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A B S T R A C T

This work utilizes the Immersed Boundary Conformal Method (IBCM) to analyze linear elastic
Kirchhoff–Love and Reissner–Mindlin shell structures within an immersed domain framework.
Immersed boundary methods involve embedding complex geometries within a background
grid, which allows for great flexibility in modeling intricate shapes and features despite the
simplicity of the approach. The IBCM method introduces additional layers conformal to the
boundaries, allowing for the strong imposition of Dirichlet boundary conditions and facilitating
local refinement. In this study, the construction of boundary layers is combined with high-
degree spline-based approximation spaces to further increase efficiency. The Nitsche method,
employing non-symmetric average operators, is used to couple the boundary layers with the
inner patch, while stabilizing the formulation with minimal penalty parameters. High-order
quadrature rules are applied for integration over cut elements and patch interfaces. Numerical
experiments demonstrate the efficiency and accuracy of the proposed formulation, highlighting
its potential for complex shell structures modeled through Kirchhoff–Love and Reissner–
Mindlin theories. These tests include the generation of conformal interfaces, the coupling of
Kirchhoff–Love and Reissner–Mindlin theories, and the simulation of a cylindrical shell with a
through-the-thickness crack.

1. Introduction

Two-dimensional manifolds embedded in three-dimensional space are a fundamental topological structure frequently encoun-
tered in physics. Examples of phenomena involving surfaces include the distribution of soap bubbles minimizing surface tension, the
growth patterns of leaves, and the propagation of defects and dislocations in crystals. While these phenomena can often be modeled
using three-dimensional equations derived from conservation principles, the significant difference in scale between thickness and
surface directions suggests considerably distinct behaviors for the problem variables. By making appropriate a-priori assumptions
about the through-thickness response, it is possible to achieve dimension reduction with minimal loss in model accuracy.

Although such two-dimensional approaches facilitate faster numerical approximations, they introduce more complex formula-
tions compared to their three-dimensional counterparts. This complexity necessitates borrowing concepts from surface differential
geometry [1]. Specifically, the physical domain must be expressed as a surface where geometrical quantities, such as local
bases, tangent and normal vectors, as well as differential operators, can be effortlessly computed. This often imposes additional
requirements on the regularity of the surface itself. Simple surfaces can be constructed using analytical mappings from the unit
square, but without altering the topology. However, in practical applications, surfaces of interest can exhibit significantly more
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complex geometrical features, including holes and kinks. For such objects, finding an effective mathematical representation is a
non-trivial task.

A possible solution is to define the surface implicitly using a level-set function. Typically, the level-set depends on the Cartesian
oordinates, and the set of points where is equal to a specific value corresponds to either the surface itself or the boundary of
n existing surface. The main advantage of this method is that it leads to efficient algorithms when paired with simple tensor-
roduct background discretizations [2,3]. However, although some implicitly-defined surfaces can reach high level of complexity,
he flexibility of the level-set is quite limited, and not every surface can be represented in such way.

A different approach, more commonly used in industrial CAD design, involves adopting multiple surfaces explicitly represented
n curvilinear coordinates through spline technology [4,5]. Splines offer extensive flexibility in representing curvature profiles;
owever, standard splines are based on the concept of patch that results from a mapping of a rectangular parametric domain.
or complex topologies, multiple patches are juxtaposed at their edges to meet the required geometric continuity, whether 𝐺0

(position continuity), 𝐺1 (tangent continuity), or 𝐺2 (curvature radius continuity) [6–8]. Enforcing these continuity requirements
becomes increasingly difficult when moving from 𝐺0 to 𝐺2. These mergings often lack exact solutions, resulting in geometrical
inconsistencies at the interfaces. A branch of research on splines in this direction has been focused on developing new unstructured
spline technologies capable of locally enriching the design space, abandoning the tensor-product structure of typical spline meshes.
Examples of this trend can be found in works such as [9–12]. To some extent, in these approaches the concept of designing by
connecting patches is abandoned, demanding for a drastic change in practitioners’ habits.

Another method that allows for modeling topologies equivalent to polygons with a finite number of cutouts is the trimming
approach [13,14]. In this method, an underlying surface is created using spline functions to achieve the desired curvature profile
that meets design requirements. The surface is then trimmed to account for local features on the boundary or to model internal
holes, retaining the tensor product nature of the surface map while drastically increasing design flexibility. However, for intricate
structures with numerous local features, different topologies, or presence of kinks, multiple-patches-based design might still be
beneficial, if not necessary.

B-splines are a powerful tool not only for the design phase but also for the numerical analysis of partial differential equations. The
order and regularity of spline-based functions can be arbitrarily increased straightforwardly, allowing higher-order problems that
require higher-continuity approximation spaces to be seamlessly addressed numerically. Additionally, spline-based approximations
results in high convergence rates that typically grow with the polynomial order, achieving efficient and accurate computation
without a significant increase in the number of degrees of freedom [15]. Two-dimensional spline spaces can be easily constructed
over explicitly defined surfaces. When the functional spaces used in defining the underlying surface and the approximation function
coincide, the resulting method is referred to as Isogeometric Analysis (IGA) [16]. For trimmed surfaces, a tensor-product spline-based
approximation space can still be constructed and adopted for analysis [17–19], but this comes with some complications: (i) Dirichlet
boundary conditions cannot be imposed in a strong sense on trimmed boundaries. (ii) High-accuracy integration over cut elements
requires ad-hoc quadrature rules. (iii) Badly-cut elements can negatively affect the stability and conditioning of the method.

An innovative approach to circumvent some of the issues associated with trimming was recently proposed in [20]. This approach,
called the Immersed Boundary Conformal Method (IBCM), involves creating an additional layer for each immersed boundary. These
layers are generated in such a way to make the domain’s boundary conformal, so it can be represented exactly by the computational
model’s basis functions, allowing for a strong imposition of Dirichlet boundary conditions. The boundary layer is then coupled with
the internal patch through an interface that is conformal to the former but non-conformal to the latter. Similar to Dirichlet boundary
conditions, coupling conditions along non-conforming edges also need to be enforced in a weak sense. To this end, various techniques
can be used, such as Lagrange multipliers methods [21–25], pure-penalty methods [17,26–28], and Nitsche-based methods [29–34].

In particular, the last class relies on interface integrals that use the jump of the main variables and the average of the formulation’s
fluxes between two edges of an interface. Although variationally consistent, this method requires stabilization terms based on
penalty parameters, which however become unbounded when the interfaces lie on cut elements. The IBCM method can leverage
the conformal nature of the boundary layer at the interface to mitigate this issue. Specifically, the average operator can be defined
considering fluxes only from the non-cut boundary layer, maintaining stability and effectively bounding the penalty parameters.

Among the advantages of this method, it is noteworthy its capability to facilitate local refinement, a task that can be challenging
with B-spline based approximation spaces. This benefit, along with the strong application of Dirichlet conditions on otherwise
trimmed boundaries, were demonstrated in [20] through multiple numerical tests encompassing Laplace, two-dimensional elasticity,
and advection-diffusion equations. Additionally, the IBCM can be utilized to model more accurate physical phenomena that occur
locally. For instance, in [35], conformal layers are introduced between different regions of the domain to accurately model the
behavior at their interface. As a final remark, when dealing with trimmed cut-outs with size of the same scale as the B-spline based
mesh elements, the problem of cross-talk can occur [36]. Since spline bases span across multiple elements, for small cut-outs the
approximation space would still maintain some level of continuity across the sides of the cut-out although these are separated. The
degree of freedom of a basis function affected by the cutouts should then be replicated on elements on different sides of the edge,
which is a somewhat laborious task. As an alternative, the boundary layer introduces necessary discontinuities in the approximation
space along the cut-outs and effectively address this issue when the combined size of the cut-out and the boundary layer exceeds
the size of the support of the spline bases.

When partial differential equations in the field of solid mechanics pertain to thin-walled domains, the resulting problems fall
within the realm of shell analysis. The most emblematic example within this class is shell elasticity theory, which addresses inquiries
spanning sectors such as transportation, biology, construction, and energy. Structural shell elements, in particular, are utilized to

effectively withstand external loads. Due to the curvature effect, forces applied on the shell surface and its boundaries distribute
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more efficiently, maximizing the material’s utilization [37]. In this context, an innovative symbiosis that is increasingly becoming
standard for high-performance structural applications is the integration of shell-like designs with laminated composite materials.
These materials typically consist of layers of more resistant fibers oriented arbitrarily within a more ductile matrix, providing
designers with flexibility to optimize strength in more solicited directions [38].

Classical shell theories include the Kirchhoff–Love [39–42] and the Reissner–Mindlin ones [43–46]. Both theories are based on
he assumption that a straight unit segment, perpendicular to the mid-surface, remains straight and unstretched after deformation.
n the Reissner–Mindlin theory, in addition to the displacement of the mid-surface, a second primary variable representing the
otation of the segment is introduced, leading to a second-order problem. Conversely, the Kirchhoff–Love theory restricts primary
ariables to displacement alone, assuming that the segment remains perpendicular to the mid-surface even after deformation.
owever, this simplification transforms the problem into a fourth-order one, demanding for 𝐶1-continuity basis functions, and limits

its applicability to thin-shell scenarios. To capture out-of-plane stress components more accurately, higher-order theories employ
refined through-the-thickness approximations of the displacement field [47,48].

In the context of shell structures, weak coupling between different parts of the domain is often achieved through Lagrange
multipliers methods [49–52], or pure-penalty methods [53–60]. Nitsche-based coupling has also been extensively investigated for
Kirchhoff–Love plates and shells [61–64], Reissner–Mindlin plates and shells [65–68], and higher-order plates and shells [69–72].
Particularly interesting is the application of weak shell coupling to IGA, with various examples regarding Kirchhoff–Love shells for
both conforming [73,74], and trimmed patches [75–80], and Reissner–Mindlin plates [81]. However, to the best of the author’s
knowledge, there are no examples of weak coupling of Reissner–Mindlin IGA shells as well as for higher-order theories.

In this work, the IBCM method is utilized to analyze Kirchhoff–Love and Reissner–Mindlin shell structures within an immersed
domain framework, where ad-hoc layers are created to ensure conformal boundaries. The approximation spaces defined over the
discretized domains are based on B-spline functions in order to take advantage of the higher degree. To stabilize the formulation with
minimal penalty parameters, the Nitsche method employing non-symmetric average operators is employed. To perform integration
over cut elements, high-order quadrature rules are obtained following the algorithm developed in [20].

In Section 2, we introduce the discretization technique based on the IBCM method, along with the definition of spline spaces over
the discretized domain. Section 3 delves into the Kirchhoff–Love and the Reissner–Mindlin shell theories following a presentation
of essential concepts from differential geometry. The discretized versions of the variational statements are formulated in Section 4,
where we additionally describe the Nitsche-based coupling technique. Section 5 presents the results from numerical experiments
demonstrating the efficiency and accuracy of the proposed formulation. Finally, Section 6 draws the conclusions of the present
study, highlighting the key advantages recognized in the investigated method.

2. The IBCM on surface manifolds

2.1. Surface map

Let us denote as 𝛺 ∈ E3 the manifold surface depicted in Fig. 1(h), where E3 represents the three-dimensional Euclidean space,
nd as 𝜕𝛺 its boundary. Let us suppose, following the embedded concept, that 𝛺 is constructed as a restriction of the untrimmed
urface 𝛱0 ∈ E3, with boundary 𝜕𝛱0, shown in Fig. 1(g). This untrimmed surface is obtained as the image of the untrimmed
eference domain �̂�0 ∈ R2 (see Fig. 1(a)), through the function ̂ ∶ �̂�0 → 𝛱0. Thus, a generic point 𝒙 ∈ 𝛱0 is obtained as:

𝒙(𝜉1, 𝜉2) = 𝑥𝑖(𝜉1, 𝜉2)𝒆𝑖 = ̂ (𝜉1, 𝜉2) , with 𝑖 = 1, 2, 3 , (1)

here the components of 𝒙 refer to the standard Euclidean basis 𝒆1, 𝒆2, 𝒆3, and 𝜉1, 𝜉2 are the curvilinear coordinates such that
𝜉1, 𝜉2) ∈ �̂�0. Consistently, the boundary of the untrimmed surface is obtained as 𝜕𝛱0 = ̂ (𝜕�̂�0), where 𝜕�̂�0 denotes the boundary
f �̂�0. As typical in structured maps, �̂�0 is selected as the reference rectangle

�̂�0 = [𝜉1𝑏, 𝜉1𝑡] × [𝜉2𝑏, 𝜉2𝑡] , (2)

here 𝜉𝛼𝑏 and 𝜉𝛼𝑡 denote the bottom and top limits, respectively, over which the curvilinear variable 𝜉𝛼 ranges, and are arbitrary
arameters, tuned on the desired final shape. For instance, when adopting Bézier surface maps, �̂�0 corresponds to the unit square
0, 1] × [0, 1].

It is pointed out that in the previous equations and throughout the remainder of the paper, Greek letter indices are adopted for
urvilinear coordinates and take values in {1, 2}, while Latin letter indices are adopted for Cartesian coordinates and take values
n {1, 2, 3}, unless stated otherwise. Regarding superscripts and subscripts, the Einstein summation convention is employed over
epeated indices. Additionally, quantities referring to the parametric space are identified by an accent ∙̂, whereas corresponding
uantities in the Euclidean space do not have one.

.2. Embedded domain

By defining the map in Eq. (1), the underlying untrimmed surface is effectively molded with the desired curvature profile. The
ctual surface geometry 𝛺 is then identified by outlining its boundary 𝜕𝛺 within 𝛱0. Through the inverse map, one can obtain
�̂� = −1(𝜕𝛺) and use it to delimit the parametric domain �̂�, shown in Fig. 1(c). More specifically, 𝜕�̂� and 𝜕𝛺 divide �̂�0 and 𝛱0,
espectively, into two parts. One part for each set are consistently selected as active portions, coinciding with �̂� and 𝛺, while the
emaining ones are referred to as the non-active portions. In turn, once �̂� and 𝛺 are constructed, the relationship 𝛺 =  (�̂�) holds.
3 



G. Guarino et al. Computer Methods in Applied Mechanics and Engineering 432 (2024) 117407 
Fig. 1. Step-by-step construction of the internal patch and boundary layers with corresponding discretizations. (a) Untrimmed parametric domain �̂�0 and
associated boundary. (b) Construction of the parametric domain through trimming the regions �̂�1 and �̂�2 delimited by the corresponding trimming curves 𝜕�̂�1
and 𝜕�̂�2. (c) Resulting parametric �̂� domain and associated boundary 𝜕�̂�. (d) Offset curves 𝜕�̂� ′

1 and 𝜕�̂� ′
2 and associated trimming regions �̂� ′

1 and �̂� ′
2. (e)

Resulting internal domain �̂�0 and associated boundary layers �̂�1 and �̂�2 with corresponding boundaries 𝜕�̂�0, 𝜕�̂�1, and 𝜕�̂�2, respectively. (f) Discretization of the
internal patch and boundary layers, and interfaces 𝛤1 and 𝛤2. (g) Untrimmed surface 𝛱0 = ̂ (�̂�0) and corresponding boundary 𝜕𝛱0 = ̂ (𝜕�̂�0) with superimposted
discretization. (h) Trimmed surface 𝛺 = ̂ (�̂�) and corresponding boundary 𝜕𝛺 = ̂ (𝜕�̂�) with superimposted discretization. (i) Internal surface 𝛺0 = ̂ (�̂�0) and
corresponding boundary layers 𝛺1 = ̂ (�̂�1) and 𝛺2 = ̂ (�̂�2) with superimposed discretization and interfaces 𝛤1 = ̂ (𝛤1) and 𝛤2 = ̂ (𝛤2).

