SPECHT PROPERTY FOR SOME VARIETIES OF JORDAN ALGEBRAS OF
ALMOST POLYNOMIAL GROWTH

LUCIO CENTRONE, FABRIZIO MARTINO, AND MANUELA DA SILVA SOUZA

ABSTRACT. Let F' be a field of characteristic zero. In [25] it was proved that UJa, the Jordan algebra
of 2 X 2 upper triangular matrices, can be endowed up to isomorphism with either the trivial grading or
three distinct non-trivial Za-gradings or by a Zg X Zg-grading. In this paper we prove that the variety of
Jordan algebras generated by UJs endowed with any G-grading has the Specht property, i.e., every T-ideal
containing the graded identities of U.Js is finitely based. Moreover, we prove an analogue result about the
ordinary identities of A1, a suitable infinitely generated metabelian Jordan algebra defined in [27].

1. INTRODUCTION

Given a set X of indeterminates and a field F, it is possible to construct an F-algebra F{X} which is
free in a variety C of algebras. The objects of that free algebra are usually called “C-polynomials”. The
ideals of F{X} invariant under C-homomorphisms are called T-ideals. The study of T-ideals leads to the
so-called Specht problem, whether every T-ideal is finitely generated as a T-ideal. In the case C is the class
of associative algebras and F' is a field of characteristic 0, the Specht problem has a positive answer given
by Kemer [22] whereas it fails in positive characteristic as showed by several authors such as Kanel-Belov
in [3], Grishin in [17] (ground field of characteristic 2) and Shchigolev in [30]. It is a remarkable fact that
the three papers cited above have been published in the same issue of the same journal and it seems their
authors presented such results in 1998 at the Seminar of Latyshev at the Moscow State University in the
order cited above. We also want to cite the paper by Gupta and Krasilnikov [18] which presented a simple
counterexample in characteristic 2 and a paper by Shchigolev (see [29]) about non-finitely generated T-
spaces. If the class C coincides with the class of Lie algebras in characteristic 0 we have a result by Iltyakov
[20] in which he proved that the Specht problem has a positive solution for finite dimensional Lie algebras.
Moreover in [4] the authors proved that a Lie algebra has the Specht property if its codimension sequence
is polinomially bounded. In the general case we have no definite answer in characteristic 0 although we
have counterexamples in the case of positive characteristic. For the purpose, see the works by Vaughan-Lee
[33] (characteristic 2) and Drensky [11] (characteristic p > 0). Recently in [14] the authors were able to
construct a variety of non-associative algebras which does not satisfy the Specht property via a sofisticated
construction of varieties of algebras with slow growth of their codimension sequence. The latter examples
have the additional exotic property that the codimension grows as n3+t®, where « is any positive real number
strictly less than 1. Carrying on with examples of non-Spechtian varieties, a very interesting examples was
obtained by Drenski in [10]. In particular the author gave an example of an anticommutative algebra whose
variety generated by is of quadratic growth although non-finitely based.

Even if C is the class of Jordan algebras, one can get only partial answers to the Specht problem. Indeed,
in [34] Vais and Zelmanov proved that any finitely generated Jordan algebra in characteristic 0 has the
Specht property by showing that it has the same identities of a finite dimensional generalized Jordan pair.
Unfortunately, we do not know yet whether the answer is positive nor negative in case of infinitely generated
Jordan algebras.

We can also generalize the Specht problem for classes of algebras graded by a group G. In particular, in
case of associative G-graded algebras in characteristic 0, where G is any finite group, a positive answer to the
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problem was found in [1] and [32], whereas in case of G-graded Lie or Jordan algebras we have experimental
results, such as in [13] in which the authors proved the Specht property of sly(F)¢, the Lie algebra of 2 x 2
traceless matrices over a field F' of characteristic 0 graded by any finite abelian group G, or in [31] in which
a similar result was achieved for B,,, the finite dimensional Jordan algebra of a non-degenerate symmetric
bilinear form graded by Z,, the cyclic group of order 2, always in characteristic 0.

The goal of this paper is twofold. On one hand, we get a positive solution to the Specht problem in case
of UJs(F'), the Jordan algebra of 2 x 2 upper triangular matrices over a field F' of characteristic zero, graded
by any finite abelian group. In particular, we shall consider the classification of the G-gradings on U.J3(F)
given in [25], that is a particular case of a latter result by Koshlukov and Yukihide in which the authors gave
such a classification for UJ,(F), n > 2 (see [24]).

On the other hand, we shall prove the Specht property for varieties of Jordan algebras with trivial grading
of almost polynomial growth. Recall that a variety } has almost polynomial growth if its codimension
sequence is exponentially bounded and for any proper subvariety U C V), its codimension sequence ¢, (I)
grows polynomially. In a forthcoming paper by Martino (see [26]), it was proved that up to equivalence,
the only variety of finite dimensional special Jordan algebras of almost polynomial growth is generated by
U J(F). Moreover, in [27] the authors introduced an infinitely generated metabelian Jordan algebra, denoted
by A; that generates another variety of almost polynomial growth. Thus, in the last sections we shall prove
that var(U.J;) and var(A;) have the Specth property. We highlight that the first part of this statement, i.e.,
any T-ideal containing that of UJo(F') is finitely generated, is a particular case of [34]. We chose to include
it here since its proof involves some interesting non-trivial techniques. In particular, all results are stated in
the language of well-quasi-ordered sets used for the first time by the author in [7] to establish positive results
on the Specht problem for groups. Later this method, also known as the Higman-Cohen method, was used
for groups, Lie and associative algebras.

2. PRELIMINARIES

All fields we refer to are of characteristic 0 unless explicitely written.

Let X be a countable set of indeterminates and let J(X) be the free Jordan algebra generated by the
set X over F. We say that a polynomial f(z1,...,z,) € J(X) is a polynomial identity for the Jordan
algebra J if f(ai,...,a,) =0 for all ay,...,a, € J. In this case we write f = 0. The identities of J form a
T-ideal of J(X), i.e., an ideal closed under all endomorphisms of the free Jordan algebra. Let us denote by
Id(J) ={f € J(X)| f =0 on J} the T-ideal of polynomial identities of J. It is well-known (see for example
[15, Theorem 1.3.7]) that, in characteristic 0, Id(.J) is determined by the multilinear polynomials it contains.
Recall that a multilinear polynomial is an element of the vector subspace

P, = SpanF<{$g(1)%(2) e Tamy| T € 5n}>,
where S, is the symmetric group and x,(1)Zg(2) T (n) stands for a monomial with all possible brackets

arrangement. Thus, the relatively free algebra iycl(()i; is determined by the sequence of vector subspaces

P, -
== '"n .
P, nld(J) "~

In this way, we can attach to the Jordan algebra J a numerical sequence c,(J) called the codimension
sequence, by defining

P,(J)

cn(J) =dimp P, (J).

Remark that in general the codimensions are bounded only by an over-exponential function

() < = (2” B 2)n!,

n\n-—1

where 1 (2”_2
n—1

= ) is the Catalan number. Nevertheless, one can improve this bound in some special settings.
For instance, in [28] a celebrated theorem of Regev states that any associative algebra satisfying a non-trivial
polynomial identity (PI-algebra) has the sequence of codimensions exponentially bounded. A similar result
was obtained in the setting of finite dimensional Jordan algebras (see [12] and [16]). We shall refer to the
growth of the Jordan algebra J as the asymptotic behaviour of its codimension sequence.
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Given a non-empty set S C J(X), the class of all Jordan algebras J such that f =0 on J for all f € S, is
called variety V = V(S) determined by S. Similarly, given a Jordan algebra J, the variety of Jordan algebras
generated by J, var(J), is the class of all Jordan algebras satisfying the identities of J. Hence we say that
A € var(J) if and only if Id(J) C Id(A). It is clear that there exists a one-to-one correspondence between
T-ideals and varieties, thus given a variety V, we can naturally define Id(V), P,,(V) and ¢, (V). The growth
of V will be the asymptotic behaviour of ¢, (V). Moreover, we say that V has almost polynomial growth if
its codimension sequence is exponentially (but not polynomially) bounded and for any proper subvariety
U CV, c,(U) grows polynomially.

