ≡ (x1, z1z2, x2) ≡ 0, it turns out that

[(zr(Y1z))(yz)]Y2 ≡ [((Y1z)(yz))Y2]zr (mod IdA(UJ2)).

Therefore by statement (2)

[((Y1z)(yz))Y2]zr ≡ [[((Y1y)z)z]Y2]zr (mod IdA(UJ2))

and we are done. �

Lemma 3. We have

(1) (yrz)zs−1 ≤ (yr
′
z)zs

′−1 where (r, s) ≤ (r′, s′) and s, s′ odd;

(2) yr ≤ yr′ where r ≤ r′ for all r, r′ ≥ 1;

(3) yzs ≤ yzs′ and zs ≤ zs′ where s ≤ s′ and s, s′ even;

(4) (((y1z)z)y2)zs−2 ≤ (((y1z)z)y2)zs
′−2 where s ≤ s′ and s, s′ even;

(5) ((((yq1 ȳ1 · · · ỹ1︸ ︷︷ ︸
p

)z)z) ȳ2 · · · ỹ2︸ ︷︷ ︸
p

)zs−2 ≤ ((((yq
′

1 ȳ1 · · · ỹ1︸ ︷︷ ︸
p′

)z)z) ȳ2 · · · ỹ2︸ ︷︷ ︸
p′

)zs
′−2 where (q, p, s) ≤ (q′, p′, s′) and

s, s′ even ≥ 2;
(6) y2zs ≤ y2zs′ and ((y2z)z)zs−2 ≤ ((y2z)z)zs

′−2 where s ≤ s′ for s even;

(7) (((yiz)z)yj)zs−2 ≤ (((yi
′
z)z)yj

′
)zs

′−2 where (i, j, s) ≤ (i′, j′, s′) and j,j′ ≥ 1, s, s′ even.

Proof. The statement (1) follows from

[yr
′−r[(yrz)zs−1]]zs

′−s ≡ [[yr
′−r(yrz)]zs−1]zs

′−s ≡ [(yr
′
z)zs−1]zs

′−s ≡ (yr
′
z)zs

′−1 (mod IdA(UJ2)),

since (y1, z, y2) and (z, y1, y2) are graded identities of UJ2. The statement (2) is trivial.
Statements (3), (4) and (6) readily follow from the fact that s and s′ − s are even and (y1, y2, y3) ≡ 0.
In order to prove statement (5) we use the transitivity of the quasi-order, i.e., we prove that (q, p, s) ≤ (q′, p, s)
implies fq,p,s ≤ fq′,p,s, (q, p, s) ≤ (q, p′, s) implies fq,p,s ≤ fq,p′,s and (q, p, s) ≤ (q, p, s′) implies fq,p,s ≤ fq,p,s′ ,
for all q, q′, p, p′, s, s′ integers, where

fq,p,s = fq,p,s(y1, y2, z) = ((((yq1 ȳ1 · · · ỹ1︸ ︷︷ ︸
p

)z)z) ȳ2 · · · ỹ2︸ ︷︷ ︸
p

)zs−2.

Clearly, fq,p,s ≤ fq,p,s′ when s ≥ s′ and s, s′ are even, since fq,p,s′ ≡ fq,p,szs
′−s.

Now suppose q ≤ q′, then fq,p,s ≤ fq′,p,s by (4) of Lemma 2.
Finally, without loss of generality we may suppose p′ = p+1. The general statement will follow by a standard
induction argument. By [6, Lemma 5] we have

fq,p,s =

p∑
j=0

(−1)p−j
(
p

j

)
((((yq+j1 yp−j2 )z)z)yp−j1 yj2)zs−2.
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On the other hand, by statements (3) and (4) of Lemma 2, for all 0 ≤ j ≤ p

((((yq+j1 yp−j2 )z)z)yp−j1 yj2)zs−2 ≤ ((((yq+j1 y
(p+1)−j
2 )z)z)y

(p+1)−j
1 yj2)zs−2,

therefore fq,p,s ≤ fq,p+1,s.
The proof of (7) is analogous to that of (5). �

Our next goal is proving the Specht property for varA(UJ2).

Theorem 8. Let F be field of characteristic 0, then varA(UJ2) has the Specht property.

