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Abstract— This is the second part of a paper, divided into 
two parts, dealing with the definition of a space-vector 
dynamic model of the linear Induction motor (LIM) taking into 
consideration both the dynamic end-effects and the iron losses 
as well as the off-line identification of its parameters. This 
second part is devoted to the description of an identification 
technique which has been suitably developed for the estimation 
of the electrical parameters of the LIM dynamic model 
accounting for both the dynamic end-effects and iron losses. 
Such an identification technique is strictly related to the state 
formulation of the proposed model and exploits Genetic 
Algorithms (GA) for minimizing a suitable cost function based 
on the processing of both the primary current and speed 
estimation errors. The proposed parameters’ estimation 
technique has been validated experimentally on a suitably 
developed test set-up. It has been further validated by a Finite 
Element Analysis (FEA) model of the LIM. 
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NOMENCLATURE 

= primary voltages space-vector in the primary 
reference frame; 

 = primary currents space-vector in the 
primary reference frame; 

 = secondary currents space-vector in the 
primary reference frame; 

= primary flux space-vector in the primary 
reference frame; 

= secondary flux space-vector in the primary 
reference frame; 

, ,  = primary, secondary and three-phase 
magnetizing inductances; 

, = primary and secondary leakage inductances; 
,   = primary and secondary resistances; 

p = number of pole pairs; 
 = angular rotor speed (in electrical angles per second); 

v = linear speed; 
tm = length of the primary; 
tp = polar pitch. 

I. INTRODUCTION  
This is the second part of a paper, divided into two parts, 
dealing with the definition of a space-vector dynamic model 
of the linear Induction motor (LIM) taking into 
consideration both the dynamic end-effects and the iron 
losses and its off-line identification. The first part has 
treated the theoretical framework of the model [1]. This 
second part, that recalls briefly the equations of the model, 
is mainly devoted to the description of an identification 
technique, which has been suitably developed for the 
estimation of the electrical parameters of the LIM dynamic 
model described in [1]. From the point of view of the LIM 
dynamic modelling, [1] represents an upgrade and evolution 
of [2], that defined a dynamic model able to take into 
account the LIM dynamic end-effects, but not for the iron 
losses. As for the identification techniques of Rotating 
Induction Motors (RIM), the scientific literature is huge, 
ranging from traditional no-load and locked rotor tests to 
more sophisticated dynamical tests [3]-[9]. In general, two 
approaches have been followed to solve this problem. The 
first one permits the direct computation of some electrical 
parameters starting from the measurements of the input 
voltages and currents; such measurements are further 
elaborated by either spectral analysis, or linear or non-linear 
regression techniques [5][6]. The second one permits the 
machine parameters to be estimated, starting from the 
construction of suitable state observers (full-order or 
reduced-order observers, extended Kalman filter, model 
reference adaptive systems). In this case, the accuracy of the 
state reconstruction depends on the adaptive estimation of a 
suitably chosen set of electrical parameters. The correct set 
of parameters is the one permitting the best fitting between 
the output computed by the dynamic model and that coming 
from the real machine. 

It should be noted, however, that there is a consistent 
difference between LIMs and RIMs, as for the parameters 
estimation methodologies. Firstly, the traditional no-load and 
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locked tests cannot be easily performed in LIMs. As a matter 
of fact, while the locked primary test can be performed on 
the one hand, because the primary can be locked in its 
position, on the other hand the no-load test can be hardly 
performed. This is due to the limited length of the secondary 
track, which can prevent the steady-state rated speed to be 
reached. In addition, any no-load test made in absence of the 
secondary would unavoidably lead to a wrong parameter 
estimation, because of the significant modification of the 
structure of the machine magnetic circuit. Last but not least, 
the tests traditionally devised for RIMs cannot permit the 
additive terms of the equivalent circuit considering the end-
effects to be computed. In this respect, only dynamical tests 
can be envisaged in LIMs.  

As for the scientific literature, very few papers 
specifically treat the identification of LIMs parameters [10]-
[17]. Some of them specifically face up to the dynamic or 
static modelling of the LIM, to be used for solving the 
identification problem. For example, [15] proposes a 
dynamic model of the LIM considering the actual winding 
distribution and structure dimensions. It can calculate the 
mutual, self, and leakage inductance to describe the influence 
of the longitudinal end-effects and half-filled slots. [13] 
specifically deals with some issues related to the LIM 
modelling, involving the transversal edge and longitudinal 
end-effects and the half-filled slots at the primary. It finally 
come up with the definition of a T-model equivalent circuit 
based on the 1-D magnetic equations of the air gap. [14] 
focuses an improved series equivalent circuit for this 
machine, where the longitudinal end-effects are estimated 
using three different impedances representing the normal, the 
forward, and the backward flux density waves in the air gap. 