It is worth mentioning that in some circumstances, it can be more convenient to define the boundary directly in the parametric
domain �̂�0 rather than in the physical one 𝛱0, and obtain the latter through the mapping process.

So far, no assumptions have been made regarding the shape of the boundary of the parametric domain and the technique to
construct it. However, in this paper, the strategy adopted is based on trimming operations. Accordingly, �̂� is derived from the
reference rectangle by subsequently removing regions that do not belong to the desired shape. Let us assume the number of regions
to remove is 𝑁𝛤 and denote the 𝑖th region as �̂�𝑖, delimited by the simply-connected closed trimming curve 𝜕�̂�𝑖, as illustrated
in Fig. 1(b) for 𝑁𝛤 = 2. The former may be either internal or external to the latter, and 𝑖 ranges from 1 to 𝑁𝛤 . Without loss of
generality let us also assume that 𝜕�̂�𝑖 ∩ 𝜕�̂�𝑗 = ∅ if 𝑖 ≠ 𝑗, and that the first trimming curve 𝜕�̂�𝑖 delimits the external boundary
eventually coinciding with 𝜕�̂�0, while the remaining trimming curve outline internal cut-outs. Under these assumptions, �̂� is given
by

�̂� = �̂�0 ⧵
𝑁𝛤
⋃

𝑖=1
cl(�̂�𝑖) , (3a)

and its boundary by

𝜕�̂� =
𝑁𝛤
⋃

𝜕�̂�𝑖 , (3b)

𝑖=1
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where cl(∙) stands for the closure of ∙, therefore being cl(�̂�𝑖) = �̂�𝑖 ∪ 𝜕�̂�𝑖. As such, general surfaces topologically equivalent to a
two-dimensional polygon with an arbitrary number of holes can be easily constructed.

To better understand the sequence of operations carried out to construct the reference domain, the reader might refer to Figs. 1(a)
to 1(c). Fig. 1(a) shows a reference rectangular parametric domain. Through the trimming operation shown in Fig. 1(b) the regions
�̂�1 and �̂�2 are subtracted from �̂�0. In Fig. 1(c), the resulting parametric domain �̂� and the corresponding boundary 𝜕�̂� are depicted.

This construction offers notable flexibility in defining the surface, combining the generality of curvature profiles from the map
unction with the arbitrariness of boundary selection, making it a powerful tool for designing complex shapes. Nonetheless, this
lexibility comes at a cost when trimming curves are defined in Euclidean space and only subsequently mapped back into R2. In
act, the inverse of Eq. (1) does not have a closed-form solution in general, so the trimming curves in the parametric domain are
sually approximations, accurate only up to a specific geometric tolerance.

.3. Boundary conformal layers

As expressed in Eq. (3b), the boundary of the parametric domain upon completion of the trimming operations is expressed as
he union of 𝑁𝛤 simply-connected oriented closed boundary curve 𝜕�̂�𝑖, where two different curves are disjoint sets. Let us assume
ow that the 𝑖th curve is parameterized through the curvilinear coordinate 𝜂𝑖 ∈ [𝜂𝑖𝑏, 𝜂

𝑖
𝑡 ], where 𝜂𝑖𝑏 and 𝜂𝑖𝑡 define the bottom and top

imits, respectively, of the interval spanned by 𝜂𝑖. Then, for each 𝜕�̂�𝑖, an offset curve 𝜕�̂� ′
𝑖 is constructed in a region internal to �̂�,

dopting the same parameterization of the associated boundary curve, i.e., 𝜂𝑖 ∈ [𝜂𝑖𝑏, 𝜂
𝑖
𝑡 ]. Additionally, let us assume that these offset

urves are non-intersecting with each other and with boundary curves, meaning

𝜕�̂� ′
𝑖 ∩ 𝜕�̂� ′

𝑗 = ∅ if 𝑖 ≠ 𝑗 ,

𝜕�̂�𝑖 ∩ 𝜕�̂� ′
𝑗 = ∅ ∀(𝑖, 𝑗) .

part from these requirements, there remains relative arbitrariness in their construction. A simple approach is to maintain a uniform
istance from the target boundary curve. However, if the local radius is smaller than the selected distance, this can alter the topology
f the offset curve, making it no longer simply-connected. Furthermore, while satisfying the uniform distance criterion in R2 is
elatively simple, achieving uniform distance on a surface manifold in E3 poses a significantly more challenging task. A simpler
trategy involves creating a curve that is internal to the parametric domain, even if it does not precisely follow the geometric features
f the boundary. Although this may appear to be a critical choice during the development of a discretization to approximate the
roblem of interest, [20] demonstrated that the method’s accuracy remains robust regardless of whether the curve adheres strictly
o the boundary’s geometry or not. It is important to mention that in those cases where the domain presents local features tight to
ach other, constructing non-intersecting offset curves can be challenging even in the parametric domain. Indeed, such geometrical
onfigurations impose limits on the local distance between the offset curve and its corresponding boundary one. These critical
ases are not addressed in the present contribution. However, some algorithms available in the literature could be utilized for this
urpose (see, e.g., [82]). Additionally, the size of the boundary layer should be chosen to match the expected extension of the local
henomenon to be captured. While the initial size is ultimately determined by the practitioner’s expertise, adaptive algorithms could
e implemented to change the size and refine the mesh as needed.

The approach proposed here relies on a domain sub-structuring strategy where each pair of boundary and offset curves are used
o construct a boundary layer and to restrict the main patch’s extension through an additional trimming operation. More specifically,
he offset curve 𝜕�̂� ′

𝑖 divides R2 into two regions. The one that contains the boundary curve 𝜕�̂�𝑖, that by construction is entirely
ither internal or external to 𝜕�̂� ′

𝑖 , and its complement to R2. The former, in particular, is denoted as �̂� ′
𝑖 . To exemplify, in Fig. 1(d)

t is shown a parametric domain with two boundary curves and their correspondent offset curves. The region enclosed between 𝜕�̂� ′
𝑖

nd 𝜕�̂�𝑖 is the boundary layer �̂�𝑖 defined as

�̂�𝑖 = �̂� ∩ �̂� ′
𝑖 , (4)

𝜕�̂�𝑖 = 𝜕�̂�𝑖 ∪ 𝜕�̂� ′
𝑖 , (5)

eing 𝜕�̂�𝑖 the boundary of �̂�𝑖. Once the boundary layers are constructed, the remaining part of the domain is defined through

�̂�0 = �̂� ⧵
𝑁𝛤
⋃

𝑖=1
cl(�̂�𝑖) , (6)

𝜕�̂�0 =
𝑁𝛤
⋃

𝑖=1
𝜕�̂� ′

𝑖 . (7)

he corresponding surfaces and boundary curves in the physical space are then obtained through mapping, i.e., 𝛺𝑖 = ̂ (�̂�𝑖), and
𝛺𝑖 = ̂ (𝜕�̂�𝑖) for 𝑖 = 0,… , 𝑁𝛤 . The interfaces between the main domain and the boundary layers are introduced in the parametric
omain as 𝛤𝑖 = 𝜕�̂�0 ∩ 𝜕�̂�𝑖, as well as their counterpart in the physical space 𝛤𝑖 = ̂ (𝛤𝑖).

Figs. 1(d) and 1(e) show the construction of the internal domain and the corresponding boundary layers. In Fig. 1(d), the
arametric domain �̂� is restricted by trimming operations through the offset curves 𝜕�̂� ′

1 and 𝜕�̂� ′
2 that delimit the regions �̂� ′

1
nd �̂� ′

2. The resulting internal domain �̂�0, and boundary layers �̂�1 and �̂�2 are shown in Fig. 1(e), together with their boundaries
�̂� , 𝜕�̂� , and 𝜕�̂� , respectively.
0 1 2

5 
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Fig. 2. Illustration of the map composition for a domain with two boundary layers: (a) Auxiliary domains �̃�1 and �̃�2, each discretized with a simple rectangular
grid. (b) Reference domain �̂�0, discretized with a simple rectangular grid. Boundary layers �̂�1 and �̂�2 in the parametric domain, obtained from the map of the
auxiliary domains. Resulting inner patch �̂�0 in the parametric domain. (c) Inner patch obtained as 𝛺0 = ̂ (�̂�0), and boundary layers resulting from the map
compositions 𝛺1 = ̂◦̃ 1(�̃�1) and 𝛺2 = ̂◦̃ 2(�̃�2), each with superimposed discretization in the Euclidean space, and each laying on the untrimmed surface 𝛱0.

Provided the parameterization of 𝜕�̂�𝑖 and 𝜕�̂� ′
𝑖 , that refers for construction to the same curvilinear coordinate 𝜂𝑖 ∈ [𝜂𝑖𝑏, 𝜂

𝑖
𝑡 ], the

boundary layer in the parametric domain can be described through an auxiliary map that relies on two curvilinear coordinates
𝜂𝑖1 = 𝜂𝑖 and 𝜂𝑖2. The simplest choice consist in constructing this map as a ruled domain between the two curves, although non-convex
curves might require more sophisticated algorithms.

The boundary layer is therefore obtained in the parametric domain as the image of �̃�𝑖 = [𝜂𝑖1𝑏, 𝜂
𝑖
1𝑡] × [𝜂𝑖2𝑏, 𝜂

𝑖
2𝑡] through the function

̃ 𝑖 ∶ �̃�𝑖 → �̂�𝑖, where 𝜂𝑖𝛼𝑏 and 𝜂𝑖𝛼𝑡 are the limits for the interval of definition of 𝜂𝑖𝛼 . It is remarked that for construction 𝜂𝑖1𝑏 and 𝜂𝑖1𝑡
correspond to 𝜂𝑖𝑏 and 𝜂𝑖𝑡 , respectively, while 𝜂𝑖2 can be chosen, in absence of other constraints and without loss of generality, in the
interval [0, 1]. It is important pointing out that, in the notation introduced hereby, quantities referred to the auxiliary space are
denoted by a tilde. Provided the parameterization of the 𝑖th boundary layer, a generic point 𝝃 = (𝜉1, 𝜉2) in the parametric space is
obtained as

𝝃(𝜂𝑖1, 𝜂
𝑖
2) = 𝜉𝛼(𝜂𝑖1, 𝜂

𝑖
2) = ̃ 𝑖(𝜂𝑖1, 𝜂

𝑖
2) , with 𝛼 = 1, 2 and 𝑖 = 1,… , 𝑁𝛤 . (8)

with (𝜂𝑖1, 𝜂
𝑖
2) ∈ �̃�𝑖. In turn, the domain of the boundary layer in the physical space is given by the composition of two maps

𝛺𝑖 = ̂◦̃ 𝑖(�̃�𝑖), and a generic point of the boundary layer in the physical space is given by

𝒙(𝜂𝑖1, 𝜂
𝑖
2) = ̂◦̃ 𝑖(𝜂𝑖1, 𝜂

𝑖
2) , with 𝑖 = 1,… , 𝑁𝛤 . (9)

An example of a domain with two boundary layers, obtained through map composition from two auxiliary domains, is illustrated in
Fig. 2. It should be noted that the lines in the parametric domain ̃ 𝑖(𝜕�̃�𝑖) and in the physical domain ̂◦̃ 𝑖(𝜕�̃�𝑖) do not correspond
exactly to 𝜕�̂�𝑖 and 𝜕𝛺𝑖, respectively, since the curves identified by 𝝃(𝜂𝑖1 = 𝜂𝑖1𝑏, 𝜂

𝑖
2) and 𝝃(𝜂𝑖1 = 𝜂𝑖1𝑡, 𝜂

𝑖
2) are internal to �̂�𝑖, and, similarly,

the curves identified by 𝒙(𝜂𝑖1 = 𝜂𝑖1𝑏, 𝜂
𝑖
2) and 𝒙(𝜂𝑖1 = 𝜂𝑖1𝑡, 𝜂

𝑖
2) are internal to 𝛺𝑖.

As detailed in the remainder of the paper, depending on the nature of the differential problem stated on the manifold, certain
derivatives of the map in Eq. (9) might be required. These derivatives can be straightforwardly obtained using the chain rule. For
clarity, they are provided up to the third order in Appendix A.

2.4. Discretization strategy

Each region resulting from the domain sub-structuring requires discretization to generate a suitable mesh for numerical
investigations. The discretization algorithm employed here utilizes quadrilateral elements, with specific details varying depending
on whether the region is a boundary layer or the internal domain.

2.4.1. Discretization of the boundary layers
For boundary layers, a structured, tensor-product-based, and quadrilateral grid is generated in each auxiliary domain �̃�𝑖. Within

the interval of definition of 𝜂𝑖𝛼 , 𝑁 𝑖
𝑒𝛼 + 1 increasing and non-repeating values 𝜃𝑖,𝑗𝛼 are identified collected in 𝛩𝑖

𝛼 =
{

𝜃𝑖,1𝛼 ,… , 𝜃𝑖,𝑁
𝑖
𝑒𝛼+1

𝛼

}

,

where 𝜂𝑖𝛼𝑏 = 𝜃𝑖,1𝛼 and 𝜂𝑖𝛼𝑡 = 𝜃𝑖,𝑁
𝑖
𝑒𝛼+1

𝛼 . As such, in the 𝑖th auxiliary space the 𝑒th element is defined as

�̃�(𝑒)
𝑖 =

[

𝜂𝑖,(𝑒)1𝑏 , 𝜂𝑖,(𝑒)1𝑡

]

×
[

𝜂𝑖,(𝑒)2𝑏 , 𝜂𝑖,(𝑒)2𝑡

]

, (10)

where 𝜂𝑖,(𝑒)𝛼𝑏 and 𝜂𝑖,(𝑒)𝛼𝑡 are two consecutive values in 𝛩𝑖
𝛼 , and being 𝑁 𝑖

𝑒 = 𝑁 𝑖
𝑒1 ×𝑁 𝑖

𝑒2 the number of elements of the 𝑖th boundary layer.
The corresponding element in the parametric and in the Euclidean spaces are given, respectively by

�̂�(𝑒) = ̃
(

�̃�(𝑒)
)

, (11a)
𝑖 𝑖 𝑖

6 
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𝛺(𝑒)
𝑖 = ̂◦̃ 𝑖

(

�̃�(𝑒)
𝑖

)

, (11b)

as illustrated in Fig. 2. It is remarked that in the previous equations 𝑖 spans {1,… , 𝑁𝛤 }, that is the set of indices associated with
the boundary layers. A different discretization strategy based on trimmed elements is adopted for 𝛺0 as detailed in the subsequent
section.