Proof. Let U be a subvariety of varA(UJ2). If U = varA(UJ2), then the result follows from Theorem 6.
So let us suppose U ( varA(UJ2) and let us denote by I the corresponding T -ideal of graded identities. As
noted above, not all the highest weight vectors do correspond to multipartitions appearing with multiplicity
1 in the cocharacter sequence of varA(UJ2). Hence we divide the proof into two parts being the first one the
one involving the cases from (1a) to (1e). We start handling the cases (1a)-(1e). By Remark 1 it suffices to
show that (B1a ∪B1b ∪B1c ∪B1d ∪B1e,≤) satisfies f.b.p. where f ≤ g if and only if f , g ∈ Bi for some i and
g is a consequence of f . If we set B = B1a ∪B1b ∪B1c ∪B1d ∪B1e and B = B1a ∪B1b ∪B1c ∪B1d ∪B1e, then
by Lemma 3 we get the claim as outlined in the proof of Theorem 5.
It remains to prove the cases (2a) and (3a). We have to remark the two cases have to be manipulated
separately because they correspond to different modules. Hence we start with the case (2a) and we notice
any highest weight vector can be written as h = αf + βg, α, β ∈ F , f of type (2a)(i) and g of type
(2a)(ii). We have to follow the four steps as outlined in Section 3, then we have to order the highest weight
vectors. We always consider the elements (2a)(i) greater than the elements (2a)(ii) and among them we
give an order depending on the exponent of the variable z and this completes Step 1. By Lemma 3 the set
(B2a(i) ∪ B2a(ii),≤) satisfies f.b.p. where f ≤ g if and only if f , g ∈ Bi for some i and g is a consequence of
f and this is enough to complete Step 2. In order to get Step 3 we have simply to notice that if

h1 = α1f1 + β1g1 and h2 = α2f2 + β2g2

are highest weight vectors such that f1 ≤ f2, then f2 = f1z
t for some t ≥ 0, then we set g = g1z

t and we
consider

h = αf2 + βg

which is the required highest weight vector and we are done because the other cases are completely analogous.
The case (3a) may be treated similarly to the first case. Actually we order the elements (3a) depending on
the exponent s− 2 of z and Step 1 is over. Step 2 follows again from Lemma 3. If

h1 =

r−2∑
i=1

αif
(i,r−i,s)
i and h2 =

r′−2∑
j=1

αjf
(j,r′−j,s′)
j

are two highest weight vectors such that their leading terms are f1 := f
(i0,r−i0,s)
i0

, f2 := f
(j0,r

′−j0,s′)
j0

respec-

tively and f1 ≤ f2, then f2 = φ(f1z
s′−syr

′−j0−r+i0), where φ is a partial linearization of the polynomial in
the odd variables as outlined in the proof of Statement (3) of Lemma 2. In light of this we set

h := φ(

r−2∑
i=1

αi((f
(i,r−i,s)
i zs

′−s)yr
′−j−r+i))

that is the required highest weight vector and Step 3 is completed. �

4.3. The C-grading. In this section we fix the classical grading on J = UJ2, i.e., G = Z2 and J = J0 ⊕ J1
where J0 = F ⊕ Fa and J1 = Fb. In the free Z2-graded Jordan algebra J 〈X〉 we write X = Y ∪ Z, the
disjoint union of two countable sets and we require that the variables yi ∈ Y have homogeneous degree 0,
the variables zi ∈ Z have homogeneous degree 1. Moreover, we denote by xi any kind of variable.

The next theorems give a basis of the graded identities of UJ2 with the C-grading and describe the
corresponding cocharacter sequence.

Theorem 9. [23, Proposition 12] The following polynomials are a basis of IdC(UJ2)

(x1x2, x3, x4)− x1(x2, x3, x4)− x2(x1, x3, x4), (y1, y2, y3), z1z2, (y1, z, y2).
10



Theorem 10. [6, Theorem 1] Let n ≥ 0 and let

χCn (UJ2) =
∑
λ,µ

mλ,µχλ,µ

be the C-graded cocharacter of UJ2. Then mλ,µ = 1 if and only if λ = (r) and µ = (s), where r + s = n,
s ≤ 1 and r, s not simultaneously equal to zero. In all other cases mλ,µ = 0.

In the case of the C-grading, the Specht property for UJ2 is proved assuming only that the base field is
infinite of characteristic different from 2.

Let I be a T2-ideal such that IdC(UJ2) ( I and f ∈ I. Since F is an infinite field we can assume that f
is a multihomogeneous polynomial. By Proposition 12 of [23]

f ≡ f(y1, ..., ys, z) ≡ y1(· · · (y1︸ ︷︷ ︸
a1

(y2(· · · (ys · · · (ys︸ ︷︷ ︸
as

z)) · · · ))) · · · ) (mod IdC(UJ2)), where ai ≥ 0 for all i ∈ {1, . . . , s}

or

f ≡ f(y1, ..., ys) ≡ yb11 . . . ybss (mod IdC(UJ2)), bi ≥ 0 for all i ∈ {1, . . . , s}.
Then I is defined by a subset of set of polynomial in J (X) of the form:

(1) y1(· · · (y1︸ ︷︷ ︸
a1

(y2(· · · (ys · · · (ys︸ ︷︷ ︸
as

z)) · · · ))) · · · ) (mod IdC(UJ2)), where ai ≥ 0 for all i ∈ {1, . . . , s}

(2) yb11 . . . ybss (mod IdC(UJ2)), bj ≥ 0 for all j ∈ {1, . . . , s}
Let us denote by B1 and B2 the set of polynomials associated to (1) and (2) respectively. We consider

the following sets which are clearly in one-to-one correspondence with polynomials of the type (1) and (2)
respectively.