[16] proposes an on-line model reference adaptive 
system (MRAS) exploited for simultaneously estimating the 
secondary resistance and the three-phase magnetizing 
inductance. The drawbacks of such an approach is the 
adoption a force formulation not accounting the braking 
component caused by end-effects. 

Among the most significant papers, there is certainly 
[11]. In [11], the parameters of the equivalent steady-state 
circuit of a RIM are computed by means of a Finite Element 
Analysis (FEA) of the linear motor; in particular, the 
leakage inductances of the primary and the secondary are 
estimated by flux analysis with a FEA. To do that, the 
primary and the secondary are supplied separately by 
current waveforms. The obtained data are processed and, 
afterwards, the RIM model is exploited. Such a work 
presents three weaknesses: 1) it does not find the LIM 
parameters considering either the border or the end-effects, 
2) it necessarily requires the FEA, with the consequent 
limitations (for example, the geometrical and constructional 
data of the motor are not always available to the final user), 
3) the operating conditions in which the leakage inductances 
are estimated are very different from real ones, with 
resulting potential significant estimation errors. 

All the above considerations call, from one side, for a 
proper dynamical model of the LIM taking in to 
consideration at the same time both the dynamic end-effects 
and the iron losses, and, from the other side, a suitable 
methodology for the identification of its parameters; such a 
methodology should hopefully exploit just input 
voltage/current measurements, not necessarily requiring 

either the constructional data of the LIM nor any complex 
FEA.  

The approach proposed in this paper can be viewed as an 
extension of the parameters’ estimation technique for LIMs 
proposed in [17], with respect to which several 
improvements are introduced here. In particular, while [17] 
had been specifically devised to estimate the electrical 
parameters of the model proposed in [2], the methodology 
proposed here has been conceived to estimate the electrical 
parameters of the model proposed in [1]. The difference lies 
in the dynamic model of the LIM whose parameters have to 
be estimated. Specifically, while the model in [2] presents 4 
scalar electrical variables, the model in [1] presents 6 scalar 
electrical variables. Correspondingly, the set of electrical 
parameters to be estimated has been modified with respect to 
[17]. In particular, the following set of electrical parameters 
has been estimated here: primary inductance (Ls), global 
leakage inductance (σLs), secondary resistance (Rr), iron 
losses resistance (R0). A specific dynamic test has been 
conceived in this paper, permitting all the above electrical 
parameters to be estimated after processing off-line the data 
acquired during it. Specifically, the proposed parameters 
estimation technique exploits the Genetic Algorithms (GA) 
[18] for minimizing a suitable cost function, processing the 
weithed sum of the error between the measured primary 
current and its estimation obtained on the basis of the 
proposed model as well as the error between the 
experimental measured linear speed and its estimation 
obtained on the basis of the model in [1]. After having 
estimated the complete set of electrical parameters of the 
LIM on the basis of the proposed GA approach, the goodness 
of the solution has been further verified comparing the 
results achievable with the proposed LIM model with those 
obtained with the FEA. With this specific regard, the 
complete FEA model of the LIM under test has been 
developed by the authors in Flux-2D® environment. 

II. SPACE VECTOR MODEL OF THE LIM INCLUDING IRON 
LOSSES  

In the following, the dynamic model of the LIM including 
the iron losses is briefly described. For the details related to 
the model, the reader can refer to [1]. 
Starting from the space-vector electric scheme in Fig. 1, the 
following space-vector voltage equations can be written on 
the primary (a) and secondary (b) circuits: 

, 

            (1 a, b) 

For the meaning of symbols, the reader can refer to 
nomenclature at the beginning of the paper. For the meaning 
of the time-varying parameters of the LIM due to the end 
effects, the reader can refer to [2]. 
Eq.s (1 a, b) have been written exploiting the following 
current balance equation at the node: 

    (2) 
Eq.s (6 a, b) are different from both the equations of the 
LIM accounting for the end-effects and those of the RIM 
including the iron losses. With respect to the RIM model 
including the iron losses, they include the voltage drop on 
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the variable resistance  due to the magnetizing current 
. The flux equations can be written as: 

, 

              (3 a, b) 
A further equation, not present either in classic RIM model 
or in the LIM model accounting for the end-effects, is the 
voltage equation across R0: 

  (4) 

As for the state representation of the above described model, 
the reader can refer to [1]. 
 

