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Abstract

In this paper we give a new proof of the closed-form formula for the weight distribution of a perfect
binary single-error-correcting code.
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1 Introduction

A binary code C of length n is any subset of the n-dimensional vector space GF(2)n over GF(2). The
(Hamming) distance d(x, y) between two vectors x, y in GF(2)n is the number of coordinates in which
x and y differ. The (Hamming) weight wt(x) of a vector x is the number of non-zero coordinates
of x. Equivalently, the weight of x is equal to the distance d(x,0) between x and the all-zero vector
0 = (0, . . . , 0) of length n.

The covering radius of C is the smallest value of the non-negative integer r such that the balls of
radius r, with respect to the Hamming distance, centered at the codewords of C, cover all of GF(2)n.
Equivalently, the covering radius of C can be defined as

r = max
y∈GF(2)n

min
x∈C

d(x, y). (1)

The packing radius of C is the largest value of the non-negative integer s such that the balls of radius
s, centered at the codewords of C, are mutually disjoint. A binary code of length n is said to be perfect
if the covering radius is equal to the packing radius, that is, if there exists a (necessarily unique) non-
negative integer r such that every x in GF(2)n is within distance r from exactly one codeword of C. In
this case, C is said to be an r-perfect code.

It is well known that perfect binary codes of length n exist only for r = 0, r = n, r = (n−1)/2 with n
odd, r = 1 with n = 2m−1, m ≥ 2, and r = 3 with n = 23 (see e.g. [3]). The first three types of codes are
called trivial, whereas the last case corresponds to the binary Golay code (see e.g. [7]). In the remaining
case, the perfect codes with r = 1 and n = 2m−1, m ≥ 2, are called perfect binary single-error-correcting
codes (or 1-perfect binary codes). For the sake of brevity, it is customary to refer to these codes simply
as perfect binary codes.

The linear perfect binary codes are unique, and are the well-known binary Hamming codes (see e.g.
[7]). The first examples of non-linear perfect binary codes of length n = 2m − 1 were constructed by
Vasil’ev in 1962 for any m ≥ 4 [13]. Since then, they have been intensively studied, and the classification
problem for such codes is far from being solved. Perfect binary codes are one of the most important
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topics in the theory of error-correcting codes, and are important also for combinatorics, graph theory,
group theory and cryptography.

Given a code C of length n, and an integer 0 ≤ i ≤ n, let us denote by Ai the number of codewords
of Hamming weight i in C. The ordered sequence (A0, A1, . . . , An) is called the weight distribution of the
code C. The weight distribution, which is an important research topic in coding theory, contains crucial
information about the error-correcting capability of the code and the probability of error detection and
correction, and is often related to interesting problems in number theory and design theory.

In Section 2 we give a new, elementary, proof of the closed-form expression for the weight distribution
of a perfect binary code. Unlike in the original proof by Etzion and Vardy [3], we do not rely on the
weight distributions of the translates of the code. In Section 3 we observe that the recursive relation for
the weight distribution of a q-ary Hamming code of length n = (qm − 1)/(q − 1) over GF(q), with q a
prime power (see e.g. [10, Problem 4.8, p. 121]), is valid more generally for any 1-perfect q-ary code of
length n = (qm − 1)/(q − 1).

2 Weight distributions of 1-perfect binary codes

If C is a binary code of length n, and y is a vector in GF(2)n, then

C + y = {x+ y |x ∈ C}

is also a code of length n, which is called translate of C by y (of course, if C is linear, then C + y is
the coset of C containing y). The study of the translates of C is an important tool for investigating the
properties of a code C. For instance, since

d(x, y) = d(x+ y,0) = wt(x+ y), (2)

it follows from (1) that the covering radius of C is the maximum of the smallest weight in any translate
of C. This property shows also how one can use translates for decoding. Suppose, for instance, that at
least one transmission error occurs, and some received word y is not in C. Then, by (2), x is a codeword
in C at smallest distance from y if and only if x + y is a vector of least weight in the translate C + y
(called the coset leader of C + y).