Let now define an action of the symmetric group S, on P, : if ¢ € S, and f(z1,...,2,) € Py,, then
o f(x1,...,2n) = f(Zo1)s-- - To(n)). Such an action induces a natural S,-action on P,(.J) that becomes an
Sp-module. Hence a S,,-character arises denoted by x,(J) and called n-th cocharacter of J. For all n > 1
the sequence {xn(J)}n>1 is called cocharacter sequence of J. Since charF' = 0, by complete reducibility
Xn(J) can be written as

Xn(J) = Z MAXN,
AFn
where Yy is the character associated to the partition A and m,) is the corresponding multiplicity.

Finally, from now on let us denote by G any finite abelian group and by J a G-graded Jordan algebra
over F. Recall that J is a G-graded Jordan algebra if J = geG Jg 1s a direct sum of subspaces such that
JgJn C Jgn, for all g,h € G.

The free G-graded Jordan algebra J¢(X) is the G-graded Jordan algebra freely generated by the set
X = quG X9, where for any g € G the sets X9 = {2z | i > 1} of variables of homogeneous degree g
are countable and pairwise disjoint. A polynomial f of J (X) is a G-graded polynomial identity of J if it
vanishes under all graded substitutions, i.e., for any g € G, we evaluate the variables 2/ by elements of the
homogeneous component J,. We denote by IdG(J ) the ideal of J%(X) of G-graded polynomial identities of
J. It is easily checked that IdG(J ) is a T-ideal, i.e., an ideal invariant under all G-graded endomorphisms
of J%(X). We say that J is a graded PI-algebra if Id“(J) # 0. As in the ordinary case, one can define
V¢ = VY(9) the variety of G-graded Jordan algebras defined by the set S C JY(X) as the set of all
G-graded Jordan algebras such that f =0 for all f € S.

Furthermore, one can define PS as the vector space spanned by all multilinear monomials xi‘al; e g‘zg;),
o € Sn, g1,...,9n € G, in the graded variables of the set X and by PY(J) the quotient vector space

Py
Penld® ()’

Let n > 1 and write n = n; + -+ + ns; as a sum of non-negative integers. Define P, . ., C Pf as
the space of multilinear graded polynomials in which the first n; variables 7', ... , ol are of homogeneous
degree g¢i,. .., the last n, variables z9° not1s- - Ty are of homogeneous degree gs. Notice that given such

ni,...,Ns, there are ( " ) denotes the multinomial

n . .
n ) subspaces isomorphic to P, .., where (m

N1, Ns
coefficient. It is clear that PnG is the direct sum of such subspaces with ny 4+ - -+ 4+ ngs = n. Moreover such
decomposition is inherited by PS N1d%(.J) and we consider the spaces P,, . ,. N1d%(J). In light of these
remarks, one defines

.....

P,
P J) = N1,e.yNg )
ni, 7”5( ) Pnh“.’ns ﬂIdG(J)
The space Py, ... n,(J) is naturally endowed with a structure of S,,, x --- % .S,,- module in the following way:
the group Sy, X -+ x 8, acts on the left on P,, ., by permuting the variables of the same homogeneous

degree; hence S, permutes the variables of homogeneous degree g1, Sy, those of homogeneous degree g,

,,,,,,

and we denote by x$(J) its character.

If A(1) F ny,...,A(s) F ng, are partitions, then we write (A\) = (A(1),...,A(s)) F (n1,...,ns) and we say
that (A\) is a multipartition of n =mny + -+ 4 ns.

Since charF' = 0, by complete reducibility, Y& (J) can be written as a sum of irreducible characters in the
following way:

XE() =D mpyxa@ ® -+ @ Xas)»
(A)Fn
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where myy is the multiplicity of x 1) ® - ® xx(s) in xX&(J). We call x%(J) the n-th graded cocharacter of
J.

Recall that the multiplicities in the cocharacter sequence are equal to the maximal number of linearly
independent highest weight vectors, according to the representation theory of GL,. We also recall that a
highest weight vector is obtained from the polynomial corresponding to an essential idempotent by identifying
the variables whose indices lie in the same row of the corresponding Young tableaux (see [8, Chapter 12] for
more details).

3. FINITE BASIS PROPERTY FOR SETS

The finite basis property for sets was first studied in [19] by G. Higman and in an unpublished manuscript
by P. Erdos and R. Rado. Authors like B. H. Neumann and J. B. Kruskal also studied the finite basis
property for sets which is also known as theory of well-quasi-ordering.

A binary relation < on a set A is a quasi-order if < is reflexive and transitive, i.e., (i) a < a for all a € A,
and (ii) a < b and b < ¢ imply a < ¢. Every partial order is a quasi-order but not worth the contrary. For
example, if f, g € JY(X) then

(1) f§9<:>g€<f>TG,

where (f)7,, denotes the Tg-ideal generated by f, is a quasi-order in J¢(X) but it is not in general a partial
order. If B is a subset of a quasi-ordered set A, the closure of B is defined as

B ={a€ A|exists b€ B such that b < a}.

A closed subset is a set that coincides with its own closure, i.e., B = B. We say that the quasi-ordered set
A has the finite basis property (f.b.p.) if every closed subset of A is the closure of a finite set. Every
well-ordered set has f.b.p. (because every non-empty subset is the closure of a single element). In particular
N the set of natural numbers with standard ordering has f.b.p.. However, Z the set of integers has not the
f.b.p.. In general a totally ordered set A has f.b.p. if and only if A is a well-ordered set. Below we present
some equivalent definitions for f.b.p..

Theorem 1. [19, Theorem 2.1] The following conditions on a quasi-ordered set A are equivalent.
(1) Ewery closed subset of A is the closure of a finite subset;
(2) If B is any subset of A, there is a finite By such that By C B C Bo;
(3) Ewvery infinite sequence of elements {a;};>0 of A has an infinite ascending subsequence

Qi S - Say <o

)

(4) There exists neither an infinite strictly descending sequence in A nor an infinite of mutually incom-
parable elements of A.

It is a consequence of the above theorem that every subset B of a quasi-ordered set A that satisfies f.b.p.
has finite minimal elements (from which the name well-quasi-ordering).
The next proposition will be very often used in this work.

Proposition 1. Let (A1,<4,), (A2,<4,), --., (A, <a,) be quasi-ordered sets satisfying f.b.p.
(1) The disjoint union of A1, Aa, ..., Ax endowed with the quasi-order where a < b if and only if a,
be A; and a <4, b for some i € {1,2,... k} satisfies f.b.p.
(2) The cartesian product Ay X Ag X -+- X Ay endowed with the quasi-order where (a1,as,...,ar) <

(b1,ba, ..., bg) if and only if a; <a, b; for any i € {1,2,...,k} satisfies f.b.p.

Let S(A) be the set of finite subsets of A where A is a quasi-ordered set. We define for P, Q € S(A),
P < @ if and only if there is one-to-one increasing map of P into (). For instance if A = N the set of non-
negative integers we define a quasi-order on the set S(N) of finite sequences of non-negative integers in the
following way: a = (a1, ...,a,) < (a},...,a;,) = o’ if and only if there is a subsequence a”” = (a; ,...,a; ) of

a’ (i1 < -+ <ip) such that a; < aj forall j € {1,...,n}. Then Erdos and Rado proved in an unpublished
manuscript the following result which can be found in [19] too:

Theorem 2. If A has the f.b.p., so has S(A).



