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Abstract. We consider a Dirichlet problem for a system of equations involving
Kirchhoff type pi-Laplacian differential operators and exhibiting gradient dependence

in the reaction term (convection). Using the subsolution-supersolution method,

we establish the existence and localization of weak solutions into a suitable
ordered rectangle. Following a unified approach, we also provide a comparison

argument to obtain positive solutions of certain models.

1. Introduction and main results. Let Ω ⊂ RN be a bounded domain with a4

C2 boundary ∂Ω. We study the Kirchhoff Dirichlet boundary value problem for the5

following system of elliptic equations6 
−K(p1, u1)∆p1u1 = f1(x, u1, u2,∇u1,∇u2) in Ω,

−K(p2, u2)∆p2u2 = f2(x, u1, u2,∇u1,∇u2) in Ω,

u1 = u2 = 0 on ∂Ω,

(1)

using the method of subsolution-supersolution. By ∆pi
: W 1,pi

0 (Ω) → W−1,p′
i(Ω) for7

1 < pi < +∞ with i = 1, 2, we mean the pi-Laplacian differential operator defined8

by ∆piu = div(|∇u|pi−2∇u). Furthermore, the weight term K(pi, u) is assumed of9

Kirchhoff type and given as10

K(pi, u) = api(x) + bpi

∫
Ω

1

pi
|∇u|pidx, (2)

where api
: Ω → R is a measurable function and bpi

> 0 is a positive constant.
Such a nonlocal Kirchhoff term is linked to physical models of changes in lenght
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for a beam subject to transverse vibrations. In fact, Kirchhoff [11] generalized the
classical D’Alembert wave equation of the form

ρ
∂2

∂t2
−

(
P0

h
+

E

2L

∫ L

0

∣∣∣∣∂u∂x
∣∣∣∣2 dx

)
∂2

∂x2
= 0,

where ρ, P0, h, E, L are certain physical parameters (namely, mass density, initial1

tension, area of cross-section, Young modulus of material, length of beam).2

A crucial key of our paper is the fact that the components fi (i = 1, 2) of the right-3

hand side lower order vector field in problem (1) exhibit dependence on both the4

solution and its gradient. This aspect known as convection is a source of difficulties5

to be overcome as it cannot be handled by variational methods. Moreover, in the6

system setting, we have to deal with the competing effects of different equations.7

Here the functions fi : Ω×R×R×RN×RN → R, i = 1, 2, are of Carathéodory (that8

is, x 7→ fi(x, s1, s2, ξ1, ξ2) is measurable for all (s1, s2, ξ1, ξ2) ∈ R × R × RN × RN
9

and (s1, s2, ξ1, ξ2) 7→ fi(x, s1, s2, ξ1, ξ2) is continuous for a.a. x ∈ Ω).10

Referring to the existing literature, we mention that the existence, uniqueness and11

asymptotic behavior of solutions with respect to a couple of non-negative parameters12

(b1, b2) for the general Dirichlet system driven by −∆pi −bi∆qi differential operator13

for i = 1, 2 (namely, the weighted sum of a pi-Laplacian differential operator and of a14

qi-Laplacian differential operator) have been studied by Motreanu et al. [14] (based15

on the theory of pseudomonotone operators but without using the subsolution-16

supersolution principle), while the same authors in [15] applied the subsolution-17

supersolution method to establish the existence and location of solutions for the18

similar systems as in [14] (using different sets of hypotheses). Problem (1) without19

the Kirchhoff terms (2) and hence only with the pi-Laplacian differential operators20

(that is, taking api
(x) = constant = 1 for all x ∈ Ω, and taking also bpi

= 0) was21

considered in Carl-Motreanu [6] using the method of subsolution-supersolution (we22

refer to the comprehensive book of Carl et al. [5] for more details and information).23

We also mention the recent works of Albalawi et al. [1] and of Vetro-Winkert24

[18] dealing with the equation setting in the case of variable exponents −∆p(·) −25

b∆q(·) differential operator and exhibiting gradient dependence in the reaction term26

