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Abstract: Background: Prostate cancer (PCa) is the second most common cancer in men, and radio-

therapy (RT) is one of the main treatment options. Although effective, RT can cause toxic side effects. 

The accurate prediction of dosimetric parameters, enhanced by advanced technologies and AI-

based predictive models, is crucial to optimize treatments and reduce toxicity risks. This study aims 

to explore current methodologies for predictive dosimetric parameters associated with RT toxicity 

in PCa patients, analyzing both traditional techniques and recent innovations. Methods: A system-

atic review was conducted using the PubMed, Scopus, and Medline databases to identify dosimetric 

predictive parameters for RT in prostate cancer. Studies published from 1987 to April 2024 were 

included, focusing on predictive models, dosimetric data, and AI techniques. Data extraction cov-

ered study details, methodology, predictive models, and results, with an emphasis on identifying 

trends and gaps in the research. Results: After removing duplicate manuscripts, 354 articles were 

identified from three databases, with 49 shortlisted for in-depth analysis. Of these, 27 met the inclu-

sion criteria. Most studies utilized logistic regression models to analyze correlations between dosi-

metric parameters and toxicity, with the accuracy assessed by the area under the curve (AUC). The 

dosimetric parameter studies included Vdose, Dmax, and Dmean for the rectum, anal canal, bowel, 

and bladder. The evaluated toxicities were genitourinary, hematological, and gastrointestinal. Con-

clusions: Understanding dosimetric parameters, such as DVH, Dmax, and Dmean, is crucial for op-

timizing RT and predicting toxicity. Enhanced predictive accuracy improves treatment effectiveness 
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and reduces side effects, ultimately improving patients’ quality of life. Emerging artificial intelli-

gence and machine learning technologies offer the potential to further refine RT in PCa by analyzing 

complex data, and enabling more personalized treatment approaches. 

Keywords: artificial intelligence; deep learning; machine learning; predictive; radiotherapy;  

prostate cancer; toxicity; dosimetric 

 

1. Introduction 

Prostate cancer (PCa) [1–6] is the second most common cancer among men, with a 

significant impact on quality of life and mortality. Radiotherapy (RT) is one of the primary 

therapeutic options [7–12], offering significant benefits in local tumor control and survival 

[13–15]. Recent advances in medical imaging have significantly improved the accuracy 

and effectiveness of RT within the framework of precision medicine, making RT the most 

commonly used locoregional conventional cancer treatment [16–21]. 

Despite these advancements, toxicity-related side effects are a major concern for both 

patients and healthcare providers [22–27]. Dosimetric parameters play a pivotal role in 

predicting RT toxicity [28–34], as they determine the distribution of radiation dose within 

the target tissue and surrounding healthy tissue [35,36]. In order to maximize treatment 

efficacy while minimizing side effects, it is essential to accurately predict these parame-

ters. A key component of recent RT progress has been the integration of advanced imaging 

techniques, optimization algorithms, and predictive models based on AI [37–42]. These 

innovations have transformed the field of biomedical analysis, enhancing segmentation 

[43–52], defining predictive models [53–64], and improving radiopharmaceutical distribu-

tion [65–70] and RT dosimetry [71–74]. These tools enable highly personalized treatment 

plans by adapting the dose distribution to the unique characteristics of each patient and 

their specific tumor [75–79]. 

However, the potential for toxicity ranging from acute to chronic effects remains a 

significant aspect of RT, often affecting patients’ quality of life (QoL) [80–82]. Acute tox-

icity, occurring during or shortly after treatment, often involves urinary and gastrointes-

tinal symptoms such as frequent urination, pain, and diarrhea, but these symptoms usu-

ally subside within weeks to months [80,83–86]. In contrast, late toxicity, which can de-

velop months to years later, may cause more persistent problems, including urinary in-

continence, chronic bladder irritation, bowel dysfunction, and erectile dysfunction [87–

89]. 

The early identification and prediction of RT-inducted toxicity is therefore crucial to 

optimize treatment protocols and improve patients’ QoL [90–94]. 

Smart healthcare, AI, and machine learning (ML) have transformed the medical field, 

particularly in cancer diagnosis and treatment. Historically, PCa management has pro-

gressed from basic screening methods in the early 20th century to advanced imaging and 

targeted treatments today. With the introduction of the prostate-specific antigen (PSA) test 

in the 1980s, early detection improved, although treatment options were still limited to 

surgery and traditional RT [95,96]. 

By the late 1990s, advances in RT allowed for more precise dose targeting, minimiz-

ing damage to surrounding tissue. The rise of AI and ML in the 2010s began a new era of 

predictive models, aiming to enhance patient outcomes by forecasting disease progression 

and personalizing treatment. Predictive RT, in particular, benefits from ML models 

trained on extensive datasets, enabling precise dose–volume histogram (DVH) predic-

tions, toxicity outcomes, and personalized treatment adjustments [75]. 

In modern smart healthcare, wearable technology and AI-powered monitoring sys-

tems provide real-time patient feedback, making it possible to continuously refine treat-

ments. As AI continues to develop, PCa care increasingly shifts toward precision medi-

cine, leveraging complex algorithms to assess individual risk factors and optimize 
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treatment plans, promising improved patient-specific outcomes in the near future. In re-

cent years, research has focused on identifying predictors of RT toxicity, including clinical, 

dosimetric, and biological variables. The advent of advanced technologies, such as AI and 

ML, has further enhanced our ability to develop more accurate and reliable predictive 

models which can help clinicians identify patients at high risk of side effects and modify 

treatment plans accordingly [62,75,76,97–101]. 

This review investigates methodologies for predicting dosimetric parameters in RT, 

particularly in PCa. It analyzes traditional techniques alongside recent innovations, in-

cluding ML and AI, to assess the advantages, limitations, and clinical applications of these 

methods. The review also explores relationships between dosimetric parameters and clin-

ical toxicity outcomes in organs at risk, such as the rectum, bladder, bowel, and bone mar-

row. 

2. Materials and Methods 

An extensive systematic literature review was conducted using the PubMed, Scopus, 

and Medline databases to define dosimetric predictive parameters for PCa-RT. Following 

the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) rec-

ommendations [102], studies written in the English language and published between 1987 

and April 2024 that addressed the prediction of dosimetric parameters of toxicity specifi-

cally in PCa RT were included in the analysis. The search strategy included the following 

specific keywords: “dosimetric”, “predictive”, “radiotherapy”, “prostate cancer”, “AI”, 

“deep learning”, and “machine learning”. 

