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M
olti di quelli che vivono meritano la morte,
e molti di quelli che muoiono meritano la vita.
Tu sei in grado di valutare, Frodo?
Non essere troppo ansioso di elargire morte e giudizi.

Anche i più saggi non conoscono tutti gli esiti.

Gandalf, Il Signore degli Anelli: La Compagnia dell’Anello,
diretto da Peter Jackson, 2001.
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Chapter 1

Introduction

This chapter aims to provide a brief overview of the research done during
the three years of doctoral studies. First, a brief introduction of the problem
addressed will be made, in order to fully understand the reasons and motivations
behind this work, the need and possible clinical applications that may be done.
Next, the state of the art will be presented and then the achieved studies over
the decades by researchers on the topic, which have helped to shed light on
ongoing research and what it’s still missing. Finally, the results obtained will
be presented.

1.1 Problem description

Over the centuries, biology, i.e., the science that studies living systems, has been
of extreme interest because of it we have been able to understand how organisms
function, their biochemistry, anatomy and physiology. As technologies have
advanced, it has been possible to obtain more and more information about
species, especially humans.

For example, several investigations exist through which the human genome
is being studied to progressively obtain knowledge about human DNA with the
goal of understanding the diseases that may affect people. Here, engineering
also plays a key role. There are many mathematical models that from an
engineering perspective lead to an understanding of the biological functions
of the cells that make up the human body [1]. Specifically, the focus of this
research work was on the mathematical modeling behind the processes of
endocytosis that occur across the cell membrane.

The cytoplasmic membrane, common to every cell type, delimits it from
the extracellular matrix (ECM), i.e. the external environment. It consists of a
phospholipid bilayer, in which a single component is distinguished by having
a hydrophobic tail and a hydrophilic head. The membrane is the only means
by which the cell receives nutrients from the outside, exchanges signals, which
may relate to cell differentiation, tissue repair, or unfortunately if transmitted
incorrectly, the onset of diseases such as cancer.

Endocytosis is a biological process by which the internalization of nutrients,
particles and more generally extracellular material occurs through the passage
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allowed by the cell membrane. The term "endocytosis" was coined by Christian
de Duve in 1963, although the concept itself dates back to the late 19th
century. The process of cell regulation is ensured precisely by endocytosis. This
phenomenon also enables the removal of dead and aged cells, as well as also
supporting immune regulation. If this biological process fails, pathologies can
occur and interfere with normal human life. Several diseases that are widely
spread in the population can be traced precisely to a malfunctioning of the
endocytosis process, including cancer, neurodegenerative diseases, diabetes and
cardiovascular diseases, and many others.

Therefore, endocytosis has a fundamental function in the therapeutic path-
way: it is the vehicle by which the delivered therapies reach all the cells.
Reason why endocytosis is a widely studied process, not only in biology and
pharmacology, but also by the more technological and engineering areas [2].
The endocytic pathway is also of interest to accelerate the development of
gene and drug delivery tools, as well as for assessing the potential hazard of
nanotechnology on human health.

Biological processes involve different types of endocytosis pathways. One of
the most important is the receptor-mediated endocytosis, among sereval others
as diffusion and protein-canal trafficking, with which viruses and bioparticles
can enter or leave an animal cell. Viruses and intra-cellular bacteria exploit
the endocytosis process to access the protective cell micro-environment to
grow and reproduce. They have thousands of different shapes and sizes with
a characteristic size in the range of tens to hundreds of nanometers. Virus
are equipped with a limited amount of nucleic acid, and they propagate by
parasitizing host cells and multiplying their viral nucleic acid and protein capsid
via the biochemical machinery of the host.

It takes only 20–40 min for many bacteriophages to finish one life cycle from
infection to lysis. For most animal viruses entering and leaving a host cell are
mediated by specific binding of outer coat proteins (such as hemagglutinin in
the case of influenza viruses) to specific mobile receptors on the host cell surface.
It has been generally assumed that the endocytosis of viruses is associated with
the formation of a clathrin coat at the inner membrane leaflet [3].

Typically, clathrin coats can generate a membrane radius of curvature as
small as 50 nm. The formation of such small buds has been explained in
terms of the bending elasticity concept by considering topological defects of the
clathrin network [4]. However, more recently it has been shown that influenza
viruses can enter cells even if the formation of clathrin coats are inhibited.
Indeed, there are several other kind of non-conventional endocytosis mechanisms
involving multiple pathways that will be discuss in details in Chapter 2, such
as caveolae, and macropinocytosis. Viruses have been shown to use all of these
during the viral infection.

1.1.1 The rationale behind

In recent times, various researches have been conducted to understand the
mechanisms involved in the uptake of biomolecules by cells, so that they can
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be exploited, for example, to understand ageing, the controlled release of drugs,
the development of tumours and possible metastases, and virus infection.

A present-day case example, so that demonstrates the need to study and
investigate the processes behind endocytosis, comes from the global pandemic
epidemic in 2020 caused by the SARS-CoV-2 virus, which has spread globally
with more than 697.000.000 cases and close to 7.000.000 of deaths (Worldometers
website, updated on November 2023).

This virus is the responsible for the acute respiratory disease COVID-19
(COrona VIrus DIsease 19), that led the world population to declare a state
of health emergency, owing to the fast spread of the disease since it is highly
contagious. In Italy, the state of emergency COVID persisted from March 2020
to March 2022. This period saw events that had never happened before: closure
of industries, schools and universities, isolation of people at home, who were
unable to go out unless to buy primary necessities (food, drinks, medicines...)
or if they were medical workers for example [5][6][7]. The pandemic gave the
initial idea for this thesis work.

During the early investigation of world-spreading infection of SARS-CoV-2,
preliminary evidences suggest that infection with SARS-CoV-2 may begin in
the upper respiratory tract, e.g. in the nasal epithelium, which expresses the
highest levels of SARS-CoV-2 receptors18. The clinical pathological features
of COVID-19 include cough, fever and pneunomia [8]. The most significant
morbidity and indeed mortality, however, appears to be associated with a
further, severe stage of the disease, when infection spreads to the lower airways
of the lung, resulting in respiratory failure, and possibly multi-organ failure due
to cytokine storm. In the upper respiratory tract clathrin-based endocytosis
may be a good candidate to explain the cell infection, but, in the lower part of
the respiratory duct a different mechanism to infiltrate the pneumocytes seems
to be involved due to the lack of SARS-CoV-2 receptors along the cellular
membrane.

Hence, SARS-COV-2 virus is responsible for employs the receptor-mediated
endocytosis (see Figure 1.1), i.e., one of the mechanisms adopted by proteins to
permeate the cell membrane and infect the host. Coronaviruses are enveloped
and plus-strand RNA virus [8] that involve four different proteins in which
the viral genomic RNA is encapsulated. These proteins are the: spike and
membrane glycoproteins, nucleuocapsid and envelope proteins [8]. All of these
components represent the major contributors of the endocytic pathway that
lead to the infection of the host cells [9].
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Figure 1.1: The steps of the entry mechanism via endocytotic pathways of the
COVID-19: 1) The virus enters in contact with the respiratory cell through the
airways. Here the ACE2 receptor allows to the virus to enter inside the host epithelial
cell; 2) The virus enters inside the epithelium after that is fususes with a vesicle, 3)
The vescicle is opened and the RNA of the virus is relleased. Here, the viral RNA
is translated into proteins; 4) The virus is again assembled; 5) The virus is realised
outside the host cell.

Specifically, the membrane protein (M protein) is a membrane integral,
the most abundant one in the virus, whose function is going to organize the
assembly between coronavirus virions through the protein-protein interactions
that occur between the M proteins and the other three proteins in the virus.
The N protein is responsible for the packing of the virus genome [10]. The E
protein is one of the virus structural proteins whose function relates to the
virus life cycle and the pathogenesis process. Many therapeutic agents that
have been developed and are still under development are produced aiming to
directly target these E proteins, hence proving to be the drug targets that could
inactivate the virus [11].

Finally, the spike proteins (S protein) are the mainly responsible for the
entry of the virus inside the host cells, by ensuring the receptor-binding and the
membrane fusion process. They are composed by two functional sub-units, S1
and S2, where S1 is the responsible for the mediate receptor binding, while S2 is
the responsble for the membrane fusion. The S proteins binds to the angiotensin-
converting enzyme 2(ACE2) through adhesive strength and forces exchanging
with each other [12] owing to the presence of its receptors-binding domain
(RBD). These proteins, also, are one of the main target for neutralization
antibody of the virus [13][14]. Indeed, considering the whole spike proteins,
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RBD is the most immunologic zone of the virus, thus also representing the
target for vaccination and antibody drug therapies [15].

The entry mechanism via endocytic pathways of the COVID-19 virus follow
several steps [15][14]. After the virus nanoparticles are transmitted through
the airways (even though the virus is able to infect by several ways, including
via surfaces for example), it comes into contact with the cells of the respiratory
tract (step 1, Figure 1.1). The virus enters into the cell membrane binding
with the ACE2-receptor though the receptor-binding domain (RBD) of its
spikes [15]. ACE2 is a cell surface membrane protein located on the surface of
many cells. Its normal biological function is to provide an essential biochemical
pathway for the regulation of processes such as blood pressure, wound healing
and inflammation, called the renin-angiotensin-aldosterone system (RAAS)
pathway [8][16], but it was found that ACE2 protein expresses not only in the
heart and kidney, but also in the human lung epithelia and small intestine [17].

However, ACE2 acts as a key to the membrane access lock for the SARS-
CoV-2 virus, thus ensuring that the virus can cross the cell membrane and enter
inside the cell . Then, ACE2 works as a receptor for the virus, providing access
to the cell. Hence, the virus is incorporated and enters into the epithelium
(step 2, Figure 1.1). Subsequently, the virus fuses thorugh a vescicle with the
host cell membrane [14], and releases its RNA (step 3, Figure 1.1). Here, the
RNA is translated and read through complex biochemical processes. Once the
virus is reassembled (step 4, Figure 1.1), it is released (step 5, Figure 1.1), and
from here, then, the immune response of the human defense system will be
triggered.

Indeed, understanding the role of the endocytic pathway in the viral entry or
for a nanoparticle entry inside the host cells and then modelling the mechanics
of the process might represent the breakthrough in the understanding of the
virus infection. This could represent a great tool to be used in the clinical
practice to develop new treatments of disease provoke for example, by COVID-
19. Therefore, owing to the overwhelming importance of this biological process,
which is not only physiological but also pathological, several biomechanical
models have been proposed to describe the endocytosis process and understand
how a virus or a functionalised particle comes into contact with the cell by
being endocytosed, but none of them has been comprehensive enough, leaving
out, for example, natural characteristics of the cell, such as its membrane
non-homogeneity.

The aim of this study was to provide a new model in which a spherical-
shaped virus, such as the coronavirus, or any generic nanoparticle exploits the
mechanism of receptor-mediated endocytosis to enter the cell, considering the
properties of a real membrane through the use of fractional calculus. The use
of a reliable mathematical model to describe the mechanism beyond receptor-
mediated endocytosis represents a good chance to predict with reasonable
accuracy the spread of virus infection as well as the possible therapeutic
interval.
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1.2 State of the art

In the past two decades, several papers have been published that have attempted
to capture the essence of the phenomenon of receptor-mediated endocytosis
with their models about viruses or nano-particles. Below, a brief overview is
done about the mathematical modelling of this biological process as reported
in the literature. Therefore, the models considered relevant for this dissertation
will be discussed in more detail in Chapter 3.

Several models have been established to elucidate the mechanism of virus
budding on a host membrane. Simons and Garoff [18][19] suggested that the
viral capsid may wrap itself in the host membrane via thermal fluctuations
of the membrane where the host cell membrane proteins move from the viral
glycoprotein patch simply for steric reasons, thus allowing the generation of
virus specific patches.

In 1993, Lerner et al. proposed a mathematical modelling for several possible
rate-limiting processes to explain virus budding and found that a nonzero
spontaneous membrane curvature may be necessary to ensure a wrapping time
in accordance with the experimentally observed upper limit of 20 min. They
also observed that as the membrane wraps around the capsid, water must
be removed between the membrane and the capsid itself. This phenomenon
naturally slows down the speed of coiling, thus falling within the budding time
of 10-20 min, which is within the experimentally determined upper limit.

Recently, van Effenterre and Roux [20] and Tzlil et al. [21] developed
statistical thermodynamics models of virus budding. Their work was important
in understanding how the membrane bending energy is apparently relevant for
dynamic properties of bud formation, starting with the time when a nucleocapsid
arrives at the cytoplasmic surface of the cell membrane and ending with its
release coated by a membrane of lipid spikes, into the intercellular space.
They derived a relationship between the volume concentration of viruses and
the budding time, and they identified an optimal volume concentration of
internalized particles for budding. Their model is valid in the case where the
time spent by colloids on the surface is large compared to the time it takes for
free receptors to diffuse to the surface and find a colloid. All of these models are
based on the assumption of a specific particle size. The questions of whether
and how particle size affects the dynamics of entry (endocytosis) or exit remains
largely unresolved.

At the beginning of the last decade some papers attempted to shed light
on this mechanism showing how a cell membrane containing diffusive mobile
receptors wraps around a ligand-coated cylindrical or spherical particle. It was
shown by Gao et al. [22] that particles in the size range of tens to hundreds of
nanometers can enter or exit cells via wrapping even in the absence of clathrin
or caveolin coats, and an optimal particles size exists for the smallest wrapping
time. The ligands have been assumed to be immobile and uniformly distributed
on the particle surface, whereas the receptors are mobile and undergo rapid
diffusive motion in the plane of the cell membrane.

The receptors on the cell membrane diffuse to the wrapping site and bind
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with the ligands on the particle surface to lower the free energy of interaction.
Because cells are generally much larger than viruses, the particle was considered
in its interaction with an initially flat membrane. The receptor-ligand binding
causes the membrane to locally wrap around the viral particle at the cost of ele-
vated elastic energy associated with increased local curvature of the membrane
and reduced configuration’s entropy associated with receptor immobilization.

Therefore, for such adhesive contact between cell membrane and particle,
the mathematical framework developed in recent studies of curved biological
membranes spreading on a flat substrate was adopted by Freud et. al [23]
and Shenoy et. al [24], where results were found in good comparison with
experimental observations [25][26] on spreading of giant vesicles on integrin-
coated substrates. Freud’s mathematical model [23] aimed to examine the
role of binder mobility in the spontaneous adhesive contact of one surface
with another. The phenomenon was characterized as spontaneous for a long
time because there was the idea that the adhesive bond forms without the
expenditure of external energy.

However, through his work Freud was able to show how this phenomenon
evolves with a continuous expenditure of total free energy. The mathematical
model, that pursued the idea of the evolution rate being controlled by the
ligand mobility, was able to give an accurate representation of the adhesion
process in animal cells. Insteed, Shenoy et al. [24] have considered the dynamics
of adhesion fronts in cells and vesicles, which grow as a result of ligand flux
that reaches the frontier by intramembrane diffusion. Their work allowed
demonstrating how the front motion mediated by ligand diffusion is unstable
to perturbations of its shape. Remarkably, from a mathematical perspective,
the instability studied in this work was similar to other instabilities studied
in non-equilibrium physics, in which the interface motion is determined by
the solution of a partial differential equation (Euler or Navier-Stokes equation,
Laplace equation, and heat equation).

The distribution of receptors in the membrane was determined by solving
the problem of diffusion in a plane. In other recent studies [27][28] the effect of
the elasticity of the particle uptake was accounted for in the analysis to achieve
a more realistic endocytosis time. The analysis is always achieved accounting
for the Helfrich-type membrane elasticity and some additional contribution
related to the presence of receptors as well as to the membrane stress induced
by moving receptors is included in the expression of membrane dissipation rate
so that the governing equations have been obtained by stationary conditions.

Very recently a specific research that accounts the presence of the configura-
tional change of receptors due to G-Reactive Protein (GPR) on cell membrane
have been published by the stochastic structural biomechanics group of the
University of Palermo Engineering Department in cooperation with research
groups belonging to University of Carnegie-Mellon (USA), University of Trento
(Trento, Italy), University of Pittsburgh (Pennsylvania, USA) and University
of Naples “Federico II” (Naples, Italy).

The study, accounting for a modified version of the Helfrich membrane
energy incorporates additional variables that are related to the change of state
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order-disorder of the lipid bilayer that compose cell membrane and it is capable
to capture the formation of lipids rafts in cell membrane. Lipid rafts are found,
indeed, in presence of receptor clustering “receptors live on lipid rafts” after
Nobel prize [29] and the mechanical model presented is capable to capture
these important phenomena [30].

A very recent study from Nuzzo et. al [31] has focused on diffusion model
which represents the membrane receptor motion with respect to viral endocytosis
in the context of applied mechanics. The unexpected behavior of receptor
density shifting from higher concentrations in the unbound phase to lower
concentrations within the right-hand side of the virus surface is accounted by
introducing a mechanical drift term into the governing mechanical equation, so
that the concentration difference, higher in the bound phase and lower in the
unbound phase, is bounded and the lower in the unbound phase is accounted
for in receptor motion. In addition the authors added a non-Gaussian diffusion
model in terms of fractional generalization of Fick’s law.

1.2.1 Endocytosis models so far

Receptor-mediated endocytosis is one of those biological systems that can be
handled by mathematical modeling. Several attempts have been made over
the years to define, describe, and analyze the phases of this complex biological
process with the help of mathematical models. Indeed, the two approaches
through which the biological phenomenon can be described are from kinetical
and mechanical perspectives [32].

One of the first models found in the literature was from 1997. Dee et al. [33]
focused on quantitative understanding of virus trafficking aiming to help in the
treatment of virus-mediated diseases, specifically in optimizing the production
of vaccines and recombinant proteins. They have created a mathematical model
that explains the multivalent binding formation of the virus with cell surface
receptors. They were able to accurately mimic the virus trafficking that had
occurred experimentally.

Specifically, the research work in this thesis for modeling receptor-mediated
endocytosis was inspired by a few models which were considered appropriate
and worthy, through which the research goal was then achieved. The pivotal
article, from which later models were based, is from Gao et. al [22]. Their
work started from the concept that the process of viruses entry and exit from
animal cells is mediated by the binding interaction between viral capsid ligand
molecules and their receptor molecules. Hence, their research question was
related to how indeed could the size of a bioparticle affect receptor-mediated
endocytosis? Hence, the authors studied how a cell membrane containing mobile
diffusive receptors envelops a cylindrical or spherical ligand-coated particle.

They considered that during the process in which the virus permeates
the host cell, there may be thermal fluctuations of the membrane itself and
hydrodynamic interactions. In order to consider these factors, they introduced
a simplified form of free energy, which completes the model whose solution is
found numerically. It has been shown that the process is dependent on the
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radius of the bioparticle, so that if this exceeds a threshold value, there is a
limited number of receptors for which the nanoparticle cannot be phagocytosed.
As conclusive remark, with their mathematical model, they demonstrated how
particles ranging in size from tens to hundreds of nanometers can enter or
exit cells through the envelope even in the absence of clathrin or caveolin
coatings. However, they found that there is an optimal particle size to achieve
the smallest coiling time. In addition, their model can be extended to include
the effect of the clathrin coat.

Additionally, in subsequent study (Yi et al.)[27], they showed how the
kinetics of receptor-mediated endocytosis of elastic nanoparticles is limited by
receptor diffusion, and specifically about how the speed of uptake depends
on the stiffness and size of the nanoparticle, membrane tension, and binding
strength between membrane receptors and ligands. This established that soft
nanoparticles are energetically less prone to complete coiling than rigid ones,
the uptake rates for the first are kinetically faster than the second one.

The work of research group of Gao [22][27] is landmark because it allowed a
mathematical interpretation of the receptor flux that mediates the endocytosis
process as no one else had ever done, as well as determined the optimal size to
terminate the coiling process in the shortest possible time. Owing to which, his
work has since been a source of inspiration for many other researchers. Among
them are Li et. al.[34] and Zhang et al. [35][36] whose investigated the topic
on cellular uptake of biophysical factor-dependent nanoparticles (NPs) through
receptor diffusion-mediated endocytosis, considering the topic’s relevance on
pathology, cellular immunity, and drug delivery systems. They focused on the
role of the ligand distribution on the surface of nanoparticles in the endocytotsis
process mediated by receptor.

Li et. al [34] used a statistical model of receptor diffusion-mediated endocy-
tosis statistical dynamics, aiming to study cellular uptake dynamics dependent
on ligand distribution. They considered that ligand-receptor complexes drive
to overcome the membrane deformation resistance and changes in the receptor
configuration entropy. Hence, they were able to show how the internalisation
of nanoparticles is highly dependent on the distribution of ligands and how
the process of uptake by the cell is more favoured when the distribution of
ligands is more uniform. Their finding is quite important since it shows how
endocytosis ensures a robust ability of virus infection to enter host cells.

Furthermore, their results have also shown that optimal ligand distribution is
associated with maximum cellular uptake efficiency, which is slightly dependent
on the ligand distribution pattern and receptor density itself. From here,
they also highlighted how the location of the initial contact point is another
influencing factor in dynamic packing, thus explaining why most enveloped
viruses exhibit a nearly homogeneous distribution of ligands. This characteristic
is key in controlled drug delivery systems.

Zhang et. al. [35][36] focused on the effect that nanoparticle shape and
stiffness have in interacting with the cell in pathology, cellular immunity
and drug delivery systems. Hence, their research questions were related to
how the ligand distribution can influence the membrane envelopment of non-
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spherical NPs under the influence of cytoskeleton deformation. The physical
and biological problem was addressed by using a coupled elasticity-diffusion
model to systematically study the role of ligand distribution in the cytoskeleton-
associated endocytosis of ellipsoidal NPs for different shapes, sizes, cytoskeleton
stiffness and initial receptor density.