B1 = {(a1, . . . , ar) : r > 0, bi > 0 for all i};
B2 = {(b1, . . . , bs) : s > 0, aj > 0 for all j}.

Since B1 and B2 are subsets of S(N), B1 and B2 satisfy f.b.p. with the quasi-order induced by the
quasi-order of S(N).

To simplify the notation, we will denote y1(· · · (y1︸ ︷︷ ︸
a1

(y2(· · · (ys · · · (ys︸ ︷︷ ︸
as

z)) · · · ))) · · · ) by Y az where a =

(a1, . . . , as).

Lemma 4. Let a = (a1, . . . , ar), a′ = (a′1, . . . , a
′
r′) ∈ B1 and b = (b1, . . . , bs), b

′ = (b′1, . . . , b
′
s′) ∈ B2.

(1) If a ≤ a′ then Y az ≤ Y a′z.

(2) If b ≤ b′ then yb11 . . . ybss ≤ y
b′1
1 . . . yb

′s′

s .

Proof. Let us prove statement (1). Since a = (a1, . . . , ar) ≤ (a′1, . . . , a
′
r′) = a′ there is a subsequence

a′′ = (a′i1 , . . . , a
′
ir

) of a′ (i1 ≤ · · · ≤ ir) such that aj ≤ a′ij for all j ∈ {1, . . . , r}. Define f(y1, . . . , yr, z) = Y az

and let f(yi1 , . . . , yir , z) be the polynomial obtained replacing the variable yj by yij for each j ∈ {1, . . . , r}
in f(y1, . . . , yr, z). Then by Proposition 12 of [23]

Ỹ y
a′i1
−a1

i1
· · · ya

′
ir
−ar

ir
f(yi1 , . . . , yir , z) ≡ Y a

′
z

where

Ỹ =
∏

k∈{1,··· ,n}−{i1,...,ir}

y
a′k
k

and the last equivalence is obtained replacing the variable yij by yj for each j ∈ {1, . . . , r}. Therefore

Y az = f(yi1 , . . . , yir , z) ≤ Y a
′
z. Similar arguments can be applied in the proof of statement (2). �

Theorem 11. Let F be an infinite field of characteristic different from 2. Then varC(UJ2) has the Specht
property.
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Proof. The result follows from Theorem 9 if U = varC(UJ2). Let I a T2-ideal such that IdC(UJ2) ( I. By
Remark 1 it suffices to show that (B1 ∪ B2,≤) satisfies f.b.p. where f ≤ g if f , g ∈ Bi for some i ∈ {1, 2}
and g is a consequence of f . Let us set B = B1 ∪ B2 and B = B1 ∪B2, then by taking into account Lemma
4, the proof follows verbatim the one of Theorem 5. �

It is interesting to mention the following. The fact that in the case of characteristic 0 the multiplicities of
the irreducible components in the cocharacter sequence of varC(UJ2) are 0 and 1 only, implies that the lattice
of the subvarieties of varC(UJ2) is distributive (see the paper [2] for more details). With some additional
work this leads to the description of this lattice.

4.4. The K-grading. Now we deal with the Klein grading on J = UJ2, i.e., G = Z2 × Z2 and J =
J(0,0) ⊕ J(1,0) ⊕ J(0,1) ⊕ J(1,1) where J(0,0) = F , J(0,1) = Fa, J(1,0) = Fb, J(1,1) = {0}. Here we write
X = Y ∪Z ∪ T ∪W , the disjoint union of four countable sets and we require that the variables yi ∈ Y have
homogeneous degree (0, 0), the variables zi ∈ Z have homogeneous degree (1, 0), the variables ti ∈ T have
homogeneous degree (0, 1), the variables wi ∈W have homogeneous degree (1, 1).

In [5] the authors gave a description of the generators of the T -ideal of Z2×Z2-graded polynomial identities
of UJ2 and the corresponding graded cocharacter sequence.

Theorem 12. [5, Lemma 3.5] The following polynomials are a basis of IdK(UJ2).

(y1, y2, x), (y1, x, y2), (z1, z2, y), (z1, y, z2), (z1, z2, z3), zt, t1t2, w.

Theorem 13. [5, Lemma 3.6] Let n ≥ 0 and let

χKn (UJ2) =
∑

λ,µ,ν,η

mλ,µ,ν,ηχλ,µ,ν,η

be the K-graded cocharacter of UJ2. Then mλ,µ,ν,η = 1 if either

1) λ = (r), µ = (s), ν = ∅, η = ∅ for all r, s ≥ 0 and r + s = n;
2) λ = (r), µ = (s), ν = (1), η = ∅ for all r ≥ 0, r + s+ 1 = n and s even;
3) λ = (n− 1), µ = ∅, ν = (1), ν = ∅.

In all other cases mλ,µ,ν,η = 0.

The highest weight vectors whose characters appear with non-zero multiplicity in the decomposition of
χKn (UJ2) are of the form:

(1) yrzs for all r, s not simultaneously equal to 0;
(2) yrzsw for all r ≥ 0 and s even;
(3) yrw for r ≥ 0.