 
Fig. 1.  Space-vector equivalent circuit of the LIM including dynamic end 
effects and iron losses 

 

III. LIM PARAMETERS’ ESTIMATION 
As for the traditional dynamic model of the RIM, it is well 
known that not all the components of the state are 
measurable quantities. In particular, if the RIM model 
involving the stator currents and the rotor fluxes as state 
variables, the direct and quadrature components of the stator 
currents are the part of the state which is measurable, while 
the corresponding components of the rotor flux are the part 
of the state which is not measurable. As a direct 
consequence, only a limited number of the RIM electrical 
parameters can be estimated exploiting input-output 
measurements. This set of parameters can be suitably 
identified adopting convenient numerical techniques as in 
[3]-[9].  
As for the RIM model identifiability conditions, it is well 
known that the full set of 4 electrical parameters (stator 
resistance, stator inductance, global leakage factor, rotor 
time constant) can be identified only exploiting a full speed 
transient of the machine. On the contrary, in sinusoidal 
steady-state condition, only 1 electrical parameter can be 
computed. This issue, known as the rank deficient problem, 
can be viewed from several points of view.  
Firstly, if the RIM equations are rewritten in terms only of 
the input-output measurable quantities, stator current and 
voltage space vectors, then the parameter estimation 
problem can be formalized as a linear regression one [5]-[6]. 
Reading such papers, it is clear that the computation of all 
the parameters, from which the electrical ones can be 
deduced, requires at least 2 measurements of speed; 

otherwise, at any constant speed, the rows of the data matrix 
are linearly dependent. Such an observation is coherent with 
the evidence that just two tests can be classically exploited, 
the no-load and the locked rotor tests, to retrieve the same 
parameters at sinusoidal steady-state with just two tests 
performed at two different speeds: no load synchronous 
speed and zero speed. 
Finally, the same problem can be faced up from the point of 
view of the observability. The RIM model is observable 
starting from the measurements of the speed and the stator 
current, for all the applied voltages. It implies that the full 
system dynamics is observable by the input-output 
measurements and therefore a unique set of parameters 
exists reproducing both the input-output behaviour as well 
as the state dynamics. All these considerations which are 
valid for RIMs, can be easily extended to LIMs without any 
loss generality.  
From a theoretical point of view, therefore, a set of very few 
measurements performed at different speed would be 
sufficient to estimate the entire set of 4 electrical 
parameters. From a practical point of view, however, if a 
bigger set of input-output measurement is recursively 
elaborated, a natural filtering occurs leading naturally to the 
retrieval of the best solution. An entire speed transient from 
zero speed to the steady-state speed is further suggestible, 
since it permits the values of the electric parameters 
corresponding to the steady-state magnetization of the RIM 
to be retrieved [6]. Such an approach, developed in [6] for 
the RIMs has been suitably extended to LIMs in [25], where 
an algorithm based on the minimization of a suitable cost 
function involving the differences of the measured primary 
current components and those computed by simulation, has 
been adopted. Under such an assumption, an estimate of the 
variation of the electric parameters of the LIM with the 
magnetizing current has been obtained, as shown in [17]. It 
should be noted that the model adopted in [17] for the 
parameters’ estimation is the dynamic model accounting for 
the dynamic end-effects proposed in [1].   
On the contrary, in this paper, the new dynamic model of 
the LIM has been adopted, accounting for both the dynamic 
end-effects and iron losses; the theoretical description of this  
is written in [1]. Since the state representation of the LIM, 
because of the presence of the iron losses changes, as clearly 
described in [1], leading to an increased number of the state 
variables from 4 scalar to 6 scalar, correspondingly even the 
number of electrical parameters to be estimated varies, 
including the iron losses resistance R0 , which was not 
accounted in [17].  
In this paper, the stator resistance Rs is not assumed as a 
quantity to be estimated by the proposed technique, since it 
can be easily measured with simple voltage/current 
measurements. Therefore, the model presented in [1] can be 
expressed as function of the following vector b, representing 
the set of the electrical parameters to be estimated:  