In this model, they considered the effects of receptor diffusion, receptor-
ligand binding, cytoskeleton and receptor-ligand deformations, cytoskeleton and
membrane deformations, and changes in receptor configuration entropy. Their
study results showing that the uptake process can be significantly influenced
by the ligand distribution. They identified an optimal state of this distribution,
which corresponds to the fastest uptake efficiency, proving how this depends
on the aspect ratio of NPs and the stiffness of the cytoskeleton. Lastly, they
also identified how the optimal distribution is sufficiently high in the region of
large curvature and that the optimal state of NP entry into cells can tolerate
slight changes from the corresponding optimal ligand distribution. Their study
has been extremely important in providing guidelines for controlling NP-cell
interactions and improving the efficiency of target drug delivery systems.

Another very remarkable research work is by Wiegold et. al. [37]. The work
concerns receptor-driven endocytosis, which is typical of viral entry into a cell.
They developed a two-dimensional model of a virus undergoing endocytosis. In
their model, the virus is treated as a substrate with fixed receptors on its surface,
while the host cell’s receptors are free to move across its membrane, allowing
a local variation in their concentration. They also considered the membrane
bending, which inflects forming an envelope around the virus. The novelty of
the model is the additional conditions added based on energetic considerations
as the virus advances towards the membrane. Several factors such as mobility,
receptor density and virus size play crucial roles in the duration of endocytosis.
This study shows that the duration of the process increases considerably when
the size of the virus reaches a critical value and that too high or low values of
binding have negative consequences on the beginning of the process.

Other mathematical models worth mentioning are by Richards et. al [38],
Shen et. al [39], Tang et. al [40] and Rismanian et. al [41]. Richards et. al
mathematically modeled the virus encapsulation by the cell, but unlike literature
studies, they utlized biologically relevant shapes outside of the spherical one
such as ellipsoids, capped cylinders, and hourglasses. Based on the nanoparticle
shape type to be encapsulated by the cell, they found different encapsulation
behaviors and rates.

Hence, it is shown that drug treatments should take into consideration not
only the process mechanics but also to particle shape considered. Concerning
other mathematical modeling for this process, Rismanian et al [41] decided to
develop an analytical model in which the receptor difussion process along the
cell membrane was modeled as a non-Fickian process. This modeling brings
novelty in the literature, although the modeling according to the classical Fick
process always appears to be the best one to consider.

In addition, there are also numerical simulation studies of the receptor-
mediated endocytosis processes, since from the experimental point of view it is
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complicated, if not feasible in reality, actually to reproduce and simulate these
biological processes.

Specifically, a relevant study is conducted by Shen et. al [39]. They
proceeded with numerical dynamic simulations of the receptor-mediated endo-
cytosis process of elastic nanoparticles (NPs) with different sizes (from 25 to
50 nm), also varying to the shape of them, using spherical, oblate and prolate
shapes. Through their numerical simulation, they were able to demonstrate
accurately and clearly how nanoparticle wrapping, during receptor-mediated
endocytosis, results from the combined phenomena of receptor diffusion kinetics
and thermodynamic driving force. Specifically, diffusion kinetics relates to
the kinetics of receptor recruitment that are involved in the process and is
dependent on the contact edge length between nanoparticle and cell membrane.
While instead, the thermodynamic driving force relates to the free energy
required for the nanoparticle to be incorporated inside the cell.

Another numerical simulation study of the endocytosis process is from Tang
et. al [40]. In their study, other than simulating the wrapping process, they
considered the rotation that the nanoparticle experiences as a result of the
uptake. This phenomenon may be ignored when considering a spherical particle,
but when more complex shapes are considered it becomes critically important.
By including the rotational factor of the nanoparticles, they were able to create
a model through which it is possible to evaluate how the incorporation rate of
the NPs also depends on the rotation that occurs during the process. These
types of numerical simulations represent an additional tool for understanding
the mechanics behind this very complex biological process.

Therefore, the literature review has provided the groundwork necessary to
understand how academics have engaged in modeling this complex biological
process. As conclusive remark, there are multiple modelings of receptor-
mediated endocytosis; however, none of these studies take into account the
non-homogeneity of the cell membrane that influences endocytosis.

1.3 Results

In view of the neglected aspects a new mathematical modelling is needed.
Hence, in this research work, we analysed receptor-mediated endocytosis by
formulating a new model, in which a potential acts on the receptors, guiding
them to the zone where the virus will be absorbed.

In addition, the fractional calculation tool took into account the inhomo-
geneity of the cell membrane during receptor influx. Given the complexity of the
system, there is no analytical solution, so a numerical model was implemented.
The method of fractional finite differences was used to mathematically solve the
model, which is governed by a non-linear set of differential equations including
a fractional partial differential equation. From the numerical solution, the
trend of the membrane-virus interface as a function of time and the distribution
of receptors for different orders of derivation of the fractional operator were
obtained.

This work could be useful in understanding how virus and cell interact and
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at what times the virus can be phagocytosed, taking into account the actual
characteristics of the membrane. Furthermore, knowing the time taken for a
particle with a certain radius to permeate the membrane could improve drug
delivery for those patients where it is necessary for the active ingredient to act
at the right time.
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Chapter 2

Cellular Endocytosis

This chapter aims to provide an overview about the biology of the cellular
membrane and the endocytosis processes under study. Owing to the focus of this
research work, this overview is crucial to understand how the mathematical and
engineering modeling of the endocytotsis process is done based on the biological
knowledge. First, a brief introduction will be provided on the importance of the
regulatory transport processes, and so, the endocytosis proceess occurring along
the cell membrane. This will be followed by a detailed biochemical description
of the cell membrane and all its components. After this, the chapter will include
an in-depth description of the main endocytosis processes, i.e. phagocytosis,
macropinocytosis, and caveaolae-mediated endocytosis. Specifically, the final
target will be the receptor-mediated endocytosis process, as it is the one studied
and mathematically modelled in this thesis work.

2.1 Uptake overview

The transport regulation of molecules within eukaryotic cells occurs at the cell
membrane from which it follow that the cell membrane is the main mediator of
the mechanisms underlying the process of endocytosis. It separates and delimits
the internal environment (i.e., cytoplasm) of the cell from the external one,
thereby governing the exchange processes of elements and chemical substances
essential to the cell’s maintenance in life [42][35][36].

The molecules to be transported may be small, such as amino acids, sugars,
or ions, which can be carried through the action of membrane protein pumps
or directly by channels or carriers. However, when large molecules, i.e., macro-
molecules, have to bypass and cross the membrane via other means that involve
the invagination and pinch off of the cell membrane. The latter is nothing more
than the process of endocytosis.

Endocytosis process involves the ingestion process of nanoparticles, virus or
microorganisms, in which a series of mechanisms occur that bring the target
from the outside of the cell or its outer membrane to the inside. The process is
used by the cell as a source of nutrition, defense and homestasis maintenance.

The discovery of endocytosis dates back more than a century ago from
studies done on white blood cells, for understanding how they defend and attack
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external agents read as a threat, through the process of phagocytosis [42][43].
Besides the controlling of nutrient exchanges and cellular homeostasis, the
endocytosis processe plays a key role in the receptor signaling, cell migration,
and many other cellular mechanisms [44][45][46][43].

Several types of endocytosis exist:

1. Phagocytosis. Process of engulfing large foreign materials and destroy-
ing them, characteristic of white blood cells for the immune response to
destroy bacteria and foreign materials.

2. Macropinocytosis. Type of pinocytosis, it is the process by which the
cell is able to intake liquid substances from the external environment that
are useful for its metabolism

3. Endocytosis mediated by caveolae. Invagination process using cave-
olae that is independent from receptors, followed by transport of the
material to cellular apparatuses to modify it and then make it available
for reuse.

4. Receptor-mediated endocytosis. Process for the uptake of material
using membrane proteins mediated by receptors, which recognize the
material to be internalized. Typically, the material is then invaginated
through clathrin proteins.

Once the products transposed across the membrane within the cell cyto-
plasm, these are carried away from the membrane and fused through membrane
compartments involving the endosomal membrane system. These include
early/recycling endosomes, multivesicular bodies, late endosomes, and lyso-
somes.

Based on the membrane compartment type, the endocytosed substance
destinations are different, depending on the specific type of endocytosis by
which they have entered the cell interior [42]. A description of the specific types
of endocytosis process will follow below.

2.2 Cellular membrane

Biological membranes are difficult to investigate, not only molecularly but
also structurally and functionally. The cell membrane in eukaryotes is the
load-bearing cell structure, as the main metabolic processes occur at it. It
is a thin covering with a variable thickness, depending on the type of cell
considered, between 5-100 nm, which delimits the cell by separating the cell’s
outer extracellular environment from the inner cellular one [42][47].

Cell membranes are complex structures involving multifold components.
They are composed mainly of proteins and lipids, which help to allow the
membrane to form a real barrier between the cells and their environment.
Depending on the type of cell, the membrane differs in its composition according
to the function it performs. Howevear, all biological membranes have in common
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a fluid bilayer consisting of phospholipid molecules, integral membrane proteins
that across the entire bilayer, and preriferous memnbrane proteins presented
on both membrane surfaces.

In 1895 Overton was the first to introduce the concept of a phospholipid
bilayer membrane. He proposed that the main structure of the membrane
consisted precisely of a lipid bilayer, thus revolutionizing the understanding of
biology at the time [42][35][36].

During the 1930s, physiologists concluded that the lipid bilayer alone could
not be the only component of the cell membrane, as it alone was incapable
of providing the adequate mechanical properties typical of the cell membrane.
Therefore, they proposed the existence of a protein coating to support the
phospholipid bilayer that would, therefore, contribute to the extraordinary
properties of the cell membrane as well [42][35][36][47].

In later years, the issues behind the structure and function of the cell mem-
brane were still further explored. In the early 1970s, an early approach based
on the analysis of frozen and split membrane electron micrographs confirmed
that there are proteins crossing the membrane, from the surface bordering
the extracellular matrix to the surface in contact with the cytosol. This thus
confirmed the physiologists’ assumptions of 40 years earlier, showing how the
structure of the cell membrane was conferred not only by the phospholipid
bilayer but also by a membrane proteins, acting equally as the one of the main
functional components [48][42][35][36][47].

In the same years, the Fluid-Mosaic Mmbrane (FMM) model was theorized
in 1972. The FMM model was introduced to provide a general, schematic and
simple picture for the basic organization and dynamics of biological membranes
considered at the nanoscale.

This model schematizes how proteins and the phospholipid layer are ar-
ranged in the cell membrane. This kind of structure is possible thanks to
the hydrophobic and hydrophilic non-covalent interactions that occur between
membrane components, specifically thanks to lipids which exhibit dual behavior,
hydrophobic at one end and hydrophilic at the other. Indee, the model assumes
that transmembrane proteins flow in what is the fluid of the phospholipid
bilayer. Therefore, this structural fluidity is the main key that ensures all the
major transport functions of the membrane [49][50][48][42][51].

Indeed, it is possible to observe different behaviors of the proteins inside
the cell membrane. Proteins may exhibit dynamic behavior on the cell surface.
Thus, some of them may spread freely, while others may be partially confined
and so this enables them to flow across the membrane at alternate times. Some
examples of proteins that are partially confined are cadherins and transferrin
receptors. Finally, there may be membrane proteins that are denied any
movement, thus resulting in immobility by direct or indirect connection with
the cytoskeleton [42].

Therefore, the cell membrane structure is extremely complex given also the
complex functions it is dedicated to, and thus has different types of proteins,
receptors, and many other components (Figure 2.1).

The main functions of the cell membrane is to act as a selective permeability
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barrier that is conferred by the phospholipid bilayer. Therefore, the membrane
acts as a real gate, thus by going to regulate the entry or exit of substances
within the membrane or to block its access.

Acting as a barrier, the cell membrane is able to enable the passages of
substances through it in multiple ways: passive diffusion, channel-mediated
transport, active transport or passive transport. The patterns of passage
through membranes are different from each other and very complex. Briefly,
the passage is generally regulated by a difference in the concentration gradient
of the substances itself, or electrochemical gradient, or is mediated by transport
channels or through the action of ATP [52][53][48][42][36].

In the following decades, many proteins have been discovered that charac-
terise the cytoplasmic membrane either on its surface or across it. Furthermore,
it was found that there is a network of cytoplasmic proteins that restricts
the movement of many integral membrane proteins. This affects the density
of proteins in cell membranes, which is consequently much greater than that
illustrated in a simplified manner in Figure 2.1.

A description of the cellular membrane components will now be provided in
the next section.

Figure 2.1: Representative composition of the cytoplasmic membrane of a eukaryotic
cell. The main component are represented briefley: the extracellular fluid and the
cytoplasm; the protein components, such as integral and peripheral proteins; the lipid
components that create the phospholipid bilayer; the sterols components, such as
cholesterol. [Source: Wikimedia Commons].

2.2.1 Lipids

Lipids are the building structure of the cell membrane. They play the im-
portant roles of anchoring proteins to the membrane surface, storing energy
and transporting information in and out of the cell. Specific regions of lipids,
so-called "lipid rafts" (see Fig. 2.2) in the cell membrane are recognized as an
agglomeration of lipids and proteins.

18

https://commons.wikimedia.org/wiki/File:Cell_membrane_detailed_diagram_en.svg


A

B

11 2 3 4

567

Cellular membrane Lipid Rafts
Lipid Rafts 
with Proteins

Integral 
Protein

Glycosylations
Anchors 

to GPICholesterol

Intracellular

Extracellular

Glycolipids

Figure 2.2: Representative organization of the lipid rafts: A) intracellular environ-
ment; B) extracellular environment; 1) Cellular membrane structure with phospholipid
bilayer, without other components; 2) Lipid rafts; 3) Lipid raft with membrane pro-
teins; 4) Integral protein; 5) Glycosylations, link between a protein and a molecule of
glucose; 6) Glycosylphosphatidylinositol anchors to membrane protein; 7) Molecule
of cholesterol; 8) Glycolipids. [Source: Wikimedia Commons].

The lipid rafts are identified by a small, heterogeneous, dynamic region
(10-200 nm) composed of sterols, glycosphingolipids, and phospholipids. The
lipid raft has the peculiar characteristic of being characterized by micro-domains
in the phospholipid bilayer where areas with a higher density of packing of lipid
molecules around specific lipids go [54][55][42][47].

The main membrane lipids include the following:

1. Phosphoglycerides. They are the major contributors to the arrange-
ment of the cell membrane’s phospholipid bilayer.

2. Sphingolipids. They support the maintenance of cell structure and
also contribute in several fundamental biological processes such as cell
differentiation, cell motility, apoptosis and cell proliferation.

3. Sterols. They influence membrane fluidity and also act in biological
processes as secondary messengers.

Phosphoglycerides are the main constituents of the cell membrane from
the lipid class, erroneously referred to as phospholipids, because other lipids
possess the phosphate group. Deenen in 1966 was one of the first to investigate
the chemical structure of the phosfolipids. Phosphoglycerides are amphiphilic
since they possess a dual nature at their ends, one hydrophobic and the other
hydrophilic.

Owing to their amphipathic nature at the extremities, they are able to
arrange in a way that creates the phospholipid bilayer characterizing cell
membranes. Its hydrophobic portion is a diacylglycerol (DAG), containing
saturated or cis-unsaturated acyl chains having different lengths. Depending
on the alcohol group present, they may have different properties. Among over
a hundred phosphoglycerides that cells synthesise are: phosphatidylserine (PS),
phosphatidylethanolamine (PE), phosphatidylinositol (PI) [53][56][48][57][42].
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Besides phosphoglycerides, sphingolipids are the other lipid components of
the cell membrane with a great role in its structure. They are synthesised from
serine and a fatty acid. Most lipids that contain sugar are sphingolipids, as their
heads may consist of one or more sugars; some of them have neutral charge,
meanwhile others are negatively charged. Sphingolipids, along with cholesterol
as well, are responsible for lipid rafts. The realization of these microdomains
derives from the inherent ability of sphingolipids to self-associate and pack
tightly together. These properties depend on the interactions established
between the saturated acyl and alkyl chains that characterize them.

Hence, the main function of the sphingolipids is to contribute in regulating
the raft formation and transport through it. The sphingolipids are longer than
phosphoglycerides and more abundant than these in the cell membrane thickness
than inside the cell itself. The main sphingolipids found in eukaryotic cells are
sphingomyelin (SM) and glycosphingolipids (GSL)[58][53][59][48][57][42].

Lastly, the sterols represent the third group of membrane lipids, among which
cholesterol is the most prevalent on the cytoplasmic membrane (it represents
about 30% of the cell membrane in composition) with low concentrations on
the inner side, contributing in the lipid raft formation. Cholesterol has an
important metabolic role, as it is among the responsive components for the
synthesis of steroid hormones, vitamin D and bile salts, for example [60].

The stability in the membrane structure also depends on the proportionate
presence between sphingolipids and cholesterol for thus forming the lipid rafts
essential for the proper function of cell membranes. Indeed, cholesterol and
sphingolipids have a high affinity, and their interaction favours the formation of
small domains on the outer layer of the membrane known as lipid rafts. Small
grooves called caveolae are an example of rafts, which are believed to cooperate
in the transmission of intracellular signals.

Depending on the type of cell being examined, the lipid composition varies
considerably. In addition to the multitude of phosphoglycerides, the cell
membranes of animals include 30-35% cholesterol and 10% sphingolipids.

On average, lipids are distributed asymmetrically between the two halves
of the membrane. For example, in animal cells, sphingolipids are found on the
outer part of the cell, whereas PS, PE and PI are more frequent in the middle
of the membrane in contact with the cell cytosol. The asymmetry of PS results
in the weakly negative cytoplasmic membrane.

2.2.2 Proteins

The membrane proteins ensure membrane functions and they may act as
following:

• Enzymes and regulators, acting as catalysts of chemical reactions.

• Transporters of molecules across the membrane by pores, ion channels,
ion pumps and specific carriers.

• Adhesion molecules, contributing in the formation of cell junctions;
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• Receptors, thereby gaining recognition of signal molecules and activating
phosphorylation signal cascades.

Indeed, there are a wide variety of proteins, which can be grouped into two
categories as follows:

1. Integral proteins. They are so called because they cross the entire
phospholipid bilayer.

2. Peripheral proteins. So-called because they can be found on the inner
and outer surfaces of the membrane.

A total of 70% of membrane proteins are integral. Distinctive features can
be identified through which the two types of membrane proteins can be distinct.
A protein is defined as perifying when the following criteria are satisfied [49]:

• They can be molecularly dissociated from the membrane in the intact
state by mild treatments, such as increasing the ionic strength of the
medium or adding a chelating agent.

• They are able to dissociate without lipids.

• In the dissociated state they appear to be relatively soluble in neutral
aqueous environments.

Hence, it can be concluded that peripheral proteins are characterized by
rather weak non-covalent cell membrane bonds, and thus are not directly
associated with lipids.

The binding mechanism between peripheral proteins and the cell membrane
can be of different types, depending on the kind of peripheral protein considered.
An example of binding mechanism is one where a hydrophobic acyl chain
can anchor a protein to the membrane by inserting into the phospholipid
bilayer, such as Myristate binding tyrosine kinase Src and other proteins
to the membrane. However, this binding turns out to be very weak and
requires electrostatic interactions between the base of the protein chains and
phosphoglycerides to maintain protein anchoring.

Indeed, BAR (Bin/Amphiphysin/Rvs) domains, found on several proteins,
positively charged, which bind to membrane phospholipids to keep proteins
anchored, also exploit electrostatic binding. Specifically, BAR domains will
actually see them as one of the main ones in some types of endocytosis (see
following sections).

On the other hand, many other peripheral proteins form bonds with integral
proteins. For example, catenins bind cadherins, transmembrane proteins for
adhesion. Such a protein-protein interaction creates an even stronger affinity
than the one established between the peripheral protein and the membrane
itself. Therefore, it also can act as a medium of passage to transmit information.

On the other hand, the criteria to be fulfilled for integral proteins to be
classified that way are as follows [49]:

21



• In order to be dissociated from the cell membrane, they require much
more drastic treatments, with reagents such as detergents, bile acids,
protein denaturants, or organic solvents.

• Even once isolated, in many cases they remain attached to lipids when
isolated.

• Where they are totally isolated from lipids, they result in insolubility or
aggregation in neutral aqueous environments.

Depending on their function, peripheral and integral membrane proteins
may differ in their structure and mode of interaction.

Considering the intregral protein, also called Polytopic transmembrane
proteins, they can have several type of structure, including a single α-helix
protein, or α-helical, or a β-sheet (see Fig 2.3.

Single transmembrane 

α-helix

Polytopic transmembrane

Β-sheet protein

Polytopic transmembrane

α-helical protein

Figure 2.3: Representative organization of integral protein (so-called polytoipic
transmembrane proteins): Single transmembrane α-helix protein; Polytopic trans-
membrane α-helical protein; Polytopic transmembrane β-sheet protein.

Most integral proteins are composed of a single peptide that, for energetic
reasons, once it crosses the membrane assumes the form of α-helix, which
interacts more favourably with lipid chains than with water.

Some examples of proteins having the α-helix form are bacteriorhodopsin,
pumps, carriers and channels. Instead, a small proportion of proteins have the
conformation of β-strands to cross the membrane. For instance, porins, i.e.,
transmembranous proteins, exploit this form to create channels, which cross
the membrane, allowing substances to pass through. Such porins consist of a
hydrophobic structure that surrounds a cone of water.

The transport function of the membrane protein is done from the protein
channel. The channels in the cell membrane are generally ion-specific but
passively transported, i.e. they allow ion fluxes or small amounts of solute
to cross the membrane by electrical or concentration gradients. Ion channels
are highly selective, and they are activated only if interaction with ligands,
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for example, occurs. The ion influx regulates the electrical potential of the
membrane, and the change in this potential produces electrical signals in the
membranes of excitable cells, such as nerve and muscle cells.

Another important aspect is the membrane proteins’ motion on the surface,
which is vital for the proper cell functions. These include membrane receptors
that accumulate in the coated pits to promote the uptake of particles and
substances, or the transduction of many cellular signals from outside the cell
depends on the formation of receptor dimers or trimers, as it will be discuss in
the next section.