As seen above the free graded Jordan algebra J¢(X) is a quasi-ordered set if we define for f,g € J%(X),
f < gifandonlyif g € (f)g,. If I is a Tg-ideal of J%(X), the quasi-order on JY(X) is inherited by
J4(X)

I
(2) f<gifandonlyif g e ({f}Ul)g. .
In this case we say that g is a consequence of f modulo I or simply that g is a consequence of f. When
f <gandg< f wesay that f is equivalent to g and we write f = g. We observe that if B C J%(X) then
B C (B)r, modulo I and consequently (B ). = (B)r, modulo I where B is a closure of B.

. Hence, if f,g € J%(X), we set

Definition 1. Let A be a G-graded Jordan algebra. We say that IdG(A) has the Specht property if any
Ta-ideal I such that I D IdG(A)7 has a finite basis, that is, I is finitely generated as a Tg-ideal. Moreover,
we say that a variety V has the Specht property if the corresponding Tg-ideal has the Specht property.

The following remark draws up the technique that we will apply in order to prove the Specht property
for a variety of G-graded Jordan algebras.

Remark 1. Fiz a variety V of graded Jordan algebras such that IdG(V) is finitely generated and let L =
?dGG(()x()i be the corresponding relatively free algebra. A strategy to give a positive answer to the Specht problem
forV is:

(1) Find a set of polynomials B C L (not necessarily finite) such that for every Tg-ideal I of L,

I =(B)y, for someB' CB.

(2) Show that (B, <) satisfies f.b.p. where < is the quasi-order given by the consequence, i.e., f < g if
and only if g is a consequence of f in L.

In fact, suppose that there is a set B satisfying (1) and (2) and let I be a Tg-ideal of L. There erists
B' C B such that I = (B'),.. Since (B, <) satisfies f.b.p. by Theorem 1, there ezists a finite set By C B’

such that By C B’ C By. Therefore
I = <B/>TG = <870>TG = <BO>TG'

If F is a field of characteristic 0 and 1d° (V) is finitely generated, a natural set that satisfies step (1) is a set
of highest weight vectors generating irreducible modules whose characters appear with non-zero multiplicity
in the decomposition of the cocharacter of the variety V. If a concrete list of highest weight vectors for V is
known, the next step is to show that this list satisfies f.b.p. with the quasi-order inherited by L.

In the proof of the main results of this paper our strategy is showing that for any set S of highest weight
vectors there is a finite subset Sy such that all elements in S follow from those in Sg. When handling highest
weight vectors corresponding to multipartitions appearing with multiplicity 1 in the cocharacter sequence,
in order to prove the Specht property it suffices using Remark 1. Otherwise the usual way to handle the
problem is the following. We argue for the ungraded case only being the generalization to the graded case a
simple restatement.

Step 1. If the highest weight vectors of degree n are linear combination of f7,..., i, k = k(n), we order
linearly the f;’s in order to select a leading term namely f".

Step 2. We define a partial quasi-order on the set of all f*’s (for any n and any i = 1,...,k(n)) and we
prove the set of these highest weight vectors satisfies f.b.p. with respect to the partial quasi-order above.

Step 3. We prove that if

k] k2
Fro=Y "t =Y Bif®, i, B € F,

i=1 j=1

. . . . n n . n n 3
are two hlghest weight vectors with leading terms f;*, f;® respectively, and f;'* < f;2, then there exists a
highest weight vector

Ul :Z’ij;wa Vi EF,

j=1
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which is a consequence of f™ and its leading term is exactly f;{?.

Step 4. We consider the set L of all leading terms of the set S of all highest weight vectors in the T-ideal.
By Step 2, £ has a finite subset Ly such that every element in £ is bigger than some element of Ly. Let
So € S be the finite subset with leading terms in Ly. Let f™ € Sy and f™2 € S such that their leading
terms fi'', fi'* respectively, are such that fj'' < f*. By Step 3 the leading term of

gz - Piny
Yio

is smaller than the leading term of f;;? and by inductive arguments is a consequence of Sy.

4. SPECHT PROPERTY FOR (G-GRADED IDENTITIES OF UJs

In this section we prove the Specht property for G-graded identities of UJs, where G is any finite abelian
group.
Throughout the paper we let UJ2(F') = UJs be the Jordan algebra of upper triangular matrices of order

2 over the field F' with the product z oy = T+ YT for all x, y € UJ,. We fix the basis

2
10 1 0 0 1
) G h) )
of J=UJy. Henceaca=a?>=1,b>=bob=0 and aob = 0. Here we simply write F' to denote the scalar

matrices in J. Up to isomorphism, J can be endowed with the following non isomorphic gradings (see [25,
Theorem 1]):
1. G = {0} The trivial grading: Jy = J;
2. G= ZQZ
(a) The scalar grading: Jy = F, J; = Fa ® Fb;
(b) The associative grading: Jo = F @ Fb, J; = Fa;
(c) The classical grading: Jo = F & Fa, J; = Fb.
3. G = Zy x Zy (The Klein grading): Jo,0) = F, Jo,1) = Fa, Ja,0) = Fb, J1,1) = {0}.
We denote by S, A, C' and K the scalar, associative, classical and Klein grading, respectively. Thus, for
instance, IdC(U Jo) and var® (U.J) will denote the Th-ideal of graded identities and the variety of Zo-graded
Jordan algebras generated by UJ> endowed with the classical grading, respectively.

4.1. The S-grading. In this section we consider the scalar grading on J = UJs, i.e., G = Zs and J = JoDJ;
where Jy = F and J; = Fa® Fb. As above we write X = Y UZ where the variables y; € Y have homogeneous
degree 0, the variables z; € Z have homogeneous degree 1.

A basis of the graded identities of U.J; and its cocharacter sequence with the S-grading is described below.
On this purpose we recall the definition of associator between three elements uy, ug, us of a given algebra:

(ul,uQ,u;),) = (Uluz)u?, - U1(U2U3)~

Of course we have an analogous definition for associators of length n, where n is an odd number greater than
3.

Theorem 3. [23, Proposition 8] The following polynomials are a basis of IdS(UJQ)
(ylay%yi’))a (yvzla22)7 (Zl7ya22)7 (Z17227Z3)Z4'
The next theorem describes the graded cocharacter sequence.

Theorem 4. [6, Theorem 2| Let n > 0 and let

X (UJa) = ma X
A p

be the S-graded cocharacter of UJy. Then my, =1 if and only if X = (r) and p = (s), where r +s=n and
T, s not simultaneously equal to 0. In all other cases my , = 0.
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As a consequence of the previous result, we have the description of the highest weight vectors whose
characters appear with non-zero multiplicity in the decomposition of x~(U.J;). In particular, the highest
weight vectors are of the form:

yrzs
for all r, s not simultaneously equal to 0. Let B be a set of all highest weight vectors and let B C N? be the
set of pars (r,s) such that y"2* € B. By Proposition 1, B has f.b.p. if we define a natural quasi-order by
saying that (r,s) < (r/,s) if and only if » <7’ and s < §'.

We shall show that the quasi-order < in B induces the quasi-order in B. More precisely we have the
following result.

Lemma 1. For all r, s not simultaneously equal to 0, if (r,s) < (1', ") then y"2° < Y 2

Proof. The statement readily follows from the fact that y™ 2% = [y ~"(y"2%)]z¥ ~*, since the even variables
J(X) |

y lie in the associative and commutative center of the relatively free graded algebra a0
2

Now we can prove the Specht property for IdS(U Ja).
Theorem 5. Let F be a field of characteristic 0. Then var®(U.Jy) has the Specht property.