2.4.2. Discretization of the internal domain
For the internal domain, the discretization strategy starts from a background rectangular grid. In this case, however, the

rectangular grid is constructed over the reference rectangular domain �̂�0. Within the interval of definition of 𝜉𝛼 , 𝑁0
𝑒𝛼 +1 increasing

and non-repeating values are identified and collected in 𝛩0
𝛼 =

{

𝜃0,1𝛼 ,… , 𝜃0,𝑁
0
𝑒𝛼+1

𝛼

}

, where 𝜉𝛼𝑏 = 𝜃0,1𝛼 and 𝜉𝛼𝑡 = 𝜃0,𝑁
0
𝑒𝛼+1

𝛼 . The 𝑒th cell

of the background grid is denoted as �̂� (𝑒)
0 and defined as

�̂� (𝑒)
0 =

[

𝜉(𝑒)1𝑏 , 𝜉
(𝑒)
1𝑡

]

×
[

𝜉(𝑒)2𝑏 , 𝜉
(𝑒)
2𝑡

]

, (12)

where 𝜉(𝑒)𝛼𝑏 and 𝜉(𝑒)𝛼𝑡 are two consecutive values in 𝛩0
𝛼 , and the total number of cells is 𝑁0

𝑒 = 𝑁0
𝑒1 ×𝑁0

𝑒2. The background grid is then
intersected with the actual internal domain �̂�0, and for the 𝑒th cell the corresponding element is defined as

�̂�(𝑒)
0 = �̂� (𝑒)

0 ∩ �̂�0 , (13)

𝜕�̂�(𝑒)
0 = (𝜕�̂� (𝑒)

0 ∩ �̂�0) ∪ (�̂� (𝑒)
0 ∩ 𝜕�̂�0) . (14)

where 𝜕�̂� (𝑒)
0 is the boundary of the 𝑒th background cell, and �̂�(𝑒)

0 and 𝜕�̂�(𝑒)
0 are the domain and the boundary of the 𝑒th element. It

follows that, accordingly to the specificity of the intersection �̂� (𝑒)
0 ∩ �̂�0, the elements are classified into three groups:

- The group of entire elements, for which �̂�(𝑒)
0 = �̂� (𝑒)

0 ;
- The group of partial elements, for which �̂�(𝑒)

0 ⊂ �̂� (𝑒)
0 ;

- The group of empty elements, for which �̂�0 ∩ �̂� (𝑒)
0 = ∅.

The active elements are only the entire and the partial ones. As illustrated in Fig. 2, similarly to what stated for boundary layers,
the elements’ domain in the Euclidean space is obtained mapping their analogues in the parametric space

𝛺(𝑒)
𝑖 = ̂

(

�̂�(𝑒)
0

)

. (15)

2.4.3. Quadrature rule
The formulation considered in this work requires numerical integration over the domain and the boundary of elements, along

with interfaces between contiguous patches. For elements in the boundary layers, as well as in the entire elements of the internal
patch, integrals are computed using high-order tensor-product Gauss–Legendre quadrature rules in the corresponding non-mapped
domain. On the other hand, integration on trimmed elements necessitates more refined strategies to accurately capture only their
active parts.

In this work, the algorithm presented in [20] is adopted. In essence, this algorithm reparameterizes each partial element as a
set of tiles, allowing standard Gauss–Lagrange quadrature to be applied in the auxiliary space of each tile. The reparameterization
starts by determining the topology of the element through the information regarding its boundary. Accordingly, to approximate the
element a decomposition strategy is selected and high-order tiles are created as Bezier two-dimensional surfaces. It is essential to
emphasize that the tiling process is solely used to obtain high-fidelity integration. From an analysis perspective, no new elements
are introduced.

Integration over interfaces requires the subdivision of the common curve into segments, with each segment corresponding to
a pair of elements belonging to distinct yet adjacent patches connected by the interface. In cases where one or both sides of the
interfaces are trimmed, this subdivision must consider individual tiles rather than the active elements. For further details on this
segmentation, interested readers are referred to [83].

Ultimately, as the integration rules are constructed within the non-mapped domain of the elements, appropriate terms are
multiplied to the integration weights to perform transformation of infinitesimal area and length in surface and line integration,
respectively.

2.4.4. Strategy to address the ill-conditioning
For the discretization employed herein, partial elements might be characterized by an unboundedly small ratio between the

trimmed and the original area. When this situation occurs the condition number of the stiffness matrix critically increases, affecting
the numerical stability of the solution.

In the construction of the boundary layers, while no control is left over trimming curves, whose definition depends on the desired
shape, the construction of offset curves is to some extent arbitrary. This flexibility could be leveraged by an algorithm that ensures
that the cutting process of the internal domain does not produce critical elements, given a certain homogeneity requirement the
elements’ size. While for a given discretization level the criteria could be met, on subsequent refinements motivated by the need for
improved accuracy of the analysis, the homogeneity requirement might not be satisfied any longer.
7 
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As such, the approach preferred here is to avoid complicating the construction of offset curves and using instead a diagonal
caling of the stiffness matrix through Jacobi preconditioning. Although relatively simple, this method has proven to be very efficient
n addressing the ill-conditioning issue caused by size difference on the support of shape functions. Nonetheless, in some critical
utting scenarios, shape functions having support only on the small cut element might become linearly dependent, making the matrix
umerically singular. When this situation occurs, a dedicated preconditioner, e.g., the Schwarz preconditioner [84,85], should be
dopted. However, the simplicity of the Jacobi is preferred in this work, leaving more robust techniques to future studies.

.4.5. A note on B-splines-based underlying maps
Special attention is required in those cases where the underlying map in Eq. (1) is defined using piecewise functions, such as

-splines. As detailed in the following section, spline-based curves exhibit reduced continuity across multiple lines in each of the two
urvilinear directions. Consequently, since the shape of the boundary layer, and thus its discretization, is arbitrary, the composition
f two maps in Eq. (9) introduces lines of broken continuity within the internal parts of the boundary layer elements, leading to
ertain challenges.

Higher-order integration on maps with non-𝐶∞ continuity cannot be effectively achieved using standard Gaussian schemes.
Potential solutions include reparametrizing elements into tiles where the map is locally 𝐶∞, or employing alternative integration
chemes suitable for reduced continuity functions, such as Newton–Cotes based methods. Another issue arises when, upon
onstructing an approximation space on the discretized domain, the elements are characterized by an order higher than the
ontinuity of the underlying map; in such cases, the error is expected to asymptotically behave as if the element order matched
he continuity of the map itself. However, in the pre-asymptotic regime, this effect is somewhat milder. Extensive investigation
or spline-based underlying maps is left for future research. In the current contribution, simple Gaussian integration schemes are
mployed, which do not appear to affect the present examples.

.5. B-spline based approximation spaces

The space chosen for approximating the solution in the variational problems investigated hereafter leverages B-spline technology
16,86]. This allows for constructing higher-continuity basis functions over the discretized domain. To this end, let us first define
he B-spline space over non-mapped one-dimensional and two-dimensional domains.

Let us suppose that a uni-dimensional interval I = [𝜉𝑏, 𝜉𝑡], referred to the coordinate 𝜉, is discretized using the breaks in the vector
𝛩 =

{

𝜃1,… , 𝜃𝑁𝑒+1
}

, with 𝜉𝑏 = 𝜃1 and 𝜉𝑡 = 𝜃𝑁𝑒+1, being 𝑁𝑒 the number of elements of the discretization. To construct a spline-based
approximation space over this discretized interval, it is first defined the knot vector by taking adequate repetitions of the elements
in 𝛩, thus resulting in the vector of non-decreasing values 𝛯 =

{

𝜉1,… , 𝜉𝑛+𝑝+1
}

, where 𝑛 is the number of shape functions and 𝑝
is the degree of the spline. The details of the construction of the knot vector are not reported here for the sake of conciseness.
The interested reader is referred to [4] for further explanation. It is important to highlight, however, that the spline space is 𝐶∞

everywhere except at the internal knots, where the continuity is at most 𝑝 − 1 and it is reduced by one for every repetition of the
knot. A generic univariate B-spline over I is constructed recursively using the Cox de Boor formula as:

𝑁𝑖,0(𝜉) =
{

1 for 𝜉𝑖 ≤ 𝜉 ≤ 𝜉𝑖+1

0 otherwise
, (16a)

𝑁𝑖,𝑝(𝜉) =
(𝜉 − 𝜉𝑖)𝑁𝑖,𝑝−1(𝜉)

𝜉𝑖+𝑝 − 𝜉𝑖
+

(𝜉𝑖+𝑝+1 − 𝜉)𝑁𝑖+1,𝑝−1(𝜉)

𝜉𝑖+𝑝+1 − 𝜉𝑖+1
, (16b)

here 𝑁𝑖,𝑝(𝜉) is the 𝑖th spline basis with 𝑖 ∈ {1,… , 𝑛} and degree 𝑝. In order to extend this construction to two dimension, let us
ow suppose that a rectangular domain 𝛱 = [𝜉1𝑏, 𝜉1𝑡] × [𝜉2𝑏, 𝜉2𝑡] is discretized using a rectangular grid based on a tensor product
tructure into 𝑁𝑒 = 𝑁𝑒1 × 𝑁𝑒2 elements, being 𝑁𝑒𝛼 the number of elements in the direction 𝛼. As such, 𝛩𝛼 =

{

𝜃1𝛼 ,… , 𝜃𝑁𝑒𝛼+1
𝛼

}

is

the list of breaks in the 𝛼-th direction and 𝛯1 =
{

𝜉1𝛼 ,… , 𝜉𝑛𝛼+𝑝+1𝛼

}

is the corresponding knot vector. It is noted that, following this
construction, the rectangular domain is also obtained as 𝛱 = [𝜃11 , 𝜃

𝑁𝑒1+1
1 ] × [𝜃12 , 𝜃

𝑁𝑒2+1
2 ]. With these definitions at hand a generic

bi-variate B-spline is defined as

𝐵𝑖𝑗 (𝜉1, 𝜉2) = 𝑁𝑖(𝜉1)𝑁𝑗 (𝜉2) with 𝑖 ∈ {1,… , 𝑛1}, 𝑗 ∈ {1,… , 𝑛2} , (17)

where the secondary indices denoting the degree of 𝑁𝑖(𝜉1) and 𝑁𝑗 (𝜉2) were dropped assuming they are both equal to 𝑝.
The approximation space for the 𝑘th boundary layer is then obtained by first constructing bi-variate B-splines over �̃�𝑘 following

the construction that leads to Eq. (17) and taking 𝛱 = �̃�𝑘 and 𝛩𝛼 = 𝛩𝑘
𝛼 . The approximation space is therefore defined as

ℎ,𝛺𝑘
= span{𝐵𝑘

𝑖𝑗◦
−1
𝑘 ∶ 𝑖 ∈ {1,… , 𝑛𝑘1}, 𝑗 ∈ {1,… , 𝑛𝑘2}} (18)

where 𝐵𝑘
𝑖𝑗 is the 𝑖𝑗-th spline defined over �̃�𝑘,  𝑘 = ̂◦̃ 𝑘, and 𝑛𝑘𝛼 is the number of spline functions in the 𝛼-th direction for the

boundary layer 𝑘.
A similar approach is adopted in constructing the approximation space for the internal patch 𝛺0. In this case, the bi-variate

B-spline are constructed over �̂�0, therefore selecting 𝛱 = �̂�0 and 𝛩𝛼 = 𝛩0
𝛼 . However, due to the trimmed definition of �̂�0 some

of the basis functions 𝐵0
𝑖𝑗 may result in a support consisting only on non-active elements. To remove this superfluous degrees of

freedom, the approximation space is defined as

 = span{𝐵0 ◦−1 ∶ 𝑖 ∈ {1,… , 𝑛0}, 𝑗 ∈ {1,… , 𝑛0}, supp(𝐵0 ) ∩ �̂� ≠ ∅} (19)
ℎ,𝛺0 𝑖𝑗 0 1 2 𝑖𝑗 0

8 
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where supp(𝐵0
𝑖𝑗 ) is the union of the elements where 𝐵0

𝑖𝑗 ≠ 0, ̂ 0 = ̂ , and 𝑛0𝛼 is the number of spline functions in the 𝛼-th direction.
The approximation space over the entire domain is simply obtained as the vector spaces sum of the approximation spaces defined

ver each patch, in other words the internal one and the boundary layers, meaning

ℎ = ℎ,𝛺0
⊕ ℎ,𝛺1

⊕⋯⊕ ℎ,𝛺𝑁𝛤
. (20)

here ⊕ denotes the vector spaces sum operation.

. Classical shell theories

The problems investigated in this work pertain to the linear elastic analysis of laminated shell structures. Specifically, the starting
oints are the Kirchhoff–Love and Reissner–Mindlin shell equations formulated in a weak sense over the shell mid-surface. The
ollowing section presents both shell kinematics within a unified framework.