Let B1, B2 and B3 be the sets of all highest weight vectors corresponding to (1), (2) and (3) respectively.
Let us consider B1, B2 being the set of pairs (r, s) such that yrzs ∈ B1, yrzsw ∈ B2 respectively and B3 the
set of positive integers r where yrw ∈ B3. By Proposition 1, B1, B2 and B3 have f.b.p. and are pairwise
disjoint.

As in the case of the C-grading we shall show that the natural quasi-order ≤ in B1 ∪B2 ∪B3 induces the
quasi-order ≤ in B1 ∪ B2 ∪ B3 where f ≤ g if f , g ∈ Bi for some i ∈ {1, 2, 3} and g is a consequence of f .
Notice that, although the quasi-order ≤ is the same for B1, B2 and B3 (given by the consequence), it will be
necessary to compare only polynomials f , g ∈ Bi for some i ∈ {1, 2, 3}.

Lemma 5. Let (r, s), (r′, s′) ∈ B1, (t, u), (t′, u′) ∈ B2 and v, v′ ∈ B3.

(1) If (r, s) ≤ (r′, s′) then yrzs ≤ yr′zs′ ;
(2) If (t, u) ≤ (t′, u′) then ytzuw ≤ yt′zu′

w;

(3) If r ≤ r′ then yrw ≤ yr′w.

Proof. The statement (1) follows from the fact that yr
′
zs

′ ≡ [yr
′−r(yrzs)]zs

′−s modulo IdK(UJ2), since the

even variables y lie in the associative and commutative center of the relatively free graded algebra J〈X〉
IdS(UJ2)

and (y, z1, z2) is an identity of UJ2.

Moreover, since t′ − t is even, then zt
′−t is an even variable that lies in the associative and commutative

center. Thus zs
′−s[yr

′−r(yrzsw)] ≡ yr′zs′w modulo IdK(UJ2) and the statement (2) follows.
12



Similar arguments prove (3). �

We are now in a position to prove the Specht property for varK(UJ2).

Theorem 14. Let F be a field of characteristic 0. Then varK(UJ2) has the Specht property.

Proof. Let U be a subvariety of varK(UJ2). If U = varK(UJ2), then the result follows from Theorem12.
So let us suppose U ( varK(UJ2) and let us denote by I the corresponding T -ideal of graded identities.
By Remark 1 it suffices to show that (B1 ∪ B2 ∪ B3,≤) satisfies f.b.p. where f ≤ g if f , g ∈ Bi for some
i ∈ {1, 2, 3} and g is a consequence of f . Let us set B = B1 ∪B2 ∪B3 and B = B1 ∪B2 ∪B3, then by taking
into account Lemma 5, the proof follows verbatim the one of Theorem 5. �

4.5. The trivial grading. We finally deal with the trivial grading, i.e., the ordinary polynomial identities
of UJ2. In [26] it was proved that the algebra of 2×2 upper triangular matrices is the only finite dimensional
special Jordan algebra that generates a variety of almost polynomial growth. Furthermore, in [6] and [23]
the authors computed a basis of the T -ideal of identities of UJ2 and the corresponding cocharacter sequence.

Lemma 6. [23, Theorem 19] The following polynomials are a basis of Id(UJ2)

(x1x2, x3, x4)− x1(x2, x3, x4)− x2(x1, x3, x4), (x1, (x2, x3, x4), x5).

Remark 2. If B is an associator then x1(x2B) ≡ x2(x1B) modulo Id(UJ2).

Proof. Since (x1, (x2, x3, x4), x5) ∈ Id(UJ2), then we have that

x1(x2B) = (x1B)x2 − (x1, B, x2) ≡ (x1B)x2 = x2(x1B) (mod Id(UJ2)).

�

The proof of the next Lemma uses the relation between proper and ordinary cocharacter sequences. We
refer to [8, Chapters 4.3 and 12.5] for an exhaustive survey about proper polynomials, proper cocharacters
and Littlewood–Richardson rule. The book [8] considers associative algebras only but the same results hold
for any unitary algebra, see Proposition 1.5 in [9].

Lemma 7. Let n ≥ 1 and let

χn(UJ2) =
∑
λ`n

mλχλ

be the n-cocharacter of the Jordan algebra UJ2. If λ = (n) then mλ = 1, if either λ = (p + q, p) or
λ = (p+ q, p, 1), p > 0, then mλ = d q+1

2 e if p is odd and mλ = d q+2
2 e if p is even.

In all other cases mλ = 0.

Proof. By [6], the proper cocharacter of UJ2 is

ψn(UJ2) =

{
χ(n−1,1) if n is odd,

0 if n is even.

Then

χn(UJ2) =

n∑
k=0

χk ⊗ ψn−k(UJ2) = χ(n) +
∑
p>0

(
m(p+q,p)χ(p+q,p) +m(p+q,p,1)χ(p+q,p,1)

)
.