Proof. Let U be a subvariety of var®(U.J) and let I be the corresponding Ts-ideal of graded identities. If
U =var®(U.Jy), i.e., I = Id°(U.Jy), then the result follows from Theorem 3.

So let us suppose U C var®(U.Jy) and I € 1d°(U.J;). By Remark 1 it suffices to show that (B, <) satisfies
f.b.p. where B is the set all highest weight vectors described above and < is the quasi-order given by the
consequence. Let B’ be a subset of B and B’ a subset of B = {(r,s) : y"2° € B} corresponding to B, i.e.,
B’ = {(r,s) : y"z° € B'}. Since B’ C B C N? and by Proposition 1 N? has f.b.p., there is a finite set
By C B’ such that By C B’ C By. Consider By = {y"2° : (r,s) € By} C B’ and y"2* € B’. This implies
that (r,s) € B’ C By and therefore there is (rg,so) € By where (rg,s0) < (r,s). By the previous lemma
Yy z% < y"z° where y™02% € By. Thus y"2° € By and consequently By C B’ C By where By is a finite
set. (]

4.2. The A-grading. Let us consider now the associative grading on J = UJs, i.e., G = Zs and J = Jo B J;
where Jy = F & Fb and J, = Fa.
As in the previous cases, let us recall the basis of the Ts-ideal of UJ; and its graded cocharacter sequence.

Theorem 6. [23, Proposition 6] The following polynomials are a basis of 1d*(UJ,)

(y17y2ay3)7 (Zlayaz2)7 (21322723)3 (y172,y2), (2'791792)7 (2122,55171'2)7 (1‘1,212271‘2).

Theorem 7. [6, Theorem 3] Let n > 0 and let

A _
Xn = Zm)\,uX)\,u
Ap

be the A-graded cocharacter of UJy. Then my, =1 if either
=(r), u= (), forallr >0, r+s=n and s odd.
= (n),
s), forallr <1, r+s=mn and s even.
=(1,1), u=(s), s even.

5) A=(p+4q,p), u=_s), forall2p+q>2,2p+q+s=n and s even.
Moreover, my ,, =2 if \ = (2) and p = (s), where s is even, and my , =1 —2 if X\ = (r) and p = (s), where
r > 2 and s even. In all other cases my , = 0.

In the same paper, it was also proved that the highest weight vectors whose characters appear with
non-zero multiplicity in the decomposition of x7(U.J;) are of the form (here we use the standard notation
Yo P2 =Y Y2 — Y2 Y1)

(1a) (y"z)z*~1! for s odd;

(1b) y" for all r > 1;

(1c) y"z® for r € {0,1} and s even;



(1d) (((y12)2)y2)2°~2 for s even;
(le) ((((yigr---91)2)2) g~ 72)2°"2 for 5 even,
— —
P P

or a linear combination of the following ones:
(2a) (i) y?z* for s even;

(i) ((y?2)z)2*"2 for s even > 2;
(3a) (((y'2)2)y"=Hz5=2 for r > 2, s even, i € {1,...,7 — 2}.
Let us denote by

Bia, Biv, Biey, Bid, Bie, Baa(i)s Baa(ii)s Bsa

the sets of highest weight vectors associated to (1a), (1b), (1¢), (1d), (1e), (2a(4)), (2a(i7)) and (3a), respec-
tively. We consider the following sets which are clearly in one-to-one correspondence with the highest weight
vectors described above. These sets are the following:

B, = {(r,s):sisodd};
By = {r:r>1}
By = {(r,s):0<r<1,siseven};
Big = {s:siseven};
Bi. = {(g,p,s): sis even};
Byeiy = {s:siseven};
Baagiiy = {s:siseven};
Bs, = {(i,r—1,8):0<i<r—1,siseven,r > 2}

= {(i,7,s) : siseven and j > 1}.

As in the previous section, we shall show that the natural quasi-order < in By, U By, UB1.UB1gU B, U
Baa(iy U Baa(ii) U B3, induces the quasi-order < in Byq U Bip U Bie U Big U Bie U Bag(iy U Bag (i) U B3o where
f < g if and only if f, g € B; for some ¢ and g is a consequence of f. In order to reach the goal, first we
prove the following technical lemma.

Lemma 2. The following statements hold modulo 1d*(U J,).
(1) (2'(y2))z = 2t (yz) for all t > 0.
(2) (Y12)(yz) = ((Y1y)z)z where Y1, Y2 are products of even variables.
(3) (Y12)2)Y2)z" < (((Y12)2)Yay)z" where r is even > 2 and Y1, Ya are products of even variables.
(4) ((Y12)2)Y2)z" < ((Y1y)z)2)Ya)2" where 1 is even > 2 and Y7, Ya are products of even variables.

Proof. First let us prove statement (1). If ¢ = 0 then (1) trivially follows, so let us suppose t > 0. If ¢ is odd,
then (z'(yz))z = ((y2)2)z" = (y2)2'*t! (mod 1d* (U Jy)), since (21, 2z, 23) = 0. Conversely, if ¢ is even, then
due to (21,9, 22) =0, 2t = 22!~ with t — 1 odd and (2122, 71, 72) = 0, we get

~— —

(z'(y2))z = ((y2)2)z' = 2 (y2) (mod 1A (U Jy)).
Furthermore, since (21,9, 22), (Y1,2,%2), (y1,%2, 2) are graded identities of U.J3 it follows that
(Y12)(y2) = [(Y12)y)z = Y1 (y2)]z = (Y1y)2)z (mod 1d* (U 1)),

so we get statement (2).
Statement (3) is easily proved by remarking that because of r is even and (y1, y2,ys) = 0, then

[((Y12)2)Y2)2"]y < [(Y12)2)Ya](yz") < [((Y12)2)Y2)y]2" < [((Yiz)z)Yay]2"

Finally, let us partially linearize the variable z of (((Y12)z)Y2)z". We get the following consequence:

D> ((Mzo1)202))Y2) (Zo(3) * * Za(r+2))-

0ESry2
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If we replace in the previous polynomial z; by yz and z; by z for all i # 1, we obtain

(Yi(y2))2)Ya)=" + ((V12)(y2)Ya)2" + D (V12)2)Y2)((--- (2 (y2)) 2) - -~ 2)2).
By taking into account the previous statements, we have that (((Y1(yz))z)Y2)z" and (((Y12)(yz))Y2)z" are
equivalent to ((((Y1y)z)z)Y2)2z" modulo Id*(U.J;). Moreover, by (1) for all 0 < ¢ < r,
(Y12)2)Y2)((- - ((2"(y2)) 2) - -~ 2)2) = ((Y12)2)Y2)((y2)2" ") (mod 14 (U Jz)).
e
Thus, in order to prove statement (4), it suffices to show that (((Y12)2)Y2)((yz)2"~1) is equivalent to
((((Y1y)2)2)Y2)z" modulo Id(U J3). Since r is even and (y1, y2,y3) is an identity, we have

((Y12)2)Y2)((y2)z" ") = [(((Y12)2)) (2" (y2))]Y2 (mod 144 (U.12)).
Now remark that
[((Y12)2)) (2" Hy2)]Ya = [(Y12)2)2" M (y2)]YV2 = [[(Y12)27](y2)]Ya = [(27(Y12)) (y2)]Y2 (mod 1d* (U J,)),

since (2122, 21,x2) and (z1, 29, 23) are identities and r — 1 is odd. Moreover, due to the fact that r is even
and greater than 2, 2" = 22" ! and (2122, 1, 22) = (21, 2122, x2) = 0, it turns out that