2.1. Inclusion and Exclusion Criteria 

The review included studies that addressed the following issues: 

1. Predictive models for dosimetric parameters of toxicity in RT for PCa. 

2. Clinical, dosimetric data, or AI techniques for prediction. 

3. Conventional and moderate hypofractionated RT. 

The following types of studies were excluded: 

1. The ones that did not focus specifically on toxicity in RT for PCa. 

2. The ones that did not focus on dosimetric data. 

3. Those without experimental data, such as narrative reviews, letters to the editor, 

opinion articles, conference papers, or book chapters. 

4. Those focused on Stereotactic Body Radiotherapy (SBRT) and brachytherapy (BT). 

2.2. Data Extraction 

For each included study, the following data were extracted: 

1. General Information: first author, year of publication, DOI (Digital Object Identifier). 

2. Methodology: number of patients, anatomical district, imaging techniques used, do-

simetric parameters analyzed. 

3. Predictive Models: Type of used model, software, predictive parameters, presence or 

absence of a public dataset, type of images used. 

4. Results: performance evaluation indexes, predictive dosimetric parameters with pos-

sible clinical applications. 

2.3. Data Analysis 

Analyses of the extracted data, shown in Table 1, were conducted both qualitatively 

and quantitatively. A summary of the characteristics of the included studies and their key 

findings was provided. In addition, emerging trends and gaps in the existing literature 

were identified. The data reported in the table include the title of the paper, the name of 

the first author, the year of publication, the DOI, the anatomical site, the number of pa-

tients included in the study, the method employed for statistical analysis, the formula 
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used, the software used, the indices for evaluating the performance of the method, the 

presence of a public dataset, which type of images were used, the dosimetric parameters 

analyzed, and the main findings of the study. 
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Table 1. Characteristics of studies in growing order of date. 

Study N of Patients Method Software Valuation Index Analyzed Parameters Findings 

Fiorino C. et al. 2002 [103] 402 Cox regression model 
Statistica (StatSoft Inc., Tulsa, 

OK, USA) 

p-values were used to 

evaluate correlations 
Rectum Dmax, Dmean, V50–75 Gy 

V50 < 60–65%, and V60 < 

50–55% seem to be the 

robust cut-off values to 

keep the risk of developing 

late rectal bleeding 

reasonably low 

Cozzarini C. et al. 2003 [104] 154 Cox regression model Statistica (StatSoft Inc.) 
p-values were used to 

evaluate correlations 
Rectum Dmean, V50–65 V50 > 63% for bleeding 

Fiorino C. et al. 2003 [105] 245 Cox regression model Statistica (StatSoft Inc.) 
Hazard Ratios (HR) with 

ROC curves 
Rectum V50–70 

To keep the rate of 

moderate/severe rectal 

bleeding < 5–10%, it seems 

advisable to limit V50 to 

60–65%, V60 to 45–50%, 

and V70 to 25–30% 

Zapatero A. et al. 

2004 [106] 
107 

Univariate logistic 

regression 

Statistical Package for Social 

Sciences, version 10.0 
AUC = 0.89 Rectum Dmax, Dmean, V30–V72 

G2 rectal bleeding Dmean < 

50.0 Gy and V60 < 42% 

Fiorino C. et al. 

2008 [107] 
1132 Logistic regression analysis 

FORTRAN (IBM, Armonk, 

NY, USA) 

HR and p-values were used 

to evaluate correlations 
Rectal V20–V75 Gy 

Fecal incontinece V40 < 

75%; V70 for bleeding G2; 

V75 for bleeding G3 

Arcangeli S. et al. 

2009 [108] 
102 Logistic regression analysis n.a. 

Odds Ratios (ORs) were 

used to evaluate correlations 
Rectal V50, V53 

Rectal G2 toxicity for V53 > 

8% 

Faria S. et al. 

2010 [109] 
71 

Multivariable logistic 

model 
n.a. 

p-values were used to 

evaluate correlations 

Rectum and the rectal wall: Dmax, Dmean, 

D50%, D25% 

No relationship between 

these constraints and late 

rectal toxicity 

Perna L. et al. 

2010 [110] 
96 

Multivariable logistic 

regression 
MedCalc (Ostend, Belgium) AUC = 0.64 

DVH of Intestinal Cavity 

and of the loops 

V45 TL > 50 cc, V50 TL > 13 

cc, V55 TL > 3 cc 

Tomita N. et al. 

2013 [111] 
241 

Multivariable logistic 

regression 
n.a. 

p-values were used to 

evaluate correlations 

Rectum covered by 70 Gy (V70), 60 Gy (V60), 

40 Gy (V40), and 20 Gy (V20) 

Rectum Dmax, V70 and 

V60 of the ≥ GI Grade 2 

Norkus D. et al. 

2013 [112] 
124 Logistic regression analysis 

StatView (SAS Institute Inc., 

Cary, NC, USA) 

p-values were used to 

evaluate correlations 

Rectal volume, bladder volume, rectal and 

bladder dose/volume cut-points (V40 Gy/V33 

Gy, V50 Gy/V42 Gy, V60 Gy/V50 Gy, V70 

Gy/V58 Gy, and V76 Gy/V63 Gy 

No parameters were 

significant 

Viani G.A. et al. 

2013 [113] 
217 Logistic regression analysis SPSS version 19 

ORs were used to evaluate 

correlations 
Rectum, bladder Vdose, femur Dmax 

No significant dosimetric 

predictors 

Ippolito E. et al. 

2013 [114] 
101 Logistic regression SPSS (v.16, Chicago, IL, USA) AUC > 0.6 Rectum Dmax, Dmean, V50–70 Gy 

V60 Gy < 34.4%, rV70 Gy < 

16.7%, rDmean < 57.5 Gy 
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Kong M. et al. 

2014 [115] 
70 ROC curves analysis 

SPSS version 18.0 (IBM 

Corporation, Armonk, NY, 

USA) 

AUC Rectum and bladder Dmax, V5–75 

Rectum: max dose 76.5 Gy 

Bladder: V40 to 17.3% and 

V50 to 10.2% 

Jin-Hong Park et al. 

2014 [116] 
92 

Univariate logistic 

regression 
SPSS version 20.0 AUC > 0.65 Trigone, bladder, wall bladder V15-V50 

G2 GU toxicity for bladder 

V20 

Sini C. et al. 