2.2.3 Membrane receptors

Among membrane proteins the most prevalent are receptors.
There are approximately 25 families of receptors. Membrane receptors

possess many functions including responding to physical stimuli such as light
absorption and chemical, or, for example, steroid hormones are capable of
creating a chemical bond as a result of a physical stimulus with ligands.

In multicellular organisms, selective expression of certain receptors and
transduction molecules promote cell interactions only with specific ligands and
not with others, leading to the beginning of specific biological process. Therefore,
the interaction between receptors and ligands is highly specific. Hence, this is
the main mechanism of the receptor-mediated endocytosis process.

Energy derived from ligand binding is used to change the receptor configura-
tion and transfer signals across the membrane to trigger a chain of signals within
the cytoplasm. One or more enzymes may also participate in the transduction
of these signals, whose job is to amplify the signal or speed up the process, for
example.

The best-known families of receptors that conduct signals across the cyto-
plasmic membrane are the following:

• G-Protein coupled Receptors.

• Receptor Tyrosine Kinase.

• Cytokine Receptors.

• Receptor Serine/Threonine Kinases.

• Guanylyn Cyclase Receptors.

• Tumor Necrosis Factor Receptors.

The G-Protein-coupled receptors family (GPCRs) is the largest and most
widespread family of cell membrane proteins. It is composed of transmembrane
proteins that cross the plasmalemma. They transduce extracellular signals
into physiological effects [42][8]. These types of receptors are employed, for
example, in clathrin-mediated endopcytosis mechanisms (i.e, receptor-mediated
endocytosis process, that it will be discussed in the next few sections) [61].
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They activate proteins present on the intracellular side of the cell, the G-
proteins, which possess the property of effecting hydrolyzing the GTP (guano-
sine triphosphate) nucleotide, in turn the G-proteins function as a conduit
between the receptor and other proteins called effectors.

The G-Protein-coupled receptors have a serpetin form and they are shaped
by seven α-helix proteins that develop within the phospholipid bilayer; mean-
while, on the cytosol-facing side it has three loops, in the last one there is
the G-protein interaction domain. Whereas in the extracellular environment
there is the so called N-terminal end to which the ligand will bind. Finally,
concluding the structural composition of the protein, there is the C-terminal
end facing the inside of the cell that has different regulatory sites [62][42].

Concerning G-proteins, they are trimeric proteins composed of three sub-
units: α, β, γ. In the steady state, the G protein forms a αβγ trimer, in
which there is GDP (guanosine diphosphate) bound to α. When a ligand,
which assumes the role of a first messenger, binds to the receptor the G protein
changes conformation, exhibiting more affinity for GTP; therefore, the GDP
separates and is replaced by GTP.

This new binding causes the α-GTP complex and the βγ dimer to detach
from the intracellular component of the receptor. The two aggregates formed
can act distinctly on different effector proteins and act on several biological
functions. When the hydrolysis of GTP, GTPase, by the α subunit occurs, the
latter stops being active and regulates effector proteins. GTPase is catalyzed
by the interaction of the α subunit with its target and the so-called RGS
(regulators of G protein signaling) proteins.

Finally, GDP binds to the α subunit inactivating it and terminating its
action. While the βγ dimer can regulate proteins designed to phosphorylate
receptors at a site rendering them inactive, such a dimer is able to play a
negative feedback role and manage the upstream signaling pathway [62][42].

Effector proteins are enzymes that catalyze the formation of a second
messenger that through signal transduction will lead to the cell’s response. Two
of the main effector proteins are: adenylate cyclase, catalyzing the conversion of
ATP to cAMP; phospholipase C, capable of converting a membrane phospholipid
into two distinct molecules that serve as second messengers.

These receptors are used by many drugs to be taken up by cells. Mutations
in these types of receptors can cause the onset of manifestations at the physical
level, for example, mutations in the melanocortin 1 receptor causes red hair
and fair skin, or different diseases, as in the case of melanocortin 4, the cause
of obesity.

Another noteworthy receptor family is Receptors Tyrosine Kinase, RTKs.
RTKs are involved in endocytosis process like Macropinocytosis.

Membrane receptors having proteins with tyrosine kinase activity, by binding
to polypeptide growth factors, allow those factors to regulate cell differentiation
and proliferation. Among these factors, for example, we find epidermal growth
factor (EGF), which stimulates the differentiation and proliferation of epithelial
cells, or also platelet-derived growth factor (PDGF) responsible for the growth
of smooth muscle, glial, and fibroblast cells.
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About fifty genes belonging to the human genome have been found to
encode RTKs, distinct in 20 different families, each with its own peculiarities.
Most are characterized by a domain, responsible for contact with the ligand
and different for each receptor depending on the family to which it belongs, on
the outer side of the cell, which in turn is connected to an intracellular tyrosine
kinase domain via a single transmembrane α-helix protein.

The ligand contact triggers the receptor by bringing together two kinase
domains on the cytoplasmic membrane. The kinases’ contact allows them to
activate each other by direct interaction or by phosphorylating on tyrosine
residues. Phosphorylation changes the kinase from inactive to active conforma-
tion. The juxtaposition of tyrosine and kinase domains by ligands can occur in
three ways as following:

1. First method. Dimeric ligands, such as PDGF, recruit a pair of receptors
from the set of membrane-flowing proteins and physically bind to them.
This so called induced dimerization juxtaposes two kinase domains in the
cytoplasm.

2. Second method. Once EGF binds to the membrane receptor, it allows
a rearrangement of extracellular domains that promotes dimerization,
bringing two kinases into contact. The kinases physically interact with
each other, thus activating the membrane receptor.

3. Third method. Insulin causes a conformational change in a preformed
dimeric receptor, this change brings into contact two kinase domains that
activate each other by phosphorylation.

Mutations in the genes governing the expression of these receptors cause
pathological disorders. Many tumors possess overexpression of EGF receptors
[cit.]. Other mutations in the receptors responsible for fibroblast growth
factor result in different congenital skeletal abnormalities, such as dwarfism or
premature fusion of skull bones.

Cytokine are a family of polypeptide hormones and growth factors, which
bind to receptors with tyrosine kinase activity. The kinases in turn activate
transcription factors called STATs (signal transducer and activator of transcrip-
tions), which are responsible for many cellular processes.

Example of cytokines may be somatotropin secreted by the pituitary gland.
It regulates body growth and development in mammals. Hence, any mutations
in this receptor will lead to a loss of the hormone’s functions and the onset of
the pathological condition of dwarfism. Other cytokines are interleukins, which
are responsible for the body’s defense and secreted by the immune system.
Here, receptor mutations lead to immune deficiency of the subject.

Cytokine receptors are composed of a fibronectin III lingand-binding domain
and a single α-helix transmembrane protein. While the inner end is composed
of a kinase called JAK ("just another kinase") having a kinase domain and an
inactive pseudokinase domain.

As a growth hormone ligand binds to the receptor, it causes the extra- and
transmembrane domains to rotate from each other and activates the two JAK
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kinases, thereby separating them. This action allows the JAKs to activate
mutually by transphosphorylation. Then, the JAKs phosphorylate STATs that
migrate to the nucleus in order to regulate gene expression.

Receptors belonging to the Serine/Threonine Kinases category exploit
serine/threonine kinase domains present on the cytoplasmic membrane to enable
signal transduction. The interacting ligands with these membrane proteins
trigger the approach of the two receptor subunits in order to activate kinase
activity. Subsequently, activated receptors phosphorylate transcription factors
called Sma-related and Mad-related proteins (SMADs) and cause their migration
from the cytoplasm to the nucleus, where they control cell proliferation and
differentiation.

They bind to different growth factors, including those concerning embryonic
development. Growth factors include transforming growth factor-β (TGF-β),
which inhibits cell proliferation of most adult cells and instead stimulates the
production of ECM, such as collagen and proteoglycans, and bone morpho-
genetic proteins (BMPs) are involved in osteoblast differentiation.

These receptors consist of two types of subunits, of which the human species
has genes for the expression of seven type I and five type II. Four subunits,
two type II and two type I, bind to a dimeric ligand, which presents with
a high binding affinity toward type II receptors. These receptors through
phosphorylation activate type I receptors, finally the latter phosphorylate
serine threonine residues inducing the movement of SMADs factors toward the
nucleus to promote the expression of the required genes.

Abnormal or misregulation of TGF-β via these receptors can induce overpro-
duction of ECM and cause disorders of chronic inflammation and pathological
fibrosis.

The Guanylyn Cyclase receptor family has two intracellular domains that
promote the formation of cGMP (cyclic guanosine monophosphate) from GTP.
The cGMP has several purposes such as regulation of ion channels, particularly
for vascular smooth muscle and in the retina, vasodilation, retinal phototrans-
duction, and regulation of cell growth and division.

These membrane receptors are homodimeric with an extracellular domain
with the binding site for the ligand, a single transmembrane helix, and two
cytoplasmic domains on the inner side of the cell: the inactive kinase domain
and the guanylyl cyclase domain. Once there is no ligand bound to the receptor,
the guanylyl cyclase domain remains inactive. As soon as ligand binding is
formed, this action causes a movement, like that of a closing scissor, within the
cytoplasmic part that stimulates guanylyl cyclase activity.

Guanylyl cyclase receptor A (GC-A) acts as a binding site for a polypeptide,
atrial natriuretic factor, secreted by the heart for the purpose of regulating
blood pressure. It stimulates the excretion of salt and water from cells by the
kidneys and dilates blood vessels.

Since cGMP contributes to vasodilation by relaxing smooth muscle cells,
it underlies the mechanism of taking certain drugs such as nitroglycerin and
sildenafil, commonly known as Viagra, which used for erectile dysfunction.

Tumor necrosis factor receptors (TNFRs) together with Tumor Necrosis
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Factor (TNFα) regulate gene expression for a wide range of developmental,
inflammatory and cell death processes called apoptosis. TNFαs were discov-
ered in 1975. TNFα has been intensively studied since it plays a significant
role in both immunity and cancer. Indeed, these factors can trigger unique
signaling mechanisms only through its two receptors: TNFR1 and TNFR2.
Understanding how their signaling mechanisms work appears to be crucial, as
this is key to further discovering its exact functions in many cancer diseases
and perhaps to understand how to fight them.

The human body expresses two types of TNFRs that bind the same ligands
but lead to different responses. Both types of receptors possess a similar
structure, since they have a single transmembrane segment bound to different
domains of the phospholipid bilayer; whereas on the cell surface there are the
three receptor-forming subunits, which in the absence of the ligand are free to
flow onto the cell.

The three finger-like parts forming the receptor bind to trimeric TNF
through their interfaces. The clustering of the three receptor subunits allows it
to carry you in the active form, generating an activation complex of adaptor
proteins with the ultimate goal of achieving transcription factor activation
[42][63].

TNF is one of the main contributors that play a key role in the inflammation
of autoimmune diseases such as rheumatoid arthritis. Therefore, preventing
TNF from joining its corresponding receptor would allow the inflammation
caused by this disease to be attenuated.

2.3 Phagocytosis

Phagocytosis is the oldest mechanism of eukaryotic cells for the uptake of
substances. This process involves the ingestion of large particles (500 nm or
more) such as bacteria, foreign bodies, and dead cell remains (apoptotic cells).
Therefore, this mechanism would have led the cells to incorporate the bacteria
as a source of nourishment [42][43].

In mammals, this process characterises the three major groups of immune
cells (e.e., macrophages, neutrophils and dendritic cells) which specialize in
ingesting microorganisms through the phagocytosis process, thus initiating the
immune and initial inflammatory response processes. Although, there are other
types of cells that can exploit this mechanism such as fibroblasts, neurons and
endothelial cells.

Phagocytosis process involves four steps regulated by the principal compo-
nents of the cell membrane (cell surface receptors, polyphosphatidylinositides)
and GTPases (Rho-family guanosine triphosphatases whose regulate the signal-
ing cascades).

Schematically, the main steps are the following (Figure 2.4):

1. Attachment. It is the beggining of the process, involving the recognition
and attachments of the phagocytic cell to the ingesting particle.
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2. Engulfment. It is the ingestion phase, where the receptor of the phago-
cytic cell bind with receptors of the target particle which has to be
ingested.

3. Fusion with the lysosomes. Once the target particle is incorporated,
fusion with the lysosome starts, resulting in a vacuole called a phagolyso-
some where the target resides inside.

4. Degradation. It is the last phase of the process, where the ingested
microorganism is killed and reduced in several products ready to be
digested.

Phagocytic target

Surface ligand
Phagocytic 
receptor

Actin filaments

Phagosome

Cytoplasm

Extracellular matrix

Figure 2.4: Phagocytocis process description, from left to right, of a macrophage:
once the target to be phagocytosed has been identified, the macrophage starts the
process; the macrophage’s receptors are activated by binding with the bacteria; an
actin filament activates the encapsulation process of the bacteria; after the bacterium
has been encapsulated within the phagosome, the actin filament is removed; the
bacterial degradation process begins.

As the particle is approached, it stimulates membrane proteins, which trigger
a series of chain reactions leading to a microorganism being phagocytosed
in the phagosome, and then digested within the cytoplasm cell. Hence, the
phagocytosis is a process with signaling cascades mediated by GTPasess. Indeed,
the actin has a major role in the process.

Actin monomers form short filaments on the membrane surface: the positive
end is oriented towards the membrane surface; meanwhile the negative end
grows towards the outside of the membrane. Therefore, the continuous assembly
of actin filaments drives its assembly outwards from the cytoplasmic membrane.

The pivotal role of actin is shown due to that phagocytosis is sensitive to
the widely used inhibitor cytochalasin D, which binds to the positive ends and
inhibits their growth. Also latrunculin A, a fairly widely used drug, binds
to actin monomers, blocking its polymerisation and conversely promoting
its depolymerisation. Formins, proteins present in the cell cytoskeleton, are
believed to promote the initiation of actin filament nucleation.
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These proteins are able to nucleate actin monomers, insert the filaments
into the positive end, and finally allow the negative end to detach further from
the membrane to envelop the particle. Once the envelope within which the
micro-organism is enclosed, i.e. the phagosome, is created, the actin filaments
de-activate by detaching themselves from the phagosome. Afterwards, a series
of digestive enzymes are activated, which will attack and split the bacterium
into different components. The bacteria thus degraded will now be ready to be
digested.

At the same time as actin polymerisation, a large number of molecules,
forming part of signalling complexes, participate in the process of phagocytosis.
Among theme, there are: lipids, cholesterol and also proteins such as kinase,
phospholipase C,to mention merely a few. Throughout phagocytosis, the
signalling mechanism involving multiple sites in the cell can be observed, a
phenomenon also present in macropinocytosis (see Macrpinocytosis section).

Transmembrane processes such as phagocytosis involve many cellular com-
ponents, but their reaction kinetics are too fast to be captured and observed
experimentally. Therefore, there does not exist a full understanding of the
internal process and all the proteins and enzymes involved in the mechanism.

2.4 Macropinocytosis

Macropinocytosis is a particular type of endocytosis that differs from the others
according to what substances are ingested into the cell.

This process ingests extracellular fluids into the cell through the formation
of large endocytotic structures called macropinosomes [42]. These are vescicles
of heterogeneous size and filled with fluid substances to ingest with above 200
nm in diameter dimension, which are visible with a standard microscope.

In studies of macropinocytosis it is necessary to culture cells in-vitro to
observe this biological phenomenon [43]. This is possible through the addition
of a fluorescent marker, dextran, to the culture medium, thanks to which the
formation of macropinosomes can be better appreciated.

Unlike the uptake in phagocytosis or caveolae or for foreign bodies sur-
rounded by a clathrin coating, where distinct structures are noted under the
electron microscope, both in cultured cells and tissues [42][43].

The macropinocytosis process involves several steps and actors (Figure 2.5).
The actors in the macropinocytosis process are growth factors accompanied
by other signals that are stimulated by actin-driven protrusions of the cell
membrane. In this case, macropinocytosis is called "induced" since there is a
sudden increase from an external stimulus, indeed, such as from the action of a
growth factor [64].

The protrusions tend to then close around the fluid to be ingested, thereby
forming the micropinosome. The micropinosome is then transported along the
microtubules toward the core of the cell, allowing the complete internalization
of the extracellular fluid, which will be useful for nutrient uptake of the cell.
The created macropinosomes persist in the cytoplasm for 5 to 20 minutes,
during which time their membrane components can be recycled by the cellular
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membrane or they are directed to other organelles or can be then driven to
lysosomes [65].

Other players in the process are PI kinases and GTPases recruit and activate
proteins, who are involved in the process of assembling actin filamnets to support
micropinosome formation.

Extracellular 

matrix

AlbuminMembran

ruffle

Cytoplasm

Nucleus

Macropinosome

Macropinocytosis

Figure 2.5: Schematization of the macropinocytotisis process. The cell membrane
introfects to envelop a liquid substance and closes over it, forming an isolated vesicle
within the cytoplasm, called a micropinosome. The contents of the micropinosome
are then directed to other cellular structures or components to be either reused or
degraded and digested.

Phagocytosis and macropinocytosis are related, whereas in the former,
actin filaments envelop a solid particle, in the latter, only a certain amount of
liquid is engulfed within the protuberances formed on the membrane by actin
polymerisation [43].

It has been observed that the mammalian cells that exploit this process are
the immature dendritic cells found in the skin epithelium and the mucosa of
the respiratory tract. These cells can metabolise through macropinocytosis the
equivalent of their volume in about 15 minutes. Due to the similarities between
macropinocytosis and phagocytosis (actin polymerisation, membrane protrusion,
signalling molecules and proteins), it is not always easy to unambiguously
distinguish one from the other [42][43].

Conclusively, macropinocytosis is a crucial process for cell function. First,
the process can regulate cellual functions such as the activation of certain cell
surface receptors and nutrient absorption by amoebae, thyroglobulin by thyroid
cells and bulk extracellular fluid by the dendritic cells for immune surveillance.

In addition, the macropinocytosis process is also utilized by innate immune
cells, such as macrophages and immature dendritic cells, which therefore con-
tinuously process membrane protrusions a process called "membrane ruffling."
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The mechanism is thus exploited to facilitate the functioning of the immune
system by improving its efficiency. In this case it is referred to as constitutive
macropinocytosis [64].

However, this process can also be used by specialized bacteria to enter
inside the cell, where here they will attack the cellular system. One example is
Samonella typhimurium, which is a pathogenic bacterium that injects toxins
that trigger macropinocytosis and so ensuring a pathway to enter and then
infect the cell [42][43].

A further example is the role that macropinocytosis plays in cancer-like
diseases. This process ensures an endocytic pathway for the internalization
of extracellular fluids through the macropinosome. It has been observed how
macropinocytosis functions as a nutrient-scaveging pathway in Ras-driven can-
cer cells, caused by a mutation in RAS protein genes. The process ensures
the uptake of extracellular proteins and their further degradation within en-
dolysosomes, providing much-needed amino acids to cancer cells that feed their
metabolism and promoting tumor growth.

2.5 Caveolae-mediated endocytosis

Endocytosis process can be mediated by Caveolae, which are small flask-
like invaginations (60-80 nm) of the cell membrane, from which the clathrin-
coated vesicles will be created to allow the uptake of small molecules. They
are widespread throughout the membrane, but more present in muscle cells,
endothelial cells, and adipocytes [42][43].

In caveolae-mediated endocytosis, plasma membrane proteins play a key
role (Figure 2.6). These are associated with caveolae through interactions
with caveolin and/or with cholesterol-enriched membrane components. The
internalization process of caveolae requires a rearrangement of caveolae structure.
Specifically, there will be a rearrangement of the actin cytoskeleton, requiring
the action of the GTPase dynamin.

Specifically, EHD2 (Eps15 Homology Domain–containing 2), belonging
to the dynamin-related ATPase protein family, are involved in membrane
remodeling in the endosomal system. Its function is to drive intrinsic ATPase
activity. EHD2 is not directly involved in clathrin-mediated endocytosis, but
still has associated caveolae with the role of structure stabilizer [66].

The resulting caveolae will be small in size and transiently interact with
endosomes or fuse with each other, retaining their cytoplasmic caveolin and
cavin coatings. The role of caveolae in endocytosis is minimal in cells other
than endothelial cells. However, they also help to store microdomain-associated
lipids and regulate both non-cavaolar endocytic pathways and a variety of
signaling pathways [42][43].
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Figure 2.6: Endocytosis mediate by Caveolae. The caveolin along the cell membrane
start the process to create the caveolin coated vescicle, that then will create the
caveosome, ready to bring the transported material to cellular structure, where the
material will be separated in other products to be reuse from the cell.

They are composed of oligomers of membrane proteins the caveolins 1-3,
which work together with cholesterol and lipids. While caveolin 3 is limited
to muscle, caveolins 1 and 2 are expressed in the majority of mammalian cells.
Caveolae create homo-/hetero-oligomers by reacting with themselves and other
lipids to form the typical flask-shaped caveolae sacs [42][43].

Cavaleolae involve also several signaling molecules, membrane transporters
(calcium pumps) and glycosphingolipids. They might have several shapes
invaginations of the cell membrane including simple flat and, also, flash-shape
ones. The structure of caveolae is very complex and needs to be stabilized
by coating proteins, such as caveolin and cavin, which consequently stabilize
the microdomains of caveolae. Individual caveolae contain about 150 caveolin
molecules, and caveins form string-like polymers that fit into the cell membrane.
The caveolae density on the cell surface may vary depending on the type of
cells considered.

For example, blood flow on the endothelial cells causes caveolae to flatten; or
a change in membrane cholesterol can change the amount of caveolae. If caveolae
collapse, cavins are degraded and caveolin and associated lipids redistribute
along the plasma membrane. The distribution of caveolin and lipids depends
on the physiological stresses and then increases the membrane surface area
and membrane elasticity. Considering endothelial and muscle cells, these are
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affected by physiological stretching and therefore this corresponds to an increase
in the amount of caveolin within the plasma membrane [42][43].