(hence, extending the topological approach based on the theory of pseudomonotone27

operators to the variable exponents setting). Furthermore, in [18] there is also28

parameter dependence of the reaction. Differently, a topological approach based29

on the Leray-Schauder alternative principle is used in Papageorgiou-Zhang [16] in30

establishing the existence of positive solutions to a p-Laplacian differential equation31

with a Robin boundary condition. Looking for positive solutions of Kirchhoff type32

equations, we refer to the works of Gasiński-Santos Júnior [9, 10] establishing the33

existence results as well as the nonexistence results. The developed approach in34

[9, 10] uses fixed point theorems and supposes that the Kirchhoff terms may vanish35

at different points; see also Boulaaras [4] for Kirchhoff elliptic system involving36

p-Laplacian differential operator (using the subsolution-supersolution method). In37

general, we note that the Kirchhoff term is a source of difficulties in establishing38

some comparison principles to construct subsolution-supersolution of Kirchhoff type39

equation. This issue was deeply discussed in the case of Laplacian differential40

operator (namely, setting pi = 2) in a recent work of Figueiredo-Suárez [7]; see41

also the references therein.42

Here, we are interested to establish the existence of weak solutions to problem (1),43

namely we look to solutions of the form (u1, u2) ∈ W 1,p1

0 (Ω)×W 1,p2

0 (Ω) satisfying44
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the equality1 (
ap1

(x) +
bp1

p1

∫
Ω

|∇u1|p1dx

)∫
Ω

|∇u1|p1−2∇u1∇v1dx

=

∫
Ω

f1(x, u1, u2,∇u1,∇u2)v1dx,

2 (
ap2

(x) +
bp2

p2

∫
Ω

|∇u2|p2dx

)∫
Ω

|∇u2|p2−2∇u2∇v2dx

=

∫
Ω

f2(x, u1, u2,∇u1,∇u2)v2dx

for all (v1, v2) ∈ W 1,p1

0 (Ω)×W 1,p2

0 (Ω). On the other hand, we say that (u1, u2), (u1, u2) ∈3

W 1,p1(Ω)×W 1,p2(Ω) is a subsolution-supersolution to problem (1) if ui(x) ≤ ui(x)4

for a.a. x ∈ Ω, ui ≤ 0 ≤ ui on ∂Ω for i = 1, 2, and the following is the case5 (
ap1

(x) +
bp1

p1

∫
Ω

|∇u1|p1dx

)∫
Ω

|∇u1|p1−2∇u1∇v1dx

−
∫
Ω

f1(x, u1, w2,∇u1,∇w2)v1dx

+

(
ap2

(x) +
bp2

p2

∫
Ω

|∇u2|p2dx

)∫
Ω

|∇u2|p2−2∇u2∇v2dx

−
∫
Ω

f2(x,w1, u2,∇w1,∇u2)v2dx ≤ 0

and6 (
ap1

(x) +
bp1

p1

∫
Ω

|∇u1|p1dx

) ∫
Ω

|∇u1|p1−2∇u1∇v1dx

−
∫
Ω

f1(x, u1, w2,∇u1,∇w2)v1dx

+

(
ap2

(x) +
bp2

p2

∫
Ω

|∇u2|p2dx

)∫
Ω

|∇u2|p2−2∇u2∇v2dx

−
∫
Ω

f2(x,w1, u2,∇w1,∇u2)v2dx ≥ 0

for all (v1, v2) ∈ W 1,p1

0 (Ω) × W 1,p2

0 (Ω) with v1(x), v2(x) ≥ 0 for a.a. x ∈ Ω, and7

(w1, w2) ∈ W 1,p1(Ω) × W 1,p2(Ω) such that ui(x) ≤ wi(x) ≤ ui(x) for a.a. x ∈ Ω,8

i = 1, 2.9

Our strategy works as follows. Under suitable growth conditions of the nonlinearities10

fi for i = 1, 2 (see hypothesis (H1) in Section 2), we ensure that the integrals11

involved in the definitions of weak solution and subsolution-supersolution to problem12