2015 [117] 
121 Logistic regression analysis 

R (R Core Team Vienna, 

Austria) 
AUC = 0.904 Bone marrow V3–50 Gy 

WP-V40 > 599 cc for G3 

acute lymphopenia; IL-V40 

> 95 cc for G2 late 

lymphopenia 

Cozzarini C. et al. 

2015 [118] 
262 Logistic regression 

KNIME (KNIME GmbH, 

Konstanz, Germany), R 2.15.2 
AUC > 0.6 

Absolute weekly bladder dose–surface 

histograms 

Frequency, intermittency, 

urgency, and nocturia 

absolute weekly bladder 

DSH > 5 Gy/11.5 Gy/12.5 

Gy week 

Stankovic V. et al. 

2016 [119] 
94 Logistic regression analysis n.a. 

OR and p-values were used 

to evaluate correlations  
Rectum Dmax, Dmean, V50–72 Gy 

GI acute grade ≥1 for V50–

72 

Bagalà P. et al. 

2016 [120] 
86 

Cut-off volume model of 

NTCP to fit bladder late 

toxicity data 

R version 2.15.1, MATLAB 

2008b version 7.7 (MathWorks, 

Natick, MA, USA). 

p-values were used to 

evaluate correlations 

Bladder and bladder inferior V65 < 50%, V70 

< 35%, V75 < 15%, and V80 < 15% 

Strong association between 

high doses (>77 Gy) and 

late GU toxicity 

Son C.H. et al. 

2016 [121] 
87 

Generalized estimation 

equations (GEEs) 
n.a. OR = 0.82 Bladder  V70 Gy and penile bulb V70 Gy 

Bladder V70 Gy was 

independently associated 

with a decrease in urinary 

continence scores 

Arunsingh M. et al. 

2017 [122] 
101 Logistic regression n.a. AUC = 0.70 Rectal V50–70; Bladder V65–70 

Rectal G2 toxicity:  

VEQD2–60 Gy > 9.7 cc; 

VEQD2–50 Gy > 15.9 cc 

Katahira-Suzuki R. et al. 

2017 [123] 
82 

ROC curves and Youden 

Index 

SPSS version 22, (IBM, 

Chicago, IL, USA) 

OR and p-values were used 

to evaluate correlations  
Rectum Dmax, Dmean, V30–76 Gy 

V30, V40, V50, and V60 

were significant predictors 

for G ≥ 1 late rectal 

bleeding; rectal V30 and 

V40 were 

predictive factors for G2 

Mostafaei S. et al. 

2019 [124] 
64 

Stacking algorithm and 

elastic net penalized 

logistic regression 

itk-SNAP, Python  
Hosmer–Lemeshow test, 

AUC = 0.77 

Rectum, bladder, rectal and bladder walls 

D5–D95 and V5–V75 Gy 

CT imaging features could 

predict radiation toxicities 

and combination of 

imaging and 

clinical/dosimetric features 

may enhance the predictive 

performance of 

radiotoxicity modeling 

Peng X. et al. 248 Logistic regression models n.a. AUC = 0.653 Anal canal Dmax, Dmean, V10–70 Gy Anal canal V20 > 74.93% 
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2019 [125] 

Catucci F. et al. 

2021 [126] 
175 

Univariate logistic 

regression analysis 

R (R statistical software 

version 3.3.1, R Core Team 

Vienna, Austria) 

AUC = 0.626 Vdose 
GU toxicity ≥ G2 related to 

V51 (%) 

Bresolin A. et al. 

2021 [127] 
415 

Multivariate logistic 

regression 
R version 3.2.4  

Hosmer–Lemeshow test and 

AUC (0.63–0.67) 
DVHs of bowel loops 

Bowel loops (V46 < 80 cc) 

may reduce the risk of G2-

G3 intestinal symptoms 

Ong L.K.A. et al. 

2022 [128] 
150 Univariate logistic analysis SPSS v27.0. and R version 4.0 AUC ≥ 0.6 Rectum Dmean, D0.003 cc, V30–75 Gy 

Rectal G2 toxicity for D0.03 

cc ≥ 78.2 Gy 

Fenlon J. B. et al. 

2024 [129] 
203 

Nonparametric kernel 

regressions 
STATA version 16 n.a. 

Bone marrow 500, 1000, 

1500, 2000, and 2500 cc 

>1000 cc of bone marrow 

receiving ≥15 Gy had 

significantly lower 

predicted Hb 
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3. Results 

After removing duplicate manuscripts, a total of 354 manuscripts were identified 

from the 3 databases. After the first screening, 305 papers were excluded, as the title and 

abstract were considered not relevant to the topic. Forty-nine papers were shortlisted for 

extensive analysis. Sixteen of these were excluded from the search, as they did not focus 

on dosimetric data for RT toxicity prediction in PCa, and a further 6 because they were 

articles on SBRT and BT. The remaining 27 articles were reviewed, as they fulfilled the 

inclusion criteria [103–129]. Figure 1 describes the PRISMA workflow. 

 

Figure 1. PRISMA flow diagram. 

In the majority of the reviewed studies, a logistic regression model was used to de-

termine correlations between dosimetric parameters and side effects. 

Commonly used software for statistical analysis includes R and FORTRAN. The ac-

curacy of predictive models was determined by performance indices with area under the 

ROC curve (AUC) [130] values ranging from 0.626 to 0.904. 

Only one study implemented ML techniques to enhance predictive accuracy [124]. 

Several dosimetric parameters were analyzed, such as the volume receiving a certain 

dose (Vdose), maximum dose (Dmax), and mean dose (Dmean), primarily focusing on the 

rectum and bladder. 

The studies reported dosimetric parameters that were predictive of genitourinary 

(GU), haematological, and gastrointestinal (GI) toxicity. 
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3.1. Genitourinary Toxicity 

The occurrence of GU toxicities during RT for pelvic region cancers has an impact on 

both patient tolerance to treatment and accuracy of dose delivery. On the one hand, uri-

nary symptoms impact patients’ QoL, restricting their ability to perform daily activities 

[89]. On the other hand, RT-induced incontinence complicates the maintenance of ade-

quate bladder filling during treatment, resulting in the need for re-optimization for ade-

quate target coverage [131]. 