Caveolae-mediated endocytosis differs from other types of endocytosis.
Indeed, caveolae are involved in receptor-independent endocytosis. They differ,
for example, from clathrin as they do not destine the coated material toward
digestion by lysosomes, but instead they, in fact, transport the coated material
(caveolin coated vescicle) to cellular apparatuses that modify it. Thus they
allow its reuse [42][43].

This type of endocytosis is critical in mechanotransduction signal processes.
Proteins in caveolae regulate cell growth and division, mitogen-activated protein
(MAP) kinase signaling, and inhibition of cell-cell contact. Therefore, the
main functions of cavealoe fall under signaling and endocytosis, although
the relationship between the effects between the two phenomena is unclear.
Caveolins or cavines are essential for the proper functioning of cavealoe-regulated
processes; indeed, their mutation can result in human diseases, including
lipodystrophy, muscular dystrophies, heart disease, and cancer [42][43].

2.6 Receptor-mediated endocytosis

Eukaryotic cells can employ the membrane receptor-dependent mechanism to
internalize extracellular bodies.

Receptor-mediated endocytosis, or also called clathrin-mediated endocytosis
(CME), involves the formation of a clathrin-coated vesicle (CCV) as the particle
penetrates the cytoplasmic membrane until it finds itself in the cell cytosol and
takes the name endosome (see Fig 2.7).

Schematically, the several step are the following:

1. Initiation. It is the beggining of the process. The process is triggered by
the recruitment of AP-2 (Adaptor Protein Complex 2) and BAR domain
proteins and ENTH (Epsin N-Terminal Homology protein domain) and
ANTH (AP180 N-Terminal Homology domain) domains bind inositol
phospholipids as well as proteins and they participate in nucleation and
clathrin coat formation on membranes [67].

2. Coat Assembly. The second step involves the process of clathrin coat
assembling at the nucleation sites of AP-2 proteins.

3. Maturation and Scission. Following the formation of the clathrin coat,
a clathrin-coated pits (CCP) evolves into a dome-shaped invagination,
which is subsequently reorganized into an Ω-shaped pit and separates
from the plasma membrane to form a clathrin-coated vesicle. The reorga-
nization process of the membrane is regulated by mechanical factors such
as membrane tension, membrane stiffness.
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Figure 2.7: Endocytosis mediaed by receptor or clathrin-mediated endocytosis. The
process is triggered by the recruitment of AP-2. In the second step, the clathrin coat
is assembled at the nucleation sites of AP-2 proteins. Finally, the maturation and
scission followed the formation of the clathrin coat, when a clathrin-coated pits (CCP)
evolves into a dome-shaped invagination, which is subsequently reorganized into an
Ω-shaped pit and separates from the plasma membrane to form a clathrin-coated
vesicle.

Clathrin is a protein molecule that forms a polyhedral network around
vesicles which transport protein molecules within the intracellular space. CME
is used by most cells for the uptake of molecules and complexes about 100 nm
in diameter. Indeed, the size of the clathrin-coated vescicles can be around
60-120 nm. Among these we can find nutrients, hormones, growth factors,
signaling molecules and unfortunately also toxins and viruses.

The initiation phase starts when the CCV formation begins. CCV formation
involves the interecation of the cytoplasmic membrane the receptors and PIP2
(phosphatidylinositol 4,5-bisphosphate, membrane component phospholipid)
with AP-2, which in return recalls clathrin triskelions [68].

E/ANTH domains help in the nucleation and formation of the clathrin-coat.
These domains work in the membrane curvature development through lipid
remodeling during the formation of clathrin-coated vesicles. It was shown that
E/ANTH proteins are functionally involved with adaptor protein-1 and GGA
adaptors in the trans-Golgi network, which suggests that E/ANTH domains are
universal components of the clathrin-mediated membrane budding machinery.

Process initiation has always been assumed to be a stochastic phenomenon,
that is, a random phenomena. However, there are specific regions that can be
considered as "hot spots" for initiating the process of CCP implementation.
These points typically are in the presence of lipid or cargo proteins such as
FCHo1/2 proteins that contain an F-BAR domain. FCHo1/2 assist in creating
and maintaining the membrane curvature required for AP-2 nucleation. In this
step, the mechanical properties of the membrane play an essential role. An

34



increase in membrane tension corresponds to a reduction in the initiation point
of the process. Studies have shown that membrane tension goes to control
the assembly of proteins that contribute to membrane curvature and the BAR
domain. Thus increases or decreases in membrane tension go to speed up or
slow down the process [69][70][68].

The second process is the coat assembly, where the clathrin triskelia are
recruited for the formation of the cahe-like clathrin coat. The lifetime of CCV
is on the order of one minute or less. After entering the cytosol and personating
the clathrin coating, the foreign body is named early endosome. The subsequent
stages can be multiple depending on the type of endosome. For example, the
endosome may fuse with lysosomes, proteins that can degrade endocytosed
material, exchange its contents with other endosomes, or in the case where the
endosome is a virus release its nucleic acid to initiate viral replication.

Indeed, there is evidence that small viruses, with a diameter of up to 120
nm, can enter cells by exploiting the CCV. Viruses exploit membrane receptors,
which usually bind to physiological substances needed by the cell, to permeate
the mebrane. Viruses that adopt these mechanisms include parvoviruses,
arenaviruses that bind to transferrin receptors to enter cells via CME or
coronaviruses that bind to ACE2 (angiotensin-converting enzyme 2) receptors.

This endocytosis is mediated by mechanical stimuli due to the clathrin
polumerization that is needed to stabilize the membrane invaginations. First
of all, the deformation of the membrane is the main actor in the process. The
mechanism that causes membrane deformation is still a matter of debate, and
two theories are the most widely accepted. According to a first hypothesis,
clathrin triskelions assemble on the membrane forming a flat hexagonal lattice,
without changing the surface of the membrane on which the lattice is formed.
Then the curvature is generated through remodeling of the coat by introducing
pentagons into the lattice. Or, following a second explanation, the assembly of
clathrin triskelions, already curved by themselves, shapes the pit, which later
invaginates deep into the membrane. As mentioned above, assembly begins
after the interaction of PIP2 with the AP-2 complex. Then AP-2 ´2, a subunit
of the complex, recruits clathrin triskelions by initiating the assembly of the
clathrin polyhedral lattice.

In addition, AP-2 acts as a recruiter for other proteins such as amphiphysin,
Eps15 and sometimes actin in order to regulate CCV formation. When the
particle has totally invaginated inside the membrane, it is necessary for it
to detach, but it is not an autonomous operation. Then GTPase (family of
enzymes that catalyze the hydrolysis of a chemical bond) dynamin intervenes,
it binds to PIP2 on the neck of the formed pit and self-assembles to form a
spiral structure.Through hydrolysis the dynamin collar is tightened, this causes
the scission of CCV by releasing it into the cytoplasm.

Hence, the formation and assembly of the coat depends by the membrane
tension and rigidity. More specific, the membrane rension acts as a inhibitory
effector for the polymerization process of the clathrin coat, size and shape and
it influencecs the shape stability curve of the membrane invaginations. Indeed,
an increased membrane tension lead to the dissassembly of the clathrin coat.
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Here, also the membrane rigidity can influence the clathrin coat formation, by
slown down the rate of endocytosis process.

The last step of this process is the maturation and scission. Here, the clathrin
coat formed involves the formation of hemispherical U-shaped CCPs, thus
resulting in the transition from Ω to U shape, which occurs spontaneously. This
shape transition is necessary to ensure internalization of the cargo molecules.
The next step is membrane cleavage generated by the dynamin assembly into
tight ligomers of initial radius 10 nm around the neck of a CCP to shrink the
neck itself, thus ending the process [68].
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Chapter 3

Membrane and Endocytosis models

in literature

This chapter aims to provide a comprehensive overview of the relevant models
in the literature for understanding the properties of cell membranes and the
mathematical modelling of endocytosis.

The first section will first introduce W. Helfrich’s 1973 work that provided
the basis for understanding the elastic properties of lipid membranes. Next,
a discussion will focus on Gerald Lim H. W. et al.’s 2002 study, about the
human red blood cells, as this study brought important evidence for the lipid
bilayer hypothesis of membranes. Furthermore, Tobias Baumgart et. al. studies
from 2003 and 2005 studies will be presented, since these studies contributed
significantly to further understanding of cell membrane dynamics and the
coexistence of fluid domains in giant vesicles.

The last section will deal with the mathematical modelling of endocytosis
present in the literature. Here, the chapter will present some of the most
important models in the literature concerning the process on which the study
of this thesis focused: receptor-mediated endocytosis. The starting baseline
model is the Gao et al. [22] model, which will be explained in detail in the
present chapter. Next, models of receptor-mediated endocytosis proposed by
other authors, such as Yi et al. [27], Li et al. [34], Zhang et al. [36] and
Wiegold et al. [37], will be briefly explained, which can generally be said to be
derived directly from Gao’s model.

3.1 Exploring Membrane Dynamics: From The-

ory to Experiments

3.1.1 Theory and simulation on cell membranes

In the field of the physics of biological systems, understanding the mechanical
properties of biological membranes is crucial. These thin, flexible structures,
mainly composed of lipids, play a crucial role in determining the shape and
function of cells. The theory of elastic membranes, developed over the past
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decades, provides a theoretical framework to describe the behaviour of these
structures at the macroscopic level.

One of the most significant contributions in this field is Wolfgang Helfrich’s
1973 article [71]. In this work, Helfrich developed a theory describing the elastic
properties of lipid membranes in terms of energy. This theory had a profound
impact on the understanding of the physical properties of biological membranes
and paved the way for numerous experiments.

Helfrich paper introduces the idea that the elastic properties of lipid mem-
branes can be described in terms of a free energy of deformation, which depends
on the curvatures of the phospholipid membrane.

Considering a triplet of Cartesian axes and placing the origin at any point
of the film, assumed to be infinitely thin, it is possible to identify the normal n
relative to the layer.

This normal, parallel to the z-axis, is assumed to be dependent on the
variables x and y, respectively the abscissa and ordinate of the plane, from
which, thanks to the components of the vector n on the plane, it is possible to
find the two principal curvatures through the partial derivatives:

c1 =
∂nx

∂x

c2 =
∂ny

∂y

(3.1a)

(3.1b)

The vector field n(x, y) possesses the property of irrotationality, then the
rotation of the vector must cancel as it is normal to a uniquely defined surface.

Then, the following relation of the partial derivatives in cross must hold:

∂nx

∂y
− ∂ny

∂x
= 0 (3.2)

Helfrich assumed that curvature is a quadratic function of the derivatives
of nx and ny, and since the phospholipid bilayer is rotationally symmetrical,
he only considered linear and quadratic shapes, independent of x- and y-axis
orientation:

∂nx

∂x
+
∂ny

∂y
(

∂nx

∂x
+
∂ny

∂y

)2

∂nx

∂x

∂ny

∂y
− ∂nx

∂y

∂ny

∂x

(3.3a)

(3.3b)

(3.3c)

So the energy per unit area of the membrane can be written as:

eH =
1

2
k (c1 + c2 − c0)

2 + kG (c1c2) (3.4)

Where c0 represents the spontaneous curvature of the membrane, which
takes into account the possible difference, chemically speaking, of the two sides
of the membrane, a phenomenon that often occurs in biology because the
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part of the membrane that communicates with the extracellular environment
differs from its counterpart immersed in the cell cytosol. While k and kG
are the bending modulus and the saddle splay modulus or Gaussian modulus,
respectively.

Helfrich energy can be used to study red blood cells (RBCs). The latter,
also called erythrocytes, are fundamental cells for human life. They give blood
its distinctive red colour and are responsible for transporting oxygen from the
lungs to the tissues and carbon dioxide in the opposite direction.

Erythrocytes, unlike many other cells in the body, do not possess a nucleus,
which allows them to accommodate more haemoglobin, the protein that binds
to oxygen. In addition, their biconcave disc shape, which has also given them
the name discocytes, increases the surface area available for gas exchange.

The shape and size of red blood cells are crucial to their function. Normally,
they have a discocyte shape and a diameter of about 6− 8 µm. This unique
shape offers several functional advantages, including better gas exchange and
the ability to pass through small capillaries.

However, the shape of erythrocytes can be altered by various factors, as
certain pathological conditions can cause them to become deformed. For
example, sickle cell anaemia is a genetic mutation that leads to the production
of an abnormal type of haemoglobin that causes red blood cells to take on
a sickle or crescent shape. These altered red blood cells can cause various
problems, including occlusion of blood vessels.

Beyond pathologies, in the work of Lim H. W. et al. [72] it is reported how
a different multitude of agents can interact to reversibly change the shape of
red blood cells while keeping their area and volume constant.

On the one hand, there are anionic amphipaths, high salt concentrations
as well as a high pH value, lack of ATP and cholesterol accumulations that
can cause the erythrocyte to assume the form of an echinocyte, which has a
convexity at its centre and protruding parts all around it.

By applying load to this shape, it was noticed how these protrusions become
smaller and smaller as they increase in number; they then detach from the cell
irreversibly, forming vesicles.

The cell, with reduced volume and area, takes on a spherical shape called a
spheroechinocyte. On the other hand, cationic amphipaths, low concentrations
of salts, acid pH and cholesterol gaps lead to the formation of a further form
called stomatocyte. An increase in load in this case leads to the overproduction
of convave forms that detach resulting in a cell called the spherostomatocyte.

RBCs have a composite membrane, i.e. formed by the combination of a
cytoplasmic membrane and a membrane skeleton (MS), at the core of which is
fluid. This suggests that the properties of the membrane are responsible for
the shape changes of these cells. One of the mechanisms, which may be one
of the plausible explanations, concerns the difference ∆A0 of the relaxed area
between the two layers, inner and outer, that make up the membrane.

A factor that expands, for example, the outer layer relative to the inner
layer, increasing ∆A0, results in the formation of convex structures on the
cell membrane (such as those that characterise echinocytes. Conversely, the
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expansion of the inner layer contributes to the production of concavities, typical
of stomatocytes.

This hypothesis explains the stomatocyte-discocyte-echinocyte sequence (
Fig. 3.1) by demarcating how external agents, whether chemical, physical or
biological in nature, condition the shape of the cell through a modification of
the ∆A0. For example, cholesterol tends to favour the outer layer and expand
the latter, while cationic amphipaths expand the inner one. This, however,
remains a hypothesis that is not recognised by all.

c) Echinocytea) Stomatocyte b) Discocyte

Figure 3.1: Schematic outline of the evolutionary sequence of the erythrocyte, from
stomatocyte to discocyte, typical red blood cell form, to echinocyte.

Another theory concerns the involvement of membrane-bound proteins,
which are thought to play a dominant role in controlling the shape of the cell.
In this context, the question is whether the shape of a cell analysed at a given
value of ∆A0 corresponds with that calculated through the implementation of
a calculation model. Unfortunately, it is not possible to measure ∆A0 directly,
but the authors of this work [72], thanks to the formulation of such a model,
have shown that it is possible to observe shape changes involving the sequence
of RBCs.

The energy formulated by Helfrich, who was the first to realise that the
cytoplasmic membrane can be regarded as a 2D fluid with a certain resistance
to deformations caused by inflection, which causes the value of local mean
curvature to deviate from the preferred value of C0/2. Spontaneous membrane
curvature C0 is a parameter that is non-zero when there is asymmetry between
the two membrane layers. A change in the value of ∆A0 directly influences the
shape to which C0 is equivalent.

This equivalence comes from the fact that, if the membrane is not flat, a
merely geometric difference ∆A between the two membrane layers must be
introduced.

Therefore the Helfrich energy functional, called Area-Difference-Elasticity
(ADE), which also takes this effect into account, has been expressed as follows:

EADE [S] =
k

2

∮

S

(2H − C0)
2 dA+

kG
2

Ã

AD2 (∆A−∆A0)
2 (3.5)

Where D is the thickness of the membrane, A is the area of the membrane,
and the integral is over the entire surface area S enclosing the vesicle. The
mechanically stable shapes at fixed values of area and volume correspond to

40



a minimum of the energy functional. For the parameters used, this model
leads to the discocyte form, while it becomes unstable and transforms into a
stomatocyte if ∆A0 is decreased. However, when ∆A0 is increased, budding
occurs instead of echinocytosis. Therefore, the previous model needs to be
modified.

When the formation of the buds into the echinocyte shape takes place, the
necks of these buds induce strong strech and shear in the MS. Incorporating
the elasticity of the MS into the model will lead to an increase in the energy of
the buds, but will allow the echinocytes to take a low-energy form for positive
values of ∆A0.

The new energy functional will be:

ERBC [S] = EADE [S] + EMS [S, S0] (3.6)

In which:
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Where:

³I =
dS

dS0

− 1 = ¼1¼2 − 1

³II =
(¼1 − ¼2)

2

2¼1¼2

(3.8a)

(3.8b)

³I and ³II are the invariants of the local area and shear strain as a function of
the principal stretches ¼1 and ¼2. Kα and µ are the linear and shear elastic
moduli. The researchers included non-linear elastic terms of higher-order, i.e.
a3, a4, b1, b2, because the principal stretches deviate far from unity for highly
deformed forms such as some variants of echinocytes.

To proceed with the application of (3.7), it is also necessary to specify
a relaxed shape S0 at which the deformation energy is equal to 0. Oblate
ellipsoidal shapes were chosen with area A of the RBCs but volume in the
range from that of a sphere to the reduced volume ¿0 = V/Vsphere.

The objective is to minimise the (3.6) functional for given values of ∆A0

and S0, in order to find the stable energies and shapes, the values of fixed area
and volume of A = 140 µm2 and V = 100 µm3 were chosen.

The difference of the reduced effective area was calculated as:

∆a0 =
∆A0

A
+
kGDC0

Ãk
(3.9)

Combining the effects of both ∆A0 and C0. A first set of forms was obtained
by varying the value of ∆A0 from an initial negative value (stomatocyte) to
a positive value (echinocyte), confirming that the entire sequence (¿0 = 0.95)
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stomatocyte-discocyte-echinocyte could be obtained by adjusting only the
variable ∆A0. ∆a0 was found to be in agreement with the experimental values
found in the literature.

Despite this, a small (¿0 = 1) change in S0 towards a more spherical shape
leads no longer to the standard erythrocyte shape, i.e. discocytes, but to
knizocytic shapes (triconcave cells). As such a live decrease in ¿0 has the effect
of removing one of the potential stomatocyte shapes from the sequence.

Another set of simulations was conducted, varying slightly from the standard
values ¿0 and ∆a0, obtaining anomalous forms of red blood cells, such as the
knizocyte and the triangular stomatocyte, found experimentally.

So, it was analysed how the stomatocyte-discocyte-echinocyte sequence can
be obtained in accordance with the literature by controlling only one parameter,
including other factors such as membrane elasticity and membrane skeleton
stretch in the model. It is not always the case that the sequence always occurs
this way, there could also be other mechanisms that condition the shapes.

For example, there could be reagents that influence the properties of the
MS proteins and thus the shape of the RBCs through the S0 and the elasticity
modulus of the skeleton.

This work poses as a simple model, but could be further complicated by
taking into account other aspects that condition RBCs such as differences in
the density of lipid species present on the membrane and that would tend to
influence the curvature of the membrane.

3.1.2 Study on two-phase membrane vesicles

Membranes are not perfectly homogenous but composed of multiple lipids
separated laterally by liquid domains with different composition, this order-
ing conditions membrane properties such as elasticity and membrane shape.
Through fluorescence imaging Baumgart et al. [73] showed a correlation between
domain composition and membrane curvature.

This study focused on giant unilamellar vesiscles (GUVs), characterised by
a ternary mixture of lipids: sphingomyelin (SM), dioleoyl phosphatidylcholine
(DOPC) and cholesterol. The first two organics define a liquid phase with
short-range order (Lo), while DOPC represents a disordered phase (Ld).

The shape, and thus the geometry, of vesicles can be obtained by minimising
the bending energy functional of an axisymmetric lipid membrane and its sum
over all the i = Lo, Ld domains it possesses:

E
(i)
H =

∫

A(i)

(

1

2
k(i) (H − c0)

2 + k
(i)
G K

)

dA (3.10)

A comparison of the first two images in Fig. 3.2, although the vesicles have
the same shape but inverted domains, leads to the suggestion that the bending
modulus is not responsible for the final shape assumed by the vesicles.
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a) b) c)

Figure 3.2: Simplified reproduction of images obtained by two-photon excitation
microscopy in [73].

Therefore, a line tension Ã, located between the two domains, has been
theorised as a means of controlling deformation budding and fission. Above
the boundary length limit value:

S0 ≈
8k(i)

Ã
≈ 80 nm (3.11)

It was seen that the domain of a membrane, initially flat, could assume a
spherical shape provided sufficient membrane area was present. It was shown
how line tension leads vesicles to a boundary shape characterised by a minimum
radius rb of the boundary between the two phases Fig. 3.2c and the two dormers
forming spherical caps.

The researchers observed that in the neck region (Fig. 3.2b), the Ld domains
bend towards those of Lo, leading them to believe that the bending rigidity
k(Lo) is greater than the k(Ld).

An algorithm was then set up to calculate the parameters deemed neces-
sary to establish a correlation between domain composition and mechanical
properties. The vesicle in Fig. 3.2c was chosen as the one on which to perform
the analysis.

A line tension of Ã ≈ 9 ± 0.3 × 10−13N was obtained, with an order of
magnitude smaller than Lipowsky’s approximate estimate, which is based on
the energy required to cross the lipid interfaces in a shear through the lipid
bilayer at the phase boundary.

In other words, Lipowsky considered the energy associated with the voltage
differences between the two sides of the lipid bilayer. The resulting lateral
stresses ΣLd ≈ 8.2± 0.1× 10−5mNm−1 and ΣLo ≈ 1.06± 0.01× 10−4mNm−1

are balanced by a pressure difference P ≈ −1.83±0.01×10−2Nm−2. While the
ratio between the bending moduli of the two phases kLo/kLd = 1.25± 0.6, thus
suggesting that the stiffness of the ordered phase is greater than the disordered
one.