Another immediate well-known property of translates, in the case of a 1-error perfect binary code C
of length n, is that, if e1, . . . , en are the vectors of the canonical basis of GF(2)n, then GF(2)n can be
partitioned as the disjoint union of C,C+e1, . . . , C+en. In particular, the number |C| of codewords in C
must satisfy the equality |C|(n+ 1) = 2n. Also, this partition of the space GF(2)n was used by Solov’eva
[12] and, independently, by Phelps [9], to construct perfect binary codes of length 2n + 1. This was one
of the first constructions of non-linear perfect binary codes since Vasil’ev [13].

For a 1-perfect binary code C of length n, Etzion and Vardy [3, Proposition 4.1] found a closed-form
expression for the weight distribution of C, starting from the well-known doubly-recursive relation

(n− i+ 1)Ai−1 +Ai + (i+ 1)Ai+1 =

(
n

i

)
(3)

(see e.g. [7, p. 129]), where Ai denotes the number of codewords of weight i in C. In the special case of
a binary Hamming code, the closed-form expression had already been given by Shapiro and Slotnick in
[11, Remark 2, p. 28].

Note that the equation (3) has only two possible solutions, depending on whether C contains the zero
vector (A0 = 1, A1 = 0) or not (A0 = 0, A1 = 1). If e1, . . . , en are the vectors of the canonical basis of
GF(2)n, then, as we noted above, GF(2)n can be partitioned as the disjoint union of the (1-error perfect)
codes C,C+e1, . . . , C+en. If C contains the zero vector, then the codes C+e1, . . . , C+en do not contain
it, hence they all share the same weight distribution. Therefore, if Bi denotes the common number of
words of weight i in any of the codes C+e1, . . . , C+en, one obtains that Ai +nBi =

(
n
i

)
, which, together

with the relation (n− i+ 1)Ai−1 +Ai + (i+ 1)Ai+1 = (n− i+ 1)Bi−1 +Bi + (i+ 1)Bi+1 (see (3) above),
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produces by induction an explicit expression for Ai and Bi [3]. Note that Bi is precisely the value taken
up by Ai in the case where C does not contain the zero vector.

We now give a new proof of the closed-form expression for Ai. The idea is very simple, and relies on
the observation that by writing the equality (3) twice, for two consecutive values of the index i, one gets
by addition a linear recurrence relation between Ai+1+Ai+2 and Ai−1+Ai, which, by induction, produces
an explicit expression for Ai−1 +Ai. Finally, again by induction, one obtains the closed-form expression
for Ai = (Ai−1 +Ai)−Ai−1. Besides this general scheme, the rest of the proof is just a very easy exercise,
which involves only elementary properties of the binomial coefficients. Moreover, our proof considers
only the codewords of the given perfect binary code, without resorting to the weight distributions of the
translates of the code.

2.1 Theorem: [3, Proposition 4.1] Let C be a perfect binary code of length n = 2m − 1, with m ≥ 3.
For each 0 ≤ i ≤ n, if Ai is the number of codewords of weight i in C, then

Ai =


1

n+ 1

(
n

i

)
+ (−1)i+bi/2c

n

n+ 1

( n−1
2

bi/2c

)
if 0 ∈ C

1

n+ 1

(
n

i

)
− (−1)i+bi/2c

1

n+ 1

( n−1
2

bi/2c

)
if 0 6∈ C,

(4)

where b·c is the floor function, and 0 denotes the zero vector (0, . . . , 0) in GF(2)n.

Proof. Let us first prove that, for any integer i, with 1 ≤ i ≤ n,

Ai−1 +Ai =



1

n+ 1

(
n+ 1

i

)
if i is odd

1

n+ 1

(
n+ 1

i

)
+ (−1)i/2

n

n+ 1

(n+1
2

i/2

)
if i is even and 0 ∈ C

1

n+ 1

(
n+ 1

i

)
− (−1)i/2

1

n+ 1

(n+1
2

i/2

)
if i is even and 0 6∈ C.

(5)

If 0 ∈ C, then A0 = 1. Therefore A1 = 0 and A2 = 0, else there would exist a vector in GF(2)n

within distance 1 from at least two codewords of C (see also the equality (3)). If 0 6∈ C, then A0 = 0,
thus A1 = 1 again by definition of perfect code, whence A2 = n−1

2 by the equality (3). It follows that, in
either case, the formula (5) is satisfied for i = 1, 2.