Here ⊗ stands for the multiplication in the Littlewood–Richardson rule.
This proves immediately the cases λ = (n) and λ = (λ1, . . . , λr), λ3 > 1 or λ4 > 0.
The case λ = (p+ q, p) (with similar arguments for λ = (p+ q, p, 1)) is handled as follows. Clearly, χ(p+q,p)

is obtained from χ(k)⊗ψn−k(UJ2) when n−k is odd, i.e., from χ(k)⊗χ(2s,1), p ≤ 2s ≤ p+ q. For p even, we

have the possibilities s = p, p+2, . . . , p+q−ε, ε = 0, 1, depending od the parity of q, i.e., d q+2
2 e possibilities.

For p odd the possibilities for s are s = p+ 1, p+ 3, . . . , p+ q − ε, ε = 0, 1, i.e., d q+1
2 e possibilities. �

By using the Littlewood–Richardson rule, it was also proved in [6, Theorem 4] that the highest weight
vectors associated to the partition λ = (p+ q, p) whose characters appear with a non-zero multiplicity in the
decomposition of χn(UJ2) are of the form:

(3) ft,u,v = x1 · · ·x1︸ ︷︷ ︸
t

¯̄x2 · · · x̃2︸ ︷︷ ︸
u

(x̄1, x̄2, ¯̄x1, . . . , x̃1︸ ︷︷ ︸
u

, x1, . . . , x1︸ ︷︷ ︸
v

),
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where p = u + 1, q = t + v and u + v odd. Thus it is clear that each highest weight vector is uniquely
determined by a triple of positive integers (t, u, v).

Next we consider the following set which is in a one-to-one correspondence with the set of highest weight
vectors:

B = {(t, u, v) : u is even and v is odd or u is odd and v is even},
We shall consider a quasi-order onB and we shall show that it induces the quasi-order (2) in the corresponding
subset of highest weight vectors B.

We start by defining a natural quasi-order ≤ on B as follows:

(t, u, v) ≤ (t′, u′, v′) if t ≤ t′, u ≤ u′, v ≤ v′.

Clearly, B has the f.b.p. Thus, in order to reach our goal, as in the previous section, by transitivity it suffices
to prove that for all t, t′, u, u′, v, v′ we have: (t, u, v) ≤ (t′, u, v) implies ft,u,v ≤ ft′,u,v, (t, u, v) ≤ (t, u′, v)
implies ft,u,v ≤ ft,u′,v and (t, u, v) ≤ (t, u, v′) implies ft,u,v ≤ ft,u,v′ . The next lemmas go in this direction.

Lemma 8. Let (t, u, v), (t′, u, v) ∈ B, then (t, u, v) ≤ (t′, u, v) implies ft,u,v ≤ ft′,u,v.

Proof. Since the brackets in (3) are right-normed, it is clear that

ft′,u,v = x1 · · ·x1︸ ︷︷ ︸
t′−t

ft,u,v,

thus ft,u,v ≤ ft′,u,v. �

Lemma 9. Let (t, u, v), (t, u, v′) ∈ B, then (t, u, v) ≤ (t, u, v′) implies ft,u,v ≤ ft,u,v′ .

Proof. With abuse of notation, let

ft,u,v = AC,

where A = x1 · · ·x1︸ ︷︷ ︸
t

¯̄x2 · · · x̃2︸ ︷︷ ︸
u

and C = (x̄1, x̄2, ¯̄x1, . . . , x̃1︸ ︷︷ ︸
u

, x1, . . . , x1︸ ︷︷ ︸
v

).

Remark that, since u + v and u′ + v′ are odd, we have v ≡ v′ (mod 2), thus we can consider ft,u,v′ =
A(B, x1, x1). The general statement will follow by a standard induction argument. By applying Remark 2
we get

ft,u,v′ = A(C, x1, x1) = A((Cx1)x1)−A(C(x1x1)) ≡ x1(x1(AC))− (x1x1)(AC)

= x1(x1ft,u,v)− (x1x1)ft,u,v (mod Id(UJ2)).

Thus ft,u,v ≤ ft,u,v′ . �

Lemma 10. Let (t, u, v), (t, u′, v) ∈ B, then (t, u, v) ≤ (t, u′, v) implies ft,u,v ≤ ft,u′,v.

Proof. As in the previous lemma, since u ≡ u′ (mod 2), we can consider

ft,u,v = x1 · · ·x1︸ ︷︷ ︸
t

¯̄x2 · · · x̃2︸ ︷︷ ︸
u

(x̄1, x̄2, ¯̄x1, . . . , x̃1︸ ︷︷ ︸
u

, x1, . . . , x1︸ ︷︷ ︸
v

) and

ft,u′,v = x1 · · ·x1︸ ︷︷ ︸
t

¯̄x2 · · · x̃2︸ ︷︷ ︸
u

˜̃x2x̂2(x̄1, x̄2, ¯̄x1, . . . , x̃1︸ ︷︷ ︸
u

, ˜̃x1, x̂1, x1, . . . , x1︸ ︷︷ ︸
v

).