By increasing the surface-to-volume ratio through a rise in temperature, the
formation of completely spherical vesicles was observed that originated from
the fission of a vesicle that had the neck region.

The fission, therefore, occurred at the boundary between the two phases so
that the new vesicles possessed a distinct and homogeneous lipid composition.
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In addition to two-phase vesicles, vesicles with several ordered and disordered
phases were also observed, but probably not in a minimum state of global
energy because fused domains were observed, which reduced the total energy.

By raising the temperature to values several degrees below the mixing, or
dissociation, transition temperature Tm, the circular domains of both phases
oscillated laterally, indicating a reduction in line tension at higher temperatures.
While further temperature increases led to the appearance of homogeneous
membranes.

From a thermal point of view, the normal mean square amplitude of these
movements, caused by temperature, is given by:

〈

u2n
〉

=
kBT

ÃroÃ (n2 − 1)
(3.12)

Where kB is the Boltzmann constant, T the temperature, ro the mean
radius of the domain and n the mode number.

Considering a ro ≈ 5 µm, easily observed in its undulation with resolvable
optical amplitudes, this leads to a line tension of the order of Ã ≈ 10−14N at
elevated temperatures, two orders of magnitude smaller than that measured
by researchers at room temperature. It is assumed that the line voltage
decreases according to the proportionality Ã ∝ (Tc − T )λ where Tc is the
critical temperature and ¼ = 1 is the critical exponent.

When the temperature is slightly lower than Tm, Ld phase domains are
observed within a continuous matrix Lo. These wavy domains assume prolate
elliptical shapes and, as the temperature increases, shape instabilities occur,
leading to the formation of thin fluctuating stripes.

These stripes can extend over the entire surface of the liposome. Frequent
fusions have been noted at the ends of the stripes, which as they cool, and
thus raise the line tension, lead to circular ring-like domains across the entire
vesicle.

Finally, homogeneous membranes were analysed by cooling them down from
temperature Tm. This cooling caused the formation of small domains that
merged to form recursive patterns, thus showing preferential bending between
the two domains.

Furthermore, the disordered phase tends to prefer saddle shapes, a factor
that again indicates how the value of the bending modulus is lower when
compared to that of the ordered phase, which tries to concentrate in tubular
areas with less curvature.

These experiments have been fundamental in understanding how the lipid
domains of the membrane behave and how their shapes and properties may
change when subjected to changes in temperature or even osmotic pressure.

In a second paper, Baumgart et al. [74] numerically inferred the shapes of
the vesicles by comparing them with those obtained from experimental tests,
showing that properties such as tension line, pressure, bending modulus and the
difference in Gaussian moduli lead to different effects on the neck geometry of
the vesicles, obtaining an estimate of these moduli and that Gaussian curvature
strength intervenes at several stages in the vesicle melting process.
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A closed axisymmetric lipid membrane with two balanced phases was
considered (Fig. 3.3). The geometric description of the membrane was done by
parameterisation of the arc length s and the tangent angle È.

The meridional curvature is denoted cm, cp the curvature along the circular
parallels of the membrane and r the distance from the axis of revolution.
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Figure 3.3: Representation of the coordinate system of the two-phase vesicle
membrane [74].

The out-of-plane force balance equation can be written as:

dQs

ds
+
Cos (È)

r
Qs − T s

s

dÈ

ds
− Sin (È)

r
T θ
θ − p = 0 (3.13)

Qs is the shear traction per unit length acting along the direction of the
parallels, T s

s and T θ
θ are the stresses along the meridian and the parallels, while

p is the net pressure per unit area of the membrane acting along the direction
of the inward-facing surface normal.

The force balance equation in the plane results as:

dT s
s

ds
+
Cos (È)

r

(

T s
s − T θ

θ

)

+Qs

dÈ

ds
= 0 (3.14)

The equation that links the two phases, the so-called jump condition:

T s+
s − T s−

s − Ã
Cos (È)

r
= 0 (3.15)

Where the jump (as shown in Fig. X, the sign (−) and (+) designate
the phases before and after the jump, starting from the north pole) of the
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lateral stress is equal to the line tension Ã multiplied by the geodetic curvature
cg = Cos (È) r−1.

In a similar way, the condition that binds the transverse shear in the two
domains can be expressed:

Q+
s −Q−

s − Ã
Sin (È)

r
= 0 (3.16)

Here, the jump of the transverse shear is equal to the line tension for the
main bending along the boundary cp = Sin (È) r−1 whereas for completeness
the meridional curvature is cm = −dÈ/ds.

In addition, two other quantities have been defined, the ratio between the
two bending rigidities:

ε =
k(Lo)

k(Ld)
(3.17)

And a measure of the difference of the Gaussian curvature rigidities in the
phases:

∆G =
k
(Ld)
G − k

(Lo)
G

k(Ld)
(3.18)

The following representations, Fig. 3.4, are reproductions of the results
obtained by the researchers using the two-photon fluorescence excitation micro-
scope, in which the two lipid phases were stained differently, red the disordered
one and blue the ordered one:

a) b) c)

0

Figure 3.4: Graphical representation of images obtained by researchers using two-
photon excitation microscopy. In blue is the ordered phase Lo, and in red the
disordered phase Ld [74].

Vesicles with the presence of fluid domains present a more ordered arrange-
ment in which the fluid tends to minimise its perimeter in order to reproduce
circular domains, in contrast to the phase in which gel and fluid coexist, which
is characterised by irregularly shaped domains and elongated perimeters due
to the anisotropy of the line voltage and the high viscosity of the gel.

The image refers to vesicles whose domains depend on the composition of the
vesicle itself, which in this case are 0.615:0.135:0.25 for Fig. 3.4a, respectively of
SM, DOPC and cholesterol, Fig. 3.4b 0.584:0.103:0.313, Fig. 3.4c 0.25:0.5:0.25.
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The mechanical analysis of the vesicle shape depends on the precision with
which the neck of the vesicle itself is geometrically obtained, specifically the
tangent of the southern trace of the boundary between the two phases, which
is strongly influenced by the difference in the Gaussian moduli of the ordered
and disordered phase.

Only the vesicle in Figure 3.4A was taken into account for the calculation
of this tangent, as for the other vesicles only an estimation is possible.

In order to compare the area of the experimentally measured vesicle with
the simulated one (with reference to Fig. 3.4A), the total area of the vesicle,
after calculating the total arc length of the meridional section S = 78.5 µm by
means of an algorithm, is obtained by:

A (s) =

∫ S

0

r (s) ds ≈ 1205 µm2 (3.19)

From which it appears that the radius of the undeformed sphere having
this area is Ro = 9.8 µm.

Knowing the radius, and consequently the volume, it is possible to know
the reduction in volume using the following formula:

¿ =
V

(4Ã/3)R3
o

≈ 0.76 (3.20)

A high inverse value of meridional curvature was found in the area near
the phase contour, while away from the contour, as the two domains are
approximated by two spheres, the curvature was found to be constant.

Recalling that the meridional curvature is equal to cm = −dÈ/ds, the
derivative of the inverse function represents how quickly the curve moves away
from its tangent at a specific point. Then it measures how quickly the curve
’bends’ with respect to its local direction.

Near the neck region, it was noted how the disordered phase follows the shape
of the spherical cap, then bends towards the ordered phase. The striation region
in which there is this high curvature is predominantly formed by disordered
phase.

The particular geometric shape of the neck can be explained by the difference
in Gaussian moduli between the two phases, as theorised previously [73]. To
confirm these hypotheses, different simulations were carried out and compared
with experimental data.

First case: the vesicle is deformed by line tensions Ã, gradually increasing,
at the boundary of the biphasic domains, which possess the same saddle-splay
or Gaussian modulus,(ε = 1,∆G = 0) and the volume of the vesicle is assumed
to be freely adjustable, i.e. the fraction of area occupied by the disordered
phase can be corrected up to the experimental value xLd

≈ 0.56.
Comparison of the neck curvature obtained by simulation with the neck

radius derived from the experimental test, rb ≈ 0.34, showed lower curvatures
in the simulation.

If, on the other hand, the volume reduction is set to the previous value
¿ ≈ 0.76, the curvature of the neck increases as the line tension increases. The
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imposed volume constraint leads to a limit shape to which a minimum radius
in the contour area corresponds (again as the line tension increases).

For this boundary shape, by performing a force balance in the phase contour,
a relationship between pressure and line tension was obtained:

Ã

p
=

1

2
r2b (Cot (È1)− Cot (È2)) (3.21)

Where angles È1 and È2 are tangent before and after the boundary.
In this case, the comparison between simulation and experimental test

showed very similar neck curvatures, although the tangent angles of the simu-
lated vesicle, with equal radius to the experimental one, do not fit well with
the experimental data.

Second case: Another set of simulations provided that the vesicles had equal
area fraction, volume and boundary radius rb to the experimental tests, but
with decreasing values of the bending moduli, ε = 100, 10, 0.1, 0.01, and equal
Gauss moduli ∆G = 0.

From the figure below, it appears that the domain of the membrane with
the lowest bending modulus takes the form of a spherical cap, while the region
with the highest modulus that of a drop.

Comparing the simulation with ε = 10 (Fig. 3.5), second from the left,
where it is assumed that k(Lo) > k(Ld), with the experimental evidence, it can
be confirmed that the bending modulus of the ordered phase is greater than
that of the disordered phase.

0

100 10 0.1 0.01

Decreasing �
Figure 3.5: Vesicles with variable ε and ∆G = 0. In red the disordered phase Ld

and in blue the ordered phase Lo [74].

To demonstrate the influence of different Gaussian moduli of the two phases
on the neck geometry, simulations were conducted at ∆G ̸= 0 and ε = 1.

The left and right vesicles in Fig. 3.6 refer to values ∆G = −4 and ∆G = 4
respectively, while the one in the centre is inferred from the experimental test.
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vescicle

Figure 3.6: Vesicles with ∆G ̸= 0 obtained from simulation and compared to the
experimental vesicle.The black lines on the three vesicles are shown only to point out
the spherical shape. [74].

The term ∆G ̸= 0 tends to take the boundary between the two phases out
of the neck striation, making it possible that the membrane domain with the
higher value of k(i)G predominantly occupies the neck. Thus, the variation of
∆G ̸= 0 only affects the neck area, where the Gaussian curvature is greatest.

In order to obtain an estimation of the parameters ε, ∆G, pressure p and line
tension Ã for the experimental test of the vesicle in fig2A, the experimentally
obtained vesicle volume, rb and phase contour angle È were taken as boundary
conditions for the numerical solution of the vesicle shape equation problem.

A value of ε = 5± 1.56 was obtained from the analysis of the vesicle fig.2A,
from which a larger bending modulus of the Lo phase than the Ld phase can be
deduced. Estimates of the ternary mixture characterising the vesicle, consisting
of cholesterol, SM-saturated and DOPC-unsaturated chains, show that the
ordered phase contains more cholesterol than the disordered one.

Cholesterol in membranes is known to increase the value of the bending
modulus by up to a factor of five when compared to a membrane lacking it.

Microscopic models relate the bending modulus according to the following
proportionality relationship with other quantities:

k ∝ KA

lτ

uv
(3.22)

Where KA is the area compressibility modulus, l the membrane thickness, u
the average cross-sectional area of a lipid molecule and the exponents Ä, v g 1.
The value of KA increases in direct proportion to the cholesterol content. A
higher amount of this organic molecule leads to a thickening of the membrane
and, simultaneously, to a decrease in the cross-sectional area in a single phase.

Atomic force microscope analysis revealed that the thickness l is greater
in the ordered phase than in the disordered phase, which is also due to the
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lipid-saturated chains present in the phase. The equation above, therefore,
states that k(Lo) > k(Ld), which is equivalent to saying ε > 1.

Measuring the Gaussian modulus, a parameter that describes how much a
surface can be deformed, is a complicated task. This is because it is closely
related to the intrinsic curvature of the surface, a property that remains constant
when the surface is bent without stretching.

This concept is closely related to the Gaussian curvature energy, the energy
associated with the deformation of a surface. This energy is ’topologically
invariant’, meaning that it does not change unless there is a change in the
overall structure of the surface, such as the creation of a hole. This is a result
of the Gauss-Bonnet theorem, a fundamental theorem in differential geometry
that links the total curvature of a surface to its topology.

When discussing homogeneous bilayer membranes, such as cellular mem-
branes, the situation becomes even more complex. These membranes consist
of two layers of lipid molecules, and the Gaussian curvature energy cannot be
determined directly just by looking at the shape of the surface. This is because
Gaussian curvature is an intrinsic property that cannot be measured just by
looking at the shape of the surface.

In spite of this, the researchers in this article measured the normalised
difference ∆G of the Gaussian moduli of the two phases of the vesicles with
respect to the bending modulus. From the analysis, a value of ∆G = 3.6± 0.6
was obtained, which designates a smaller, but more negative, value of k(Lo)

G

than k(Ld)
G .

It has been shown that the two modules are related to the values of the
monolayer kmG :

kG = 2kmG − 8kmhm0 ¶ (3.23)

Where hm0 is the spontaneous curvature of the lipid monolayer and ¶ is the
distance between the neutral surface of the monolayer, a surface that does
not extend or contract, and the mid-plane of the bilayer, which is a two-layer
structure.

In the literature, theoretical considerations place the relationship between
km/kmG in the following range:

−1 f km

kmG
f 0 (3.24)

Asserting that this ratio is constant with respect to the variation of the
microscopic parameters, i.e. that both the bending and the Gaussian modulus
are similarly affected by the change in membrane parameters. Due to the
minus sign, and that not only k = 2km, but also ε > 1, it is expected that the
monolayers of the ordered phase have a more negative kmG than the disordered
phase.

Furthermore, assuming that it is the first term that prevails in the (3.23) in
the difference of the Gaussian moduli and that km/kmG = −1 it follows that:
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∆G =
k
(Ld)
G − k

(Lo)
G

k(Ld)
= ε− 1 = 4 (3.25)

This value is very close to that obtained by the researchers. However, hm0
and thus the second term of (3.23) depends on parameters such as the membrane
proteins, the geometric arrangement of the lipids and the temperature.

Thus, ∆G may not always be positive. By replacing (3.25) with the experi-
mentally derived value of k(Ld), we arrive at an absolute difference of the values
of the Gaussian moduli equal to ∆G ≈ 3.6× 10−19J .

The value of the line tension determined with the collected data is Ã ≈
6.7 × 10−13N . The line tension depends on the sum of two factors: the
inhomogeneity of the chemical composition on the boundary which results in a
chemical line-tension, and a mechanical line-tension given by the differences in
thickness between adjacent areas of the membrane, which causes the membrane
to compress and tilt to avoid a misalignment that could be negative from an
energetic point of view.

This value was found to be consistent and in line with values found in
the literature, but always remembering that line tension is a function of the
properties of both phases and temperature.

Finally, the pressure difference measurement across the membrane of the
experimental vesicle gave the value of p ≈ −2.8× 10−2Nm−2 while the lateral
mean tensions were d (Lo) ≈ −1.03 × 10−4mNm−1 and d (Ld) ≈ −0.91 ×
10−4mNm−1.

The pressure difference must be balanced by the osmotic pressure:

Π = csRT (3.26)

Where cs ≈ 10−5mM is the difference in solute concentration between the
interior and exterior of the vesicle, R the gas constant and T the temperature.
From the spherical shells of the experimental vesicle, imposing constant curva-
ture, the radii of curvature of the two phases can be found, i.e. RLd ≈ 7.4µm
and RLo ≈ 6.5µm.

Using the Laplace equation:

p =
2d

Ri

(3.27)

And substituting the corresponding values of lateral tensions and radii of
curvature found, one finds a pressure difference consistent with the pressure
found just before.

Lipid domains are of considerable importance because they characterise
all cells and their ways of reacting with their environment, as in the case of
endocytosis, and their properties, such as chemical inhomogeneity, can greatly
influence the uptake of nutrients required for cellular sustenance.

It has been shown that cholesterol plays a fundamental role in influencing
membrane stiffness; if a membrane were stiffer, for example, the time taken by
the cell to phagocytose a biomolecule could be delayed.
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Analysis of the membrane, its curvatures and the stress lines separating the
domains, can be useful in shedding light on the processes that connect the cell
with the external environment.

3.2 The basic model of receptor-mediated endo-

cytosis

Gao et al. [22] based their work on the idea that the process of entry and exit
of viruses from animal cells is mediated by the binding interaction between
viral capsid ligand molecules and membrane receptors (Figure 3.7).

Their research question fell on the possible influence that the size of a
bioparticle had on receptor-mediated endocytosis. Therefore, the authors’
study focused on how a cell membrane with diffusible mobile receptors could
envelop a ligand-coated particle.

Their considerations for the model realization concern that during the
process in which the virus permeates the host cell, thermal fluctuations of
the membrane itself and hydrodynamic interactions may occur. In order to
consider these factors, they introduced a simplified form of free energy, which
complements the model formulation, whose solution is found numerically.

Hence, it was assumed that the particle coming into contact with the cell has
membrane proteins called spikes or ligands on its surface, which are immobile
and evenly distributed throughout the process of endocytosis. Whereas the
receptors on the cell membrane are mobile and move in a purely diffusive
manner across the cell membrane, which is considered to be one-dimensional
and semi-infinite.

Furthermore, since the particle size is far smaller than that of the cell, the
membrane is considered flat.

Before the particle touches the cell, the density of the receptors on the
membrane is assumed to be uniform and is equal to À0 (Figure 3.7). In this
state, the membrane has its highest level of entropy. Once the process has
begun, the contact area under the particle, whose ligands and receptors have
formed bonds, reaches the density of ÀL.

The particle-membrane bonding leads to a reduction in free energy that
drags the receptors towards the contact zone, leaving a depletion at the edge of
the particle-membrane interface with density À+ (Figure 3.8). The gradient that
is created induces more and more receptors to go to the area where endocytosis
is occurring. Receptor diffusion is governed by density function À(x, t) that
depends on space and time. Receptor flux can be expressed by Fick’s first
law, which is a key law in the field of transport phenomena and describes
concentration changes in materials involving diffusion phenomena:

j (x, t) = −¼∂À (x, t)
∂x

(3.28)

Where ¼ is the membrane diffusivity with the following measuring unit
[¼] = L2T−1.
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Figure 3.7: Receptor-mediated endocytosis schematized. The molecule to be
incorporated into the cell makes contact with receptors that sit on the cell membrane
initiating the process of endocytosis. The uniform receptor density before the contact
with the molecule is ξ0, while the receptor density in the contact zone is ξL. The
schematic drawing represents the receptor flux j(x, t) and the particle membrane
interface a(t).

As time passes, the particle-membrane interface a(t) increases until the
contact area reaches the maximum radius of the particle. Since the process is
mirrored with respect to the y-axis of Figure 3.8 (schematic drawing of the
process), only what happens in this first quadrant will be analyzed.
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끫毊[끫欎끫殴]끫欒 a(t), 끫毂 = 끫欒+
Figure 3.8: The graph represents the density of receptors with respect to space for
a generic time. The receptor density assumes an uniform value ξ0 at infinity. When
the receptors flow, they reach the membrane-particle interface due to the depletion
ξ+ and finally they are consumed to form the ligand-receptor pairs under the particle
with density ξL.
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Substituting the flux (3.28) into the continuity equation, which is the
differential equation that expresses in local form the conservation law of a given
physical quantity using the quantity flow through a closed surface:

∂À (x, t)

∂t
= −∂j (x, t)

∂x
(3.29)

Hence, the receptor diffusion equation is obtained:

∂À (x, t)

∂t
= ¼

∂2À (x, t)

∂x2
(3.30)

Where the spatial and time domains are the following: a (t) < x <∞ , t > 0.
Next, starting by the assumption that during the endocytosis process the total
number of receptors remains unaltered, the conservation equation for receptor
density can be written as follows:

d

dt

[

∫ a(t)

0

À (x, t) dx+

∫ ∞

a(t)

À (x, t) dx

]

= 0 (3.31)

Before make any considerations or modifications on the previous equation,
it is necessary to fix the boundary conditions of the system. Hence, it can be
supposed that, far away from the membrane, the flux of receptors is zero and
consequently the density of receptors will be equal to the uniform distribution
À0. This is a mathematical assumptions that definitely differs form reality. In
the particle-membrane contact zone x < a(t), the receptors are bound to the
ligands and there is no diffusive motion, here the density will be equal to ÀL.

Finally, it is visible a depletion zone, where the receptor density will have
reached a certain unknown value that is lower than the uniform density; this is
indicated by À+ (see Fig. 3.8).

In summary, the following equations represent the boundary conditions
describing the system, for the sake of completeness the initial condition referring
to the (3.30) is also given as follows:

À (x→ ∞, t) = À0

À (x < a(t), t) = ÀL

À (a (t) , t) = À+

À (x, 0) = À0

(3.32a)
(3.32b)
(3.32c)
(3.32d)

It is now possible to apply these boundary conditions and Leibniz’s rule to
the equation (3.31). Leibniz’s rule is a useful tool for differentiation under the
sign of the integral.

So for instance, considering a generic function f(x, t) integrated with respect
to the variable x with two time-dependent extremes and differentiated with
respect to t, we will obtain:

d

dt

[

∫ b(t)

a(t)

f (x, t) dx

]

= f (b (t) , t)
db(t)

dt
−f (a (t) , t) da (t)

dt
+

∫ b(t)

a(t)

∂f (x, t)

∂t
dx

(3.33)
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In our specific case, applying the appropriate steps, the equation will result:

ȧ (t) =
¼

(ÀL − À+)

∂À (a (t) , t)

∂x
(3.34)

The equation just obtained is called Stefan condition, meanwhile the system
of differential equations constituted by (3.30),(3.32),(3.34) is a typical example
of a non-linear mobile frontier problem called Stefan’s problem (Appendix B),
in which one extreme of the spatial domain varies at each temporal instant,
expanding the domain or shrinking it.

For this kind of problem it is possible to find the solution through the
application of a similarity variable (B.10) to (3.30). Also since the boundary
condition (3.32c) is not known, only (3.32a) will be applied to the solution,
leaving the other integration constant c1 to be determined.