.1. Differential geometry

In this section, we briefly introduce the essential concepts of differential geometry pertinent to the definition of the proposed
roblem. Given the map  of the surface, the vectors of the local covariant basis are defined as

𝒂𝛼 =  ,𝛼 . (21)

unit normal vector is associated to each point on the surface, and is computed from the covariant basis as

𝒂3 =
𝒂1 × 𝒂2
|𝒂1 × 𝒂2|

, (22)

where × denotes the cross product and | ∙ | the standard Euclidean norm. The covariant components of the surface metric tensor
are defined as 𝑎𝛼𝛽 = 𝒂𝛼 ⋅ 𝒂𝛽 , where ⋅ denotes the dot product. The determinant of the surface metric tensor is denoted as 𝑎. The
contravariant components of the surface metric tensor are obtained from the covariant counterparts as

[𝑎𝛼𝛽 ] = [𝑎𝛼𝛽 ]−1 (23)

and allow us to compute the vectors of the local contravariant basis as

𝒂𝛼 = 𝑎𝛼𝛽𝒂𝛽 , (24)

that satisfy the property 𝒂𝛼 ⋅ 𝒂𝛽 = 𝛿𝛽𝛼 , being 𝛿𝛽𝛼 the Kronecker delta. Additionally, we introduce the covariant components of the
curvature tensor, defined respectively as

𝑏𝛼𝛽 = 𝒂3 ⋅ 𝒂𝛼,𝛽 , (25)

while its mixed components are obtained through the index raising operation

𝑏𝛼𝛽 = 𝑎𝛼𝛾𝑏𝛾𝛽 . (26)

Leveraging the surface map and the definition of the normal unit vector, it is possible to map the volume constructed by extruding
in the direction of 𝒂3. To achieve this, a third curvilinear coordinate 𝜉3 is introduced. This coordinate represents the signed distance
between a point in the volume and its normal projection onto the mid-surface, spanning the interval Î3 = [𝜉3𝑏, 𝜉3𝑡]. Consequently,
the map for the entire volume  ∶ 𝑉 → 𝑉 is defined as

𝑿(𝜉1, 𝜉2, 𝜉3) = (𝜉1, 𝜉2, 𝜉3) = 𝒙(𝜉1, 𝜉2) + 𝜉3𝒂3(𝜉1, 𝜉2) , (27)

where 𝑉 = �̂� × Î3. Similarly to the surface mapping, for the volume mapping the vectors of the local covariant basis are defined as
𝑨𝑖 = ,𝑖. More specifically

𝑨𝛼 = 𝒂𝛼 + 𝜉3𝒂3,𝛼 , (28a)

𝑨3 = 𝒂3 . (28b)

Following the convention utilized in this work, for mappings associated with boundary layers, the curvilinear coordinates (𝜂𝑖1, 𝜂
𝑖
2) are

employed for defining geometrical quantities pertaining the surface and the volume in lieu of (𝜉1, 𝜉2). This clarification also applies
in the treatment of shell theories.

3.2. Problem setting

Let us assume that the mid-surface of the shell is a two-dimensional manifold in E3, as described in Section 2.1. The shell material

is a laminate obtained juxtaposing 𝑁𝓁 layers, assumed homogeneous, orthotropic, and perfectly bonded. The superscript ⟨𝓁⟩ denotes

9 
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quantities specific to the 𝓁-th layer. Thus, 𝑉 ⟨𝓁⟩ represents the volume of the 𝓁-th layer, which is assumed to have a uniform thickness
𝜏⟨𝓁⟩, resulting in the total thickness of the laminate 𝜏 being also uniform and given by

𝜏 =
𝑁𝓁
∑

𝓁=1
𝜏⟨𝓁⟩ , (29)

and the overall volume of the shell given by 𝑉 = ∪𝑁𝓁
𝓁=1𝑉

⟨𝓁⟩. Each layer conforms to the curvature of the shell, meaning that given
𝜉⟨𝓁⟩3𝑏 and 𝜉⟨𝓁⟩3𝑡 = 𝜉⟨𝓁⟩3𝑏 +𝜏⟨𝓁⟩ as the coordinates of the layer’s bottom and top reference surfaces, respectively, the volume 𝑉 ⟨𝓁⟩ comprises
the points such that 𝑿 = 𝑿(𝜉1, 𝜉2, 𝜉

⟨𝓁⟩
3𝑏 ≤ 𝜉3 ≤ 𝜉⟨𝓁⟩3𝑡 ). Concerning the material parameters such as Young moduli, Poisson ratios, shear

oduli, and lamination angle, these are discussed in detail in Appendix B, where the constitutive relationships for the classical shell
heories are derived. Here, it is assumed that the shell mid-surface refers to 𝜉3 = 0, so the coordinates of the bottom and top surfaces

of the laminate are 𝜉3𝑏 = −𝜏∕2 and 𝜉3𝑡 = +𝜏∕2.
To what regards the external loads, distributed forces and moments denoted by �̄� and �̄�, respectively, are assumed applied

irectly on the mid-surface 𝛺. Its boundary, 𝜕𝛺 is bipartite in two distinct ways: as 𝜕𝛺 = 𝜕𝛺𝐷1
∪ 𝜕𝛺𝑁1

for one set of conditions,
and as 𝜕𝛺 = 𝜕𝛺𝐷2

∪ 𝜕𝛺𝑁2
for the other one:

- 𝜕𝛺𝐷1
and 𝜕𝛺𝐷2

represent the portions of the boundary where Dirichlet displacement and rotation boundary conditions are
applied, respectively.

- 𝜕𝛺𝑁1
and 𝜕𝛺𝑁2

represent the portions of the boundary where Neumann force and moment boundary conditions are applied,
respectively.

It is important to mention that 𝜕𝛺𝐷1
and 𝜕𝛺𝑁1

are disjoint sets whose union coincide with 𝜕𝛺, and the same applies to 𝜕𝛺𝐷2
and

𝛺𝑁2
. It is also defined the set of corners 𝜒 ∈ 𝜕𝛺 which is further divided into

- 𝜒𝐷 ∈ cl(𝜕𝛺𝐷1
) where Dirichlet displacement boundary conditions are applied.

- 𝜒𝑁 ∈ 𝜕𝛺𝑁1
where Neumann force boundary conditions are applied.

or the notation of boundary conditions, applied boundary force and moment are denoted as �̄� and �̄� , respectively, while applied
displacement and rotation are denoted as �̄� and �̄�, respectively.

It is important to mention that while �̄� , �̄� , and �̄� can have three independent components in the Euclidean space, �̄�, �̄� , and
�̄� lie in the plane locally tangent to the mid-surface. Additionally, although theoretically the division between different types of
Dirichlet and Neumann boundaries could be component-based, meaning that different components of the displacement or rotation
vectors could belong to different boundary types on the same edge, for simplicity, the classification of the boundary conditions is
kept as described.

3.3. Kinematic hypothesis, generalized strain, and generalized stress

Shell theories are developed based on an axiomatic assumption about how the displacement varies along the coordinate 𝜉3,
which spans the thickness direction. The classical shell theories, namely Kirchhoff–Love and Reissner–Mindlin, are founded on the
kinematic hypothesis that a unit vector normal to the undeformed mid-surface remains straight and unextended after deformation.
This assumption can be expressed as follows

𝑼 (𝜉1, 𝜉2, 𝜉3) = 𝒖(𝜉1, 𝜉2) + 𝜉3𝜽(𝜉1, 𝜉2) , (30)

where 𝑼 denotes displacement of a generic point within the shell volume, 𝒖 denotes displacement of its projection onto the mid-
surface, and 𝜽 the rotation vector. The assumption of the non-extensibility of the perpendicular unit vector implies that the rotation
must lie within the tangent plane of the mid-surface, which leads to the condition that 𝒂3 ⋅ 𝜽 = 0. The covariant components of the
linear strain tensor for a three-dimensional solid 𝑉 are derived from

𝜖𝑖𝑗 =
1
2
(𝑨𝑖 ⋅ 𝑼 ,𝑗 +𝑨𝑗 ⋅ 𝑼 ,𝑖) , (31)

where the derivatives of the displacement field with respect to the curvilinear coordinates, upon considering the kinematic
hypothesis, simplify to

𝑼 ,𝛼 = 𝒖,𝛼 + 𝜉3𝜽,𝛼 , (32a)

𝑼 ,3 = 𝜽 . (32b)

Introducing Eqs. (28) and (32) in Eq. (31) leads to the following expressions for the components of the strain field

𝜖𝛼𝛽 = 1
2
[

(𝒂𝛼 + 𝜉3𝒂3,𝛼) ⋅ (𝒖,𝛽 + 𝜉3𝜽,𝛽 ) + (𝒂𝛽 + 𝜉3𝒂3,𝛽 ) ⋅ (𝒖,𝛼 + 𝜉3𝜽,𝛼)
]

= 𝜀𝛼𝛽 + 𝜉3𝜅𝛼𝛽 + 𝜉23𝜒𝛼𝛽 , (33a)

𝜖3𝛼 = 1
2
[

𝒂3 ⋅ (𝒖,𝛼 + 𝜉3𝜽,𝛼) + (𝒂𝛼 + 𝜉3𝒂3,𝛼) ⋅ 𝜽
]

=
𝛾𝛼
2

, (33b)

𝜖33 = 0 . (33c)
10 



G. Guarino et al. Computer Methods in Applied Mechanics and Engineering 432 (2024) 117407 
Note that in the previous equation 𝜖3𝛼 = 𝜖𝛼3. As typical in Reissner–Mindlin formulations, the tensor 𝝌 is discarded since 𝜉23 can be
neglected for sufficiently small thickness values. The tensors 𝜺, 𝜿, and 𝜸 are referred to as the generalized strain tensors, specifically
representing the membrane strain, bending strain, and shear strain, respectively. Their covariant components are defined as

2𝜀𝛼𝛽 = 𝒂𝛼 ⋅ 𝒖,𝛽 + 𝒂𝛽 ⋅ 𝒖,𝛼 , (34a)

2𝜅𝛼𝛽 = 𝒂𝛼 ⋅ 𝜽,𝛽 + 𝒂𝛽 ⋅ 𝜽,𝛼 + 𝒂3,𝛼 ⋅ 𝒖,𝛽 + 𝒂3,𝛽 ⋅ 𝒖,𝛼 , (34b)

𝛾𝛼 = 𝒂3 ⋅ 𝒖,𝛼 + 𝒂𝛼 ⋅ 𝜽 , (34c)

in such way that 𝜺 = 𝜀𝛼𝛽 𝒂𝛼 ⊗ 𝒂𝛽 , 𝜿 = 𝜅𝛼𝛽 𝒂𝛼 ⊗ 𝒂𝛽 , 𝜸 = 𝛾𝛼 𝒂3 ⊗ 𝒂𝛼 . It is worth noting that in the previous equation it was used
the property 𝒂3,𝛼 ⋅ 𝜽 = −𝒂3 ⋅ 𝜽,𝛼 , that follows from considering 𝒂3 ⋅ 𝜽 = 0 in the equality (𝒂3 ⋅ 𝜽),𝛼 = 𝒂3,𝛼 ⋅ 𝜽 + 𝒂3 ⋅ 𝜽,𝛼 . The work-
conjugate quantities are known as generalized stresses and are denoted by as 𝑵 , 𝑴 , and 𝑸, representing the membrane force,
bending moment, and shear force, respectively. The contravariant components of these tensors are derived using the constitutive
relationships, as detailed in Appendix B. These relationships are summarized as follows:

𝑁𝛼𝛽 = A𝛼𝛽𝛾𝛿𝜀𝛾𝛿 + B𝛼𝛽𝛾𝛿𝜅𝛾𝛿 , (35a)

𝑀𝛼𝛽 = B𝛼𝛽𝛾𝛿𝜀𝛾𝛿 + D𝛼𝛽𝛾𝛿𝜅𝛾𝛿 , (35b)

𝑄𝛼 = S𝛼𝛽𝛾𝛽 . (35c)

3.4. The Reissner–Mindlin shell equation

In the formulation adopted here, the Reissner–Mindlin equations use the Cartesian coordinates of the displacement vector 𝑢𝑖
(i.e., 𝒖 = 𝑢𝑖𝒆𝑖), and the covariant coordinates of the rotation vector 𝜃𝛼 (i.e., 𝜽 = 𝜃𝛼𝒂𝛼). While alternative choices for expressing
rotation are explored in the literature, they often lead to an increased number of degrees of freedom and necessitate additional
drilling stabilization. Whereas in the present formulation, expressing 𝜽 in a local basis tangent to the mid-surface allows for the use
of only two coordinates, with 𝜃3 = 0 inherently satisfying the non-extensibility condition. Consequently, Eq. (34) can be simplified
further as

2𝜀𝛼𝛽 = 𝒂𝛼 ⋅ 𝒖,𝛽 + 𝒂𝛽 ⋅ 𝒖,𝛼 , (36a)

2𝜅𝛼𝛽 = (𝜃𝛼,𝛽 + 𝜃𝛽,𝛼) − (𝒂𝛼,𝛽 ⋅ 𝜽 + 𝒂𝛽,𝛼 ⋅ 𝜽) + (𝒂3,𝛼 ⋅ 𝒖,𝛽 + 𝒂3,𝛽 ⋅ 𝒖,𝛼) , (36b)

𝛾𝛼 = 𝒂3 ⋅ 𝒖,𝛼 + 𝜃𝛼 . (36c)

Where it was used that 𝒂𝛼 ⋅ 𝜽,𝛽 = (𝒂𝛼 ⋅ 𝜽),𝛽 − 𝒂𝛼,𝛽 ⋅ 𝜽 = 𝜃𝛼,𝛽 − 𝒂𝛼,𝛽 ⋅ 𝜽. The weak form of the governing equation derives from
the three-dimensional principle of virtual displacements. This involves integrating through the thickness, incorporating the shell
kinematics, and assuming d𝑉 = d𝛺d𝜉3. While the detailed derivations are omitted here for brevity, they can be found in various
references on shell mechanics, e.g., [87]. The resulting two-dimensional variational statement for the Reissner–Mindlin shell reads:
find (𝒖,𝜽) ∈ [1]5

(�̄�,�̄�)
such that

𝑅𝑀
𝑖𝑛𝑡 (𝛿𝒖, 𝛿𝜽, 𝒖,𝜽) = 𝑅𝑀

𝑒𝑥𝑡 (𝛿𝒖, 𝛿𝜽) , ∀(𝛿𝒖, 𝛿𝜽) ∈ [1]5(𝟎,𝟎) , (37)

where [1]5
(�̄�,�̄�)

denotes the subspace of [1]5 in which Dirichlet boundary conditions are satisfied, and [1]5(𝟎,𝟎) represents the
subspace of [1]5 where the test functions are null on the corresponding Dirichlet boundary. The bilinear form 𝑅𝑀

𝑖𝑛𝑡 and the linear
form 𝑅𝑀

𝑒𝑥𝑡 represent the virtual work of the internal forces and external forces, respectively. Their expressions are given by

𝑅𝑀
𝑖𝑛𝑡 = ∫𝛺

(𝛿𝜺∶𝑵 + 𝛿𝜿 ∶𝑴 + 𝛿𝜸 ∶𝑸)d𝛺 , (38a)

𝑅𝑀
𝑒𝑥𝑡 = ∫𝛺

(𝛿𝒖 ⋅ �̄� + 𝛿𝜽 ⋅ �̄�)d𝛺 + ∫𝜕𝛺𝑁1

𝛿𝒖 ⋅ �̄� d𝜕𝛺 + ∫𝜕𝛺𝑁2

𝛿𝜽 ⋅ �̄�d𝜕𝛺 , (38b)

where the operator ∶ denotes the contraction operation between tensors.