(1) are well-posed. Then, we introduce an auxiliary problem (see problem (7) below)13

associated to problem (1) by using appropriate truncation operators and cut-off14

functions, both related to the given subsolution-supersolution. Thus, we establish15

the following existence result for problem (7), see again [5, 6, 15] for a similar16

strategy.17

Theorem 1.1. Let (u1, u2), (u1, u2) ∈ W 1,p1(Ω) × W 1,p2(Ω) be a subsolution-18

supersolution of problem (1) satisfying hypotheses (H1) and (H2). Then, for all19

µ > 0 sufficiently large, problem (7) admits a weak solution (u1, u2) ∈ W 1,p1

0 (Ω)×20

W 1,p2

0 (Ω).21
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Based on Theorem 1.1 and on a judicious choice of cut-off functions (see (4)),1

which are involved in designing a comparison argument with the given subsolution-2

supersolution for problem (1), we obtain the main result of the paper in the following3

form (existence and location result).4

Theorem 1.2. Let (u1, u2), (u1, u2) ∈ W 1,p1(Ω) × W 1,p2(Ω) be a subsolution-5

supersolution of problem (1) satisfying hypotheses (H1) and (H2). Then problem6

(1) admits a weak solution (u1, u2) ∈ W 1,p1

0 (Ω)×W 1,p2

0 (Ω) satisfying the enclosure7

property ui(x) ≤ ui(x) ≤ ui(x) for a.a. x ∈ Ω, i = 1, 2.8

A major role in the proofs of above theorems is played by the properties of9

operators of monotone type. In particular, in the proof of Theorem 1.1 we use the10

surjectivity result of pseudomonotone, bounded and coercive operators. Furthermore,11

in the proof of Theorem 1.2 we use some classical inequalities of operators (with12

respect to monotonicity properties). In both the proofs, the appropriate main13

operators are defined involving suitable Nemytskij operators. In the last part of14

the paper, we obtain positive weak solutions for certain models, by using a suitable15

comparison argument with the classical Dirichlet pi-Laplacian problem.16

2. Mathematical background and materials. The appropriate setting to develop
our study is that of constant exponents Lebesgue spaces Lpi(Ω) and Sobolev spaces

W 1,pi(Ω),W 1,pi

0 (Ω) (recall that W 1,pi

0 (Ω) means the completion of C∞
0 (Ω) with

respect to the W 1,pi -norm, namely ∥u∥ =
(∫

Ω
|u|pidx+

∫
Ω
|∇u|pidx

)1/pi
). On

account of the Poincaré inequality the norm of W 1,pi

0 (Ω) is defined by

∥u∥ = ∥∇u∥pi
for all u ∈ W 1,pi

0 (Ω),

where ∥∇u∥pi =
(∫

Ω
|∇u|pidx

)1/pi
. For 1 < p < +∞, we mention that W 1,pi(Ω),

W 1,pi

0 (Ω) are separable, uniformly convex (hence reflexive) Banach spaces. We recall
that the Sobolev critical exponent related to pi is defined by

p∗i =

{
Npi

N−pi
if pi < N,

+∞ if N ≤ pi,
i = 1, 2.

Here, we focus on the case where max{p1, p2} < N . Hence, the Rellich-Kondrachov
compactness theorem gives us that the embedding W 1,pi(Ω) ↪→ Lq(Ω) is compact
for every 1 ≤ q < p∗i . Furthermore, we recall that the Hölder conjugate exponent
related to pi is defined by

p′i =
pi

pi − 1
.