This will lead to the solution, and so the receptor density function will be
obtained as follows:

À (x, t) = À0 − c1
√
Ã¼ Erfc

(

x

2
√
¼t

)

(3.35)

Where Erfc(y) is the complementary error function:

Erfc (y) =
2√
Ã

∫ ∞

y

e−t2 dt (3.36)

Next, the equation (3.35) will be substituted into (3.34) obtaining as follows:

ȧ (t) =
¼

(

ÀL −
(

À0 − c1
√
Ã¼ Erfc

(

a(t)

2
√
λt

)))

e
−
(

a(t)

2
√

λt

)2

c1
√
¼√

¼t
(3.37)

The above equation can only be true if the interface assumes the form of:

a (t) = 2·
√
¼t (3.38)

Where · is the speed factor that will be determined later.
The constant of integration is found by replacing (3.38) in (3.37). Conse-

quently the receptor density function becomes:

À (x, t) = À0 −
·eζ

2
(ÀL − À0)

√
Ã

1− ·eζ2
√
Ã Erfc (·)

Erfc

(

x

2
√
¼t

)

(3.39)

Therefore, the receptor density function is known, except for the ´ factor,
which is not known. Hence, it is necessary to introduce a new equation.
Following, the authors considered the free energy function F (t) for cellular
membrane in contact with a substrate:

F (t) =

∫ a(t)

0

(

−ÀLkBTCB + kBTÀL ln

(

ÀL
À0

)

+
1

2
kBTBk

2
0

)

dx

+

∫ ∞

a(t)

À (x, t) kBT ln

(

À (x, t)

À0

)

dx

(3.40)
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Let us analyze the terms of the first in integral. The term on the left takes
into account the energy of a single receptor-ligand bond. kb is the Boltzmann
constant, T is the absolute temperature in Kelvin, and Cb is the receptor-ligand
adhesion energy coefficient.

Then there is the free energy per receptor associated to the loss of con-
figurational entropy. Finally, the bending energy of the elastic membrane
enveloping the particle with radius of curvature k0 = R−1 and bending modulus
B coefficient.

The last integral represents the free energy associated with receptors that
are unbound and free to move. Differentiating (3.40) with respect to time and
assuming that the rate of energy reduction caused by the particle enveloping
process precisely balances the dissipation energy spent on receptor transport,
once some mathematical steps have been taken:

CB − ln

(

ÀL
À0

)

− 1

2

Bk20
ÀL

+ 1− À+
ÀL

= 0 (3.41)

After placing the condition (3.32c) in the (3.39), it is possible to substitute
the receptor function into the equation just derived to obtain an equation whose
only unknown is the speed factor ·:

CB − ln

(

ξ0
ξL

− ·eζ
2√
Ã Erfc (·)

1− ·eζ2
√
Ã Erfc (·)

)

(

1− ·eζ
2√
Ã Erfc (·)

)

− 1

2

Bk20
ÀL

+ 1− À0
ÀL

= 0

(3.42)

Since · is now known, (3.38) can be exploited to calculate the final time it
takes the interface to reach the radius of the R particle.

Until now, it has been assumed that the membrane with which the parti-
cle interacts is semi-infinite, so the cytoplasmic membrane could subject an
infinitely large particle to endocytosis, which is not physically meaningful, so
the right spatial extreme of the domain in (3.30) should be set equal to the
length L of the membrane.

In this case, however, there is no analytical solution, so it is necessary to
proceed numerically through the application of the finite difference method.

By knowing the receptor density vector ξ(x, t∗) and the position a(t∗) of
the particle-membrane interface at a certain time t∗, it is possible to calculate
the interface speed by the equation (3.34) and then update the position of the
particle by the relation a(t∗ +∆t) = a(t∗) + ȧ (t∗)∆t. With the new position
the left extreme of the domain of the (3.30) will be updated to find the vector
ξ(x, t∗ +∆t) and so the loop starts again until the radius of the particle is
reached. As a boundary condition in L, the zero flow condition, the authors
decided to set:

∂À (L, t)

∂x
= 0 (3.43)
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Below there is a table with parameter values, curves of the receptor density
and the interface trend between the particle and the membrane.

Table 3.1: Parameters of the model exploited to describe the receptor-mediated
endocytosis process.

¼[µm s−1] ÀL[µm
−2] À0[µm

−2] R[nm]
0.01 5× 103 50 25
CB B k0[µm

−1] L[µm]
15 20 R−1 10

The six receptor density curves in Figure 3.9 were extrapolated from the
finite difference procedure to obtain the numerical solution. it is possible to note
for each time the depletion at the particle-membrane interface and, by means
of the magnification in the centre of the graph, the progress of the endocytosis
process as the interface increases until the particle radius is reached.
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Figure 3.9: This graph shows six constant-time receptor density curves obtained
by numerical solution using the finite difference method procedure. It is possible to
notice the asymptote for all the curves, which is the value ξ0 = 50 µm−2. While in
the magnification in around zero,the progress of the interface for the different time
intervals can be seen.

This second graph shows the progress of the interface from the initial inter-
face value obtained from the analytical solutions for semi-infinite membrane.
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Figure 3.10: The particle-membrane interface calculated by the finite difference
method is shown. The curve starts with a time value of tstart ≈ 19.5 s, which
corresponds to an initial interface of 5 nm, obtained from the analytical solution, as
does the starting vector of receptor density.

This procedure makes it possible to find the time required for a cell to
endocyte a particle with a known radius. Although there are some limitations:
first, the necessity of knowing the analytical solution and making the numerical
computation start from a certain time interval, and second, the assumption of
free diffusion of membrane receptors as if the membrane is perfectly homoge-
neous and there are only the receptors on its surface to move, a phenomenon
that does not reflect reality, since on their way the receptors may encounter
different obstacles and multiple proteins. This last aspect will be considered in
the new formulation proposed in this thesis in Chapter 4.

3.3 Notes and changes of the later models

Other researchers over the years have modified or expanded the previous model,
focusing their attention on new or previously neglected aspects. The following
are examples of portions of successive models.

Li et al. [34] have focused their attention on how the nanoparticle might
also not have ligands uniformly distributed on its supercific, and how this could
affect the progress of the process.

Hence, the authors used a statistical model to study the dynamics of
receptor diffusion-mediated endocytosis. Here, they considered how ligand-
receptor complexes move to resist membrane deformation and changes in
receptor configuration entropy. From here, they showed how the internalisation
of nanoparticles depended on the distribution of ligands, and how the uptake
process by the cell is enhanced when the ligand distribution is more uniform.
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For this purpose, they performed numerical simulations where they con-
sidered different forms of ligand distribution: harmonic, linear periodic, and
periodic piecewise, while the receptors always diffuse uniformly as described in
the previous paragraph. An interesting case is the harmonic distribution:

ÀL (x) = ÀL0

(

1 + A Sin

(

2¼x

R
+
Ã

2

))

, x f 2ÃR (3.44)

It has been observed that the fastest absorption of the particle occurs when
the amplitude of the wave reaches A = 0.1, in the case of high receptor density,
whereas if the receptor density is low, the amplitude drops to A = 0.01. At
high frequencies, the wrapping time is independent of the ligand distribution.

They proved how in the case of low receptor density, the nanoparticle still
be phagocytosed as long as the ligand density is sufficiently high, receptor
diffusion influences the phenomenon by delaying the particle’s engulfment. In
the case where the ligand density is low, neglecting the amount of receptor
density, the scarcity of ligands does not allow adequate endocytosis and thus
the particle will not be absorbed. In addition, it was observed that the wavy
frequency of the ligand distribution does not affect wrapping efficiency, whereas
very high values of wavy amplitude can lead to higher uptake time.

In the recent modeling proposed by Wiegold et al. [37] receptor-mediated
endocytosis diffusion is modelled in the same way of Gao et al. [22], with some
modifications.

They developed a two-dimensional model of a virus experiencing endocytosis.
They first decided to model the virus as a substrate with fixed receptors on its
surface, while receptors in the host cell are free to move across its membrane,
thus allowing local variation in their concentration.

In addition, they have also considered the curvature of the membrane in
the wrapping process of the virus. The novelty of the model is the additional
energetic considerations on when the virus advances toward the membrane and
in other factors considered.

Hence, this research group changed the free energy of the system. Here,
the difference of energies in front of and behind the intephace, i.e. in the
nanoparticle-membrane contact zone, is equal to the kinetic energy of the
interface itself:

E− − E+ = Ekin (3.45)

In which the first term represents the energy of the contact zone, the second
term the energy outside the endocytosis zone where the receptors flow freely
and the last the kinetic energy of the interface.

The energy behind the interface consists of three terms:

E− = E−
b + E−

e + E−
k (3.46)

Respectively the energy of receptor binding, the energy concerning receptor
entropy and the membrane bending energy:
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E−
b = −kBTCBÀL

E−
e = kBTÀL ln

(

ÀL
À0

)

E−
k =

1

2
kBTBk

2
0

(3.47a)

(3.47b)

(3.47c)

While the energy in front of the interface has three other members:

E+ = E+
e + E+

k + E+
v (3.48)

The first relates to entropy, similarly to what has been written above, the
second to the curvature of the membrane (a term that will be equal to 0 because
the authors assume that the curvature in the contact zone is smaller than that
caused by the virus) and finally the kinetic energy caused by the movement of
the receptors of mass mr, which move with velocity vr:

E+
e = kBTÀ+ ln

(

À+
À0

)

E+
k = 0

E+
v =

1

2
mr

¼2

À+

(

∂À+
∂x

)2

(3.49a)

(3.49b)

(3.49c)

The difference between the two macro-energy in (3.46) serves as a driving
force for the advancement of the interface, which will be characterised by the
following kinetic energy:

Ekin =
1

2
mrrÀLȧ (t) (3.50)

Where mrr is the mass of a ligand-receptor pair. Putting all the energy
terms together in the (3.46) gives the new form of energy:

−CB + ln

(

ÀL
À0

)

+
1

2

Bk20
ÀL

− À+
ÀL

ln

(

À+
À0

)

− 1

2

mr

kBT

¼2

À+ÀL

(

∂À+
∂x

)2

=
1

2

mrr

kBT
ȧ (t)

(3.51)
This equation is a more complex case of the (3.41). Another important

factor considered is cooperativity: when receptors bind to ligands, they "smooth
out" the membrane surrounding them, making it easier for other receptors
to form bonds and strengthening adhesion between the nanoparticle and the
membrane.It has been observed that the duration of the endocytosis process
strongly depends on cooperativity and specifically on the binding range; small
initial binding ranges are preferred to complete the process as quickly as
possible. However, if the binding range is too low, there will not be enough
ligand-receptor pairs and uptake cannot begin. In contrast, for progressively
greater binding ranges, the number of receptors required to create the proper
adhesion between particle and cell increases; this results in higher endocytosis
times.
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Another numerical simulation study of the endocytosis process is from Tang
et. al (2018)[40]. When a particle undergoes endocytosis, one phenomenon
that can occur is the rotation of the particle itself during wrapping. This
phenomenon is more pronounced when the outer body takes on shapes other
than spherical, such as ellipsoidal.

Here, the authors analysed what happens if receptor diffusion is coupled
with the rotation of an ellipsoidal nanoparticle, its shape and initial orientation,
and how these factors influence the wrapping time.

They hypothesised that at an early stage the particle penetrates the mem-
brane symmetrically without rotating, then either the phenomenon continues
symmetrically, as seen in the previous section, or after reaching a critical wrap-
ping fraction fc the nanoparticle begins to rotate, changing its configuration to
asymmetrical.

Simulations have shown that the total deformation energy of the membrane
is less when the process is asymmetrical rather than symmetrical. For large
particles and flexible membranes, the difference in strain energy is small and it
is easier to overcome thermal fluctuations of the membrane, whereas for small
particles and rigid membranes, the difference in strain energy is large and it
is not able to overcome thermal fluctuations. Thus, particle rotation, which
always occurs beyond a certain critical wrapping fraction, is energetically more
favourable than symmetrical wrapping.

It has been seen that the higher the membrane tension, the higher the fc
will be, indicating that for membranes with a sufficiently large tension the
nanoparticle will tend to assume a symmetrical configuration, furthermore a
reduction in bending energy facilitates the rotation of the nanoparticle.

It would appear that rotation promotes the speed of wrapping, but since
wrapping proceeds in a specific direction in the asymmetric stage the total time
is longer than that taken by an endocytosed particle with symmetric wrapping.

These numerical simulations represent an additional tool for understanding
the mechanics behind this very complex biological process.
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Chapter 4

Anomalous receptor diffusion

In this chapter, the movement of receptors on the membrane subject to the
action of an external potential will be analysed and a generalised form of the
diffusion equation, Smoluchowski equation, will be derived, which describes
how the density of receptors varies during the process of endocytosis.

4.1 Smoluchowski equation

The Smoluchowski equation is named after Polish physicist Marian von Smolu-
chowski who studied the Brownian motion of particles subjected to external
forces [75].

In 1915 he published a paper with his equation as a generalization of the
diffusion equation with the addition of a damping term due to viscous friction.
The equation describes the motion of particles in space and time in the presence
of a potential that tends to move them toward regions of minimum energy.

Receptor

F
p

v

F
v

Cell membrane

Figure 4.1: Membrane Receptor flowing on the cell membrane with a velocity v

and subjected to a potential U(x) from which the drag force Fp arises, and a friction
force given by the membrane Fv.
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To derive Smoluchowski equation we consider a potential acting on a receptor
suspended in a fluid membrane.

The force balance on the receptor (Figure 4.1) will be given by:

m
dv

dt
= −Fv + Fp (4.1)

In which m is the mass of the receptor, Fv the friction force and Fp the
drag force. The terms after the equal can be expressed as:

m
dv

dt
= −v

µ
− dU(x)

dx
(4.2)

Where v is the velocity, µ is the mobility [µ] = TM−1 and U(x) the
potential.

Assuming that the receptor is in steady state, and therefore the velocity is
constant, the first term on the left is zero. So the velocity can be found as:

v = −µdU(x)
dx

(4.3)

If we want to analyze receptors flow, we must take into account that Fick’s
law will not only consist of a diffusive term, but also the addition of a convective
term that takes into account the velocity of these proteins:

j (x, t) = −¼∂À (x, t)
∂x

+ vÀ (x, t) (4.4)

In which the diffusivity coefficient is expressed through Einstein’s relation
¼ = µkBT , kB is the Boltzmann constant [kB] = ML2T−1K−1 and T the
temperature in Kelvin.

By replacing the speed in Fick’s law:

j (x, t) = −¼∂À (x, t)
∂x

− µ
dU (x)

dx
À (x, t) (4.5)

Finally, by substituting Fick’s law into the continuity equation, we obtain
the modified diffusion equation or Smoluchowski equation, which accounts for
the diffusive motion of the receptors and the action of the external potential:

∂À (x, t)

∂t
= ¼

∂2À (x, t)

∂x2
+ µ

(

∂À (x, t)

∂x

dU (x)

dx
+ À (x, t)

d2U (x)

dx2

)

(4.6)

4.2 Time-fractional Smoluchowski equation

The discussed models in Chapter 3 describe the motion of receptors in a purely
diffusive manner. In order to move in this way, it is necessary for the receptors
to move from high-density zones to low-density regions, as can be seen in Figure
3.8.
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This implies that between the bound and unbound phase the density function
of the receptors has a discontinuity of the first kind, which is unexplainable
from the physical point of view of the phenomenon.

In this perspective the aim of this research work is to propose a new model
to more rigorously explain the phenomenon of endocytosis.

We hypothesized (Figure 4.2) that receptor flux is promoted by a potential
that carries receptors from areas of low density and high potentials (green
arrows), where receptors are unbound ÀU and free to move, to areas of high
density and low potentials (red arrows), where receptors are bound to ligands
ÀB.

Bound receptors 끫欒끫歪 끫殜 끫毂

Unbound receptors 끫欒끫殐

끫殜 끫毂끫欒끫歪 

끫欒끫殐
Figure 4.2: Top: the action of the Morse potential exerted on free receptors, leading
them to low potentials, where the receptors are bound to ligands. Bottom: the
distribution of receptors assumed at a certain time during the process.

The following modified and shifted form of the Morse potential was chosen
as the acting potential on receptors [76]:

U (x, t) = 1.5 kBT
(

1 + e−2g(x−a(t)) − 2e−g(x−a(t))
)

(4.7)

U(x, t) has the dimensions of an energy and g is the width of the potential
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[g] = L.
This allows us to use the (4.5) and the Smoluchowski equation (4.6). To

complete the system we need to derive a new Stefan condition that binds the
speed intephase at receptor density, but first we need to set the boundary
conditions.

Considering the right graphic in Figure 4.2, we assume that below the
membrane-particle contact zone the density of ligand-bound receptors is a
known quantity À(a(t), t) = ÀB and that there is no flux in this region, while
considering the semi-infinite spatial domain we suppose that membrane areas
sufficiently far from the zone of endocytosis are not involved during the process,
so there the density is that of unbound receptors À(x→ ∞, t) = ÀU .

Lastly, at the initial time the receptors are unbound and distributed on the
membrane À(x, 0) = ÀU .

Due to the previous boundary and initial conditions, and taking into account
the conservation of receptors during the endocytosis process (3.31), with the
appropriate mathematical steps we obtain:

ȧ(t) = −
∂2ξ(a(t),t)

∂t∂x

∂2ξ(a(t),t)
∂x2

(4.8)

The model described so far, as well as the previous ones, bases the diffusion
of receptors on a perfectly homogeneous phospholipid bilayer membrane, such
as an artificial micelle membrane. But in reality, cells have several elements
and proteins with different functionalities on their surface, as illustrated in
section 2.2.

These proteins, during endocytosis, actively contribute to the recruitment of
membrane receptors making it faster, e.g. PI3K (PhosphatidylInositol-3-Kinase)
by activating various intermediate proteins stimulates actin reorganisation near
the membrane, facilitating the migration of receptors to the endocytosis site
[77]. Other proteins (section 2.6) are responsible for the recruitment of AP-2
receptors that interact with the Eps15 protein, which, through specific domains,
helps to coordinate the collection of receptors and concentrate them in the
areas of the membrane where invagination will occur [78].

Furthermore, it could happen that the outer body, depending on its size
and the type of cell being targeted, is endocytosed in a shorter time due to the
rapid movement of receptors, which is a negative aspect if the nanoparticles are
viruses. this is the so-called fast endocytosis [78]. This implies that receptor
flow is no longer Brownian, and simple Fick law fails to capture this.

To consider this phenomenon, we thought of introducing Caputo fractional
derivative (Appendix A) of ´ order to modify the diffusive component of Fick’s
law (4.5):

j (x, t) = −¼β
(

C
0D

β

t

∂À

∂x

)

(x, t)− µ
dU (x, t)

dx
À (x, t) (4.9)

Where ¼β is the anomalous diffusivity coefficient [¼β] = L2T−(1−β).
We can interpret the (4.5) as a special case of fractional Fick’s law in which

´ = 0:
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j (x, t) = −¼0
(

C
0D

0

t

∂À

∂x

)

(x, t)− µ
dU (x, t)

dx
À (x, t) =

= −¼∂À (x, t)
∂x

− µ
dU (x, t)

dx
À (x, t)

(4.10)

Consequently by substituting the (4.9) into the (3.29), the new fractional
system for receptor diffusion:

Fractional receptor diffusion:


























































∂À (x, t)

∂t
=¼β

(

C
0D

β

t

∂2À

∂x2

)

(x, t)+

µ

(

∂À (x, t)

∂x

dU (x, t)

dx
+ À (x, t)

d2U (x, t)

dx2

)

,

a(t) < x <∞, t > 0

À (x, 0) = ÀU

À (a(t), t) = ÀB

À (x→ ∞, t) = ÀU

(4.11a)

(4.11b)
(4.11c)
(4.11d)

Stefan condition:














ȧ(t) = −
∂2ξ(a(t),t)

∂t∂x

∂2ξ(a(t),t)
∂x2

a (0) = 0

(4.12a)

(4.12b)

However, for the given system there is no analytical solution, so we proceeded
numerically through the application of the fractional finite difference method
as will be explained in the following chapter.
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Chapter 5

Fractional finite differences method

Given the new fractional system for receptor diffusion does not have analytical
solution, this chapter will address the discretization and numerical solution of
the following problem (4.11a)-(4.12b).

5.1 Setting the numerical solution

Before applying the method of fractional finite differences, we can make an
argument.

As the particle-membrane interface advances, the density of receptors near
the zone of endocytosis changes. It is possible to think that as the interface
progresses, the spatial domain of the (4.11a) shrinks, consequently, if we
discretize the space into a number of nodes their position will depend on time,
as so will the density of receptors:

À(x(t), t) (5.1)

Suppose we follow a given node x(t) (Figure 5.1):

끫殜 끫毂1
∆끫毊 끫毂1

끫殜 끫毂2
Δ끫毊 끫毂2

끫毊 끫毂1

끫毊 끫毂2
Figure 5.1: Movement of the interface (green) and spatial nodes (blue) in the grid
at two different times t1 and t2.
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At a certain instant the density of receptors will have a specific value,
different from that at the next time.

To follow the change in density along the motion of the node, it is possible
to apply the total derivative to the receptor density function:

dÀ (x (t) , t)

dt
=
∂À (x (t) , t)

∂t
+
dx (t)

dt

∂À (x (t) , t)

∂x
(5.2)

In which the first partial derivative represents the change in density over
time of a fixed node in space. The second term takes into account that the
spatial node at which the density is being measured may change over time,
the first derivative representing the speed with which the node moves through
space, while the partial derivative indicates how much the density changes with
movement through space.

Finally, the product of these two functions gives the change in density due
to the movement of the node in space. Through a proportion we can express
the velocity of x(t) as a function of the interface:

dx(t)
dt

L− x(t)
=

da(t)
dt

L− a(t)
(5.3)

Where L, the membrane length, is a sufficiently large number relative to
the interface and will be the extreme right-hand side of the spatial domain.