3.5. The Kirchhoff–Love shell equation

In Kirchhoff–Love theory, it is additionally assumed that the unit normal segment remains perpendicular to the deformed
mid-surface. This implies that shear strain are zero, and thus

𝜃𝛼 = −𝒂3 ⋅ 𝒖,𝛼 . (39)

Substituting 𝜃𝛼 into Eq. (36) leads to the expressions for the generalized strain provided in [80,88,89] and not reported here for the
sake of conciseness. Consequently, for the Kirchhoff–Love theory, the only variables are the Cartesian coordinates of the displacement
vector. However, this approach results in a fourth-order differential equation, necessitating additional considerations. Firstly, the
approximation space must be 𝐶1 continuous to ensure that the displacement’s derivatives, and thus the rotation, are continuous.
11 
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Secondly, the Neumann boundary condition are adjusted as follows. The component �̄�𝑛 = �̄� ⋅ 𝒏 is applied on 𝜕𝛺𝑁2
, while the

component �̄�𝑡 = �̄� ⋅ 𝒕 contributes to the definition of the Ersatz force �̄�

�̄� =
(

𝐹𝛼 − �̄�𝑡𝑏𝛼𝛽 𝑡
𝛽)𝒂𝛼 +

(

𝐹3 +
𝜕�̄�𝑡
𝜕𝑡

)

𝒂3 , (40)

where 𝐹𝛼 = 𝒂𝛼 ⋅ �̄� , 𝐹3 = 𝒂3 ⋅ �̄� , 𝑡𝛼 = 𝒂𝛼 ⋅ 𝒕, and 𝜕�̄�𝑡∕𝜕𝑡 denotes the arc-length derivative of �̄�𝑡. Here, 𝒏 is the outer unit vector
locally perpendicular to 𝜕𝛺 and lying on the plane locally tangent to 𝛺, while 𝒕 = 𝒂3 × 𝒏 is the unit vector locally tangent to 𝜕𝛺.
Additionally, Kirchhoff–Love theory introduces the so-called corner forces at points of 𝜒𝑁 , defined as

�̄� = lim
𝜖→0

(

�̄�𝑡(𝒙 + 𝜖𝒕+) − �̄�𝑡(𝒙 − 𝜖𝒕−)
)

, (41)

where 𝒕+ and 𝒕− are the tangent vectors at the two edges intersecting in a corner. The two-dimensional variational statement for
the Kirchhoff–Love shell then reads: find 𝒖 ∈ [2]3

(�̄�,�̄�𝑛)
such that

𝐾𝐿
𝑖𝑛𝑡 (𝛿𝒖, 𝒖) = 𝐾𝐿

𝑒𝑥𝑡 (𝛿𝒖) , ∀𝛿𝒖 ∈ [2]3𝟎,0 , (42)

where [2]3
(�̄�,�̄�𝑛)

is the subspace of [2]3 where Dirichlet boundary conditions are satisfied, and [2]3(𝟎,0) is the subspace of [2]3

where both 𝒖 and 𝜃𝑛 are null on the corresponding Dirichlet boundary. The bilinear form 𝐾𝐿
𝑖𝑛𝑡 and the linear form 𝐾𝐿

𝑒𝑥𝑡 are expressed
in this case as

𝐾𝐿
𝑖𝑛𝑡 = ∫𝛺

(𝛿𝜺∶𝑵 + 𝛿𝜿 ∶𝑴)d𝛺 , (43a)

𝐾𝐿
𝑒𝑥𝑡 = ∫𝛺

𝛿𝒖 ⋅ �̄�d𝛺 + ∫𝜕𝛺𝑁1

𝛿𝒖 ⋅ �̄� d𝜕𝛺 + ∫𝜕𝛺𝑁2

𝜃𝑛�̄�𝑛d𝜕𝛺 +
∑

𝐶∈𝜒𝑁

(

𝑣3�̄�
)

|𝐶 . (43b)

. Discretized shell variational statements

This section focuses on the numerical approximation of the variational statements in Eqs. (37) and (42). First, the domain is
iscretized following the domain sub-structuring and meshing strategy as described in Section 2.4. Then, bi-variate spline spaces
f arbitrary degree are constructed over each discretized patch and summed to construct the approximation space for the whole
omain ℎ as described in Section 2.5. From here on, the vector approximation spaces for the Reissner–Mindlin and Kirchhoff–Love
heories are obtained, respectively, as 𝑅𝑀

ℎ = [ℎ]5 and 𝐾𝐿
ℎ = [ℎ]3. Additionally, in 𝐾𝐿

ℎ , the spline bases are taken with a degree
f at least 2 within the domain of each patch to satisfy the 𝐶1 continuity requirement imposed by the Kirchhoff–Love shell equation.

The discretized variational statement for the Reissner–Mindlin shell equation reads: find (𝒖ℎ,𝜽ℎ) ∈ 𝑅𝑀
ℎ(�̄�,�̄�)

such that

𝑅𝑀
𝑖𝑛𝑡 (𝛿𝒖ℎ, 𝛿𝜽ℎ, 𝒖ℎ,𝜽ℎ) + 𝑅𝑀

𝑛𝑖𝑡 (𝛿𝒖ℎ, 𝛿𝜽ℎ, 𝒖ℎ,𝜽ℎ) = 𝑅𝑀
𝑒𝑥𝑡 (𝛿𝒖ℎ, 𝛿𝜽ℎ) , ∀(𝛿𝒖ℎ, 𝛿𝜽ℎ) ∈ 𝑅𝑀

ℎ(𝟎,𝟎) , (44)

here 𝑅𝑀
𝑖𝑛𝑡 and 𝑅𝑀

𝑒𝑥𝑡 are defined as in Eq. (38), 𝑅𝑀
𝑛𝑖𝑡 denotes the contribute arising from the Nitsche-based coupling method

nd is discussed in detail in the remainder of this section, 𝑅𝑀
ℎ(�̄�,�̄�)

represents the subspace of 𝑅𝑀
ℎ where 𝒖ℎ = �̄� and 𝜽ℎ = �̄�

n the corresponding Dirichlet boundaries, and 𝑅𝑀
ℎ(𝟎,𝟎) represents the subspace of 𝑅𝑀

ℎ where 𝛿𝒖ℎ = 𝟎 and 𝛿𝜽ℎ = 𝟎 on the
orresponding Dirichlet boundaries. As customary when adopting spline-based approximation spaces, boundary conditions on trial
nd test functions are imposed strongly by directly assigning values to the degrees of freedom associated with the basis functions
hat are non-zero on 𝜕𝛺 after an 𝐿2 projection of the applied displacement and rotation [16,86]. This is made possible by the
doption of the IBCM, which ensures the conformal nature of each boundary within the domain.

Similarly, the discretized variational statement for the Kirchhoff–Love shell equation is formulated as: find 𝒖ℎ ∈ 𝐾𝐿
ℎ(�̄�) such that

𝐾𝐿
𝑖𝑛𝑡 (𝛿𝒖ℎ, 𝒖ℎ) + 𝐾𝐿

𝑛𝑖𝑡 (𝛿𝒖ℎ, 𝒖ℎ) = 𝐾𝐿
𝑒𝑥𝑡 (𝛿𝒖ℎ) , ∀𝛿𝒖ℎ ∈ 𝐾𝐿

ℎ(𝟎) , (45)

here 𝐾𝐿
𝑖𝑛𝑡 and 𝐾𝐿

𝑒𝑥𝑡 are defined as in Eq. (43), 𝐾𝐿
𝑛𝑖𝑡 denotes the Nitsche contribute, 𝐾𝐿

ℎ(�̄�) and 𝐾𝐿
ℎ(𝟎) represent the subspace of

𝐾𝐿
ℎ that satisfy in a strong sense the Dirichlet conditions on displacement trial and test functions, respectively. However, for the
irchhoff–Love equation, the applied rotation on Dirichlet boundary still needs to be imposed in a weak sense following the Nitsche’s
ethod as described in [89]. However, this procedure is not reported here for the sake of conciseness.

.1. Nitsche method for Reissner–Mindlin shell coupling

The Nitsche term in Eq. (44) is based on integrals along the interfaces between adjacent patches. This term is defined as

𝑅𝑀
𝑛𝑖𝑡 =

𝑁𝛤
∑

𝑖=1
∫𝛤𝑖

(

−[[𝛿𝒖ℎ]] ⋅ {𝑵𝑛} − [[𝛿𝜽ℎ]] ⋅ {𝑴𝑛} +

−𝛾1{𝛿𝑵𝑛} ⋅ [[𝒖ℎ]] − 𝛾1{𝛿𝑴𝑛} ⋅ [[𝜽ℎ]] +

+𝜇𝑅𝑀
𝑢 [[𝛿𝒖ℎ]] ⋅ [[𝒖ℎ]] + 𝜇𝑅𝑀 [[𝛿𝜽ℎ]] ⋅ [[𝜽ℎ]]

)

d𝛤 , (46)
𝜃
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where it is reminded that 𝛤𝑖 is the 𝑖th of the 𝑁𝛤 interfaces. 𝑵𝑛 = 𝑵𝑛(𝒖ℎ,𝜽ℎ) and 𝑴𝑛 = 𝑴𝑛(𝒖ℎ,𝜽ℎ) are the Reissner–Mindlin fluxes for
he trial functions space, and 𝛿𝑵𝑛 = 𝛿𝑵𝑛(𝛿𝒖ℎ, 𝛿𝜽ℎ) and 𝛿𝑴𝑛 = 𝛿𝑴𝑛(𝛿𝒖ℎ, 𝛿𝜽ℎ) are the Reissner–Mindlin fluxes for the test functions
pace. 𝛾1, 𝜇𝑅𝑀

𝑢 , and 𝜇𝑅𝑀
𝜃 are parameters of the Nitsche method and their choice determine its type and properties, as discussed in

ection 4.3. The operators {∙} and [[∙]] are the average and jump operators defined in Section 4.3.
Following [45], the fluxes for the Reissner–Mindlin shell in the outer unit direction 𝒏 introduced in Eq. (46) are of two types:

he force 𝑵𝑛 and moment 𝑴𝑛, defined as follows

𝑵𝑛 = 𝑁𝛼𝒂𝛼 +𝑄𝒂3 , (47a)

𝑴𝑛 = 𝑀𝑛𝑛𝒏 +𝑀𝑛𝑡𝒕 , (47b)

here 𝑁𝛼 and 𝑄 are computed as

𝑁𝛼 = (𝑁𝛼𝛽 − 𝑏𝛼𝛾𝑀
𝛾𝛽 )𝑛𝛽 , (48a)

𝑄 = 𝑄𝛼𝑛𝛼 . (48b)

inally, the components for the moments 𝑴𝑛 are obtained from

𝑀𝑛𝑛 = 𝑀𝛼𝛽𝑛𝛼𝑛𝛽 , (49a)

𝑀𝑛𝑡 = 𝑀𝛼𝛽𝑛𝛼𝑡𝛽 . (49b)

.2. Nitsche method for Kirchhoff–Love shell coupling

Similarly to the Reissner–Mindlin case, the Nitsche term in Eq. (45) is defined as

𝐾𝐿
𝑛𝑖𝑡 =

𝑁𝛤
∑

𝑖=1
∫𝛤𝑖

(

−[[𝛿𝒖ℎ]] ⋅ {𝑻 𝑛} − [[𝛿𝜃𝑛]] ⋅ {𝑀𝑛𝑛} +

−𝛾1{𝛿𝑻 𝑛} ⋅ [[𝒖ℎ]] − 𝛾1{𝛿𝑀𝑛𝑛} ⋅ [[𝜃𝑛]] +

+𝜇𝐾𝐿
𝑢 [[𝛿𝒖ℎ]] ⋅ [[𝒖ℎ]] + 𝜇𝐾𝐿

𝜃 [[𝛿𝜃𝑛]] ⋅ [[𝜃𝑛]]
)

d𝛤 , (50)

here 𝑻 𝑛 = 𝑻 𝑛(𝒖ℎ) and 𝑀𝑛𝑛 = 𝑀𝑛𝑛(𝒖ℎ) are the Kirchhoff–Love fluxes for the trial functions space, and 𝛿𝑻 𝑛 = 𝛿𝑻 𝑛(𝛿𝒖ℎ) and
𝑀𝑛𝑛 = 𝛿𝑀𝑛𝑛(𝛿𝒖ℎ) are the Kirchhoff–Love fluxes for the test functions space, as defined in the remainder of this section. It is
orth reminding that in Kirchhoff–Love theory

𝜃𝑛 = 𝜃𝑛(𝒖ℎ) = 𝜃𝛼(𝒖ℎ)𝑛𝛼 , (51)

here 𝑛𝛼 = 𝒏 ⋅ 𝒂𝛼 . Similarly, for the test functions, 𝛿𝜃𝑛 = 𝛿𝜃𝑛(𝛿𝒖ℎ).
The correct expression of the fluxes for the Kirchhoff–Love formulation was only recently found in [89] and it is partially reported

ere. Also for the Kirchhoff–Love theory the fluxes are of two types: the so-called ersatz forces 𝑻 𝑛 and the bending moment 𝑀𝑛𝑛.
hile the bending moment is defined in the same way as in the Reissner–Mindlin formulation, the expression for the ersatz forces

s

𝑻 𝑛 = 𝑇 𝛼𝒂𝛼 + 𝑇 3𝒂3 , (52)

here 𝑇 𝛼 and 𝑇 3 are given by

𝑇 𝛼 = 𝑁𝛼𝛽𝑛𝛽 − 𝑏𝛼𝛾𝑀
𝛾𝛽𝑛𝛽 −𝑀𝑛𝑡𝑏

𝛼
𝛾 𝑡

𝛾 , (53a)

𝑇 3 = 𝑀𝛼𝛽
|𝛽 𝑛𝛼 + (𝑀𝛼𝛽𝑛𝛼𝑡𝛽 ),𝑡 . (53b)

n the previous equation the notation 𝑀𝛼𝛽
|𝛽 denotes the covariant derivative in the direction 𝛽 of the 𝛼𝛽-th component of the bending

oment tensor, whereas the notation (∙),𝑡 refers to the arc-length derivative along 𝛤𝑖. The details on how to compute these two
erivatives are not reported here for brevity but can be found in [80,89].