In response to these challenges, multiple studies have focused on establishing vali-

dated dosimetric constraints to predict the onset of GU toxicity in PCa RT. 

A retrospective study from the University Medical center of Seoul in 2014 analyzed 

acute and late toxicities in 70 patients with localized PCa treated with hypofractionated 

helical tomotherapy [115]. RT protocol included doses of 75 Gray (Gy) in 2.5 Gy per frac-

tion to the prostate gland, 63 Gy in 2.1 Gy per fraction to the seminal vesicles, and 54 Gy 

in 1.8 Gy per fraction to the pelvic lymph nodes. The findings revealed that acute gastro-

intestinal (GI) toxicity occurred in 51.4% of patients at grade 0, 42.9% at grade 1, and 5.7% 

at grade 2, while acute genitourinary (GU) toxicity was noted in 7.1% at grade 0, 64.3% at 

grade 1, and 28.6% at grade 2. Significant predictive factors for severe toxicities included 

maximum rectal dose and bladder V40 and V50. The analysis showed a significant corre-

lation between bladder toxicity onset and values of bladder V40 > 17.3% and V50 > 10.2%, 

where Vx is the volume of tissue receiving at least x Gy. The results from Kong et al. [115] 

were similar to the outcomes reported in the study by Catucci et al. (2021) [126]. The au-

thors analyzed a cohort of 175 patients and found a significant correlation between blad-

der G ≥ 2 late toxicity and a bladder Vdose of 51 Gy. 

Jin-Hong-Park et al. (2014) conducted a prospective study to investigate the occur-

rence of acute bladder toxicity following pelvic RT and identified potential dosimetric 

predictors [116]. Acute bladder toxicity was assessed weekly using the Common Termi-

nology Criteria for Adverse Events (CTCAE version 4.0). The reported symptoms were 

also rated according to the International Prostate Symptom Score (IPSS) and the Overac-

tive Bladder Symptom Score (OABSS) to provide a comparative analysis of different tox-

icity metrics. The study involved the delineation of the bladder wall, solid bladder, and 

trigone on CT scan planes, followed by analysis of dose–volume histograms to identify 

the most reliable predictors. A total of 92 patients were included in the analysis, and 27 

patients (29%) showed CTCAE G2 acute bladder toxicity, with nocturia as the most prev-

alent symptom. V20 for both the bladder wall and the whole bladder had a higher predic-

tive value for bladder toxicity. The IPSS was found to be more aligned with CTCAE than 

OABSS for toxicity reporting [116]. 

A prospective trial conducted by Cozzarini C. et al. (2015) developed an alternative 

predictive tool for bladder toxicity [118]. The bladder dose–surface histograms (DSHw) 

were weekly reported as dosimetric descriptors in 262 PCa patients treated with RT (120 

conventional fractionation, 142 hypofractionation). The authors found that GU toxicity in 

terms of increased risk of frequency, intermittency, urgency, and nocturia was signifi-

cantly associated with DSHw values. DSH is an RT evaluation tool that quantifies the dis-

tribution of radiation dose across the surface of the bladder. Unlike traditional dose–vol-

ume histograms (DVH), which assess the dose delivered to the entire volume of an organ, 

the DSH specifically focuses on the dose distribution along the organ’s surface. 

Bagalà P. et al. (2016) retrospectively analyzed the relationship between GU toxicity 

and clinical dosimetric parameters in 86 PCa patients treated with conformal RT [120]. 

They found a strong association between high doses (>77 Gy) in the bladder and late GU 

toxicity. Similar results were reported in a study by Son C.H. et al. (2016) with urinary 

continence scores correlated with bladder V70 Gy [121]. 
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3.2. Haematological Toxicity 

Bone marrow irradiation in pelvic RT has been already addressed as a relevant factor 

promoting haematological toxicity in different subsites [132,133]. Indeed, dose optimiza-

tion should also be considered in PCa RT [117]. Sini et al. (2015) conducted a study to 

identify clinical and dosimetric predictors of acute and late hematologic toxicity (HT) in 

chemo-naïve patients undergoing whole-pelvis radiotherapy (WPRT) for PCa. By Analyz-

ing data from 121 patients treated with various RT techniques (static-field IMRT, 

VMAT/Rapidarc, and tomotherapy), the researchers delineated pelvic bone marrow (BM) 

into specific regions and calculated their dose–volume histograms (DVHs). Significant dif-

ferences in BM DVH were found among the treatment techniques, with tomotherapy as-

sociated with larger volumes receiving lower doses and smaller volumes receiving higher 

doses. Lower baseline absolute counts of white blood cells, neutrophils, and lymphocytes 

were identified as strong predictors of acute and late HT. It was found that higher BM 

volumes receiving 40 Gy (V40) were associated with increased risks of acute Grade 3 and 

late Grade 2 lymphopenia. The study developed two predictive models, which incorpo-

rated baseline absolute lymphocyte counts and specific BM dose constraints, showing 

promising areas under the curve (AUC) for predicting lymphopenia. These findings sug-

gest that targeted dose constraints to pelvic BM can help mitigate hematologic toxicity, 

thereby potentially improving patient outcomes. 

Also, Fenlon J. B. et al. (2024) performed a prospective data collection of PCa patients 

undergoing RT [129]. The results showed that a bone marrow volume > 1000 cc receiving 

≥ 15 Gy correlates with significantly lower predicted hemoglobin levels. Plan optimization 

considering the further mentioned value did not affect target coverage in the selected se-

ries. 

3.3. Gastrointestinal (GI) Toxicity 

The onset of GI toxicity is a main concern in PCa RT due to the anatomical proximity 

of the prostate to the rectum and other parts of the gastrointestinal tract. GI toxicity in-

cludes a range of symptoms, including diarrhea, tenesmus, rectal pain, rectal bleeding, 

and, in some cases, proctitis. The possibility of identifying predictive parameters for dif-

ferent GI subsites and symptoms has been investigated [134]. 

The necessity to limit radiation exposure to the bowel to prevent intestinal side effects 

has been well established. In this regard, this review highlights two significant studies 

that suggest specific dose limits to mitigate radiation-induced bowel toxicity. The first 

study, conducted by Perna L. et al. in 2010, involved a retrospective analysis of 96 patients 

who underwent whole pelvis irradiation after prostatectomy. The findings revealed a cor-

relation between acute bowel toxicity and certain dose–volume thresholds, specifically for 

V45 total loops (TL) > 50 cc, V50 TL > 13 cc, and V55 TL > 3 cc [110]. 