By replacing the (5.2) and (5.3) in the (4.11a) and grouping the terms:

dÀ (x (t) , t)

dt
=¼β

(

C
0D

β

t

∂2À

∂x2

)

(x(t), t)

+
∂À (x (t) , t)

∂x

(

L− x (t)

L− a(t)

da (t)

dt
+ µ

dU (x, t)

dx

)

+ À (x(t), t)

(

µ
d2U (x, t)

dx2

)

(5.4)

For convenience during discretization, it is worth to bring the Caputo
derivative to the term on the left side of the equation.

To do this, we apply the Riemann-Liouville fractional integral (Appendix
Aof ´ order to all terms:

(

0I
β
t

dÀ

dt

)

(x (t) , t) =¼β

(

∂2À (x (t) , t)

∂x2
− ∂2À (x (0) , 0)

∂x2

)

+ 0I
β
t

(

∂À (x (t) , t)

∂x

(

L− x (t)

L− a(t)

da (t)

dt
+ µ

dU (x, t)

dx

))

+ 0I
β
t

(

À (x (t) , t)

(

µ
d2U (x, t)

dx2

))

(5.5)

The second derivative of the density with respect to space calculated at
time t = 0 is 0.
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Let us focus our attention on the first fractional integral on the left, it can
be replaced by a Riemann-Liouville fractional derivative:

(

0I
β
t

dÀ

dt

)

(x (t) , t) =

(

0D
−β
t

dÀ

dt

)

(x (t) , t) (5.6)

This allows us to apply the property (A.10):

(

0D
−β
t

dÀ

dt

)

(x (t) , t) =
(

0D
1−β
t À

)

(x (t) , t)− t−(1−β)

Γ (´)
À (x (0) , 0) (5.7)

Lastly by exploiting the (A.9) we arrive at the Caputo derivative:

(

0D
1−β
t À

)

(x (t) , t)− t−1+β

Γ (´)
À (x (0) , 0) =

(

C
0D

1−β

t À
)

(x (t) , t) (5.8)

By substituting Caputo fractional derivative in the (5.5):

(

C
0D

1−β

t À
)

(x (t) , t) =¼β
∂2À (x (t) , t)

∂x2

+ 0I
β
t

(

∂À (x (t) , t)

∂x

(

L− x (t)

L− a(t)

da (t)

dt
+ µ

dU (x, t)

dx

))

+ 0I
β
t

(

À (x (t) , t)

(

µ
d2U (x, t)

dx2

))

(5.9)

Now we can implicitly discretize the obtained equation. The speed of the
interface is named v(t) = da(t)/dt.

The discretised functions will have the temporal nodes n as superscript and
the spatial nodes J as subscript, with the exception of the interface having the
temporal node as subscript.

The spatial discretization step is given by:

∆x(n) =
L− an
N

(5.10)

Where N is the total number of spatial nodes, which will be distributed as
follows:

xnJ = (J − 1)∆x(n) (5.11)

While the time step:

∆t =
tend
M

(5.12)

M is the number of time nodes, tend the chosen time at which the numerical
computation will stop.

Recalling the Morse potential (4.7), let us first present the discretization of
the two fractional integrals (Appendix A.1) in (5.9) so that they can be written
in a more compact form.
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The first discretized integral becomes:

∆tβ

Γ (1 + ´)

n
∑

k=0

pn,k,β
((

Àk+1
J+1 − Àk+1

J−1

)

B1 (J, k + 1)
)

(5.13)

Where pn,k,β = (n− k + 1)β − (n− k)β. It is useful to set:

B1 (J, k + 1) =
1

2∆x (k + 1)

L− xk+1
J

L− ak+1

vk+1

+ 1.5 g ¼
(

−2e−2g(xk+1
J

−ak+1) + 2e−g(xk+1
J

−ak+1)
)

(5.14)

The same thing was carried out for the second integral:

∆tβ

Γ (1 + ´)

n
∑

k=0

pn,k,β
(

Àk+1
J B2 (J, k + 1)

)

(5.15)

B2 (J, k + 1) = 1.5 g2¼
(

4e−2g(xk+1
J

−ak+1) + 2e−g(xk+1
J

−ak+1)
)

(5.16)

Therefore, the discretized equation is:

1

∆t1−βΓ (1 + ´)

(

n
∑

k=0

bk,β
(

Àn−k+1
J − Àn−k

J

)

)

=

= ¼β

(

Àn+1
J−1 − 2Àn+1

J + Àn+1
J+1

)

∆x (n+ 1)2

+
∆tβ

Γ (1 + ´)

n
∑

k=0

pn,k,β
((

Àk+1
J+1 − Àk+1

J−1

)

B1 (J, k + 1)
)

+
∆tβ

Γ (1 + ´)

n
∑

k=0

pn,k,β
(

Àk+1
J B2 (J, k + 1)

)

(5.17)

In which bk,β = (k + 1)β − (k)β.
By multiplying the terms in the equation by ∆t1−βΓ(1 + ´) we get:

(

n
∑

k=0

bk,β
(

Àn−k+1
J − Àn−k

J

)

)

=

=
¼β∆t

1−βΓ (1 + ´)

∆x (n+ 1)2
(

Àn+1
J−1 − 2Àn+1

J + Àn+1
J+1

)

+∆t
n
∑

k=0

pn,k,β
((

Àk+1
J+1 − Àk+1

J−1

)

B1 (J, k + 1)
)

+∆t
n
∑

k=0

pn,k,β
(

Àk+1
J B2 (J, k + 1)

)

(5.18)
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As a further simplification we pose:

G1 (n+ 1) =
¼β∆t

1−βΓ (1 + ´)

∆x (n+ 1)2
(5.19)

G2 (J, k + 1) = ∆t B1 (J, k + 1) (5.20)

G3 (J, k + 1) = ∆t B2 (J, k + 1) (5.21)

The simplified equation becomes:

(

n
∑

k=0

bk,β
(

Àn−k+1
J − Àn−k

J

)

)

=

= G1 (n+ 1)
(

Àn+1
J−1 − 2Àn+1

J + Àn+1
J+1

)

+
n
∑

k=0

pn,k,β
((

Àk+1
J+1 − Àk+1

J−1

)

G2 (J, k + 1)
)

+
n
∑

k=0

pn,k,β
(

Àk+1
J G3 (J, k + 1)

)

(5.22)

We bring out the terms at time n + 1 in the sums, and then group the
members having the same spatial subscript:

ÀnJ −
(

n
∑

k=1

bk,β
(

Àn−k+1
J − Àn−k

J

)

)

=

= Àn+1
J−1 (−G1 (n+ 1) +G2 (J, n+ 1))

+ Àn+1
J (1 + 2G1 (n+ 1)−G3 (J, n+ 1))

+ Àn+1
J+1 (−G1 (n+ 1)−G2 (J, n+ 1))

−
n−1
∑

k=0

pn,k,β
((

Àk+1
J+1 − Àk+1

J−1

)

G2 (J, k + 1)
)

−
n−1
∑

k=0

pn,k,β
(

Àk+1
J G3 (J, k + 1)

)

(5.23)

In which there is the density vector at time n and time n+ 1, the matrix of
coefficients and an additional vector that takes into account the sums derived
from the fractional integrals.

If ´ = 0 is placed in the (5.23) the three sums vanish and a pattern similar
to (B.35) would be obtained.

The boundary conditions will be set as follows:

Àn0 = Àn+1
0 = ÀB

ÀnN = Àn+1
N = À0

(5.24a)
(5.24b)

By placing J = 1 in the (5.23) and substituting the (5.24a):
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Àn1 −
(

n
∑

k=1

bk,β
(

Àn−k+1
1 − Àn−k

1

)

)

− ÀB (−G1 (n+ 1) +G2 (1, n+ 1))

−
n−1
∑

k=0

pn,k,β (ÀBG2 (1, k + 1)) = Àn+1
1 (1 + 2G1 (n+ 1)−G3 (1, n+ 1))+

Àn+1
2 (−G1 (n+ 1)−G2 (1, n+ 1))−

n−1
∑

k=0

pn,k,β
(

Àk+1
2 G2 (1, k + 1)

)

−
n−1
∑

k=0

pn,k,β
(

Àk+1
1 G3 (1, k + 1)

)

(5.25)

This equation represents the starting point of the computation, from which
by knowing the vector Àj at the instant n, it is possible to proceed iteratively
to know the subsequent ones.

Hence, the equation (5.25) represents the first row of vectors and matrixes
of the computation, in which the interface was placed to the ghost node before
the first space node.

As for the second boundary condition, it is simpler to set and one proceeds
set the Dirichlet condition as in classical finite differences.

To complete the discretization of the system, only the interface condition
(4.12a) remains, treated as shown below:

vn+1 = −
1
∆t

(

−ξB+ξn+1
1

∆x(n+1)
− −ξB+ξn1

∆x(n)

)

ξB−2ξn1 +ξn2
∆x(n)2

(5.26)

In addition, through speed, it is possible to update the position of the
interface via the equation:

an+1 = an +∆t vn+1 (5.27)

The algorithm loop, considering the time nodes n = 0, 1, 2, ...M − 1, will
continue iteratively by calculating the parameters ∆x(n), vn+1, Àn+1 and an+1,
and then restarting the loop, thus reaching the final numerical solution.

The diffusivity coefficient, assumed constant as ´ varies, will be calculated
by means of Saffman-Delbrück theory [79][80], in which the mobility of a protein
moving across the membrane is given by:

µ =
1

4Ã¿m

(

ln

(

¿m
r ¿w

)

− µ

)

(5.28)

Where ¿m and ¿w are the viscosities of the membrane and water respectively
at 25 °C, r is the radius of the receptor approximated as dimenision to a sphere
and µ is the Euler–Mascheroni constant.
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After obtaining the mobility, the diffusivity will be calculated using Ein-
stein’s relation ¼β = ¼ = µkBT . Below is a table with the data used for the
computations:

Table 5.1: Parameters of the time-fractional model for the receptor diffusion.

¿m[mPa s] ¿w[mPa s] r[nm] µ[µm pN−1s−1] ¼β[µm
2 s−(1−β)]

255 [81] 0.905[81] 5 3.23 0.013
g[µm] L[µm] ÀU [µm

−2] ÀB[µm
−2] tend[ms]

3[76] 10 1× 103 5× 103 10

The computational algorithm code was written on Wolfram Mathematica®

14 software. For the computations, we decided to model endocytosis for
10 ms, as shown in the table, aiming to discover the values reached at the
virus-membrane interface.

In the following plot (Figure 5.2), the trends of the particle(or virus)-
membrane interface with respect to time have been plotted for different values
of the derivation order ´. Depending on the cell type, there may be different
types of proteins, which may somehow vary the moving speed of the receptors
exploited for the endocytosis process.

From this perspective, the ´ parameter is likely to be intended as a measure
mirroring the action of the proteins that are involved in receptor recruitment.
Indeed, for a higher ´ it will take less time for the receptors to reach the target
area for endocytosis, therefore more easily the external body will be absorbed.

Virus-Membrane Interphase wrt time for different β values
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Figure 5.2: Virus-Membrane interface curves with respect to time for different
values of β.
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Under real biological conditions, cells are composed of numerous kinds of
receptors (section 2.2.3) and depending on their function, some receptors, with
different characteristics among them, may be more prevalent than others, thus
conditioning the speed of the endocytosis process.

Figure 5.3 shows the trend of the virus-membrane interface curves, for a
fixed ´, corresponding to different values of the initial density of receptors
which is responsible for binding to outer body spikes. It is possible to underline
from these curves how the more free receptors are on the membrane, the faster
the external body will be processed and internalized.

Virus-Membrane Interphase for several values of ξU

●

●

●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

■

■
■
■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■

◆

◆
◆
◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆

○
○
○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○

□ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □

Legend● ξU=1000
■ ξU=800
◆ ξU=600
○ ξU=400
□ ξU=200

0 2 4 6 8 10

0

20

40

60

80

Time [ms]

V
ir
u
s
-
M
e
m
b
ra
n
e
In
te
rp
h
a
s
e
[n
m
]

Figure 5.3: Interface with respect to time with β = 0.4 at different values of the
initial number of available receptors ξU to promote endocytosis.

Figure 5.4 shows, for a fixed ´, the progression of endocytosis from the
beginning until a particle radius of 80 nm is reached.

By considering a simple virus, such as coronavirus, with a radius of 80 nm,
this virus takes 10 ms to completely permeate the membrane if for example we
consider the value of ´ fixed equal to 0.4.

Figure 5.4 shows an oscillating trend in receptor density. Since there are
no other papers in the literature concerning the fractional calculus employed
in endocytosis, being this thesis the first case to the authors’ knowledge, or
experiments analyzing receptor flux from this perspective, it remains for now
without physical interpretation such oscillating trend and we allocate the
investigations to future works.
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Receptor Density wrt space for fixed β = 0.4
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Figure 5.4: Receptor Density for fixed β.

On the other hand, Figure 5.5 represents the trend of the receptor density
for a fixed time value at different ´.

Receptor Density wrt space for fixed time t = 10 ms
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Figure 5.5: Receptor Density for fixed time.

From the Figure 5.5, we can conjecture that the ´ parameter may be
interpreted as a mathematical parameter representing the ease through which
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the virus is encapsulated during the uptake process, thereby possibly accounting
for a sort of resistance of the medium in which the receptors flow. Hence it
follows that the higher the ´, the lower the resistance of the membrane and its
proteins.

In previous simulations ¼β was considered equal to ¼, but in a realistic
biological phenomenon of endocytosis ¼β decreases with advancement of the
process. Depending on the cell and its surface characteristics, the possible
bonds that receptors can naturally form with ligands are saturated as the
encapsulation process progresses. Indeed, cells possess a limited number of
receptors which are available in order to form ligand bonds, and over time,
these receptors have been already engaged, reducing the likelihood of further
receptor-ligand interactions as the endocytosis proceeds. This phenomenon
also limits the maximum engulfing size of the particle: as the surface area
becomes saturated, the probability that the cell can fully envelop a large particle
decreases.

From a mathematical point of view, we have described this behavior by
modeling ¼β as a decreasing function with respect to time and ´.

The following decay function was chosen:

¼β (t) = µkBTe
−mt1−β

(5.29)

Where m is a constant(with dimension time to the power of −(1 − ´))
governing the rate of decay, which is regulated as ´ varies. By implementing
this law, we obtain the following graph 5.6:

Virus-Membrane Interphase considering λβ decay law
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Figure 5.6: Trends of the virus-membrane interface obtained by exploiting the decay
law of the anomalous diffusivity coefficient λβ dependent on time and derivation order
β. From the highest to the lowest β, m values are in the range of 8− 100 ms−(1−β)
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The time-dependent interface curves are trending toward an asymptotic
value that indicates the maximum effective radius that a cell can internalize
through receptor-mediated endocytosis, having a given phospholipid bilayer
composition dependent on ´.

It should be pointed out that this represents simply one possible decay law
for the anomalous diffusivity coefficient, and several different ones could be
adopted based on experimental evidence on how receptors flow, which, up to
the writing of this thesis, are not available in the literature.

This model could be at the root of the different epidemiological patterns, and
thus why viruses infect people in a non-unique manner, or how the membrane
slows down or catalyses the movement of the virus, which can be endocytosed
and infect the host, or otherwise if too much time passes, it can be deactivated.
The advantage of this model, compared with some previous models is that it is
possible through ´ derivation order and other parameters, by associating the
model with experimental evidence, to localize the model to specific case studies
and thus analyze how receptor-mediated endocytosis occurs in, for example,
muscle cells, nerve or epithelial cells. It could be possible to find several ´
parameters that characterize the surfaces of different cell types, making it easier
to predict permeation by viruses to prevent and hinder infection, or optimizing
the uptake of drug-functionalized particles for greater efficacy.
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Chapter 6

Conclusion and final remarks

In this thesis, receptor-mediated endocytosis was examined, i.e. a membrane
process in which membrane receptors flow onto the cell and bind to the ligands
of the target to be endocytosed. This process not only allows the internalisation
of nutrients needed by the cell, such as enzymes or biomolecules or nanoparticles
in general, but is also a pathway used in recent times in the field of pharmacology
for the production of drugs to be administered that have been appropriately
functionalised in the laboratory. Unfortunately, this mechanism is also generally
exploited in nature by viruses, which take advantage of it to infect the host
cell and progenate the eventual emergence of disease.

It is therefore necessary and extremely useful to have a predictive model of
how these viruses or nanoparticles are phagocytosed by cells. In the pharmo-
cological field, the predictive model could be useful for optimising the timing
and speed of drug release in an increasingly targeted manner for effective
therapy. On the other hand, at the epidemiological level, predictive models
of endocytosis processes can provide information regarding the virus and its
behaviour, from which it is possible to identify how and how long it takes the
hostile nanoparticle to permeate the membrane in order to inhibit its action.

Mathematical modelling is therefore necessary. Existing models in the liter-
ature treat the membrane as perfectly homogenous, when in fact it is composed
of a large number of proteins with different roles. During endocytosis, some
of these proteins contribute to the recruitment of receptors on the membrane,
modifying their flux and increasing their speed in order to travel to the area
where uptake of the parasite will take place. These models, due to physical
limitations and mathematical simplifications considered, cannot explain and
predict the actual process of endocytosis well.

Therefore, the aim of this work is the more rigorous formulation of a new
model of receptor-mediated endocytosis, overcoming the physical limitations of
previous models, such as the presence of a discontinuity without an appropriate
physical meaning or the need to resort to the analyte solution in order to find
the actual numerical solution of the system. The idea was to introduce a form
of Morse potential, which leads the receptors from high potentials and low
densities to areas of low potentials and high densities, i.e. the area where
the nanoparticle will be absorbed. The Morse potential via the Smoluchowski
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equation made it possible to eliminate the problem of first-species discontinuity
of existing models in the literature.

The modelling involved taking into account the presence of proteins, each
with its own role, that characterise the cell membrane, so that the membrane
was no longer treated as homogeneous, thus coming closer to the real physical
situation. These proteins influence the membrane in which the receptors
flow and consequently their speed flow, no longer considered and modelled
as Brownian. In order to take this important factor into account, the tool of
fractional calculus, which is widely used today for the description and modelling
of biological tissue behaviour, was used. Specifically, the Caputo derivative
was used in the model by applying it to the diffusive component of Fick’s law
governing the motion of receptors.

The differential equation system modelling the endocytosis process was
therefore transformed into a fractional system of differential equations. This set
of differential equations does not have an analytical solution so the application of
fractional finite differences was employed to numerically solve the mathematical
system.

Numerical simulations of the new mathematical model predicting the process
of nanoparticle endocytosis yielded interesting results. The phenomena that
were evaluated included the development of the nanoparticle-membrane interface
and how the flow of receptors on the space is affected. By adjusting different
parameters, e.g. as a function of the order of the fractional derivative ´ or
the availability of receptors on the cell surface or the diffusivity coefficient,
it was possible to obtain a prediction of the time it takes for the external
body to permeate the membrane. Furthermore, the implementation of this
new mathematical model revealed an oscillatory behaviour inherent in the
density of receptors never found in the literature that could be fundamental in
understanding the complex mechanism of endocytosis.

The disadvantage of the model is the current impossibility of validation, as
there is no other work in the literature on models of endocytosis coupled with
fractional calculus. Therefore, at the time of writing this thesis, no experimental
data from laboratory campaigns have been found or produced that would allow
the advancement of the interface of a virus on a membrane to be examined. The
lack of data mainly stems from the difficulty of carrying out an experimental
setup such that it would be possible to appreciate phenomena occurring at
measurement scales in the nanometre range and at very low timescales.

However, this model could be expanded for an even more accurate analysis
by taking into account other different phenomena such as:

• The possibility that the particle does not simply ‘fall’ onto the membrane
but arrives from the extracellular matrix with a certain rotational veloc-
ity that affects endocytosis, or that it penetrates the membrane in an
asymmetrical way.

• The mechanics of the membrane could be taken into consideration. As
the membrane deforms throughout the process, it could be treated as a
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fractional visco-elastic material, certainly enriching the model in order to
obtain a more accurate uptake time.

• It might be interesting to examine endocytosis in the case of multiple
dimensions such as 2D or 3D.

• Introducing the mechanical action of dynamin after uptake in order to
separate the endosome from the cell membrane.

Future developments could focus, first on improving the fractional model
to overcome current limitations and then on the execution, with the right
laboratory equipment if available, of an experimental campaign that could be
used to validate this model of endocytosis.
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Appendix A

Fractional calculus

Fractional calculus is an extension of the concept of derivative and integral,
extending the order of derivation and/or integration to non-integer numbers ´,
while for ´ = n we recollect the classical derivative or integral.

Some basic definitions and properties are explained below, for further details
please refer to [82][83].