.3. Choice of the method’s parameters

In both Eqs. (46) and (50), the Nitsche term relies on integrals along the interfaces between patches. These integrals consist of
ix additive terms each. The first two terms are the consistency ones introduced to restore consistency in the variational formulation.
he average and jump operators that appear in these terms are defined as

{∙} = 𝛾2 ∙+ +(1 − 𝛾2)∙− , (54)

[[∙]] = ∙+ − ∙− , (55)

here ∙+ and ∙− denote a generic quantity computed from each side of the interface. In order to compute the average of the same
uantity, the fluxes from the second patch are computed relatively to a unit vector 𝒏 entering the patch domain. The value of 𝛾2

anges between 0 and 1 and determines how the average operator leans toward the first or the second patch.
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The third and fourth terms in Eqs. (46) and (50) are called symmetric terms. Typical choices for the value of 𝛾1 that multiplies
hese terms are {0,+1,−1}, producing non-symmetrical, symmetrical, and anti-symmetrical contributions to the solving linear
ystem, respectively. The last two terms are called the stabilization terms and are introduced to ensure coercivity of the bilinear
orm and, therefore, the stability of the method. The multiplicative terms 𝜇𝑢 and 𝜇𝜃 are called penalty parameters, and their choice
alances two opposite needs: ensuring stability, and limiting the condition number of the linear system. As a side note, the pure
enalty method relies only on these terms to restore coupling, leading to a symmetric and stable formulation [17,53–55,59]. However
he values of the penalty parameters to achieve a given error need to be considerably higher given the lack of consistency [26,56].

Accordingly to the choice of 𝛾1, 𝛾2, and the penalty values, different Nitsche-type formulations can be constructed. Selecting
1 = 1 leads to the symmetric Nitsche method [29,73,74,76,78–80], also known as interior penalty method. This formulation strictly
equires the presence of the penalty terms, and therefore 𝜇 > 0, to ensure coercivity. With 𝛾1 = −1 and 𝜇 = 0 the Nitsche contribute
s anti-symmetrical and leads to a more stable formulation [31,34,75], where penalty terms can still be adopted to further increase
tability, loosing however every type of symmetry [30,77,90]. The value of 𝛾2 can be used to balance the computation of the average
f the fluxes accordingly to the different properties of the two side of the interface [91,92].

Adequately choosing these parameters to construct a stable method is even more difficult when the elements in the patches to
e coupled are trimmed by the interface. In limit situations in order to ensure coercivity, in the symmetric Nitsche method, a local
igenvalue problem needs to be addressed and the value of the penalty parameter can grow unbounded [33,75,93].

In this work, the symmetric Nitsche method is adopted for coupling internal patches and boundary layers. The stability of the
ethod relies on the definition of the average operator and, therefore, the choice for the parameter 𝛾2. Here, the fluxes are computed
niquely from the boundary layer, setting 𝛾2 = 1 in Eq. (54) and leveraging the fact that the elements in this layer are not trimmed,
hus leading to Nitsche contributes seamless to stabilize [20,83]. Regarding the penalty values, these are chosen as

𝜇𝑅𝑀
𝑢 = 𝜇𝐾𝐿

𝑢 = 𝛽𝐸𝜏∕ℎ , (56a)

𝜇𝑅𝑀
𝜃 = 𝜇𝐾𝐿

𝜃 = 𝛽𝐸𝜏3∕ℎ , (56b)

here 𝐸 represent the maximum Young modulus of the layers of the laminate, 𝛽 is an arbitrary value that for Nitsche based
ormulations typically ranges in [10, 103], and ℎ is a measure of the dimension of the elements of the boundary layer.

. Results

The proposed method is tested in this section through a series of scenarios involving shell structures. Specifically, five tests are
onducted: a laminated plate with circular cut-outs, a hyperbolic-paraboloid shell with two internal cut-outs, a structure comprising
wo intersecting cylinders, a generally curved spline-based surface with a cut-out and a trimmed external boundary, and a cylindrical
hell with an axial through the thickness fracture. The constitutive laws in these tests involve either laminated materials with
rthotropic layers or single-layer isotropic materials.

In these tests, Dirichlet boundary conditions are applied using different strategies depending on whether they pertain to
isplacements or rotations, the shell theory in question, and whether the boundary is conformal or trimmed. Trimmed boundaries are
ncluded solely for comparison purposes with the present IBCM approach. For conformal boundaries, essential boundary conditions
n displacement are applied strongly, while on rotation this applies only for the Reissner–Mindlin shell theory, where the components
f the rotation vector are explicitly available as degrees of freedom. Conversely, for the Kirchhoff–Love theory, rotation boundary
onditions are enforced weakly using Nitsche’s method, which is also adopted for all types of Dirichlet conditions on trimmed
oundaries. As standard for spline-based approximation spaces, imposing Dirichlet conditions strongly requires an 𝐿2 projection of
he applied external function into the B-spline space of the corresponding edge in order to determine the values of the associated
egrees of freedom. Coupling conditions between boundary layers and the internal patch are imposed weakly using Nitsche’s
ormulation, as shown in Eqs. (44) and (45).

A common issue with Nitsche-based coupling and boundary conditions is that the resulting bilinear form might lose coercivity
f not properly stabilized. In the presented tests, coercivity is verified by assessing the positive definiteness of the stiffness matrix.
pecifically, it is established that not all its eigenvalues are positive.

.1. Laminated plate with cut-out

The first set of tests focuses on a square laminated plate with an internal circular cut-out, as shown in Fig. 3. The plate has a
ength of 𝐿 = 1 [m], and the internal hole is constructed through a coarse B-spline approximation of a circle centered on the square
ith a radius of 𝑅 = 0.2 [m]. Regarding the constitutive properties, the layup consists of four layers of an orthotropic material
aving Young moduli 𝐸1 = 25 [GPa], 𝐸2 = 1 [GPa], Poisson’s ratio 𝜈12 = 0.25, and shear moduli 𝐺12 = 𝐺31 = 𝐺32 = 0.4 [GPa]. The
ayers have all the same thickness 𝜏∕4 and are oriented in a sequence of [0, 90, 90, 0], with the angles measured relative to the 𝜉1
xis.

The external applied force and boundary conditions are chosen to reproduce the manufactured solution
𝒖𝑒𝑥 = U𝑖 sin(𝜋𝑛1𝜉1) sin(𝜋𝑛2𝜉2)𝒆𝑖 , (57)
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Fig. 3. Geometry and discretization for the laminated plate in the first set of tests. (a) First refinement level for the single patch discretization with corresponding
types of boundary conditions and applied loads. (b) First refinement level for the IBCM-based discretization with corresponding types of boundary conditions and
applied loads. Third (c) and fourth (d) refinement levels for the IBCM-based discretization. Boundary conditions of type 1 involve strong homogeneous Dirichlet
for the displacement. For the rotation, homogeneous Neumann is used in Kirchhoff–Love theory, while strong homogeneous Dirichlet is used in Reissner–Mindlin
theory. Boundary conditions of type 2 involve weak non-homogeneous Dirichlet for both displacement and rotation in both theories. Boundary conditions of type
3 involve strong non-homogeneous Dirichlet for the displacement. For the rotation, weak non-homogeneous Dirichlet is used in Kirchhoff–Love theory, while
strong non-homogeneous Dirichlet is used in Reissner–Mindlin theory.

where 𝑛1 = 𝑛2 = 2 are the number of half-waves in the 𝜉1 and 𝜉2 directions, respectively. The amplitude of the displacement functions
are U1 = U2 = U3 = 0.1 [m]. For the Kirchhoff–Love theory, no additional information is required to construct the manufactured
solution. However, for Reissner–Mindlin kinematic, additional fields are introduced for the rotation vector

𝜽𝑒𝑥 = 𝛩𝛼 sin(𝜋𝑛1𝜉1) sin(𝜋𝑛2𝜉2)𝒆𝛼 , (58)

where 𝛩1 = 𝛩2 = 0.1.
Due to the conformal nature of the external boundary of the plate, boundary conditions on the displacements are applied strongly

(denoted as boundary conditions of type 1 in Fig. 3(a)) for both Reissner–Mindlin and Kirchhoff–Love elements. For the rotation, this
is imposed strongly only for the Reissner–Mindlin theory, whereas, for the Kirchhoff–Love theory, homogeneous Neumann moment
boundary conditions arise for the selected displacement function. The boundary conditions on the internal hole depend on the
discretization strategy. Two discretization strategies are compared: a single patch with non-conformal trimmed boundaries (shown
in Fig. 3(a)) and an IBCM-based discretization (shown in Fig. 3(b)) with an additional conformal boundary layer characterized by
an offset distance 𝛿 = 0.1 [m].

Boundary conditions of type 2 are applied on the internal boundary of the first discretization, meaning that non-homogeneous
Dirichlet boundary conditions are imposed weakly through the Nitsche’s method. Due to the conformal nature of the internal
boundary in the second discretization, Dirichlet conditions on the displacements can be imposed strongly. However, Dirichlet
conditions for the rotation in Kirchhoff–Love elements still need to be imposed weakly.

Starting from the discretizations shown in Figs. 3(a) and 3(b), subsequent meshing levels are obtained through dyadic
refinements. However, to generate elements with comparable size in both directions, in the coordinate 𝜂2, which refers to the
offset direction of the boundary layer, the first dyadic refinement occurs when the dimension of the elements in the direction 𝜉1 has
reached values comparable to the offset distance. To exemplify, Figs. 3(c) and 3(d) show the third and fourth refinement levels for
the IBCM discretization.

In computing the penalty values, the arbitrary parameter 𝛽 is chosen as 𝛽 = 10. The characteristic mesh size for coupling
conditions in the IBCM discretization is computed as ℎ = min(1∕2𝑛𝑟𝑒𝑓 , 𝛿), where 𝑛𝑟𝑒𝑓 is the refinement level. For the Nitsche boundary
conditions in the trimmed single patch case, ℎ = 1∕2𝑛𝑟𝑒𝑓 .

Fig. 4 shows the convergence of the error in 𝐿2 norm and 𝐻1 seminorm for the Reissner–Mindlin theory. Three thickness values
are considered: 𝜏 = 100 [mm], 𝜏 = 10 [mm], and 𝜏 = 1 [mm]. The plots show convergence curves for different polynomial orders
𝑝 = 1, 2, 3, 4, and for the two proposed discretization strategies. The mesh size reported on the abscissa refers to a global value
computed as the common edge length of the untrimmed element of the main patch. The expected optimal convergence rates are
represented by auxiliary triangles below each convergence curve. The first observation is that asymptotic optimal convergence is
reached in all cases except for first-degree polynomials for 𝜏 = 1 [mm]. In fact, as the thickness decreases, increasingly severe
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Fig. 4. Convergence curves for the plate shown in Fig. 3 in 𝐿2 error norm and 𝐻1 error seminorm for a Reissner–Mindlin theory. The curves are obtained for
four different polynomial orders 𝑝 = 1, 2, 3, 4 and three thickness values 𝜏 = 100, 10, 1 [mm]. Two discretization are taken into account, a single trimmed patch
as shown in Fig. 3(a) and a IBCM-based one as shown in Fig. 3(b).

shear locking can be identified in the curves for all polynomials, although higher degree curves are less affected and recover proper
convergence after approximately two refinements.

The second observation is that the IBCM discretization tends to have a slightly higher error value than the single patch
discretization. This is expected due to the higher discrepancy between the approximation space and the manufactured target
function, which is a bi-sinusoidal in 𝜉1 and 𝜉2. The curvilinear coordinates 𝜂1 and 𝜂2 of the boundary layer are not aligned with 𝜉1 and
𝜉2 leading to shape functions that result in higher errors. However, it is crucial to mention that for the single patch discretization,
a loss of coercivity is observed for each polynomial value at the second-to-last refinement level, and for polynomials from 2 to 4
at the last refinement level. In contrast, the IBCM discretization, with the boundary layer allowing Nitsche’s fluxes to be computed
from the non-trimmed side, leads to a stable formulation in all refinement levels.

Fig. 5 shows the same curves but for the Kirchhoff–Love discretization. In this case, first-order polynomials are not considered as
they do not satisfy the 𝐶1 requirement of the Kirchhoff–Love theory. This time, the 𝐻2 seminorm error convergence is also shown
since it is significant in evaluating the bending moment. Similar observations made for the previous case hold here as well. The
convergence curves approach optimal rates. Additionally, Kirchhoff–Love elements do not suffer from shear locking in the early
refinement stages. However, some saturation of the error appears in the final refinement level for 𝜏 = 1 [mm] and 𝑝 = 4 due to the
ill-conditioning of the stiffness matrix typical of higher polynomial discretizations combined with weak coupling conditions.

Regarding stability, coercivity is verified through the positive definiteness of the stiffness matrix, which is maintained in all tests
using an IBCM-based discretization. However, this property is lost in the single patch discretization at the last refinement level for
16 
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Fig. 5. Convergence curves for the plate shown in Fig. 3 in 𝐿2 error norm and 𝐻1 and 𝐻2 error seminorms for a Kirchhoff–Love theory. The curves are obtained
for three different polynomial orders 𝑝 = 2, 3, 4 and three thickness values 𝜏 = 100, 10, 1 [mm]. Two discretization are taken into account, a single trimmed patch
as shown in Fig. 3(a) and a IBCM-based one as shown in Fig. 3(b).

𝑝 = 3, 4 at 𝜏 = 100 [mm] and in the last two refinement levels for 𝑝 = 3, 4 at 𝜏 = 1 [mm]. It is reminded that coercivity is confirmed
by examining whether the eigenvalues of the stiffness matrix include not positive values.

To conclude, Fig. 6 shows the contour plots of the displacement and a component of the membrane force and bending moment
for both the Kirchhoff–Love and Reissner–Mindlin discretizations, with superimposed mesh, demonstrating the smooth coupling
between the internal patch and the boundary layer.

5.2. Kirchhoff–Love hyperbolic paraboloid with cut-outs

This next test focuses on a hyperbolic paraboloid geometry taken from the new shell obstacle course proposed in [89]. For brevity,
the complete description of the geometrical map is not provided here but can be found in the aforementioned work. Additionally,
two elliptical holes are constructed in the parametric domain to test the IBCM-based discretization. Figs. 7(a) and 7(c) show the
resulting geometry in the parametric and physical domains, respectively. The shell section is a single-layer isotropic material with
a Young’s modulus of 𝐸 = 10 [GPa] and 𝜈 = 0.3. The following displacement field is adopted to construct a manufactured solution:

𝒖𝑒𝑥 = U1𝜉2 sin
(𝜋
2
𝜉2
)

𝒆1 + U2𝜉2 sin
(𝜋
2
𝜉2
)

𝒆2, (59)

where U1 = U2 = 0.1 [m]. This displacement field results in non-homogeneous Dirichlet boundary conditions for both displacement
and rotation. The shell theory adopted for this test is uniquely the Kirchhoff–Love one, as proposed in the benchmark. As in
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Fig. 6. Contour plots of the laminated plate in Section 5.1 with superimposed mesh of the approximation space. Displacement magnitude (a), representative
component of the membrane force 𝑁11 (b), representative component of the bending moment 𝑀11 (c) for the Kirchhoff–Love theory, and corresponding contour
plots for the Reissner–Mindlin theory (d), (e), (f), respectively. The noticeable difference between (c) and (f) is due to the different manufactured solution adopted
in this test. In particular assigning also a manufactured rotation field in the Reissner–Mindlin discretization affects, in this case, only the bending response.