(2" (Y12)) (y2)]Ya = [((Y12)(y2))Ye]2" (mod 1d* (U Ja)).
Therefore by statement (2)
[(Y12)(y2)Ye]2" = [[((Yiy)2)z]Ye]2" (mod 1d* (U Js))
and we are done. 0

Lemma 3. We have
1) (y2)z""1 < (y" 2)z5 =1 where (r,s) < (', s') and s, s odd;

yzs < yzsl and z° < z° where s < s' and s, s even;

((y12)2)y2)z°2 < (((ylz)z)yg)zs/_2 where s < s’ and s, s’ even;

(((Wig--9)2)2) o 92)2° 2 < (W] g1+ 91)2)2) o - - 42)2° 2 where (q,p,s) < (¢,p',s") and
—_— — —_— —

’

(
(
(3
(
(

P P P g
s, s’ even > 2;
(6) y22° < 422 and ((y%2)2)2° 2 < ((y22)2)2° =2 where s < s’ for s even;

(7) (((y'2)2)y?)=""2 < (4" 2)2)y?")=" 2 where (i, j,s) < (,,8') and j,j' 21, s, s' even.
Proof. The statement (1) follows from
T2 T = (T )T T = [ 2)2 e T = (07 )2 T (mod 1M (U ),

since (y1,z,y2) and (z,y1,y2) are graded identities of UJs. The statement (2) is trivial.

Statements (3), (4) and (6) readily follow from the fact that s and s’ — s are even and (y1, y2,y3) = 0.

In order to prove statement (5) we use the transitivity of the quasi-order, i.e., we prove that (¢, p, s) < (¢, p, s)
implies fgp.s < fo' p.s, (@D, 8) < (q,p,s) implies fy ps < fopr.s and (q,p,8) < (¢,p, ") implies fyps < fop.s
for all ¢,¢',p,p, s, s’ integers, where

p

~ — ~ N\, 5—2

faps = fapsWry2,2) = (Wi g1+ 91)2)2) g2 - - - Y2) 2
p p

. /7
Clearly, fqp.s < fqp.s When s > s" and s, s’ are even, since fq o = fqp.s2° ~°.

Now suppose ¢ < ¢/, then fy s < fo.p.s by (4) of Lemma 2.
Finally, without loss of generality we may suppose p’ = p+1. The general statement will follow by a standard
induction argument. By [6, Lemma 5] we have

faps = p (=17 (D) (@) )2)00 )= 2
jz:;) <]) vy ey
9



On the other hand, by statements (3) and (4) of Lemma 2, for all 0 < j <p

(W) ud)=" " < (W )2y )22,
therefore fq p.s < fqp+i,s-
The proof of (7) is analogous to that of (5). O

Our next goal is proving the Specht property for var?(U.Js).
Theorem 8. Let F be field of characteristic 0, then var®(U.Js) has the Specht property.

Proof. Let U be a subvariety of var?(U.Jy). If U = var?(U Jy), then the result follows from Theorem 6.

So let us suppose U C vard(U.J,) and let us denote by I the corresponding T-ideal of graded identities. As
noted above, not all the highest weight vectors do correspond to multipartitions appearing with multiplicity
1 in the cocharacter sequence of var®(U.Js). Hence we divide the proof into two parts being the first one the
one involving the cases from (1a) to (le). We start handling the cases (1a)-(1le). By Remark 1 it suffices to
show that (Bia U By U B U B1g U Bie, <) satisfies f.b.p. where f < ¢ if and only if f, g € B; for some i and
g is a consequence of f. If we set B = By, UB1, UB1.UB1gUBie and B = By, U By U B1. U B1gU By, then
by Lemma 3 we get the claim as outlined in the proof of Theorem 5.

It remains to prove the cases (2a) and (3a). We have to remark the two cases have to be manipulated
separately because they correspond to different modules. Hence we start with the case (2a) and we notice
any highest weight vector can be written as h = af + 89, o, 8 € F, f of type (2a)(i) and g of type
(2a)(ii). We have to follow the four steps as outlined in Section 3, then we have to order the highest weight
vectors. We always consider the elements (2a)(i) greater than the elements (2a)(ii) and among them we
give an order depending on the exponent of the variable z and this completes Step 1. By Lemma 3 the set
(Baa(iy U Baq(isy, <) satisfies f.b.p. where f < g if and only if f, g € B; for some i and g is a consequence of
f and this is enough to complete Step 2. In order to get Step 3 we have simply to notice that if

hi = a1 fi + pfi1g1 and he = as fa + 202

are highest weight vectors such that f; < fo, then fo = f12! for some ¢ > 0, then we set g = ¢g12* and we
consider

h=afs+ Bg
which is the required highest weight vector and we are done because the other cases are completely analogous.
The case (3a) may be treated similarly to the first case. Actually we order the elements (3a) depending on
the exponent s — 2 of z and Step 1 is over. Step 2 follows again from Lemma 3. If

r—2 r'—2
h1 = Zaifi(z,r—z,s) and h2 = Z Oéjf](]’r =557
i=1 j=1
1 1 ] 3 R (Z‘(),T*’L‘(),S) — (jOuT/7j015/)
are two highest weight vectors such that their leading terms are fi := f; , fo = i respec-

tively and f; < fo, then fo = @(f125 ~5y” ~do="+i0) where ¢ is a partial linearization of the polynomial in
the odd variables as outlined in the proof of Statement (3) of Lemma 2. In light of this we set

r—2
hi= (3 au((f 2 )y )
i=1

that is the required highest weight vector and Step 3 is completed. O

4.3. The C-grading. In this section we fix the classical grading on J = UJs, i.e., G =Zy and J = Jo & J;
where Jo = F @ Fa and J; = Fb. In the free Zs-graded Jordan algebra J(X) we write X = Y U Z, the
disjoint union of two countable sets and we require that the variables y; € Y have homogeneous degree 0,
the variables z; € Z have homogeneous degree 1. Moreover, we denote by z; any kind of variable.

The next theorems give a basis of the graded identities of UJy; with the C-grading and describe the
corresponding cocharacter sequence.

Theorem 9. [23, Proposition 12] The following polynomials are a basis of 1d° (U Js)

(w122, 23, 24) — w1 (22, 73, T4) — T2(T1,23,24),  (Y1.Y2,Y3), 2122, (Y1,2,92)-
10



Theorem 10. [6, Theorem 1] Let n > 0 and let

XS(UJQ) = Z M u X\ u
A p

be the C-graded cocharacter of UJy. Then my, = 1 if and only if A = (r) and p = (s), where r + s = n,
s <1 and r,s not simultaneously equal to zero. In all other cases my , = 0.

In the case of the C-grading, the Specht property for U.J; is proved assuming only that the base field is
infinite of characteristic different from 2.

Let I be a Ty-ideal such that Id°(UJy) C I and f € I. Since F is an infinite field we can assume that f
is a multihomogeneous polynomial. By Proposition 12 of [23]

F=Ffn,nys,2) =y ((ya(- (s (s 2))--+))) -+ ) (mod Id° (U Jy)), where a; >0 for all i € {1,...,s}
——— ————
aq ag
or
F=Fyn,onys) =yt ..y (mod 1A% (U Jy)), by > 0 for all i € {1,...,s}.

Then I is defined by a subset of set of polynomial in J(X) of the form:

(1) yi( Wryal-- (ys- (W 2) ) -++) (mod 1A (U J2)), where a; >0 for all i € {1,..., s}

—— ——
ai as
(2) o .. ybe (mod 1d°(UJy)), b; > 0 for all j € {1,...,s}
Let us denote by By and By the set of polynomials associated to (1) and (2) respectively. We consider

the following sets which are clearly in one-to-one correspondence with polynomials of the type (1) and (2)
respectively.