For 1 ≤ i ≤ n− 2, let us consider the equality (3), and the equality

(n− i)Ai +Ai+1 + (i+ 2)Ai+2 =

(
n

i+ 1

)
(6)

obtained from (3) by replacing i with i + 1. By adding up the equalities (3) and (6), one gets a linear
recurrence relation between Ai+1 +Ai+2 and Ai−1 +Ai,

(n− i+ 1)(Ai−1 +Ai) + (i+ 2)(Ai+1 +Ai+2) =

(
n+ 1

i+ 1

)
,

that is,

Ai+1 +Ai+2 =
1

i+ 2

((
n+ 1

i+ 1

)
− (n− i+ 1) (Ai−1 +Ai)

)
. (7)
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We can now prove (5) by induction. If 1 ≤ i ≤ n− 2 is odd, then i+ 2 is also odd, hence, by (7) and
(5),

Ai+1 +Ai+2 =
1

i+ 2

((
n+ 1

i+ 1

)
− n− i+ 1

n+ 1

(
n+ 1

i

))

=
1

i+ 2

((
n+ 1

i+ 1

)
− i+ 1

n+ 1

(
n+ 1

i+ 1

))

=
1

i+ 2

(
n+ 1

i+ 1

)
n− i
n+ 1

=
1

n+ 1

(
n+ 1

i+ 2

)
.

Finally, let us consider the case where 2 ≤ i ≤ n − 3 is even, say i = 2m. Thus i + 2 = 2(m + 1),
hence, if 0 ∈ C, then, by (7) and (5),

Ai+1 +Ai+2 =
1

i+ 2

(
n+ 1

i+ 1

)
− n− i+ 1

i+ 2

(
1

n+ 1

(
n+ 1

i

)
+ (−1)m

n

n+ 1

(n+1
2

m

))

=
1

i+ 2

(
n+ 1

i+ 1

)
− i+ 1

(i+ 2)(n+ 1)

(
n+ 1

i+ 1

)

+(−1)m+1
n+1
2 −m
m+ 1

n

n+ 1

(n+1
2

m

)

=
n+ 1− (i+ 1)

(i+ 2)(n+ 1)

(
n+ 1

i+ 1

)
+ (−1)m+1 n

n+ 1

( n+1
2

m+ 1

)

=
1

n+ 1

(
n+ 1

i+ 2

)
+ (−1)m+1 n

n+ 1

( n+1
2

m+ 1

)
.

The case where 0 6∈ C is similar, and can be worked out with minor variations. This completes the
induction, hence the equality (5) is proved.

Let us now consider the formula (4). For i = 0, 1, the equality (4) is trivial. For 2 ≤ i ≤ n, we can
proceed by induction. Again, we can assume that 0 ∈ C, the other case being similar. Alternatively, if we
denote by Bi the right-hand side of (4) in the case where 0 6∈ C (and we still denote by Ai the right-hand
side of (4) in the case where 0 ∈ C), then, as we noted earlier, Ai + nBi =

(
n
i

)
, hence the formula for Bi

can be immediately derived from that for Ai.

If i is odd, say i = 2m+ 1, then bi/2c = m, i− 1 = 2m and, by (5) and (4),

Ai = (Ai−1 +Ai)−Ai−1

=
1

n+ 1

(
n+ 1

i

)
−
(

1

n+ 1

(
n

i− 1

)
+ (−1)3m

n

n+ 1

(n−1
2

m

))

=
1

n+ 1

(
n

i

)
+ (−1)3m+1 n

n+ 1

(n−1
2

m

)
,

that is, (4) holds.