We remark that in the proof of [23, Theorem 19], the authors showed that one can always reorder the
variables that lie inside the associator except the one in the second position, therefore using this fact and
Remark 2, we get

ft,u′,v = x1 · · ·x1︸ ︷︷ ︸
t

¯̄x2 · · · x̃2︸ ︷︷ ︸
u

˜̃x2x̂2(x̄1, x̄2, ¯̄x1, . . . , x̃1︸ ︷︷ ︸
u

, ˜̃x1, x̂1, x1, . . . , x1︸ ︷︷ ︸
v

)

≡ x1 · · ·x1︸ ︷︷ ︸
t

¯̄x2 · · · x̃2︸ ︷︷ ︸
u

˜̃x2x̂2(x̄1, x̄2, ¯̄x1, . . . , x̃1︸ ︷︷ ︸
u

, x1, . . . , x1︸ ︷︷ ︸
v

, ˜̃x1, x̂1)

≡ ˜̃x2x̂2 x1 · · ·x1︸ ︷︷ ︸
t

¯̄x2 · · · x̃2︸ ︷︷ ︸
u

(x̄1, x̄2, ¯̄x1, . . . , x̃1︸ ︷︷ ︸
u

, x1, . . . , x1︸ ︷︷ ︸
v

, ˜̃x1, x̂1) (mod Id(UJ2)).
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By expanding the last associator and by using once again Remark 2, we have

ft,u′,v =
[(

˜̃x2x̂2 x1 · · ·x1︸ ︷︷ ︸
t

¯̄x2 · · · x̃2︸ ︷︷ ︸
u

(x̄1, x̄2, ¯̄x1, . . . , x̃1︸ ︷︷ ︸
u

, x1, . . . , x1︸ ︷︷ ︸
v

)
)

˜̃x1

]
x̂1

−
[

˜̃x2x̂2 x1 · · ·x1︸ ︷︷ ︸
t

¯̄x2 · · · x̃2︸ ︷︷ ︸
u

(x̄1, x̄2, ¯̄x1, . . . , x̃1︸ ︷︷ ︸
u

, x1, . . . , x1︸ ︷︷ ︸
v

)
](

˜̃x1x̂1
)

= ˜̃x1x̂1 ˜̃x2x̂2 x1 · · ·x1︸ ︷︷ ︸
t

¯̄x2 · · · x̃2︸ ︷︷ ︸
u

(x̄1, x̄2, ¯̄x1, . . . , x̃1︸ ︷︷ ︸
u

, x1, . . . , x1︸ ︷︷ ︸
v

)

−
(

˜̃x1x̂1
)[

˜̃x2x̂2
(
x1 · · ·x1︸ ︷︷ ︸

t

¯̄x2 · · · x̃2︸ ︷︷ ︸
u

(x̄1, x̄2, ¯̄x1, . . . , x̃1︸ ︷︷ ︸
u

, x1, . . . , x1︸ ︷︷ ︸
v

)
)]

≡ −
(

˜̃x1x̂1
)[

˜̃x2x̂2ft,u,v

]
(mod Id(UJ2)).

Thus ft,u,v ≤ ft,u′,v and we are done. �

Lemma 11. Let (t, u, v), (t, u′, v′) ∈ B, such that either u, v′ are odd and v, u′ are even or u, v′ are even
and v, u′ are odd, then (t, u, v) ≤ (t, u′, v′) implies ft,u,v ≤ ft,u′,v′ .

Proof. Let us suppose u′ = u+ 1 and v′ = v + 1. The general statement will follow by a standard induction
argument.
We write

ft,u,v = x1 · · ·x1︸ ︷︷ ︸
t

¯̄x2 · · · x̃2︸ ︷︷ ︸
u

(x̄1, x̄2, ¯̄x1, . . . , x̃1︸ ︷︷ ︸
u

, x1, . . . , x1︸ ︷︷ ︸
v

) and

ft,u′,v′ = x1 · · ·x1︸ ︷︷ ︸
t

¯̄x2 · · · x̃2︸ ︷︷ ︸
u

x̂2(x̄1, x̄2, ¯̄x1, . . . , x̃1︸ ︷︷ ︸
u

, x̂1, x1, . . . , x1︸ ︷︷ ︸
v

, x1).

Let expand the last alternation of ft,u′,v′ :

ft,u′,v′ = x1 · · ·x1︸ ︷︷ ︸
t

¯̄x2 · · · x̃2︸ ︷︷ ︸
u

x2(x̄1, x̄2, ¯̄x1, . . . , x̃1︸ ︷︷ ︸
u

, x1, x1, . . . , x1︸ ︷︷ ︸
v

, x1)

− x1 · · ·x1︸ ︷︷ ︸
t

¯̄x2 · · · x̃2︸ ︷︷ ︸
u

x1(x̄1, x̄2, ¯̄x1, . . . , x̃1︸ ︷︷ ︸
u

, x2, x1, . . . , x1︸ ︷︷ ︸
v

, x1).