B = {(a1,...,a;) 7 >0,b; >0 for all i};
By = {(b1,...,b5) :8>0,a; >0 for all j}.

Since B; and By are subsets of S(N), B; and By satisfy f.b.p. with the quasi-order induced by the
quasi-order of S(N).
To simplify the notation, we will denote y1(--- (y1(y2(- - (Ys- - (Ys 2))-++)))--+) by Y% where a =
—_——— —_———

al as
(an,... ).

Lemma 4. Leta = (ay,...,a,), ’ =(a},...,a.,) € By and b= (by,...,bs), b' = (b},...,b,) € Bo.
(1) Ifa<a then Y2 <Yz
(2) bV thenyfabe <t

S

Proof. Let us prove statement (1). Since a = (a1,...,a,) < (a},...,al.) = o’ there is a subsequence
a" =(aj,,...,a; ) of a (i1 <--- <) such that a; < aj forall j € {1,...,r}. Define f(y1,...,y,,2) =Yz

and let f(v:,,...,%:,.,2) be the polynomial obtained replacing the variable yj by ys, for each j € {1,...,7}
in f(y1,-..,Yr, 2). Then by Proposition 12 of [23]

’ ’
a; —ai a; —ar ’

Yy, oy Wiy, 2) =Y 2

Y= II ik
ke{l, - n}—{i1,....ir}
and the last equivalence is obtained replacing the variable y;, by y; for each j € {1,...,r}. Therefore

where

Yo = f(Yirs- s Yin, 2) < Y 2. Similar arguments can be applied in the proof of statement (2). O

Theorem 11. Let F be an infinite field of characteristic different from 2. Then var®(UJy) has the Specht

property.
11



Proof. The result follows from Theorem 9 if & = var®(U.Jy). Let I a Ty-ideal such that 1d°(U.J,) € I. By
Remark 1 it suffices to show that (By U Ba, <) satisfies f.b.p. where f < g if f, g € B; for some i € {1,2}

and ¢ is a consequence of f. Let us set B = By U By and B = By U Bs, then by taking into account Lemma
4, the proof follows verbatim the one of Theorem 5. g

It is interesting to mention the following. The fact that in the case of characteristic 0 the multiplicities of
the irreducible components in the cocharacter sequence of var®(U.Jy) are 0 and 1 only, implies that the lattice
of the subvarieties of var®(U.J,) is distributive (see the paper [2] for more details). With some additional
work this leads to the description of this lattice.

4.4. The K-grading. Now we deal with the Klein grading on J = UJs, ie., G = Zy X Zy and J =
Jo,0) @ J,0) © Jo,1) D Ja,1) where Jioo) = F, Jo1) = Fa, Jao) = Fb, Jaay = {0}. Here we write
X =Y UZUTUW, the disjoint union of four countable sets and we require that the variables y; € Y have
homogeneous degree (0,0), the variables z; € Z have homogeneous degree (1,0), the variables ¢; € T have
homogeneous degree (0, 1), the variables w; € W have homogeneous degree (1, 1).

In [5] the authors gave a description of the generators of the T-ideal of Zs X Zy-graded polynomial identities
of UJy and the corresponding graded cocharacter sequence.

Theorem 12. [5, Lemma 3.5] The following polynomials are a basis of Id™ (U.Js).
(ylay27x>7 (y17$,y2)7 (217227y)> (z17y722)= (21,22,223), Zt7 t1t2a w.
Theorem 13. [5, Lemma 3.6] Let n > 0 and let
Xn(UJZ Z M v X\ p,v,m
A u,vm

be the K-graded cocharacter of UJy. Then my ;. = 1 if either

DA=(),n=(),v=0,1=0 for allr,s >0 and r + s = n;

) A=(r), p=1(s), v=( ),n:(Z)forallr>0 r+s+1=n and s even;

3) A= (n—1), p=0, v= (1), =
In all other cases mx upn = 0.

1

7

The highest weight vectors whose characters appear with non-zero multiplicity in the decomposition of
XX (U Jy) are of the form:

(1) y"z* for all r, s not simultaneously equal to 0;
(2) y"z*w for all » > 0 and s even;
(3) y"w for r > 0.

Let By, By and B3 be the sets of all highest weight vectors corresponding to (1), (2) and (3) respectively.
Let us consider By, Bs being the set of pairs (r, s) such that y"z° € By, y"z°w € By respectively and Bs the
set of positive integers r where y"w € B3. By Proposition 1, By, By and B3 have f.b.p. and are pairwise
disjoint.

As in the case of the C-grading we shall show that the natural quasi-order < in B; U Bs U B3 induces the
quasi-order < in By U By U Bs where f < g if f, g € B; for some ¢ € {1,2,3} and g is a consequence of f.
Notice that, although the quasi-order < is the same for By, B2 and Bs (given by the consequence), it will be
necessary to compare only polynomials f, g € B; for some i € {1,2,3}.

Lemma 5. Let (r,s),(r',s') € By, (t,u),(t',u') € By and v,v" € Bs.
(1) If (r,s) < (r',8') then y"z5 < y" 2* ;
(2) If (t,u) < (t',0) then ytztw <yt 2% w;
(3) If r <71’ then y"w < Y w.
Proof. The statement (1) follows from the fact that 4™ 2% = [y ~"(y"2*)]z* = modulo Id* (U J,), since the

even variables y lie in the associative and commutative center of the relatively free graded algebra %
2

and (y, 21, 22) is an identity of UJs.

Moreover, since t' —t is even, then z is an even variable that lies in the associative and commutative

center. Thus 2% ~*[y" ~"(y" z5w)] = y" z*'w modulo 1d¥ (U.J,) and the statement (2) follows.

12
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Similar arguments prove (3). ]

We are now in a position to prove the Specht property for varX (U.Jy).
Theorem 14. Let F be a field of characteristic 0. Then var (U.Jy) has the Specht property.

Proof. Let U be a subvariety of var (U.Jy). If U = var¥ (U J;), then the result follows from Theorem12.
So let us suppose U C var¥(UJy) and let us denote by I the corresponding T-ideal of graded identities.
By Remark 1 it suffices to show that (By U By U Bs, <) satisfies f.b.p. where f < g if f, g € B; for some

i €{1,2,3} and g is a consequence of f. Let us set B=B; UBy;UB;s and B = By U By U B3, then by taking
into account Lemma 5, the proof follows verbatim the one of Theorem 5. ]

4.5. The trivial grading. We finally deal with the trivial grading, i.e., the ordinary polynomial identities
of UJs. In [26] it was proved that the algebra of 2 x 2 upper triangular matrices is the only finite dimensional
special Jordan algebra that generates a variety of almost polynomial growth. Furthermore, in [6] and [23]
the authors computed a basis of the T-ideal of identities of UJs and the corresponding cocharacter sequence.

Lemma 6. [23, Theorem 19] The following polynomials are a basis of Id(UJ3)
(129,23, 74) — 1 (T2, T3, 24) — T2(21, X3, T4), (21, (x2, 23, 24), T5).
Remark 2. If B is an associator then x1(x9B) = xo(x1B) modulo 1d(U Js).
Proof. Since (z1, (x2,x3,24),x5) € Id(UJz), then we have that
21(x2B) = (x1B)xs — (21, B, 22) = (1 B)xs = x2(21B) (mod Id(U Js)).
O

The proof of the next Lemma uses the relation between proper and ordinary cocharacter sequences. We
refer to [8, Chapters 4.3 and 12.5] for an exhaustive survey about proper polynomials, proper cocharacters
and Littlewood—Richardson rule. The book [8] considers associative algebras only but the same results hold
for any unitary algebra, see Proposition 1.5 in [9].