Fig. 7. Geometry and discretization for the hyperbolic paraboloid shell in the second set of tests. First refinement level for the single patch discretization
in parametric (a) and physical (c) domains. First refinement level for the IBCM-based discretization in the parametric (b) and physical (d) domains, with
corresponding types of boundary conditions and applied loads. Boundary conditions of type 1 involve strong non-homogeneous Dirichlet for the displacement
and weak non-homogeneous Dirichlet for the rotation. Boundary conditions of type 2 involve weak non-homogeneous Dirichlet for both displacement and rotation.

the previous test, two discretization strategies are employed: a trimmed single-patch and an IBCM-based discretization. The first
refinement levels are shown in Figs. 7(c) and 7(d).

The convergence of the error in 𝐿2 norm and 𝐻1 and 𝐻2 seminorms are shown in the graphs collected in Fig. 8 for different
thicknesses, specifically 𝜏 = 100 [mm], 𝜏 = 10 [mm], and 𝜏 = 1 [mm], and for the polynomial values 𝑝 = 2, 3, 4. The parameter
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Fig. 8. Convergence curves for the shell shown in Fig. 7 in 𝐿2 error norm and 𝐻1 and 𝐻2 error seminorms for a Kirchhoff–Love theory. The curves are obtained
for three different polynomial orders 𝑝 = 2, 3, 4 and three thickness values 𝜏 = 100, 10, 1 [mm]. Two discretization are taken into account, a single trimmed patch
as shown in Fig. 7(a) and a IBCM-based one as shown in Fig. 7(b).

𝛽 = 100, and the choice for the mesh size to scale the penalty is performed as in the previous test. It can be noticed that, in general,
the error convergence curves corresponding to the IBCM discretization follow the corresponding ones related to the single patch
discretization with a slightly higher error, which is due to the same reason as in the previous case. In the case of 𝑝 = 4, this difference
reaches one order of magnitude. However, the optimal convergence rates are approached except for the last refinement level for
𝑝 = 4 where the stiffness matrix starts suffering from ill-conditioning. This effect becomes even more noticeable in the 𝐻1 and 𝐻2

norms.
The positive definiteness of the stiffness matrix is achieved in all tests with an IBCM-based discretization, while this is not the

case for the single patch discretization for 𝜏 = 100 [mm] in the last two refinement levels for 𝑝 = 3, 4 and in the last refinement
level for 𝑝 = 2, and for 𝜏 = 10 [mm] in the last refinement level for 𝑝 = 2, 3, 4.

For completeness, some contour plots representative of the displacement, membrane force, and bending moment fields are shown
in Fig. 9, with superimposed mesh. The smoothness can be observed in the first two graphs, whereas in the last one some artifacts
can be noticed at the interface between the inner patch and the boundary layers. These artifacts tend to disappear with further mesh
refinements.

5.3. Conformal coupling of trimmed cylindrical shells

In this test, two boundary layers are constructed at the intersection between two cylindrical patches to allow for a conformal
discretization at the interface and a strong coupling of the displacements, as shown in Fig. 10. The geometries of the cylindrical
19 
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Fig. 9. Contourplots of the shell in Section 5.2 with superimposed mesh of the approximation space. Displacement magnitude (a), representative component of
the membrane force 𝑁11, representative component of the bending moment 𝑀11 for the Kirchhoff–Love theory.

shells are defined through the analytic maps

𝒙𝑎(𝜉𝑎1 , 𝜉
𝑎
2 ) = ̂ 𝑎(𝜉𝑎1 , 𝜉

𝑎
2 ) =

⎡

⎢

⎢

⎣

−𝑅𝑎 cos (𝜉𝑎1 )
−𝑅𝑎 sin (𝜉𝑎1 )

𝜉2

⎤

⎥

⎥

⎦

, (60)

where (𝜉𝑎1 , 𝜉
𝑎
2 ) ∈ �̂�𝑎 = [0, 2𝜋] × [−𝐿,𝐿], and

𝒙𝑏(𝜉𝑎1 , 𝜉
𝑎
2 ) = ̂ 𝑏(𝜉𝑏1 , 𝜉

𝑏
2) =

⎡

⎢

⎢

⎣

cos (𝜃) 0 − sin (𝜃)
0 1 0

sin (𝜃) 0 cos (𝜃)

⎤

⎥

⎥

⎦

⎡

⎢

⎢

⎣

−𝑅𝑏 cos (𝜉𝑏1)
−𝑅𝑏 sin (𝜉𝑏1)

𝜉𝑏2

⎤

⎥

⎥

⎦

, (61)

where (𝜉𝑏1 , 𝜉
𝑏
2) ∈ �̂�𝑏 = [0, 2𝜋] × [0, 𝐿]. The parameters for the geometry are set as follows: 𝐿 = 4 [m], 𝑅𝑎 = 1 [m], 𝑅𝑏 = 0.6 [m], and

𝜃 = −𝜋∕3 [rad].
Fig. 10 displays the geometry of the structure, highlighting the intersection between the two cylinders, which creates an interface

𝛤0. The shell section has a thickness 𝜏 = 1 [cm] and is composed of a single isotropic layer with a Young’s modulus of 𝐸 = 100 [GPa]
and a Poisson’s ratio of 𝜈 = 0.3. A uniform distributed force of �̄� = {1, 1, 1}⊺ [MPa] is applied on the surfaces of the shells, while
the external boundaries are simply-supported, meaning 𝒖 = 0 at 𝜉𝑎2 = ±𝐿∕2 and 𝜉𝑏2 = 𝐿. Using the procedure described in Section 2,
a boundary layer is constructed for each patch in such a way that they result in a conformal interface. Furthermore, if the two
boundary layers have the same discretization in the interface direction and if the two approximation spaces are constructed with
the same properties, the coupling of the displacement degrees of freedom can be realized in a strong sense. However, the rotation
still requires a weak coupling. In the Kirchhoff–Love theory, this necessity arises from the absence of rotation as a main variable,
whereas in the Reissner–Mindlin theory, this is motivated by the different local contravariant bases for the rotation variables between
the two patches.

Fig. 10 illustrates the discretization of the structure in the Euclidean space as well as the parametric domains of the cylindrical
surfaces, each constituted by a inner patch and a boundary layer. It can be noticed how, in the Euclidean space, the discretization
from both sides is conformal at the interface, allowing the strong coupling.

The contour plots of the solution are shown in Fig. 11. In particular, the magnitude of the displacement, a representative
component of the membrane force, and a representative component of the bending moment are shown. Due to the small thickness
of the shells, the corresponding plots for the Kirchhoff–Love theory and the Reissner–Mindlin one are very similar. For reference,
in (g), (h), (i), the same contour plots are replicated using Abaqus® quadratic triangular elements STRI65 [94]. It is observed that
a denser mesh is necessary to achieve a comparable level of refinement, particularly near the interface, where the mesh becomes
unstructured.

5.4. Boundary layers over a B-spline surface with KL-RM coupling

In the next test, we examine a shell whose geometry is depicted in Fig. 12(b), which features an immersed external boundary
and an immersed cut-out These geometrical features are defined by the curves 𝜕�̂�1 and 𝜕�̂�2 in the parametric domain, as illustrated
in Fig. 12(a). Conformal boundary layers are created corresponding to both curves.

The material used is a laminate with four identical layers having 𝐸1 = 250 [GPa], 𝐸2 = 10 [GPa], 𝜈12 = 0.25, lamination sequence
[0,90,90,0], and a total shell thickness 𝜏 = 10 [mm]. The shell boundaries are clamped, and a distributed load �̄� = 𝑓0𝒆3 is applied on
the shell surface, where 𝑓0 = 105 [kN]. The analysis considers three different shell theory settings based on the kinematics adopted

for the inner patch and the boundary layers. In the first case, both are modeled as Kirchhoff–Love shells; in the second case, both
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Fig. 10. Geometry and discretization of the structure in Section 5.3 in the Euclidean space (a). Parametric domains of each cylinder, (a) and (b), showing the
inner patches and the boundary layers.

use Reissner–Mindlin theory; and in the last case, the boundary layers employ Reissner–Mindlin theory while the internal patch
adopts Kirchhoff–Love theory.

Fig. 13 shows contour plots of the displacement magnitude, the first component of the membrane force, and the first components
of the bending moment. The figures illustrate the smooth coupling between the boundary layers and the internal patch for all
represented quantities. There is minimal difference between the Kirchhoff–Love and Reissner–Mindlin solutions due to the shell’s
small thickness. However, artifacts in the bending moment are noticeable at the interface between the boundary layer of the cut-out
and the internal patch. These artifacts are mitigated by employing Reissner–Mindlin theory for the boundary layer.

Additionally, Fig. 14 shows the contour plots for the first component of the shear strain tensor for a Reissner–Mindlin/Reissner–
Mindlin discretization and for a Kirchhoff–Love/Reissner–Mindlin one. The Kirchhoff–Love theory assumes the shear strain to be
null. Therefore, to accurately capture this field at the boundaries, where local concentrations occur, a more refined shell theory,
such as the Reissner–Mindlin one, is required. This refinement is particularly important for laminates, where the associated shear
stress can initiate delamination phenomena.

The adoption of different formulations for boundary layers and the internal patch offers several advantages. Firstly, it allows for
local enhancement of analysis accuracy where needed, depending on the application requirements. Additionally, Reissner–Mindlin
boundary layers enable strong enforcement of rotation boundary conditions, and at the same time the overall number of degrees
of freedom is kept limited thanks to the Kirchhoff–Love kinematics of the internal patch. Additionally, when the underlying map is
a B-spline, the lower order of the Reissner–Mindlin equations mitigates in the preasymptotic regime convergence issues related to
the broken continuity of the boundary layer elements, compared to Kirchhoff–Love ones. However, a thorough investigation of this
behavior is beyond the scope of this study and will be reserved for future research.

5.5. Damaged cylindrical shell under internal pressure

This test aims to demonstrate the capabilities of the IBCM in modeling through-the-thickness cracks within linear elasticity.
Fig. 15 illustrates the setup for this test: a cylinder with an axial crack subjected to an internal pressure 𝑝0. The shell’s analytic
mapping is defined as:

𝒙(𝜉1, 𝜉2) =
⎡

⎢

⎢

⎣

−𝑅 sin (𝜉1∕𝑅)
+𝑅 cos (𝜉1∕𝑅)

𝜉2

⎤

⎥

⎥

⎦

, (62)

where (𝜉1, 𝜉2) ∈ [−𝑅𝜃,+𝑅𝜃] × [−𝐿∕2,+𝐿∕2], with 𝐿 = 100 [mm], 𝜃 = 𝜋∕2 [rad], and 𝑅 = 20 [mm]. The axial crack, centered within
the cylinder, has a length 2𝑎 = 10 [mm].

The material of the shell is isotropic having Young modulus 𝐸, Poisson’s ratio 𝜈 = 1∕3, and the shell section has a thickness
𝜏 = 1 [mm]. The shell is subjected to boundary conditions approximating those of an indefinitely long cylinder with closed top and
bottom parts. Specifically, an external distributed force �̄� = ±𝐹0𝒆3 is applied on the boundaries at 𝜉2 = ±𝐿∕2, with 𝐹0 = 𝑝0𝑅∕2. The
rotation component 𝜃2, referring to the local contravariant basis vector 𝒂2, is constrained on these boundaries. Symmetry boundary
conditions 𝑢2 = 0 and 𝜃1 = 0 are applied on the boundaries 𝜉1 = ±𝑅𝜃. An internal pressure 𝑝0 results in a domain traction �̄� = 𝑝0𝒂3.

The IBCM is employed to model the region surrounding the axial crack using four auxiliary patches: �̂�1, �̂�2, �̂�3, and �̂�4. �̂�1 and
�̂� correspond to the top and bottom regions at the tips of the crack, while �̂� and �̂� represent the left and right side regions of
2 3 4
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Fig. 11. Contour plots for the intersecting cylindrical shells in Section 5.3 with superimposed mesh of the approximation space. Displacement magnitude
(a), representative component of the membrane force 𝑁22 (b), representative component of the bending moment 𝑀22 (c) for the Kirchhoff–Love theory, and
corresponding contour plots for the Reissner–Mindlin theory (d), (e), (f), respectively. As a reference, the same contour plots obtained with Abaqus® quadratic
triangular elements STRI65 are shown in (g), (h), (i), with superimposed mesh.

the crack. These boundary patches are constructed in the parametric domain as depicted in Fig. 15(a). Fig. 15(b) shows the same
partitioning in the Euclidean domain with superimposed mesh, illustrating how using four patches for the boundary layer allows
for tuning accuracy in regions where different stress concentrations are expected around the crack.

Furthermore, it is important to note that this configuration effectively resolves the issue of cross-talk. In this case, there is no
non-active region that needs to be trimmed away. If only a single patch were used, there would be no discernible difference in the
analysis between the scenarios with and without the crack. This is because disconnecting degrees of freedom for B-splines is not
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Fig. 12. Geometry of the shell described in Section 5.4 in the parametric (a) and Euclidean (b) domains.

Fig. 13. Contour plots of the magnitude of the displacement |𝒖|, first component of the membrane force 𝑁11, and the first component of the bending moment
𝑀11 for the shell described in Section 5.4 with superimposed mesh of the approximation space. The plots are categorized based on the shell theory used:
Kirchhoff–Love/Kirchhoff–Love based contours are shown in (a), (b), and (c); Reissner–Mindlin/Reissner–Mindlin based contours are shown in (d), (e), and (f);
Kirchhoff–Love/Reissner–Mindlin based contours are shown in (g), (h), and (i).

Fig. 14. Contour plots of the first component of the shear strain tensor for a Reissner–Mindlin/Reissner–Mindlin discretization (a) and for a Kirchhoff–
Love/Reissner–Mindlin discretization (b). For the mixed discretization, the Kirchhoff–Love theory cannot capture the shear strain in the internal patch. However, at
the boundaries, where concentrations occur and delamination can initiate, the Reissner–Mindlin theory effectively models these potentially dangerous localizations.
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Fig. 15. Geometry for the test described in Section 5.5 in parametric domain (a) and Euclidean domain (b) with superimposed mesh of the approximation space.

Fig. 16. Comparison between the analytical and numerical solution to the problem in Section 5.5, regarding the non-dimensional membrane force 𝑁11∕(𝑝0𝜏) as
a function of the distance with the crack tip on an axially-oriented segment.

straightforward and becomes impossible if the crack intersects inner elements’ domains. However, by employing a boundary layer
approach, the necessary discontinuity is introduced into the approximation space, enabling accurate modeling of the crack opening.