    (5) 
In order to identify the vector of the parameters b  of the 
model (1)-(4), a suitable optimization problem can be 
considered. The LIM has been supplied in order to perform 
a set of speed transients; in correspondence to each value of 
speed steady-state, several load forces have been given to 
the LIM drive. In this way, the working space composed of 
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speed and load forces can be suitably covered for parameter 
estimation. The primary voltages and currents, the load 
force and the linear speed acquired during the above tests 
have been recorded. Afterwards, the space-vector state 
model (1)-(4) has been supplied numerically with the same 
values of primary voltages adopted in the experimental test, 
and the primary currents and the speed have been computed 
by the model (1)-(4). Finally, the difference between the 
measured primary currents and speed and the corresponding 
ones estimated by the model have been exploited to 
recursively tune the values of the model’s parameters, until 
when the outputs of the model match the corresponding 
ones of the real LIM. Note that the speed depends from the 
electromagnetic force generated by the motor, therefore the 
use of this variable for estimating the model parameters is 
very important because it takes into account the effective 
magnetization level of the machine, since the force depends 
both from primary currents and secondary flux. Fig. 2 
sketches the block diagram of the technique adopted for the 
parameter estimation of the LIM. As for the tuning 
algorithm, the optimization problem has been formulated as 
follows:  

    (6)  
 

where b is the vector of parameters (5),  and  are the 
lower and upper bounds of each parameter  respectively 
and they are introduced in order to restrict the searching 
domain and avoid to look for negative parameters or 
parameters without physical meaning, and is the cost 
function defined as follows:  

 
(7) 

where N is the total number of samples taken into 
consideration by the algorithm, k is the discrete instant of 
time,  and  are the vectors of the measured direct and 
quadrature primary currents,  and  are the 
corresponding quantities computed by means of the 
mathematical model in eq. (1)-(4) adopting the values of the 
parameters (5) under the same supply voltage,  and  
are respectively the measured linear velocity of the LIM and 
the estimated one. Finally,  and  are two positive 
weighting constants, allowing to separately weight the 
primary current and speed errors. With respect to [17], 
therefore, an additional term has been considered in the cost 
function, accounting for the balance between the real 
propulsive force and that estimated by the model. This has 
been necessary since the parameter  accounts for iron 
losses, depending on the supply frequency of the machine 
and therefore on its speed.  
Finally, the solution of the identification problem is the 
vector: 

    (8) 
of the parameters solving the problem in eq. (6).  

Now the problem is how to find the optimum , since 
problem (6)-(8) is a non-linear and non-convex problem, so 
the standard linear techniques do not ensure the optimal 
solution. In order to solve the problem, in the case under 
study, the genetic algorithms have been used, because they 
are very suitable for solving this type of problems. Actually, 
it is well known, the genetic algorithm starts from a generic 
initial condition, that is an initial population of individuals 
randomly  generated into the domain defined by the lower 
and upper  bounds  and , and it is quite robust 
versus this initial condition choice; thus, whatever the initial 
condition is, the GA will converge towards the global 
minimum.  
The genetic algorithm generates a set of parameters b (i.e. 
one b  for each individual) so that the algorithm can 
calculate the  associated with each b. Each individual 
is evaluated by a fitness function and the genetic algorithm 
selects the best parameter b and generates a new set of 
parameters b as new generation (inside the domain 
generated by the lower and upper bounds  and ). 
Several genetic operators have been applied to produce a 
new generation of b; each new generation overlaps the 
previous generation of b. The cycle is iterative until a 
predefined stopping criterion is met. In particular the 
algorithm is stopped when a predefined number of 
generations is reached or is the cost function is lower 
than a certain threshold.  
With reference to the other GA tuning parameters, the 
following choice has been made: a) mutation function: 
constraint dependent; b) crossover function: scattered; c) 
selection function: stochastic uniform; d) elite count: 5% of 
the population size; e) crossover fraction: 0.8. See [18] for 
details about the use of the genetic algorithms.  
Moreover, another purposely devised method has been used 
during the identification procedure. In particular, for both 
approaches, some parameters have been normalized by 
means of constant scalars so that all parameters range in 
comparable sets of values. In particular the following 
rescaled vector has been used instead of (5):  

  (6) 
 

 

Fig. 2. Block diagram of the identification scheme of  the LIM 

 
With choice (6) the following upper and lower bounds  
and  have been selected: 
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and the two positive weighting constants  and  have 
been selected equal to:  and . 
The number of individuals chosen in this application is 50, 
while the stopping criteria has been selected equal to 50 
iterations which corresponds with the number of epochs. 
From the experimental results shown in the next section it 
will be shown that the above described procedure leads to a 
good choice of the model’s parameters ensuring a small 
value of the cost function (7). 
 