Euler’s Gamma Function is defined as:

Γ (x) =

∫ ∞

0

e−t

t1−x
dt, R (x) > 0 (A.1)

The Riemann-Liouville left-sided Fractional Integral :

(

0I
β
tG
)

(t) =
1

Γ (´)

∫ t

0

G (Ä)

(t− Ä)1−β
dÄ

n− 1 < ´ < n, n = +´,
(A.2)

The Riemann-Liouville left-sided Fractional Derivative:

(

0D
β
tG
)

(t) =
dn

dtn

(

0I
1−β
t G

)

(t) =
1

Γ (n− ´)

dn

dtn

∫ t

0

G (Ä)

(t− Ä)β−n+1
dÄ

n− 1 < ´ < n, n = +´,
(A.3)

While Caputo Fractional Derivative is expressed as:

(

C
0D

β

tG
)

(t) =

(

0I
1−β
t

dnG

dtn

)

(t) =
1

Γ (n− ´)

∫ t

0

G(n) (Ä)

(t− Ä)β−n+1
dÄ

n− 1 < ´ < n, n = +´,
(A.4)

The Riemann-Liouville fractional derivative operator is the left-inverse to
fractional integral, so the following property is valid:

(

0D
β
t 0I

β
tG
)

(t) = G (t) (A.5)

But it is not right-inverse, in fact:
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(

0I
β
t 0D

β
tG
)

(t) = G (t)−
m
∑

k=1

tβ−k

Γ (´ − k + 1)

(

0D
β−k
t G

)

(0)

m ∈ Z+,m− 1 < ´ < m

(A.6)

Also for Caputo derivative:
(

C
0D

β

t 0I
β
tG
)

(t) = G (t) (A.7)

And:

(

0I
β
t

C
0D

β

tG
)

(t) = G (t)−
m−1
∑

k=0

tk

Γ (k + 1)
G(k) (0)

m ∈ Z+,m− 1 < ´ < m

(A.8)

Between the two fractional derivatives there is a formula that binds them:

(

C
0D

β

tG
)

(t) =
(

0D
β
tG
)

(t)−
m−1
∑

k=0

tk−β

Γ (1 + k − ´)
G(k) (0) (A.9)

Another property concerns the Riemann-Liouville fractional derivative of
an integer-order derivative:

(

0D
β
t

dmG

dtm

)

(t) =
(

0D
β+m
t G

)

(t)−
m−1
∑

k=0

tk−β−m

Γ (1 + k − ´ −m)
G(k) (0) (A.10)

A.1 Fractional operators discretization

A more complete explanation of the discretization algorithms discussed can
be found at [84][85][86]. We report in the following only the discretization of
Caputo fractional derivative, which is functional for solving the problem in
Chapter 5.

First we consider the interval 0 − t in which the fractional derivative of
Caputo is expressed, choose a number of time instants n = 0, 1, 2...N − 1 with
which to discretize the interval, and then we can calculate the discretarization
step as ∆t = t/N , the position of each node can be easily calculated as
tn = n∆t.

Considering node n + 1 and 0 < ´ < 1, the discretization of the Caputo
derivative can be expressed in the following way, without taking the remainder
into account:

(

C
0D

β

tG
)

(tn+1) =
1

Γ (1− ´)

n
∑

k=0

∫ (k+1)∆t

k∆t

dG (Ä)

dt

1

((n+ 1)∆t− Ä)β
dÄ (A.11)
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We can discretize the first derivative inside the integral and take it outside:

(

C
0D

β

tG
)

(tn+1) =
1

Γ (1− ´)

n
∑

k=0

Gk+1 −Gk

∆t

∫ (k+1) ∆t

k ∆t

1

((n+ 1)∆t− Ä)β
dÄ

(A.12)
The solution of the integral is:

(

((n− k + 1)∆t)1−β − ((n− k)∆t)1−β

1− ´

)

(A.13)

After some simple mathematical steps and writing in a more compact form
we get:

(

C
0D

β

tG
)

(tn+1) =
1

Γ (2− ´)∆tβ

n
∑

k=0

bk,β (Gn−k+1 −Gn−k) (A.14)

Where bk,β = (k + 1)1−β − k1−β. By means of this formula, exploiting
the property (A.9), it is also possible to derive a discretized form of the
Riemann-Liouville derivative. Similarly, one can proceed by following the same
steps illustrated here to obtain the discretization of the Riemann-Liouville
fractional integral. A small application of this method will be shown in the
following subsection, comparing the numerical solution of a Fractional Ordinary
Differential Equation (FODE) with its analytical solution.

A.1.1 Example of numerical solution of a FODE

Suppose we have the following FODE with an associated initial condition:






(

C
0D

β

t yβ

)

(t) = Sin (t)

yβ (0) = 1

(A.15a)

(A.15b)

By applying the Laplace transform to both members of (A.15a), after some
steps, the following solution is obtained:

yβ (t) = 1 + t1+βE2,2+β

(

−t2
)

(A.16)

In which E2,2+β (−t2) represents a one-parameter Mittag-Leffler function.
While for ´ → 1 in (A.15a), we obtain a simple differential equation whose
solution is:

y1 (t) = 2− Cos (t) (A.17)

In the case where ´ → 0 in (A.15a), the Caputo fractional derivative is
equal to the difference between the function y0(t) minus the function itself
calculated in 0, hence 1, from which we can trivially write:
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y0 (t) = 1 + Sin (t) (A.18)

It is interesting to note that the (A.16) coincides perfectly with the (A.17)
and (A.18), performing the corresponding limits. Let now proceed to the
discretization of the (A.15a), which will have this form:

1

∆tβΓ (2− ´)

n
∑

k=0

b
(β)
k (yn−k+1 − yn−k) = Sin (tn) (A.19)

Where tn = n∆t, ∆t = tend/N , where tend denotes the final time at which
the algorithm will stop, and finally N is the number of nodes chosen for the
computation, such that n = 0, 1, 2...N − 1. By rearranging the terms of the
(A.19), we arrive at the discrete equation from which the numerical calculation
can start:

yn+1 = Sin (n∆t)∆tβΓ (2− ´)−
n
∑

k=1

b
(β)
k (yn−k+1 − yn−k) + yn (A.20)

By implementing the algorithm, the numerical solutions are obtained. The
following graph shows the analytical solution, black dashed, compared with
three curves, cyan, green and orange, at three distinct values of ´ for the
purpose of example:

Comparison between analytical and numerical solution

Legendβ=0β=0.6β=0.8
yβ(t)

0 1 2 3 4 5

0.0

0.5

1.0

1.5

2.0

2.5

3.0

t

Y(t)

Figure A.1: Comparison between the analytical solution, dashed black, and three
numerical solutions, cyan, green and red, at three values of the order of derivation,
β = 0, β = 0.6 and β = 0.8 respectively.
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Appendix B

Classical Stefan Problem

Stefan problem is a well-known mathematical problem in the literature and
still being studied today [87]. This problem consists of a domain composed of
two phases, in which one phase expands and the other phase shrinks, such as a
block of ice subjected to a heat source that divides the domain into liquid and
solid, separated by a moving frontier that widens over time. The final objective
for solving Stefan problem is to find the temperature distribution in the two
phases and to find out how the moving frontier advances with respect to time
[88]. The Stefan problem was introduced by the Slovenian mathematician Josef
Stefan in 1890 aiming to study glacier formation, although in fact Franz Ernst
Neumann studied the problem as early as 1860, deriving the solution through
similarity variable method. However, Neumann’s solution was never published
until 1901 when Weber reported it in an article. The similarity solution of
Stefan’s problem and a numerical resolution of it using the variable space grid
method will be given below.

B.1 Analytical solution

TL(x, t) and TS(x, t) are identified as the temperatures for the liquid side and
solid side, respectively, and TM is the melting temperature; meanwhile s(t) is
the position of the moving frontier.

The spatial domain is semi-infinite so from 0 < x < s(t) it is occupied by
liquid and from s(t) < x <∞ by solid:

SolidLiquid���� �ÿ�ÿĀ

ý(þ) �0

�Āāÿ�Ā�(�, �) Āÿ(�, �)
Figure B.1: Schematic representation of the liquid and solid domains withe the
frontier involved in Stefan’s problem.
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In both domains heat diffuses following Fourier law:

qi (x, t) = −ki
∂Ti (x, t)

∂x
(B.1)

Where i = L(liquid),i = S(solid), k is the thermal conductivity with
dimensions [ki] =MLT−3K−1.

Considering the energy conservation law:

ϱcp,i
∂Ti (x, t)

∂t
= −∂qi (x, t)

∂x
(B.2)

In which ϱ is the density [ϱ] =ML−3, while cp is the specific heat capacity
[cp] = L2T−2K−1.

If we substitute the (B.1) into the (B.2), we obtain the thermal diffusivity
equation:

∂Ti (x, t)

∂t
= ³i

∂2Ti (x, t)

∂x2
(B.3)

³i = kiϱ
−1c−1

p,i is called thermal diffusivity [³] = L2T−1.
We can now set the boundary and initial conditions for the two phases.
For the liquid phase, since at time t = 0 it does not exist, it is not possible

to impose an initial condition, while the two boundary conditions will be one
referring to the applied heat source, so we will have a hot temperature greater
than the melting temperature TL(0, t) = TH and one at the moving frontier
equal to the melting temperature TL(s(t), t) = TM .

The solid at the beginning of the process was at a colder temperature than
the melting temperature, so TS(x, 0) = TC , while during the melting process
its boundary condition on the left will be equal to the melting temperature
TS(s(t), t) = TM , while on the right we can say that at infinity the temperature
remains cold TS(x→ ∞, t) = TC .

One last thing to do before writing the complete system of partial derivative
equations is to write another equation because we have a third unknown that
is the moving frontier s(t).

Let us consider two infinitesimal instants of time t0 and t1, in which we
have two frontier values s(t0) and s(t1), as shown:

ý(þ0) ý(þ1)
SOLIDLIQUID

Figure B.2: Liquid and solid phases at two infinitesimal instants of time where the
two distinct frontiers correspond. The two frontiers are represented so widely distant
for purely illustrative purposes.

From thermodynamics knowledge, we are aware that melting a piece of ice
requires heat equal to:
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Q1 = V ϱ¼ = A (s (t1)− s (t0)) ϱ¼ (B.4)

Where ¼ is the latent heat, [¼] = L2T−2.
To apply the principle of conservation of energy and thus equalize Q1 to

the liquid and solid flows, they must be integrated twice, first with respect to
area and then with respect to time:

Q1 = A

∫ t1

t0

(

−kL
∂TL (s (t) , t)

∂x
+ kS

∂TS (s (t) , t)

∂x

)

dt (B.5)

We can equalize and perform some simplifications:

(s (t1)− s (t0)) ϱ¼ =

∫ t1

t0

(

−kL
∂TL (s (t) , t)

∂x
+ kS

∂TS (s (t) , t)

∂x

)

dt (B.6)

We divide both members by (t1 − t0) and take the limit for t1 → t0, since
t0 can be any instant can be replaced with a generic t, so it is obtained:

ṡ (t) = −kL
ϱ¼

∂TL (s (t) , t)

∂x
+
kS
ϱ¼

∂TS (s (t) , t)

∂x

This is the so-called Stefan condition and binds the temperature gradients
of both phases calculated at the frontier to the speed of the moving frontier.

Finally, we can write the complete system separately for the liquid side and
the solid side, including the Stefan condition about the frontier:

Liquid Side:


















∂TL (x, t)

∂t
= ³L

∂2TL (x, t)

∂x2
, 0 < x < s (t) , t > 0

TL (0, t) = TH

TL (s(t), t) = TM

(B.7a)

(B.7b)
(B.7c)

Solid Side:


























∂TS (x, t)

∂t
= ³S

∂2TS (x, t)

∂x2
, s (t) < x <∞, t > 0

TS (x, 0) = TC

TS (s(t), t) = TM

TS (x→ ∞, t) = TC

(B.8a)

(B.8b)
(B.8c)
(B.8d)

Stefan Condition:










ṡ (t) = −kL
ϱ¼

∂TL (s (t) , t)

∂x
+
kS
ϱ¼

∂TS (s (t) , t)

∂x

s (0) = 0

(B.9a)

(B.9b)

To find the solutions of (B.7a)-(B.9b) we apply the similarity variable.
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The procedure will be carried out for the liquid diffusion equation but is
perfectly analogous to the solid one.

Let us introduce the similarity variable:

· =
x√
t

(B.10)

And the new unknown function:

TL (x, t) = f (· (x, t)) (B.11)

Obtain the derivative with respect to time and the second derivative with
respect to space:

∂TL (x, t)

∂t
=
df

d·

∂·

∂t
= − x

2t
√
t

df

d·
= − ·

2t

df

d·
(B.12)

∂2TL (x, t)

∂x2
=
d2f

d·2

(

∂·

∂x

)2

+
df

d·

∂2·

∂x2
=

1

t

d2f

d·2
(B.13)

We substitute the two derivatives into the (B.7a):

−·
2

df(·)

d·
= ³L

d2f(·)

d·2
(B.14)

Whose general solution is:

f (·) = c2 + c1
√
Ã³L Erf

(

·

2
√
³L

)

(B.15)

Where Erf(y) is the error function:

Erf (y) =
2√
Ã

∫ y

0

e−t2 dt (B.16)

Back to the temperature function of the liquid by resubstituting the (B.10)
and (B.11) in the solution:

TL (x, t) = c2 + c1
√
Ã³L Erf

(

x

2
√
³Lt

)

(B.17)

After applying the (B.7b), by setting the (B.7c) it is clear that we do not
yet know the function of s(t), but we can posit that the ratio s(t)/2

√
³Lt is

equal to a dimensionless constant µ so we get:

TL (x, t) = TH −
(

TH − TM
Erf(µ)

)

Erf

(

x

2
√
³Lt

)

(B.18)

s (t) = 2µ
√
³Lt (B.19)

Similarly by following the same reasoning for the liquid equation, the
solution of the (B.8a) for the temperature distribution in the solid is found:
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TS (x, t) = TC +





TM − TC

Erfc
(

µ
√
αL

√
αS

)



Erfc

(

x

2
√
³St

)

(B.20)

The only unknown in the problem remains the dimensionless constant µ; to
find it we exploit the (B.9a) by substituting in it all previous solutions found:

µ =

(

cp,L
¼

(TH − TM)√
Ã

)

e−γ2

Erf (µ)
−
(

cp,L
¼

kS
kL

√
³L√
³S

(TM − TC)√
Ã

)

e
−

αL
αS

γ2

Erfc
(

µ
√
αL

√
αS

)

(B.21)
This is a transcendental equation in the single unknown µ, solvable by

numerical method. The set of equations (B.18)− (B.21) compose the solution
of Stefan’s problem.

B.2 Numerical solution

In the literature, one of the methods for determining temperature distributions
and the frontier is carried out by applying the finite difference method.

This method is not applied directly because the spatial grids of the two
phases change at each instant, one widening and the other shrinking; the appli-
cation of simple finite differences is not effective in capturing this phenomenon.

Therefore, two of the methods complement finite differences: the front-fixing
method [89] and the variable space grid method [90][91]. The finite differences
method with variable space grid will be explained below.

Since we have a time-dependent moving interface, it is logical to think that
if we discretize the two domains, the position of the nodes present within them
will also be time-dependent.

Taking liquid temperature as an example, one can write:

TL(x(t), t) (B.22)

Now we can imagine following a generic node x(t) within the liquid that
will have its own path to follow (Figure B.3).
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Figure B.3: Schematic representation of how the spatial grid varies for the two
liquid (red) and solid (blue) domains, separated by the interface (green), between two
instants t1 and t2 considering a number of nodes represented by the vertical lines. In
the liquid domain, it is possible to observe how a generic node moves between the
two moments of time.

At a given instant the node will have a certain temperature, while the next
moment it will have a higher temperature. To follow the temperature change
along the motion of the node we can apply the total derivative:

dTL (x (t) , t)

dt
=
∂TL (x (t) , t)

∂t
+
dx(t)

dt

∂TL (x (t) , t)

∂x
(B.23)

Where the first term represents the temporal change in temperature at fixed
point x, while the second term indicates how much the temperature changes in
space as a function of the motion of the node with velocity dx(t)/dt. Through a
simple proportion we can express the velocity of x(t) in function of the frontier:

dx(t)
dt

x (t)
=

ds(t)
dt

s(t)
(B.24)

Substituting the proportion in the (B.23) and then this into the (B.7a) we
finally obtain the equation to be discretized. Following the same steps, omitted
here, the equation of the solid can also be derived:

dTL (x (t) , t)

dt
=

(

x (t)

s(t)

ds(t)

dt

)

∂TL (x (t) , t)

∂x
+ ³L

∂2TL (x (t) , t)

∂x2
(B.25)

dTS (x (t) , t)

dt
=

(

L− x (t)

L− s(t)

ds(t)

dt

)

∂TS (x (t) , t)

∂x
+ ³S

∂2TS (x (t) , t)

∂x2
(B.26)

Where L >>> s(t), L is the extreme right-hand side of the domain of the
solid, since it obviously cannot be set infinity at finite differences it will be a
sufficiently large number than the value of the frontier.
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From the (B.25) it is possible to see that Stefan’s problem is degenerate in
0, in fact the numerical computation will not be able to start from s(0)=0, but
from an assigned frontier value to which will correspond a temperature vector
for the liquid and one for the solid, extrapolated from the analytical solution.

From now on n at superscript, except for the frontier where it will be at
subscript, represents a time node at which the function is considered, while J
or i at subscript the space node.

The spatial discretization steps for liquid and solid will be:

∆xL(n) =
sn
NL

, ∆xS(n) =
L− sn
NS

(B.27)

Where NL and NS are the number of nodes or points in the two domains,
while sn represents a value of the frontier at instant n.

The position of each node J of the liquid and i of the solid will be given by:

xnJ = (J − 1)∆xL (n) , xni = (i− 1)∆xS (n) (B.28)

For temporal discretization we choose a start time tstart and an end time
tend in which to make the numerical computation take place and a number of
time nodes R, thus:

∆t =
tend − tstart

R
(B.29)

Thus n-th time will be given by tn = n∆t with n = 1, 2, 3...R− 1.
Denoting the liquid by T n

J and T n
i for solid and the speed of the moving

frontier with v(t) = ds(t)/dt, the implicit dicretization of (B.25),(B.26) is as
follows:

(

T n+1
J − T n

j

)

∆t
=

(

xnJ
sn
vn

)

(

T n+1
J+1 − T n+1

J−1

)

2∆xL (n+ 1)
+³L

(

T n+1
J−1 − 2T n+1

J + T n+1
J+1

)

(∆xL (n+ 1))2
(B.30)

(

T n+1
i − T n

i

)

∆t
=

(

L− xni
L− sn

vn

)

(

T n+1
i+1 − T n+1

i−1

)

2∆xS (n+ 1)
+ ³S

(

T n+1
i−1 − 2T n+1

i + T n+1
i+1

)

(∆xL (n+ 1))2

(B.31)
Rearranging and regrouping terms:

T n+1
J−1

(

− ³L∆t

(∆xL (n+ 1))2
+

∆t

2∆xL (n+ 1)

(

xnJ
sn
vn

))

+ T n+1
J

(

1 + 2
³L∆t

(∆xL (n+ 1))2

)

+ T n+1
J+1

(

− ³L∆t

(∆xL (n+ 1))2
− ∆t

2∆xL (n+ 1)

(

xnJ
sn
vn

))

= T n
J

(B.32)
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T n+1
i−1

(

− ³S∆t

(∆xL (n+ 1))2
+

∆t

2∆xS (n+ 1)

(

L− xni
L− sn

vn

))

+ T n+1
i

(

1 + 2
³S∆t

(∆xL (n+ 1))2

)

+ T n+1
i+1

(

− ³S∆t

(∆xL (n+ 1))2
− ∆t

2∆xS (n+ 1)

(

L− xni
L− sn

vn

))

= T n
i

(B.33)

To avoid writing too long equations, we name the terms inside round
brackets:

T n+1
J−1 (B1L (J, n)) + T n+1

J (B2L (n)) + T n+1
J+1 (B3L (J, n)) = T n

J (B.34)

T n+1
i−1 (B1S (i, n)) + T n+1

i (B2S (n)) + T n+1
i+1 (B3S (i, n)) = T n

i (B.35)

We can set boundary conditions. Those where there is the moving frontier
will be placed in the ghost nodes, while the other Dirichlet conditions will be
imposed as usual for finite differences, so we will obtain:

Liquid zone:

T n
1 = T n+1

1 = TH

T n
NL+1 = T n+1

NL+1 = TM

(B.36a)
(B.36b)

Solid zone:

T n
0 = T n+1

0 = TM

T n
NS

= T n+1
NS

= TC

(B.37a)
(B.37b)

If we apply J = NL and (B.36b) in the (B.34) with the appropriate steps
we arrive at:

T n+1
NL−1 (B1L (NL, n)) + T n+1

NL
(B2L (n)) = T n

NL
− TM (B3L (NL, n)) (B.38)

While for i = 1 and (B.37a) in the (B.35) we get:

T n+1
1 (B2S (n)) + T n+1

2 (B3S (1, n)) = T n
1 − TM (B1S (1, n)) (B.39)

Stefan’s condition (B.9a) instead will be discretized explicitly, the liquid
part with finite differences backward and the solid part forward:

vn = −kL
ϱ¼

T n
NL+1 − T n

NL

∆xL (n)
+
kS
ϱ¼

−T n
0 + T n

1

∆xS (n)
(B.40)

Inserting the B.36b and B.37a:

vn = −kL
ϱ¼

TM − T n
NL

∆xL (n)
+
kS
ϱ¼

−TM + T n
1

∆xS (n)
(B.41)
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Finally, thanks to the speed of the frontier, we can write the following to
update the frontier at each time step:

sn+1 = sn + vn∆t (B.42)

Knowing at time tstart the values of sn, T n
L and T n

S , the algorithm loop will
be:

1. Calculate ∆xL(n), ∆xS(n) and consequently (B.28).

2. Calculate vn with (B.41).

3. Calculate T n+1
L and T n+1

S with (B.34) and (B.35).

4. Calculate sn+1 with (B.42) and restart loop.

The data used, by way of example, are those of the Ti6Al4V alloy.

Liquid and solid phases distribution temperatures
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Figure B.4: Illustration of six curves (the first one in brown extrapolated from
the analytical solution) resulting from the application of the finite difference method
combined with the variable spatial grid.

Figure B.4 shows six curves, the first in brown taken from the analytical
solutions, the others are 5 five extrapolated from the result of the algorithm
shown above. It can be noticed how well the numerical solutions follow the
analytical solutions (red for the temperature distribution of the liquid and blue
for the solid). While Figure B.5 shows the performance of the interface in
orange compared to the analytical solution in blue.
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Comparison beetween analytical and numerical interphase
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Figure B.5: Comparison between the liquid-solid frontier (orange) and the analytical
solution (blue).
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M
y tea’s gone cold, I’m wondering why,
I got out of bed at all
The morning rain clouds up my window
And I can’t see at all

And even if I could, it’d all be gray
But your picture on my wall
It reminds me that it’s not so bad
It’s not so bad

Dido, "Thank you", No Angel,
Arista Records, Cheeky Records, 1999.
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