Using Remark 2 and reordering opportunely the variables inside the associator, we get

ft,u′,v′ ≡ x2 x1 · · ·x1︸ ︷︷ ︸
t

¯̄x2 · · · x̃2︸ ︷︷ ︸
u

(x̄1, x̄2, ¯̄x1, . . . , x̃1︸ ︷︷ ︸
u

, x1, . . . , x1︸ ︷︷ ︸
v

, x1, x1)

− x1 x1 · · ·x1︸ ︷︷ ︸
t

¯̄x2 · · · x̃2︸ ︷︷ ︸
u

(x̄1, x̄2, ¯̄x1, . . . , x̃1︸ ︷︷ ︸
u

, x1, . . . , x1︸ ︷︷ ︸
v

, x2, x1) (mod Id(UJ2)).

Finally, applying the same arguments as in Lemma 9, we have

ft,u′,v′ ≡ x2(x1(x1ft,u,v)− (x1x1)ft,u,v)− x1(x2(x1ft,u,v)− (x1x2)ft,u,v (mod Id(UJ2)).) (mod Id(UJ2)).

Hence ft,u,v ≤ ft,u′,v′ and we are done. �

If λ = (p+ q, p, 1), then the highest weight vector associated to λ is of the form

(4) gt,u,v = x1 · · ·x1︸ ︷︷ ︸
t

¯̄x2 · · · x̃2︸ ︷︷ ︸
u

x̄3(x̄1, x̄2, ¯̄x1, . . . , x̃1︸ ︷︷ ︸
u

, x1, . . . , x1︸ ︷︷ ︸
v

),

With similar arguments as in the previous case, we can find a set B′ which is in a one-to-one correspondence
with the set of highest weight vectors B′ of the gt,u,v’s. It turns out that analogous statements of the ones
of Lemmas 8, 9, 10 and 13 hold.

Finally, if λ = (n), then the corresponding highest weight vector is of the form hn = xn. Thus one can
collect them in a set B′′ that is in a one-to-one correspondence with B′′ = {n : n ≥ 1}. It is clear that if
n ≤ n′ then hn ≤ h′n and so B′′ has the f.b.p.

We are now in a position to prove the main theorem of this section.
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Theorem 15. Let F be a field of characteristic zero and let I be a T -ideal containing Id(UJ2). Then I is
finitely generated as T -ideal.

Proof. If I = Id(UJ2), then we have nothing to prove since Lemma 6 ensures us that I is finitely generated.
So let us suppose that I ) Id(UJ2).
Let now focus our attention to the highest weight vectors of the type (3), since the statement for the ones
of type (4) will follow analogously.
Since the multiplicities of the characters corresponding to such highest weight vectors are greater than 1, we
have to follow the four steps described in section 3. For any fixed n ≥ 1, we choose to order the polynomials
of degree n in B in the following way: ft,u,v ≺ ft′,u′,v′ if and only if either t < t′ or t = t′ and u < u′ or t = t′

and u = u′ and v < v′. Recall that n = t+ 2u+ v + 2. Hence we completed Step 1. By Lemmas 8–13, the
quasi-order defined on B induces a quasi-order on B, thus B satisfies the f.b.p. and Step 2 is complete. In
order to get Step 3, let

fn1 =

k1∑
i=1

αifti,ui,vi and fn2 =

k2∑
j=1

βjftj ,uj ,vj

be two highest weight vectors of degree n1 and n2 with leading terms fti0 ,ui0 ,vi0 and ftj0 ,uj0 ,vj0 according
to ≺, respectively. Recall that ti + 2ui + vi + 2 = n1 for all 1 ≤ i ≤ k1 and tj + 2uj + vj + 2 = n2 for all
1 ≤ j ≤ k2. Moreover, let fti0 ,ui0 ,vi0 ≤ ftj0 ,uj0 ,vj0 .
By the proofs of Lemmas 8–13, one gets that it is possible to obtain ftj0 ,uj0 ,vj0 properly multiplying fti0 ,ui0 ,vi0
by some variables. In order to simplify the notation, let ftj0 ,uj0 ,vj0 = ϕ(fti0 ,ui0 ,vi0 ) be such multiplication.
Thus it is clear that

vn2 =
βj0
αi0

ϕ(fn1)

is a consequence of fn1 and has the same leading term of fn2 , hence it is the required highest weight vector
and Step 3 is done.
Finally, since the multiplicity corresponding to the partition λ = (n), n ≥ 1 is equal to 1, we have nothing
more to prove. The proof of the theorem is now complete. �

5. Specht property for the metabelian algebra A1

In this section we shall prove the Specht property for the variety generated by the metabelian Jordan
algebra introduced in [27].

Let A1 be the Jordan algebra generated by the elements t, ai, bi, i ≥ 1, such that

aiaj = bibj = aibj = tbi = twt = 0,

twaiaj = 0, twbibj = 0

twaibjak = −twakbjai,
twbiajbk = −twbkajbi,

for all i, j, k, where w is any word in the alphabet of the generators. Here we are considering monomials
with left-normed brackets.