IV. TEST SET-UP 
A test set-up has been suitably built to verify the 
parameters’ estimation technique proposed in this paper. 
The machine under test is a LIM model Baldor 
LMAC1607C23D99, whose rated data and electrical 
parameters are shown in Tab. I. The LIM has been equipped 
with a linear encoder Numerik Jena LIA series. The LIM 
presents a secondary track whose length is 1.6 m. 
The employed test set up consists of: 

• A three-phase linear induction motor with 
parameters shown in Table I;  

• A frequency converter which consists of a three-
phase diode rectifier and a 7.5 kVA, three-phase 
VSI;  

• A dSPACE card (DS1103) with a PowerPC 604e at 
400 MHz and a floating-point DSP TMS320F240. 

The test set-up is equipped also with a torque controlled 
PMSM (Permanent Magnets Synchronous Motor) model 
Emerson Unimotor HD 067UDB305BACRA mechanically 
coupled to the LIM by a pulley-strap system, to determine 
an active load for the LIM. Fig. 3 shows a photograph of the 
test set-up. 
 

 
Fig. 3. Photograph of the experimental test set-up 

TABLE I.  PARAMETERS OF THE LIM 

Rated power Prated [W] 424.7 
Rated voltage Urated [V] 380 
Rated frequency frated [Hz] 60 
Pole-pairs 3 
Inductor resistance Rs [W] 11 
Inductor inductance Ls [mH] 698 
Induced part resistance Rr [W] 28.36 
Induced part inductance Lr [mH] 716.3 
3-phase magnetizing inductance Lm [mH] 680 
Rated thrust Fn [N] 200 
Rated speed [m/s] 6.85 
Mass [kg] 20 

 

V. EXPERIMENTAL RESULTS 
The proposed parameters’ estimation technique of the LIM 
model taking into consideration both the dynamic end-
effects and the iron losses has been experimentally validated 
on the test set-up described in Section IV. Moreover, it has 
been further verified comparing its results with those 
obtained with finite element analysis (FEA) tests. In the 
experimental test the LIM drive has been run with a FOC 
algorithm so that closed loop control of the LIM speed and 
induced part flux amplitude has been performed [19].  
The parameters of the model in [1] have been identified 
adopting the technique described in Section III. In the 
following figures, the quantities estimated are referred to the 
results obtained in numerical simulation adopting the 
proposed model whose parameters represent the final values 
of the estimated parameters, at the end of the identification 
process. 
 

A. Experimental Validation 
A set of speed step references ranging between 0.1 m/s and 
0.8 m/s with several speed reversals has been imposed the 
LIM drive. Correspondingly, a set of step load forces has 
been applied by setting a priori a load force pattern to be 
given to the torque controlled PMSM drive used as active 
load.  
Fig. 4 shows the LIM experimental speed and that computed 
by the proposed model during the performed test. It can be 
seen that the LIM drive is able to correctly track any 
variation of the reference speed. Moreover, at each speed, it 
is visible that there are some instants in which the load force 
is applied and therefore the speed control loop reacts to the 
load application.  
The speed waveform computed by the proposed model 
correctly matches the corresponding measured 
experimentally, even during the speed transients arising 
from the application of the load force, as confirmed by the 
speed estimation error trace. 
Fig.s 5 and 6 show, in the upper subplot, the corresponding 
waveforms of the isD, isQ primary current components, 
expressed in the primary reference frame. The same figures, 
in the lower subplot, show also the corresponding current 
estimation errors, meaning the instantaneous differences 
between the measured currents and those computed by the 
proposed model. Even for these figures, it can be noted a 
very good matching between the instantaneous measured 
primary current and the corresponding ones computed by 
the proposed model. Such consideration is confirmed by the 
instantaneous error curve, which is always in average equal 
to zero and instantaneously never exceeding 5% (please 
mind that these are errors on AC quantities, thus even a 
small time lag can cause a significant estimation error). Fig. 
7 shows the corresponding waveforms of the three-phase 
magnetizing and secondary flux amplitudes (upper subplot) 
and the net electromagnetic force (difference between the 
propulsive force and the end-effects braking force), while 
Fig. 8 shows the load force waveform, as applied by the 
PMSM torque controlled drive used as active load. Even in 
this case, the net force computed by the model correctly 
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matches the experimental one. With this specific regard, as 
specified above, even the experimental net force is an 
estimated quantity.  
Fig.s 9 and 10 show respectively the estimated values of  
Ls, Rr and R0 versus the number of iterations during the 
identification process. To make the identification transient 
more readable only the first 25 iterations have been shown 
even if the entire identification process has been shown at 
50th. It can be noted that after almost 15 iterations the 
algorithm converges to the final solution. The goodness of 
the identification process is indirectly demonstrated by the 
correct machine between the estimated and experimentally 
acquired state variable (See Fig.s 4-7), and directly by the 
cost function values versus iterations shown in Fig. 11. It 
can be noted that such cost function converges to its 
minimum. 
The solution of the identification process has provided the 
following parameter vector: 

 
and the associated cost function value is:  0.0612. 
 