Lemma 7. Let n > 1 and let

Xn(UJ2) =Y maxa
AFn
be the m-cocharacter of the Jordan algebra UJy. If A = (n) then my = 1, if either X = (p + ¢q,p) or
A=(p+gq,p,1), p>0, then my = f%} if p is odd and my = f%} if p is even.
In all other cases my = 0.

Proof. By [6], the proper cocharacter of UJs is

e if n is odd,
Yu(UJp) = § Xt 2
0 if n is even.

Then

Xn(UJ2) = Z Xk @ Yn—i(UJ2) = X(n) + Z (m(p+q,p)x(p+q-,p) + m(p+q,p,1)X(p+qvp71)) :
k=0 p>0

Here ® stands for the multiplication in the Littlewood—Richardson rule.

This proves immediately the cases A = (n) and A = (A1,...,A), A3 > 1 or Ay > 0.

The case A = (p + ¢,p) (with similar arguments for A = (p 4 ¢, p, 1)) is handled as follows. Clearly, X (p+q,p)
is obtained from x () ® ¥ —r(UJ2) when n—k is odd, i.e., from x ) ® X(2s,1), P < 25 < p+q. For p even, we

have the possibilities s = p,p+2,...,p+q—¢, € = 0,1, depending od the parity of ¢, i.e., [%] possibilities.
For p odd the possibilities for s are s=p+1,p+3,...,p+q¢—¢,e=0,1, ie., [%1 possibilities. |

By using the Littlewood—Richardson rule, it was also proved in [6, Theorem 4] that the highest weight
vectors associated to the partition A = (p+ ¢, p) whose characters appear with a non-zero multiplicity in the
decomposition of x,(UJy) are of the form:

(3) ft,u,v =121 .’£:2' "fg(fhfg,l’:l,...,fl,fﬂl,...,l'l)7
——— —— —— ———

t u u v
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where p = u+ 1, ¢ = t+ v and u + v odd. Thus it is clear that each highest weight vector is uniquely
determined by a triple of positive integers (t,u,v).

Next we consider the following set which is in a one-to-one correspondence with the set of highest weight
vectors:

B = {(t,u,v) : uis even and v is odd or u is odd and v is even},

We shall consider a quasi-order on B and we shall show that it induces the quasi-order (2) in the corresponding
subset of highest weight vectors B.
We start by defining a natural quasi-order < on B as follows:

(t,u,v) < (o) if t <t u<u o<,

Clearly, B has the f.b.p. Thus, in order to reach our goal, as in the previous section, by transitivity it suffices
to prove that for all ¢,¢',u, ', v,v" we have: (¢,u,v) < (t,u,v) implies frup < firuw, (Eu,v) < (¢, 0)
implies fi uo < fruw and (¢, u,v) < (¢,u,v") implies fi o < fiu,- The next lemmas go in this direction.

Lemma 8. Let (t,u,v),(t',u,v) € B, then (t,u,v) < (t',u,v) implies fiuo < fv uv-
Proof. Since the brackets in (3) are right-normed, it is clear that

ft’,u,v =T1- X ft,u,m
—_———
t—t
thus ft,u,v < ft’,u,u~ 0
Lemma 9. Let (t,u,v), (t,u,v") € B, then (t,u,v) < (t,u,v") implies fiuo < fruwv-

Proof. With abuse of notation, let

ft,u,v = ACa
where A=x1-- 21 T2+ 72 and C' = (fl,fg,x:h...,fl,xl,...,xl).
—— —— —_———— ——

t u u v
Remark that, since v + v and «' + v are odd, we have v = v’ (mod 2), thus we can consider f;, v =

A(B,x1,21). The general statement will follow by a standard induction argument. By applying Remark 2
we get

ft7u,v’ = A(C,J)l, 1‘1) = A((C.Q?l)l‘l) — A(C(mlxl)) =T (xl(AC')) — (xlxl)(AC)
= zl(xlft,u,v) - (xlxl)ft,u,v (mOd Id(UJQ))'
Thus ft,u,v S ft,u,v" O
Lemma 10. Let (t,u,v), (t,u',v) € B, then (t,u,v) < (t,u,v) implies fiup < fru -

Proof. As in the previous lemma, since u = v’ (mod 2), we can consider

ft,u,v =T fQ"'fz(fl,fg,fl,...,f1,.1‘1,...,$1) and
——— N — —_———— — —
t u u v
Jtor o = T1 -+ T1 T+ - - T ToZo (L1, T2, L1,y .., L1, L1, L1, L1, .- ., T1)-
——— N — ———— —_———
t u u v

We remark that in the proof of [23, Theorem 19], the authors showed that one can always reorder the
variables that lie inside the associator except the one in the second position, therefore using this fact and
Remark 2, we get
Jtowo = X1+ T1 Lo - T ToZo(T1, T2, L1, . .., L1, L1, L1, L1, ..., L1)
—— —— ——
t u u v
=210 Ty T Ta Tolo(T1, T2, T1y- -, T1, L1, -+ T1, 01, 21)
—— — ——
t u u v
= ToZo 2y -+ Xy T - - Lo (&1, T2, L1, ..., X1, L1, .., 21,21, 21) (mod Id(UJ2)).
—_— —_— ——

t u u v
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By expanding the last associator and by using once again Remark 2, we have

ft,u’,u = [(37:255\2 Ty Ty Lo To(X1, To, T, .. 7f1a$17~-~>$1))95:1}§1
—_—— — —_——— ———
t u u v
- [ ToBa Ty -+ Ty To -+ To(T1, T2, T1s - - o, T1, Tty - - ,fl)} (56:1»’?1)
—— —— —_———— ——
t u u v
= B\ T1T2%2 T1 -+ Ty T - - - To(T1, T2, L1,y ..o, L1, L1, ..., T1)
——— —— ——
t u u v
— (#171) [ Golly (21 a1 Tp - Do (21, @2, 71, . .. 7$~1,3C17~-~,$1))}
—_—— —— —_——— ———
t u u v
= —(171) | BaF2fru0| (mod 1A(UI)).
Thus fi uw < ftu o and we are done. O

Lemma 11. Let (t,u,v), (t,u',v") € B, such that either u,v' are odd and v,u’ are even or u,v’ are even
and v,u' are odd, then (t,u,v) < (t,u,v") implies fiup < feu -

Proof. Let us suppose v’ = u + 1 and v/ = v + 1. The general statement will follow by a standard induction

argument.
We write
Jtww =211 To - To(T1, T2, T1,. .., T1, 21, ..., 21) and
—— —— —_——— ——
t u u v
froww =11 Lo - T2 Zo(T1, T2, T1,y -, T4, T1, L1, - -, T1, L1)-
—_—— —— —_——— ——
t u u v

Let expand the last alternation of f; ./ . :
S =x1- -1 T2 - Ta X2 (81, T2, T1y .o, £1, T1, L1, -, T1, L1)
—— —— —_——— N——
t u u v
— Ty Ly Ty To 21 (T, T, L1y ..., L1, T, Ty, T1, 1),
—— —— —_———— ——
t u u v
Using Remark 2 and reordering opportunely the variables inside the associator, we get
frow v = X221+ X1 Ta - Zo(T1, D2, T1,y ..o, £1, 1, ..., L1, T1, L1)
—_—— ——~ —_———— ——
t u u v
— XX, L1 T2 'fg(fl,.’fg,fh e T, T, ,$1,$2,LL'1) (mod Id(UJQ))
—— —— —_——— ———
t u u v

Finally, applying the same arguments as in Lemma 9, we have

Jrowr v = z2(x1(x1 fruw) — (X121) fruw) — T1(T2(21 frouw) — (@122) fru,e (mod Id(UJz)).) (mod Id(U J2)).