Theorem 16. [27, Theorem 1] Let A1 be the Jordan algebra defined above, then Id(A1) = 〈(x1x2)(x3x4)〉T .
Moreover, if

χn(A1) =
∑
λ`n

mλχλ

is the n-th cocharacter of A1, then mλ = 1 if either λ = (3, 2k−1, 1n−2k−1) or λ = (2k, 1n−2k.) In all other
cases mλ = 0.

Theorem 17. [27, Theorem 2] Every proper subvariety of var(A1) has polynomial growth.

Notice that in light of the previous theorems, A1 is an infinitely generated Jordan algebra such that any
product of its elements has left-normed brackets and furthermore it generates a variety of almost polynomial
growth.

The highest weight vector associated to the partition λ = (3, 2k−1, 1n−2k−1) is of the form

(5) fn,k = x1x̄1x̃1x̄2x̃2 · · · x̄kx̃kx̄k+1x̄k+2 · · · x̄n−k−1,
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whereas the highest weight vector associated to the partition λ = (2k, 1n−2k.) is of the form

(6) gn,k = x̄1x̃1x̄2x̃2 · · · x̄kx̃kx̄k+1x̄k+2 · · · x̄n−k.
In order to prove the Specht property for var(A1), by following the lines of [27], we first prove some

technical lemmas.

Lemma 12. The identities

(7) x1x2yx3 + x1x3yx2 + x2x3yx1 ≡ 0 and

(8) z1z2 · · · zsxyx ≡ 0, s ≥ 2

hold in var(A1).

Proof. Recall that the identity y(xx)x ≡ yx(xx) holds in every Jordan algebra. Then, by taking into account
the identity (x1x2)(x3x4), we get that the previous becomes

(9) xxyx ≡ 0.

Now, the complete linearization of the latter identity gives us (7).
Moreover, if one partially linearizes (9) replacing x by x+z and considers the multihomogeneous component
of degree 1 in the z and degree 2 in the x, we get 2zxyx+ x2yz ≡ 0. Finally, by replacing z by the product
z1z2 · · · zs, s ≥ 2, we obtain identity (8). �

Lemma 13. Let U be a proper subvariety of var(A1). If either fn,k ≡ 0 or gn,k ≡ 0 on U for some n and k,
then fn′,k′ ≡ 0 for all n′ ≥ n and k′ ≥ n− k − 1 and gn′,k′ ≡ 0 for all n′ ≥ n and k′ > n− k − 1.

Proof. First, let us suppose that

fn,k = x1x̄1x̃1x̄2x̃2 · · · x̄kx̃kx̄k+1x̄k+2 · · · x̄n−k−1 ≡ 0

for some n and k and let us replace x1 by z1z2 + x1. If we consider the linear component in z1 and z2 and if
we multiply by xk+1, xk+2, . . . , xn−k−1, then we can apply identities (7) and (8) in order to get the following
consequence

z1z2x1x1x2x2 · · ·xn−k−1xn−k−1.
Thus, it is clear that fn′,k′ ≡ 0 for all n′ ≥ n and k′ ≥ n− k − 1.

Now let us suppose
gn,k = x̄1x̃1x̄2x̃2 · · · x̄kx̃kx̄k+1x̄k+2 · · · x̄n−k ≡ 0

for some n and k. By multiplying gn,k by x1 and by applying identity (7), we get as consequence

−x1x̄1x̃1x̄2x̃2 · · · x̄kx̃kx̄k+1x̄k+2 · · · x̄n−k − x1x̃1x̄1x̄2x̃2 · · · x̄kx̃kx̄k+1x̄k+2 · · · x̄n−k ≡ 0

Hence, with arguments similar to those used in the previous case, we get the claim. �

We now can prove the Specht property for var(A1).

Theorem 18. Let F be a field of characteristic zero and let U ⊆ var(A1). Then Id(U) is finitely generated
as T -ideal.

Proof. If U = var(A1), then by Theorem 16 we have nothing to prove, so let U be a proper subvariety of
var(A1) and let Id(U) be the corresponding T -ideal.
Let us consider the sets

B1 = {fn,k : n, k ∈ N} and

B2 = {gn,k : n, k ∈ N}.
We define a total order on B1 and B2 by stating that fn,k ≤ fn′,k′ (resp. gn,k ≤ gn′,k′) if n ≤ n′ or n = n′

and n− k − 1 ≤ n′ − k′ − 1.
Among the generators of Id(U) let now consider fN,K and gM,L as the minimal highest weight vectors of B1
and B2 with respect to the above order. Then, by taking into account Lemma 13, it is clear that fn,k and
gm,l are consequences of fN,K and gM,L, respectively, if n ≥ N or n − k − 1 ≥ N −K − 1 and m ≥ M or
m− l−1 ≥M −L−1. It readily follows that a basis of Id(U) contains fN,K , gM,L and a finite list of highest
weight vectors fn,k and gm,l such that n < N or n−k−1 < N−K−1 and m < M or m− l−1 < M−L−1.
Hence Id(U) is finitely generated and var(A1) has the Specht property. �
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