As mentioned in Section 1, we will use the main result on pseudomonotone17

operators (see also [5, Theorem 2.99]), in the form of the following surjectivity18

theorem.19

Definition 2.1. For a reflexive Banach space X, let X∗ the dual space of X and20

⟨· , ·⟩ the duality pairing. Let A : X → X∗, then A is called21

(i) to satisfy the (S+)-property if un
w−→ u in X and lim supn→+∞⟨A(un), un −22

u⟩ ≤ 0 imply un → u in X;23

(ii) pseudomonotone if un
w−→ u in X and lim supn→+∞⟨A(un), un − u⟩ ≤ 0 imply

lim inf
n→+∞

⟨A(un), un − v⟩ ≥ ⟨A(u), u− v⟩ for all v ∈ X;
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(iii) coercive if

lim
∥u∥X→+∞

⟨A(u), u⟩
∥u∥X

= +∞.

Theorem 2.2. Let X be a real, reflexive Banach space, let A : X → X∗ be a1

pseudomonotone, bounded, and coercive operator, and h ∈ X∗ Then, a solution of2

the equation A(u) = h exists.3

Since we aim to apply the method of subsolution-supersolution, then we impose4

the following hypothesis (H1) to control the growth of the components fi (i = 1, 2)5

of the right-hand side lower order vector field in problem (1). Namely, we assume6

the existence of a subsolution-supersolution (u1, u2), (u1, u2) ∈ W 1,p1(Ω)×W 1,p2(Ω)7

of problem (1) satisfying the following hypothesis:8

(H1) there exist constants βi ≥ 0, νi ∈ [0, pi

(p∗
i )

′ [ and functions αi ∈ Lγ′
i(Ω), with

1 ≤ γi < p∗i , i = 1, 2, such that

|f1(x, s1, s2, ξ1, ξ2)| ≤ α1(x) + β1(|ξ1|ν1 + |ξ2|
ν1p2
p1 ),

|f2(x, s1, s2, ξ1, ξ2)| ≤ α2(x) + β2(|ξ1|
ν2p1
p2 + |ξ2|ν2)

for a.a. x ∈ Ω, all s = (s1, s2) ∈ [u1(x), u1(x)]× [u2(x), u2(x)], ξ1, ξ2 ∈ RN .9

Remark 1. Since the growth conditions in our paper are dictated by hypothesis
(H1), it follows that our results cannot be linked directly to the corresponding
ones in [6] and [14], where the authors involve more restrictive growth conditions.
For example in [6] the nonlinearities obey to the following conditions: there exist

constants β̂i ≥ 0 and functions α̂i ∈ Lp′
i(Ω) such that

|f1(x, s1, s2, ξ1, ξ2)| ≤ α̂1(x) + β̂1(|ξ1|p1−1 + |ξ2|
p2
p′1 ),

|f2(x, s1, s2, ξ1, ξ2)| ≤ α̂2(x) + β̂2(|ξ1|
p1
p′2 + |ξ2|p2−1)

for a.a. x ∈ Ω and all s = (s1, s2) ∈ [u1(x), u1(x)]× [u2(x), u2(x)], ξ1, ξ2 ∈ RN . We
point out (see also [15]) that these growth conditions are stronger than (H1) as we
have

pi − 1 =
pi
p′i

<
pi

(p∗i )
′ for i = 1, 2.

Example 1. The following functions satisfy hypothesis (H1). For the sake of10

simplicity we drop the x-dependence:11

fi(s1, s2, ξ1, ξ2) =

{
sqi−1
i |ξi|pi−1 if 0 ≤ si ≤ 1,

βi|ξi|pi−1 if 1 < si,
all ξi ∈ RN ,

some qi > 1, βi > 0, i = 1, 2;12

fi(s1, s2, ξ1, ξ2) =

{
ωis

qi
i (1 + |ξi|pi−1) if 0 ≤ si ≤ 1,

βi|ξj |
νipj
pi if 1 < si,

all ξi ∈ RN ,

some βi, ωi, qi > 0, 0 < νi <
pi

(p∗
i )

′ , i, j ∈ {1, 2}, i ̸= j;13

fi(s1, s2, ξ1, ξ2) =

{
|ξi|pi−1 if |ξi| ≤ 1,

|ξi|pi−2[ln |ξi|+ 1] if 1 < |ξi|,
all ξi ∈ RN , i = 1, 2.