Hence f;u,0 < fiu,»» and we are done. O
If \=(p+gq,p,1), then the highest weight vector associated to A is of the form

(4) Gt =T1- - T1 Lo - - Lo T3(T1, T2, T1,y ..., T1,T1,...,21),
——— —— —_———— ——
t u u v

With similar arguments as in the previous case, we can find a set B’ which is in a one-to-one correspondence
with the set of highest weight vectors B’ of the g; ,.,’s. It turns out that analogous statements of the ones
of Lemmas 8, 9, 10 and 13 hold.

Finally, if A = (n), then the corresponding highest weight vector is of the form h,, = z™. Thus one can
collect them in a set B” that is in a one-to-one correspondence with B” = {n : n > 1}. It is clear that if
n < n' then h,, < h/, and so B” has the f.b.p.

We are now in a position to prove the main theorem of this section.
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Theorem 15. Let F be a field of characteristic zero and let I be a T-ideal containing Id(UJy). Then I is
finitely generated as T-ideal.

Proof. If I =1d(UJ3), then we have nothing to prove since Lemma 6 ensures us that I is finitely generated.
So let us suppose that I 2 Id(UJz).
Let now focus our attention to the highest weight vectors of the type (3), since the statement for the ones
of type (4) will follow analogously.
Since the multiplicities of the characters corresponding to such highest weight vectors are greater than 1, we
have to follow the four steps described in section 3. For any fixed n > 1, we choose to order the polynomials
of degree n in B in the following way: fi .o < fi u . if and only if either ¢t <t/ ort =¢ andu < v’ or t = ¢/
and v = u’ and v < v’. Recall that n =t + 2u + v + 2. Hence we completed Step 1. By Lemmas 8-13, the
quasi-order defined on B induces a quasi-order on B, thus B satisfies the f.b.p. and Step 2 is complete. In
order to get Step 3, let
k1 ko
FY =" iftuee and [ =" B, fi 0,
i=1 j=1
be two highest weight vectors of degree ni and ny with leading terms ftz‘o»uioﬂ)ig and ftjo’ujo’% according
to <, respectively. Recall that ¢; + 2u; +v; +2 = nq for all 1 <4 < ky and t; + 2u; + v; + 2 = ny for all
1 < j < k. Moreover, let fi, w01y < ft;o 50,05 -
By the proofs of Lemmas 8-13, one gets that it is possible to obtain ft; ., ., properly multiplying fi, ., v,
by some variables. In order to simplify the notation, let fi, ., = ¢( ftm,uio,vio) be such multiplication.
Thus it is clear that
v = Do)
(67}
is a consequence of f™! and has the same leading term of f™2, hence it is the required highest weight vector
and Step 3 is done.
Finally, since the multiplicity corresponding to the partition A = (n), n > 1 is equal to 1, we have nothing
more to prove. The proof of the theorem is now complete. O

Vi

5. SPECHT PROPERTY FOR THE METABELIAN ALGEBRA A

In this section we shall prove the Specht property for the variety generated by the metabelian Jordan
algebra introduced in [27].
Let A; be the Jordan algebra generated by the elements ¢, a;, b;, i > 1, such that

aja; = bib; = a;b; = tb; = twt =0,

twaza; =0, twbb; =0

twa;bjar, = —twarbja;,

twb;a by, = —twbia;b;,
for all 4, 5, k, where w is any word in the alphabet of the generators. Here we are considering monomials
with left-normed brackets.

Theorem 16. [27, Theorem 1] Let Ay be the Jordan algebra defined above, then Id(A1) = ((z122)(z324))7.

Moreover, if
Xn(Al) = ZmAX)\
AFn
is the n-th cocharacter of Ay, then my = 1 if either A = (3,271 172k=1) op X\ = (2F,17=2K)) In all other
cases my = 0.

Theorem 17. [27, Theorem 2] Every proper subvariety of var(Ay) has polynomial growth.

Notice that in light of the previous theorems, A; is an infinitely generated Jordan algebra such that any
product of its elements has left-normed brackets and furthermore it generates a variety of almost polynomial
growth.

The highest weight vector associated to the partition A = (3,2%~1,17=2k=1) is of the form

(5) fok = T1T1T1%2T2 - - TpZpThe1Tht2 Tn—k—1,
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whereas the highest weight vector associated to the partition A = (2%, 1772%.) is of the form
(6) Ink = T1Z1T2Z2 - TpTkTh+1Tk+2  * Tn—k-

In order to prove the Specht property for var(A;), by following the lines of [27], we first prove some
technical lemmas.

Lemma 12. The identities

(7) T1Toyr3 + T123YTe + Towsyr = 0 and

(8) 2120 zgxyr =0, 5 > 2
hold in var(Ay).

Proof. Recall that the identity y(zz)z = yx(xzx) holds in every Jordan algebra. Then, by taking into account
the identity (x122)(x324), we get that the previous becomes

9) zxyr = 0.
Now, the complete linearization of the latter identity gives us (7).
Moreover, if one partially linearizes (9) replacing « by « + z and considers the multihomogeneous component

of degree 1 in the z and degree 2 in the x, we get 2zzyz + 22yz = 0. Finally, by replacing z by the product
z129 - Zs, § > 2, we obtain identity (8). O

Lemma 13. Let U be a proper subvariety of var(Ay). If either frx =0 or gn,x =0 on U for some n and k,
then forp =0 for alln' >n and k' >n—k—1 and g iy =0 for alln’ >n and k' >n—k — 1.
Proof. First, let us suppose that
frk = T1T1T1T2%2 - - TpThTht1Tht2 Tnek—1 = 0
for some n and k and let us replace x1 by 2129 + 1. If we consider the linear component in z; and z9 and if
we multiply by zp41, Tk12, ..., Tn—k—1, then we can apply identities (7) and (8) in order to get the following
consequence
21221 X1X2X2 ** " Tp—k—1Tn—k—1-
Thus, it is clear that f,/ v =0foralln’ >nand ¥’ >n—k — 1.
Now let us suppose
Gnk = T181T2T2 -+ TpTkTp4+1Tht2 Tk = 0
for some n and k. By multiplying ¢, » by z1 and by applying identity (7), we get as consequence
—T1T1T102%2 - TpThTh1Th42 Tnk — T1T1T1T2T2 - - T LTy 1Thy2 Tk =0
Hence, with arguments similar to those used in the previous case, we get the claim. ([l

We now can prove the Specht property for var(A4;).

Theorem 18. Let F be a field of characteristic zero and let U C var(Ay). Then Id(U) is finitely generated
as T-ideal.

Proof. If U = var(A;), then by Theorem 16 we have nothing to prove, so let U be a proper subvariety of
var(A;) and let Id(U) be the corresponding T-ideal.
Let us consider the sets

By ={fnr: nkcN}and

BQ = {gn,k n, ke N}

We define a total order on By and By by stating that f, x < fu ok (resp. gng < gnrpr) if n < n' orn=n'
andn—k—1<n'—k'—1.

Among the generators of Id(U) let now consider fy x and gas,r as the minimal highest weight vectors of 5y
and By with respect to the above order. Then, by taking into account Lemma 13, it is clear that f, ; and
gm, are consequences of fn x and g1, respectively, if n > Norn—k—-1> N — K —1and m > M or
m—1—1> M — L—1. It readily follows that a basis of Id(i/) contains fn i, gam,r and a finite list of highest
weight vectors f,, , and g,y suchthat n < Norn—k—1<N—-K—-landm<Morm—-Il-1<M-L-1.
Hence Id(U) is finitely generated and var(A;) has the Specht property. O
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