Finally, if i is even, say i = 2m, then bi/2c = m, i − 1 = 2m − 1, b(i − 1)/2c = m − 1, and, by (5),
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and (4),
Ai = (Ai−1 +Ai)−Ai−1

=
1

n+ 1

(
n+ 1

i

)
+ (−1)m

n

n+ 1

(n+1
2

m

)

−
(

1

n+ 1

(
n

i− 1

)
+ (−1)3m

n

n+ 1

( n−1
2

m− 1

))

=
1

n+ 1

(
n

i

)
+ (−1)3m

n

n+ 1

(n−1
2

m

)
,

that is, (4) holds. The proof is now complete. 2

2.2 Remark: In the special case where C is the (2m − 1, 2m − m − 1, 3)-Hamming code of length
n = 2m − 1, m ≥ 3, there exists a one-to-one correspondence between the codewords of weight k in C,
1 ≤ k ≤ n, and the family B∗k consisting of the subsets of GF(2)m\{0} of size k whose elements sum up to
0. Moreover, D∗k = (GF(2)m \ {0},B∗k) is a 2-(n, k, λ) design, and the problem of the weight distribution
of C corresponds to the computation of the numbers of blocks of the additive designs D∗k ([5]; see also
[8, 4] for the case where the point-set of the design is GF(p)m \ {0}, with p an odd prime. See [1, 2] for
the general setting of additive designs).

From yet another point of view, the blocks of the design D∗k can be seen in the context of the well-
known subset sum problem over finite fields, in that they are the (unordered) solutions of the equation
x1 + · · · + xk = 0, where x1, . . . , xk ∈ GF(p)m \ {0}, p = 2, and xi 6= xj for all i 6= j. The number of
different solutions of the equation, in the general case of a prime number p, was first given in a celebrated
result by Li and Wan [6, Theorem 1.2], which, in the special case where p = 2, reduces to the above
formula (4) by Etzion and Vardy [3, Proposition 4.1].

3 Weight distributions of 1-perfect q-ary codes

A simple recursive formula for the weight distribution can be found also in the general case where C is
a 1-perfect q-ary code, as a generalization of the above relation (3), which was valid for perfect binary
codes. A q-ary code C of length n is any subset of the space GF(q)n, where q is a prime power. If for
some r ≥ 0 every x in GF(q)n is within distance r from exactly one codeword of C, then the code C
is called r-perfect. It is well known (see e.g. [7]) that nontrivial perfect q-ary codes must have length
n = (qm − 1)/(q − 1), for some integer m ≥ 2.

Let C be a 1-perfect q-ary code of length n = (qm − 1)/(q − 1), and let 1 ≤ i ≤ n − 1. The number
of vectors of weight i in GF(q)n is precisely

(
n
i

)
(q − 1)i. Any such vector is either a codeword in C (of

weight i), or is at distance 1 from exactly one codeword of C, whose weight can be either i − 1, i or
i+ 1. Now each codeword in C of weight i+ 1 is at distance 1 from i+ 1 vectors of weight i in GF(q)n,
each of which is obtained by changing into 0 one of the i+ 1 nonzero coordinates of the codeword. Each
codeword in C of weight i is at distance 1 from (q − 2)i vectors of weight i in GF(q)n, each of which is
obtained by changing one of the i nonzero coordinates of the codeword into a different nonzero value in
GF(q). Finally, each codeword in C of weight i − 1 is at distance 1 from (q − 1)(n − i + 1) vectors of
weight i in GF(q)n, each of which is obtained by changing one of the n− (i− 1) zero coordinates of the
codeword into a nonzero value in GF(q). It follows that

(q − 1)(n− i+ 1)Ai−1 + ((q − 2)i+ 1)Ai + (i+ 1)Ai+1 =

(
n

i

)
(q − 1)i. (8)

Note that, for q = 2, the formula simply reduces to the above relation (3). In the special case of the
q-ary Hamming code H(m, q) over GF(q), which is a single-error-correcting perfect linear code of length
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n = (qm − 1)/(q − 1), with q 6= 2 a prime power and m ≥ 2, the above relation (8) can be found in [10,
Problem 4.8, p. 121].

It is natural to ask whether a closed-form expression for Ai can be found from (8) by arguing as in
the proof of the above Theorem 2.1, that is, by writing (8) for the successive value of the index i, in order
to get, by addition, a recursive relation between Ai+1 +Ai+2 and Ai−1 +Ai. Unfortunately, in this case
the argument fails. One may ask, however, if the relation (8) can be used in some other way to derive
the desired closed-form formula for the weight distribution of the code.
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