For a shallow and infinitely long cylinder, an analytical solution exists for stress at the crack tip, as demonstrated in [95], and
reported here for the sake of completeness for 𝜈 = 1∕3

𝑁11∕(𝑝0𝜏) =
√

𝑐
2𝑟

(

1 + (0.37 − 0.30 ln 𝜆)𝜆2
)(𝑅

𝜏

)

, where 𝜆4 =
12(1 − 𝜈2)𝑎4

𝑅2𝜏2
. (63)

Fig. 16 compares this analytical solution with the numerical results, representing the non-dimensional membrane force 𝑁11∕(𝑝0𝜏)
as a function of the local distance from the crack tip along an axial segment. Despite some noticeable errors near the crack tip
due to the singular solution, good agreement is observed. Finally, Fig. 17 presents the non-dimensional magnitude of displacement
|𝒖|𝐸∕(𝜎𝑅), and the non-dimensional components of the membrane force 𝑁11∕(𝑝0𝜏) and 𝑁22∕(𝑝0𝜏).

6. Conclusions

This work has explored the application of the Immersed Boundary Conformal Method (IBCM) to analyze Kirchhoff–Love and
Reissner–Mindlin shell structures within an immersed domain framework. By employing this innovative method, we successfully
24 
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Fig. 17. Contour of the non-dimensional magnitude of the displacement, and two non-dimensional components of the membrane force for the cylindrical shell
with a through-the-thickness crack described in Section 5.5.

addressed several challenges inherent to traditional immersed boundary approaches. Specifically, the IBCM method offers the
following benefits:

1. Due to the conformal nature of otherwise trimmed boundaries, Dirichlet conditions on primary variables can be enforced
strongly by acting directly on the degrees of freedom associated with the spline corresponding to the specific edge.

2. IBCM facilitates targeted mesh refinement, which is crucial for accurately capturing stress concentrations and other localized
gradients in the solution, typically taking place at the boundary.

3. Continuity between the boundary layer and the inner patch is enforced weakly through Nitsche-based coupling. However,
the average operator is chosen non-symmetrically by computing the fluxes only from the conformal boundary layer, allowing
for straightforward stable contributes with bounded penalty parameters.

4. In structures comprised of multiple patches intersecting in a non-conformal manner, the IBCM can be adopted to create pairs
of boundary layers, restoring a conformal interface between nearby patches and allowing for seamless strong coupling by
directly matching degrees of freedoms.

5. Boundary layers can be constructed to address the cross-talk phenomenon that arises in traditional spline-based methods.
These auxiliary patches introduce the necessary discontinuities in the approximation space.

6. Local physical phenomena can be modeled accurately through refined equations in the boundary layer, provided adequate
interface conditions to link it with the inner patch.

Through comprehensive numerical experiments, the proposed formulation has demonstrated its capability to accurately and
efficiently handle shell structures. Optimal convergence rates were achieved in tests where analytical reference solutions are
available. The coercivity of the bilinear form was tested numerically through the positive definiteness of the stiffness matrix and
was verified in all the tests investigated, unlike in the standard trimmed approach adopted for comparison. A mixed Kirchhoff–
Love/Reissner–Mindlin approach was employed to locally refine the shell theory at the boundary of an embedded domain.
Finally, the IBCM introduced the necessary discontinuity to model an axial crack in a cylindrical shell, enabling at the same time
straightforward local refinement at its apex.

In summary, the integration of the IBCM method, B-splines basis functions, and Nitsche-based coupling techniques shows great
potential in the field of shell analysis. This approach improves the accuracy and stability of numerical solutions while retaining
the versatility of an embedded geometrical description of the mid-surface. Directions for further exploration include adopting the
Lagrange multiplier technique to couple the boundary layer with the inner patch. Due to the conformal nature of the boundary
layer, the trace of its spline space at the interface would be a straightforward choice for constructing the space of the multipliers.
Furthermore, in the context of shell analysis, it would be interesting to explore coupling classical shell kinematics with higher-order
models, such as Layer-Wise theories or even 3D elements. Provided adequate interface equations, the present method imposes no
restrictions on which models can be coupled. This would pave the way for more accurate modeling of local physical phenomena,
including non-linear or plastic behaviors and damage, such as delamination, which typically occur at the boundary of the shell.
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ppendix A. Composition of maps

The map of the boundary layers in the Euclidean space is given as a composition of maps

𝒙
(

𝜂𝑖1, 𝜂
𝑖
2
)

= ̂◦̃ 𝑖
(

𝜂𝑖1, 𝜂
𝑖
2
)

. (64)

According to the problem of interest built over the surface, some derivatives in the domain of the boundary layers might be necessary.
For completeness, these derivatives are reported here up to the third order

𝜕𝒙
𝜕𝜂𝛼

= 𝜕𝒙
𝜕𝜉𝜆

𝜕𝜉𝜆
𝜕𝜂𝛼

, (65a)

𝜕2𝒙
𝜕𝜂𝛼𝜕𝜂𝛽

= 𝜕2𝒙
𝜕𝜉𝜆𝜕𝜉𝜇

𝜕𝜉𝜆
𝜕𝜂𝛼

𝜕𝜉𝜇
𝜕𝜂𝛽

+ 𝜕𝒙
𝜕𝜉𝜆

𝜕2𝜉𝜆
𝜕𝜂𝛼𝜕𝜂𝛽

, (65b)

𝜕3𝒙
𝜕𝜂𝛼𝜕𝜂𝛽𝜕𝜂𝛾

= 𝜕3𝒙
𝜕𝜉𝜆𝜕𝜉𝜇𝜕𝜉𝜈

𝜕𝜉𝜆
𝜕𝜂𝛼

𝜕𝜉𝜇
𝜕𝜂𝛽

𝜕𝜉𝜈
𝜕𝜂𝛾

+ 𝜕2𝒙
𝜕𝜉𝜆𝜕𝜉𝜇

𝜕2𝜉𝜆
𝜕𝜂𝛼𝜕𝜂𝛾

𝜕𝜉𝜇
𝜕𝜂𝛽

+ 𝜕2𝒙
𝜕𝜉𝜆𝜕𝜉𝜇

𝜕𝜉𝜆
𝜕𝜂𝛼

𝜕2𝜉𝜇
𝜕𝜂𝛽𝜂𝛾

+

+ 𝜕2𝒙
𝜕𝜉𝜆

𝜕2𝜉𝜆
𝜕𝜂𝛼𝜕𝜂𝛽

𝜕𝜉𝜇
𝜕𝜂𝛾

+ 𝜕𝒙
𝜕𝜉𝜆

𝜕3𝜉𝜆
𝜕𝜂𝛼𝜕𝜂𝛽𝜕𝜂𝜇

, (65c)

here the superscript ‘‘𝑖’’ in the auxiliary curvilinear coordinates 𝜂𝑖1 and 𝜂𝑖2 has been discarded to enhance readability.

ppendix B. Laminate layout and constitutive behavior

In order to derive the constitutive relationship between strain and stress, let us introduce a local orthonormal reference system
1𝒏1𝒏3, whose vectors are defined as

𝒏1 = 𝒂1∕|𝒂1| ,

𝒏2 = 𝒂2∕|𝒂2| ,

𝒏3 = 𝒂3 .

(66)

t is assumed, here, that each layer has one of the three orthotropic directions oriented along 𝒏3, whereas the main direction, that
oincides with the direction of deposition for fiber-reinforced composites, forms an angle 𝜃⟨𝓁⟩ from 𝒏1 for a rotation along 𝒏3. In
he orthotropic direction, the relationship between stress and strain is expressed as

�̃�𝐿 = �̃�⟨𝓁⟩𝐿 �̃�𝐿 , (67)

�̃�𝑇 = �̃�⟨𝓁⟩𝑇 �̃�𝑇 , (68)

here �̃�𝐿 = {�̃�11, �̃�22, �̃�12} and �̃�𝐿 = {𝜖11, 𝜖22, 2𝜖12} collect the in-plane stress and strain in Voigt notation, respectively, while
̃ 𝑇 = {�̃�31, �̃�32} and �̃�𝑇 = {2𝜖31, 2𝜖32} collect the out-of-plane stress and strain in Voigt notation, respectively. It is reminded that, in
lassical shell theories, the plane stress hypothesis states that �̃�33 = 0, uniformly over the shell surface. The matrices �̃�⟨𝓁⟩𝐿 and �̃�⟨𝓁⟩𝑇 are
he in-plane and out-of-plane stiffness matrices built through the engineering elastic coefficients, namely the Young’s moduli 𝐸⟨𝓁⟩

1 ,
⟨𝓁⟩
2 , the shear moduli 𝐺⟨𝓁⟩

12 , 𝐺⟨𝓁⟩
31 and 𝐺⟨𝓁⟩

32 and the Poisson’s ratio 𝜈⟨𝓁⟩12 as detailed in [38]. Provided these quantities, the stiffness
atrices are constructed as

�̃�⟨𝓁⟩𝐿 =

⎡

⎢

⎢

⎢

⎣

1∕𝐸⟨𝓁⟩
1 −𝜈⟨𝓁⟩12 ∕𝐸⟨𝓁⟩

1 0
−𝜈⟨𝓁⟩21 ∕𝐸⟨𝓁⟩

2 1∕𝐸⟨𝓁⟩
2 0

0 0 1∕𝐺⟨𝓁⟩
12

⎤

⎥

⎥

⎥

⎦

−1

, (69)

�̃�⟨𝓁⟩𝑇 =

[

1∕(𝛼𝑠𝐺
⟨𝓁⟩
31 ) 0

0 1∕(𝛼𝑠𝐺
⟨𝓁⟩
32 )

]−1

, (70)
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where 𝛼𝑠 is the so-called shear correction factor, that is assumed equal to 5∕6, unless differently stated. The constitutive relationship
can be expressed in the common orthonormal basis 𝒏1𝒏2𝒏3 as

�̄�𝐿 = �̄�⟨𝓁⟩𝐿 �̄�𝐿 , (71)

�̄�𝑇 = �̄�⟨𝓁⟩𝑇 �̄�𝑇 , (72)

here �̄�⟨𝓁⟩𝐿 = 𝑻 𝐿�̃�
⟨𝓁⟩
𝐿 𝑻 ⊺

𝐿 and �̄�⟨𝓁⟩𝑇 = 𝑻 𝑇 �̃�
⟨𝓁⟩
𝑇 𝑻 ⊺

𝑇 are the stiffness matrices in the basis 𝒏1𝒏2𝒏3, and the rotation matrices 𝑻 𝐿 and 𝑻 𝑇 are
efined as

𝑻 𝐿 =
⎡

⎢

⎢

⎣

cos2 𝜃⟨𝓁⟩ sin2 𝜃⟨𝓁⟩ −2 sin 𝜃⟨𝓁⟩ cos 𝜃
sin2 𝜃⟨𝓁⟩ cos2 𝜃⟨𝓁⟩ 2 sin 𝜃⟨𝓁⟩ cos 𝜃⟨𝓁⟩

sin 𝜃⟨𝓁⟩ cos 𝜃⟨𝓁⟩ − sin 𝜃⟨𝓁⟩ cos 𝜃⟨𝓁⟩ cos2 𝜃⟨𝓁⟩ − sin2 𝜃⟨𝓁⟩

⎤

⎥

⎥

⎦

, (73a)

𝑻 𝑇 =
[

cos 𝜃⟨𝓁⟩ − sin 𝜃⟨𝓁⟩

sin 𝜃⟨𝓁⟩ cos 𝜃⟨𝓁⟩

]

. (73b)

he virtual work of the internal forces in 3D is simplified integrating along the thickness direction 𝜉3 and substituting the constitutive
elationship as

𝛿𝑖𝑛𝑡 =
𝑁𝓁
∑

𝓁=1
∫𝑉 ⟨𝓁⟩

𝛿𝜖𝑖𝑗𝜎
𝑖𝑗d𝑉 = ∫𝛺

(𝑁𝓁
∑

𝓁=1
∫

𝜉⟨𝓁⟩3𝑡

𝜉⟨𝓁⟩3𝑏

(𝛿�̄�⊺𝐿�̄�𝐿 + 𝛿�̄�⊺𝑇 �̄�𝑇 )d𝜉3

)

d𝛺 , (74)

here the volume increment was approximated as d𝑉 = d𝜉3d𝛺. Upon substituting the expression for the strain and the constitutive
elationship in the local orthonormal basis, the previous equation leads to the definition of the generalized stiffness matrices

�̄� =
𝑁𝓁
∑

𝓁=1
∫

𝜏⟨𝓁⟩𝑡

𝜏⟨𝓁⟩𝑏

𝒄⟨𝓁⟩𝐿 d𝜉3 , (75a)

�̄� =
𝑁𝓁
∑

𝓁=1
∫

𝜏⟨𝓁⟩𝑡

𝜏⟨𝓁⟩𝑏

𝒄⟨𝓁⟩𝐿 𝜉3d𝜉3 , (75b)

�̄� =
𝑁𝓁
∑

𝓁=1
∫

𝜏⟨𝓁⟩𝑡

𝜏⟨𝓁⟩𝑏

𝒄⟨𝓁⟩𝐿 𝜉23d𝜉3 , (75c)

�̄� =
𝑁𝓁
∑

𝓁=1
∫

𝜏⟨𝓁⟩𝑡

𝜏⟨𝓁⟩𝑏

𝒄⟨𝓁⟩𝑇 d𝜉3 . (75d)

o obtain the constitutive tensor, it is sufficient to pass from Voigt notation to tensor notation. Taking �̄� as an example, the associated
stiffness tensor notation is established as Ā𝛼𝛽𝛾𝛿 = �̄�𝑎𝑏, using the correspondences 𝛼𝛽 ⟷ 𝑎 and 𝛾𝛿 ⟷ 𝑏, where the indices 11, 22,
12, and 21 correspond to 1, 2, 3, and 3, respectively. Instead, the constitutive tensor S̄ is obtained directly expressing as a tensor
the matrix �̄�, i.e., S̄𝛼𝛽 = �̄�𝛼𝛽 . It is worth remarking that these constitutive tensors in the local orthonormal basis 𝒏1𝒏2𝒏3 depends
only on the lamination sequence and not on the geometry of the mid-surface. As such, for a uniform laminate material, the previous
integration needs to be performed only once. Finally, to pass from the local orthonormal basis to the local covariant basis, the
following transformation laws are employed

A𝛼1𝛽1𝛾1𝛿1 = Ā𝛼2𝛽2𝛾2𝛿2 (𝒏𝛼2 ⋅ 𝒂
𝛼1 )(𝒏𝛽2 ⋅ 𝒂

𝛽1 )(𝒏𝛾2 ⋅ 𝒂
𝛾1 )(𝒏𝛿2 ⋅ 𝒂

𝛿1 ) , (76)

S𝛼1𝛽1 = S̄𝛼2𝛽2 (𝒏𝛼2 ⋅ 𝒂
𝛼1 )(𝒏𝛽2 ⋅ 𝒂

𝛽1 ) . (77)
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