Similarly, a more recent study by Bresolin A. et al. in 2021 analyzed data from 415 

patients enrolled in a multi-institutional prospective trial. This study suggested that keep-

ing bowel loops at V46 below 80 cc could potentially reduce the risk of developing G2 to 

3 intestinal symptoms [127]. 

Considering rectal toxicity, different experiences searched for dosimetric parameters. 

In a prospective trial, Arcangeli et al. (2009) evaluated clinical and dosimetric predictors 

of acute toxicity after hypofractionated RT in 102 patients affected by PCa [108]. The re-

sults of this study showed a correlation between G2 rectal toxicity at rectum V53 > 8%. 

Ippolito E. et al. (2013) performed a prospective analysis on patients treated for ex-

clusive and adjuvant RT with a 1-year colonoscopy to identify rectal telangiectasia [114]. 

The authors correlated the onset of rectal telangiectasia (showed at endoscopic examina-

tion) with rectal V60 Gy < 34.4%, rectal V70 Gy < 16.7%, and rectal Dmean < 57.5 Gy. 
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3.4. Rectal Bleeding 

Fiorino et al. conducted three studies, and the author investigated predictors of late 

rectal toxicity in PCa patients treated with three-dimensional conformal RT (3D-CRT). In 

the first study, dose–volume histogram (DVH) data from 245 patients showed substantial 

correlations between rectal bleeding and dose thresholds (V50-V70), recommending con-

straints at V50 ≤ 60–65%, V60 ≤ 45–50%, and V70 ≤ 25–30% to decrease bleeding risk. The 

second study, focusing on post-radical prostatectomy patients, identified significant DVH 

thresholds for late hematuria and rectum hemorrhage, specifically bladder V50 Gy ≤ 43%, 

bladder V40 Gy ≤ 50%, rectum V60 Gy ≤ 13%, and rectum V50 Gy ≤ 33%. In the third study, 

which included 506 patients with a 24-month follow-up, multivariate analysis confirmed 

dose–volume constraints as predictors of rectal toxicity, with V70 being highly predictive 

of bleeding (recommended V70 < 25%), and previous abdominal/pelvic surgery strongly 

correlating with stool frequency, pain, incontinence, and bleeding. For patients with sur-

gery history, a more stringent V70 threshold (<15%) was advised. Together, these studies 

highlight specific dose constraints and patient history factors critical for managing late 

rectal toxicity in PCa RT [103,105,107]. 

Further experiences also confirmed the reported dose limits for rectal toxicity, which 

are summarized in Table 1 [104,106,111,115,119,122,123,128]. 

3.5. Anal Toxicity 

Peng X. et al. (2019) conducted a study to evaluate the clinical and dosimetric factors 

predictive of acute anal toxicity (AAT) following RT in PCa patients, both with and with-

out hemorrhoids [125]. They analyzed data from 347 PCa patients treated with pelvic RT 

at a single institution, comprising 248 cases treated from July 2013 to November 2017 as 

the training cohort and 99 cases treated in 2018 as the validation cohort. The prescribed 

dose was determined using the anal canal dose–volume histogram. Univariate and multi-

variate analyses were conducted to evaluate AAT risk based on clinical and dosimetric 

factors. The results indicated that 39.5% (98/248) of patients in the training cohort and 

31.3% (31/99) of patients in the validation cohort developed AAT. The incidence of AAT 

was significantly higher in patients with hemorrhoids than in those without hemorrhoids 

in both cohorts. Hemorrhoids and volume receiving more than 20 Gy (V20) were identi-

fied as independent factors for predicting AAT in the training cohort, with similar results 

observed in the validation cohort. The combination of hemorrhoids and a high anal canal 

V20 (>74.93% as determined by ROC curves) demonstrated the highest specificity and 

positive predictive values for predicting AAT in both cohorts. The study concluded that 

AAT is common in PCa patients with hemorrhoids during and after pelvic RT. Hemor-

rhoids and anal canal V20 are independent predictors of AAT, and these factors should be 

carefully considered during treatment planning to minimize AAT incidence. The authors 

also found that acute toxicity in the anal canal is correlated with anal canal V20 > 74.93%, 

and suggested to keep the rate of moderate/severe rectal bleeding below 5–10%; it seems 

advisable to limit V50 to 60–65%, V60 to 45–50%, and V70 to 25–30%. 

The studies by Farìa [109], Norkus [112], and Viani [113] did not demonstrate statis-

tically significant correlations between dosimetric parameters and side effects. 

All included studies did not contain public datasets. 

4. Discussion 

An accurate understanding of dosimetric parameters and their correlation with tox-

icity is crucial for optimizing RT plans. Improving toxicity prediction can lead to more 

effective treatment tailoring, minimizing adverse effects and improving patients’ QoL. 

Furthermore, the identification of key dosimetric parameters can guide future re-

search and development of advanced RT techniques [135]. 

We are aware of the main dosimetric parameters, such as the DVH, Dmax and 

Dmean, conformity, and Gamma Index [136,137]. 
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The DVH is a fundamental tool that shows the relationship between the received 

dose and the volume of irradiated tissue. Two of the main parameters extracted from the 

DVH are Vx and Dx (dose received in x% of tissue volume). The Dmean and Dmax are 

used to assess the radiation load on tissue [138]. Figure 2 illustrates a DVH sample in an 

RT of PCa to highlight the relationship between dosimetric parameters like the Dmean, 

Dmax, and Vdose with toxicity outcomes. 

 

Figure 2. RT of PCa using a DVH sample. 

• Dmean: A higher Dmean in organs at risk may correlate with increased toxicity; thus, 

it is crucial to minimize this value. 

• Dmax: Identifying the Dmax helps in understanding potential hotspots that could 

lead to adverse effects. 

• Vdose: Higher Vdose values (e.g., V50 > 50% of the rectum receiving more than 50 

Gy) often correlate with increased risk of toxicity. 

Haemorrhagic cystitis can occur as a result of high doses given to the bladder in the 

context of the prostate. In contrast, a high maximum dose to the rectum may increase 

proctitis risk [136]. 

The conformity index (CI) measures how well the irradiated dose matches the tu-

mour target shape while minimizing exposure to surrounding healthy tissue. A high CI 

indicates effective compliance, reducing the risk of damage to non-target tissues [139]. 