 

Fig. 4. LIM linear speed  and speed estimation error– experiment vs 
model 

 

Fig. 5. LIM isD current and estimation error  – experiment vs model 

 

Fig. 6. LIM isQ  current and estimation error  – experiment vs model 

 

Fig. 7. LIM induced part flux amplitude and net force  – experiment vs 
model 

 

Fig. 8. LIM load force  – experiment  

!∗ = [0.053 0.698 28.36 145.7]1 
!(#∗) 



 

Fig. 9. Estimated Ls and sLs vs number of iterations – experiment 

 

Fig. 10. Estimated Rr and R0 vs number of iterations – experiment 

 

Fig. 11. Fitness function versus number of generations during the 
parameters’ estimation test 

B. FEA Validation 
After having identified the parameters of the proposed 
model on the basis of the above described experimental 

tests, the proposed identification technique has been verified 
also comparing its results with those obtainable with the 
FEA model of the machine under test. The LIM under tests 
has been modelled by the FEA software FLUX-2D®. 
Currently, only a 2D transient analysis has been performed. 
With this specific regard, Fig. 12 shows the longitudinal 
CAD cross-section of the LIM under test, as utilized for 
running the FEA, highlighting also the positioning in the 
primary core of the phase windings. Fig. 13 show the flux 
density contour lines at steady-state obtained as the result of 
FEA. 
With the aim of validating the proposed model also by FEA, 
the following test has been made. A start-up test has been 
performed at the supply voltage of 260 V RMS with 
frequency equal to 60 Hz. All the following figures plot, on 
the same graph, the quantity computed with the proposed 
model and the quantity computed by the FEA. Fig.s 14, 15, 
16, 17 show respectively the LIM speed, the isD, isQ primary 
current components with the corresponding current 
estimation error, the secondary flux amplitude and net force. 
It can be seen that the all the quantities computed with the 
proposed model are very close to the corresponding 
estimated by FEA. The speed, the secondary flux and the 
force waveforms computed by the proposed model are 
perfectly superimposed to the FEA curves. Even the primary 
currents present very small estimation errors, which can be 
considered negligible. 
Finally, Fig. 18 shows the 3-D plot of the corresponding 
flux density contour versus time and the linear position of 
the inductor.  
The comparison between the results obtained from one side 
with the proposed model whose parameters have been 
retrieved with above described parameters’ estimation 
technique and from the other side with FEA permits a 
definitive validation of both the proposed model and the 
related identification procedure. 
 

 

Fig. 12. CAD sketch of the LIM under test  

 

Fig. 13. Flux density contour lines at steady-state 



 

Fig. 14. LIM linear speed – FEA vs proposed model 

 

Fig. 15. LIM isD current and corresppnding estimation error  – FEA vs 
proposed model 

 

Fig. 16. LIM isQ current and corresppnding estimation error  – FEA vs 
proposed model 

 

Fig. 17. LIM secondary flux amplitude and net force  – FEA vs proposed 
model 

 

Fig. 18. flux density versus time and primary position obtained with FEA 

 

Such an identification technique is strictly related to the 
state formulation of the proposed model and exploits 
Genetic Algorithms (GA) for minimizing a suitable cost 
function. The proposed dynamic model and its related 
parameters estimation technique have been validated 
comparing its results with those obtainable experimentally 
on a suitably developed test set-up and with those obtainable 
by a FEA model of the LIM. 
 

VI. CONCLUSIONS 
This paper proposes a parameter estimation technique 
developed to identify the electrical parameters of the 
dynamic model of the linear induction motor taking into 
consideration both end-effects and iron losses. The proposed 
technique is based on GA and minimizing a suitably 
conceived cost function depending on the weighted sum of 
the primary current and speed errors. The proposed method 
has been validated firstly on the experimentally developed 
test set-up and secondly on the FEA model. The results 



show the effectiveness of the proposed method and the 
correctness of the estimated parameters. 
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