The Gamma Index is used to assess the quality of the treatment plan by comparing 

the planned dose with the delivered dose. Significant discrepancies may indicate an in-

creased risk of toxicity, as tissue may receive unplanned doses [140]. 
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This review provides a comprehensive overview of the dosimetric parameters used 

to predict toxicity in PCa RT, highlighting key correlations and the most effective meth-

odologies. 

Almost all studies included in this review use logistic regression analysis as a well-

established method, which helps determine the probability of toxicity events. Logistic re-

gression models are particularly effective for straightforward yes-or-no outcomes, making 

them ideal for assessing whether specific thresholds of radiation exposure (e.g., rectum 

V50 or bladder V70) increase the odds of developing a certain grade of toxicity. For in-

stance, the study by Arunsingh et al. (2017) showed that increased rectal volume exposed 

to 60 Gy was a strong predictor of Grade 2 acute toxicity [122]. Meanwhile, Sini et al. (2016) 

demonstrated that bone marrow exposure levels could accurately predict hematologic 

toxicity with high AUC values, reinforcing the model’s accuracy [117]. In cases where the 

timing of toxicity onset is important, such as when assessing the risk of late GU toxicity 

over several months or years, studies used the Cox proportional hazard model. This ap-

proach allowed researchers to analyze not just the likelihood of toxicity but also when it 

was likely to develop after treatment. For example, Kong et al. (2014) used Cox regression 

to explore bladder and rectal dose levels in hypofractionated treatments, finding that cer-

tain dose–volume constraints could help reduce the risk of delayed toxicity [115]. Simi-

larly, Fiorino et al. (2008) employed Cox regression to investigate rectal dose thresholds, 

confirming that limiting rectum V70 to lower levels could mitigate the long-term risk of 

severe rectal bleeding [107]. 

Another statistical tool applied in these studies is the Generalized Estimating Equa-

tion (GEE), which is particularly helpful for tracking repeated measures over time, such 

as patient-reported outcomes (PROs) on urinary or bowel function. The longitudinal per-

spective of GEEs allows for insights into how symptoms might change after treatment, 

providing a dynamic view of toxicity progression. For example, Son et al. (2016) used 

GEEs to analyze how continence scores evolved over time, showing that higher bladder 

V70 volumes significantly correlated with deteriorating urinary function [121]. 

Only one study went beyond traditional statistical methods, applying ML techniques 

for enhanced predictive accuracy. Techniques like stacking ensembles, which integrate 

multiple models such as support vector machines and random forests, allow for a more 

complex analysis of toxicity risk by incorporating a broader array of clinical, dosimetric, 

and even radiomic data. Mostafaei et al. (2019), indeed, applied a stacking ensemble to 

predict urinary toxicity with high precision, underscoring the potential of ML to refine 

toxicity prediction in cases where conventional models may fall short [124]. 

The process began with three different ML algorithms, or “base models,” with each 

analyzing radiomic data derived from pre-treatment CT scans. A random forest model 

was used to capture complex, non-linear patterns, taking advantage of its ability to man-

age intricate datasets and detect subtle variations in tissue characteristics. Alongside it, a 

support vector machine (SVM) contributed its strength to handling high-dimensional 

data—a necessary skill given the detailed, feature-rich radiomic inputs. Lastly, a neural 

network was included to detect finer, subtle patterns within the tissue structure, which 

was especially useful for understanding the small-scale changes caused by radiation. 

After each base model analyzed the data and made its own predictions, a final layer, 

known as the meta-learner, brought these insights together. The researchers chose elastic 

net penalized logistic regression for this role, as it is particularly effective at selecting the 

most relevant features and balancing them for optimal performance. This choice allowed 

the meta-learner to focus on the most meaningful radiomic, clinical, and dosimetric fea-

tures, filtering out any less important details to avoid overfitting and improve the model’s 

generalizability. 

To ensure the model’s reliability, the team implemented cross-validation, dividing 

the data into multiple parts to test and refine the model across different data splits. This 

method strengthened the model’s consistency, ensuring it would perform reliably even 

when applied to new patients. 
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The results were encouraging: by combining the radiomic, clinical, and dosimetric 

data, the stacking model reached an impressive accuracy level, with an AUC of 0.77 for 

urinary toxicity prediction. This performance was notably higher than models using only 

clinical or dosimetric information, underscoring the additional predictive power that ra-

diomic features bring. The study concluded that integrating machine learning into toxicity 

prediction models offers a significant step toward personalized RT, allowing clinicians to 

identify patients at higher risk of treatment side effects and potentially adjust treatment 

plans accordingly. 

In essence, Mostafaei et al.’s study highlights how a sophisticated machine learning 

approach can offer deeper insights into patient-specific responses to RT, paving the way 

for more individualized, safe, and effective cancer treatments. 

To assess the reliability of these models, various performance metrics were em-

ployed, each with its own strengths and limitations. One of the most commonly used met-

rics is the AUC from ROC analysis, which measures a model’s ability to distinguish be-

tween patients who will and will not experience toxicity. An AUC close to 1 signals a high 

level of accuracy in the model’s predictions. This metric was used extensively across stud-

ies to confirm DHV threshold predictive power; for instance, Zapatero et al. (2004) 

achieved AUC values as high as 0.89 when predicting rectal bleeding, suggesting that spe-

cific dose constraints could reliably prevent such toxicity [106]. 

While the AUC focuses on the model’s discriminative power, Odds Ratios (ORs) de-

rived from logistic regression provide an interpretable measure of the increased risk as-

sociated with specific DVH values. For instance, Cozzarini et al. (2002) reported that a 

rectal V50 above 63% increased the odds of late rectal bleeding significantly, making this 

threshold a practical guide for clinicians. ORs have the advantage of directly quantifying 

risk in an easily understandable format, allowing dose adjustments in clinical settings 

[104]. 

Calibration plots and the Hosmer–Lemeshow test offer a way to ensure that a model’s 

probability predictions align with actual outcomes. Calibration plots visually compare 

predicted probabilities with observed results, while the Hosmer–Lemeshow test statisti-

cally confirms this fit. Studies like Catucci et al. (2021) found calibration plots useful in 

validating their bladder toxicity predictions, helping fine-tune the model to match real-

world occurrences [126]. Bresolin et al. (2021) also leveraged calibration plots to confirm 

that their bowel toxicity predictions aligned well with observed data, thus validating the 

chosen DVH constraints [127]. 

In some cases, studies employed bootstrap validation to enhance model stability con-

fidence. By repeatedly sampling from the dataset, bootstrap validation tests the model’s 

robustness and reduces the risk of overfitting, which is especially valuable in studies with 

smaller patient cohorts. For instance, Catucci et al. (2021) used bootstrapping to confirm 

the stability of their bladder toxicity model, ensuring that the AUC and other metrics re-

mained consistent across samples [126]. 

Traditional models (Logistic Regression, Cox, GEE) offer interpretable predictions 

using established statistical methods, excelling with binary outcomes or time-to-event 

data but often faltering with complex, non-linear relationships. ML models, in contrast, 

handle high-dimensional, non-linear data and offer greater predictive power, but require 

complex data processing and stringent validation to avoid overfitting. Validation metrics 

like AUC, ORs, calibration plots, and bootstrap methods assess model accuracy and reli-

ability. Overall, while traditional models are valued for interpretability, ML techniques 

are advancing predictive accuracy and supporting personalized approaches in RT. 

Studies using AI will certainly be published within the next few years in order to 

predict dosimetric parameters. Indeed, AI and ML are emerging powerful tools for pre-

dicting toxicity. Such models are able to analyze large amounts of dosimetric, clinical, and 

multiomics data to identify complex patterns that predict toxicity [141–143]. 

Some approaches include regression models, used to identify linear relationships be-

tween dosimetric parameters and toxicity outcomes; artificial neural networks, used to 
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analyze non-linear and complex data, improving predictivity over traditional models; and 

random forests and Gradient Boosting, i.e., Ensemble Learning Techniques that combine 

multiple predictive models to improve prediction accuracy [144,145]. 

In our research, we found several studies reporting the use of AI tools for the predic-

tion of toxicity in RT treatment in patients with PCa, but they were not included as they 

did not provide specific predictive dosimetric parameters. 

For example, Isaksson et al. [75] investigated toxicity outcomes in PCa RT, focusing 

on erectile dysfunction (ED), GI, rectal, and GU toxicities. Various ML models were em-

ployed, including SVMs, artificial neural networks (ANNs), and random forests (RFs), to 

predict these effects using datasets ranging from 79 to 754 patients. 

Some studies also explored genetic and radiomic markers. For instance, Lee et al. 

[146] used gene ontology to link neurogenesis and ion transport to urinary functions, 

while Abdollahi et al. [147] examined MRI radiomic features to predict toxicity. ANN and 

logistic regression models were common approaches, as seen in Carrara et al. and 

Moulton et al. [148,149], who found spatial dose distribution to be crucial for reducing GI 

toxicity. Other advanced methods included independent component analysis (ICA), as in 

Fargeas et al.[150], and tensor decomposition by CP-DMA. 

Incorporating clinical, dosimetric, and radiomic data often enhanced predictive ac-

curacy. Abdollahi et al. [151], for instance, combined MRI features to improve early rectal 

toxicity predictions. 

Yahya et al. [62] explored a variety of statistical learning strategies to predict urinary 

symptoms following RT in PCa, each with unique strengths for handling complex da-

tasets. Logistic regression, a widely used approach to binary outcomes, was refined 

through backward stepwise feature elimination based on Akaike Information Criterion 

(AIC) values to ensure only the most relevant predictors remained. Elastic-net, a method 

combining lasso and ridge regression, was particularly useful for managing datasets with 

correlated features, as it both selects important variables and balances their influence. Ran-

dom forest, an ensemble technique, creates a robust prediction model by merging results 

from multiple decision trees, thereby reducing overfitting and enhancing accuracy. Neu-

ral networks, composed of interconnected input, hidden, and output layers, were opti-

mized to identify nonlinear relationships and model complex patterns within the data. 

SVMs, with their ability to identify an optimal boundary between two classes, utilized a 

radial basis function kernel to handle nonlinearity effectively. Finally, MARS (Multivari-

ate Adaptive Regression Splines) generated segmented, localized models that adapted to 

the data’s unique structure, simplifying the overall model while retaining accuracy 

through a pruning process that minimizes irrelevant features. Each of these strategies was 

fine-tuned using cross-validation to improve prediction robustness and relevance. 

An example of a recent paper that uses AI for this purpose is the study by Xiaoying 

Pan et al. [152] in 2020. They utilized ensemble ML to interrogate the entire DVH to eval-

uate the relationships between dose–volume parameters and patient-reported health-re-

lated QoL changes. They applied ensemble learning methods, which combine multiple 

weak models, to improve prediction accuracy and robustness. They tested two main 

types: random forest, which builds multiple decision trees on random subsets, and boost-

ing, which incrementally corrects errors. For boosting, we used Gradient Boosting Deci-

sion Trees (GBDT) and Adaptive Boosting, with GBDT building each tree to minimize 

prior errors. 

The ROC curve is widely recognized as a reliable tool for assessing binary classifiers’ 

performance. However, caution is needed when applying it to imbalanced datasets. Al-

ternatives like concentrated ROC (CROC), Cost Curves (CCs), and Precision–Recall plots 

(PRCs) have been proposed, although they are less common. Many studies still rely on 

ROC for performance evaluation, even with imbalanced data. Saito et al. [153] propose 

that PRC plots, unlike ROC, visually highlight classifier sensitivity to imbalance and offer 

a straightforward, accurate interpretation of practical performance. Their findings 
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strongly suggest that PRC plots are the most informative tool for visual performance anal-

ysis. 

The integration of advanced technologies, such as image-guided radiotherapy 

(IGRT) and intensity-modulated radiotherapy (IMRT), together with an in-depth under-

standing of dosimetric parameters, represents the future path to safer and more personal-

ized RT treatment of PCa [79,154]. 

Although public datasets are missing and there is a lack of method details in some 

studies that hamper the replicability and independent verification of results, the use of 

advanced software and robust statistical models, such as logistic regression analysis, con-

tributes to the validity of results [62]. 

The topic of this review focused on RT with conventional fractionation, while many 

screened and rejected studies were aimed at ultra-fractionation and brachytherapy treat-

ments, so it would be useful to perform reviews with these two topics to possibly find 

innovative applications of AI in finding predictive dosimetric parameters in such increas-

ingly popular care. 

Applications of AI in the prediction of toxicity and outcomes of RT treatments repre-

sent a rapidly evolving area of medicine [155–158]. 

RT practitioners may hesitate to adopt AI models that operate as “black boxes,” as 

this lack of transparency can undermine trust in AI-driven decisions. To build radiation 

oncologists’ trust, it is essential to promote transparency by explaining how AI models 

work, using feature importance and visualization tools. Additionally, clarifying that AI is 

a supportive tool, with final decisions always resting with the physician, reinforces their 

role in patient care. Allowing oncologists to adjust potential AI errors not only enhances 

patient safety but also contributes to refining the AI model itself, improving its accuracy 

over time. Sharing case studies that showcase AI’s positive impact and involving radiation 

oncologists in the development process further fosters understanding, while providing 

targeted training empowers practitioners to confidently integrate AI into their workflows 

[159,160]. 

Future trends in advanced medical technology focus on large language models 

(LLMs) and digital twins, which hold transformative potential for healthcare. LLMs can 

enhance diagnostics, treatment personalization, and patient education, while digital 

twins—virtual models of patients—could enable real-time monitoring, predictive anal-

yses, and tailored interventions, pushing precision medicine forward [161–163]. 

In the future, these applications could have a significant impact in several ways. AI 

has the capability to analyze large amounts of clinical data and medical images to identify 

patterns and predict how patients will respond to specific treatments. This analysis could 

enable physicians to tailor plans to each patient’s individual characteristics, thereby im-

proving treatment effectiveness and reducing toxicity. AI can help optimize RT doses, bal-

ancing treatment efficacy with toxicity risk. This can lead to better tumor control and re-

duced side effects [164,165]. 

AI systems can be employed to monitor patients in real-time during RT delivery, fa-

cilitating the detection of changes in treatment response and allowing timely adjustments 

to the treatment plan [79]. 

In RT prediction, balancing model complexity and real-time performance is essential. 

While complex models like deep neural networks offer higher accuracy, they demand 

more computational resources and longer processing times, which can delay clinical de-

cisions. Conversely, simpler models, such as logistic regression, provide faster results 

with adequate accuracy for specific applications [144]. 

Choosing the right model depends on the clinical context. For situations requiring 

rapid feedback, simpler models are often preferred, while complex models may be needed 

for more intricate data patterns. Ultimately, effective AI in RT must ensure both accuracy 

and computational efficiency, allowing clinicians to make timely decisions without com-

promising predictive power [166]. 
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However, the implementation of these technologies requires interdisciplinary collab-

oration between oncologists, radiologists, computer engineers, and bioinformaticians. 

Furthermore, it is crucial to address the ethical and legal challenges associated with AI in 

medicine, such as the protection of patient data and the transparency of algorithms 

[167,168]. 

5. Conclusions 

A precise understanding of dosimetric parameters and their toxicity correlations is 

essential for optimizing RT plans. This review underscores the importance of parameters 

like the DVH, Dmax, and Dmean, which are pivotal for predicting toxicity and tailoring 

treatments to PCa. Improved toxicity prediction enhances treatment efficacy and mini-

mizes side effects, benefiting patients’ QoL. 

Emerging technologies, particularly AI and ML, are expected to revolutionize tox-

icity prediction by analyzing extensive dosimetric and clinical data to identify complex 

patterns. The integration of advanced techniques such as IGRT and IMRT with AI offers a 

promising path towards more personalized and effective RT. 

The absence of public datasets in current studies underscores a significant need for 

standardized, large-scale datasets in the field. Standardization across datasets, including 

common protocols for data collection and uniformity in clinical annotations, would en-

hance the generalizability and reproducibility of research findings, making it easier to 

draw reliable conclusions across studies. This would also enable researchers to test and 

validate models on diverse patient populations, which is critical for ensuring model ro-

bustness, especially in personalized RT planning where individual differences greatly im-

pact treatment outcomes. 

Large-scale, standardized datasets also facilitate the development of more accurate 

and unbiased AI models by reducing overfitting and ensuring that models are not tailored 

to a specific dataset, making them more adaptable to new, unseen data. The availability 

of such datasets could also accelerate research in the field, as researchers would spend less 

time gathering and cleaning data and more time on actual model development and vali-

dation. 

This improvement could greatly benefit future research efforts, fostering collabora-

tion across institutions by providing a common data foundation. Furthermore, open ac-

cess to standardized data supports transparency and trust, allowing for peer review, 

which is essential for advancing AI credibility and utility in clinical settings. The creation 

of standardized datasets would not only enhance research quality but could also speed 

up the translation of AI-based models into real-world clinical practice. 

Future research should address gaps in data and explore innovative applications of 

AI in various RT modalities, aiming to further refine treatment strategies and optimize 

patient outcomes while navigating ethical and technical challenges. 

Author Contributions: Conceptualization, A.P. and A.C.; methodology, A.P. and A.C.; investigation, 

A.P., R.C., V.B., M.A. and A.C.; writing—original draft preparation, A.P.; writing—review and ed-

iting, A.P., R.C., V.B., M.A., R.L., P.A., G.S. and A.C.; visualization, A.P., R.C. V.B., M.A., R.L., P.A., 

A.D., D.C., L.B., G.S., D.D.R., A.T. and A.C.; supervision, V.B., M.A., R.C., D.D.R., A.T. and A.C.; 

project administration, A.C.; funding acquisition, A.C. and P.A. All authors have read and agreed 

to the published version of the manuscript. 

Funding: This work was partially supported by the following projects: “RADIATIONS”—under the 

PNRR—Next Generation EU, Mission 4, Component 2—Investment 1.5—Cascading Call—Ecosys-

tem of Innovation “THE—Tuscany Health Ecosystem”—code ECS00000017—CUP 

B83C22003930001, to Albert Comelli; “INNOVA”—Advanced Diagnostic, Project promoted by Ital-

ian Ministry of Health—PNC-E3-2022-23681266 PNCHTS-DA 1, CUP D73C22OO2090001, to Vivi-

ana Benfante and Pierpaolo Alongi. 

Acknowledgments: R.C. is a member of the “Gruppo Nazionale per l’Analisi Matematica, la 

Probabilità e le loro Applicazioni” (GNAMPA-INdAM). 



Appl. Sci. 2024, 14, 10947 18 of 26 
 

Conflicts of Interest: The authors declare no conflicts of interest. 

Abbreviations 
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BT Brachytherapy 
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