For the particular needs of our proofs, we impose the following hypothesis on the14

Kirchhoff term:15
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(H2) api : Ω → R is a measurable function such that there exist 0 < a0 ≤ â01

satisfying 0 < a0 ≤ api(x) ≤ â0 for a.a. x ∈ Ω, i = 1, 2.2

Hypothesis (H2) is not so restrictive as it can be found in some other papers
using different approaches (see for example the recent work of Boccardo-Orsina [3]
dealing with a system of Kirchhoff-Schrödinger-Maxwell type and establishing the
existence and non-existence of solutions). The classical Kirchhoff term K(pi, ui)
defined by

K(pi, ui) = a0 + ∥∇ui∥pi
pi

for all ui ∈ W 1,pi

0 (Ω), some a0 > 0, bpi = pi

satisfies trivially hypothesis (H2). As already mentioned in Section 1 our strategy3

requires the definition of an approximate problem corresponding to (1). Hence we4

appropriately introduce suitable truncation operators and cut-off functions.5

Let (u1, u2), (u1, u2) ∈ W 1,p1(Ω) × W 1,p2(Ω) be a subsolution-supersolution of6

problem (1) as prescribed in hypothesis (H1). For i = 1, 2, we consider the7

truncation operators Ti : W
1,pi(Ω) → W 1,pi(Ω) defined by8

(Tiu)(x) =

 ui(x) if u(x) > ui(x),
u(x) if ui(x) ≤ u(x) ≤ ui(x),
ui(x) if u(x) < ui(x).

(3)

Of course, Ti : W 1,pi(Ω) → W 1,pi(Ω) for i = 1, 2 are continuous and bounded9

operators.10

Furthermore, we will use the following notion of cut-off functions. So, for a.a. x11

in Ω and all s ∈ R, we introduce the functions:12

φi(x, s) =


(s− ui(x))

νi
pi−νi if s > ui(x),

0 if ui(x) ≤ s ≤ ui(x),

−(ui(x)− s)
νi

pi−νi if s < ui(x),

(4)

where νi for i = 1, 2 are the constants involved in hypothesis (H1). We note that13

φi for i = 1, 2 are Carathéodory functions such that14

|φi(x, s)| ≤ ρi(x) + ĉi|s|
νi

pi−νi (5)

for a.a. x ∈ Ω, all s ∈ R, with ρi ∈ L
pi
νi (Ω) and ĉi ≥ 0. We note that the function15

ρi leaves in L
pi
νi (Ω) because of ui, ui ∈ W 1,pi(Ω), and hence ui, ui ∈ Lp∗

i (Ω) by16

Sobolev embedding theorem, recall also that νi < pi

(p∗
i )

′ (by (H1)). Following the17

similar arguments, we can conclude that there exist two constants r1,i, r2,i > 018

satisfying the inequality19 ∫
Ω

φi(x, u)udx ≥ r1,i∥u∥
pi

pi−νi
pi

pi−νi

− r2,i for all u ∈ W 1,pi(Ω), i = 1, 2. (6)

Now, we consider the Nemytskij operator Φ : W 1,p1(Ω)×W 1,p2(Ω) → L
p1
ν1 (Ω)×

L
p2
ν2 (Ω) defined by

Φ(u) = (Φ1(u),Φ2(u)) = (φ1(x, u), φ2(x, u)).

By the estimate in (5) we deduce easily that the above Nemytskij operator is20

bounded and completely continuous (by the compact embedding of W 1,pi(Ω) into21

Lpi(Ω) for i = 1, 2). Finally for a positive parameter µ > 0, we introduce the22
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following auxiliary problem1 
−K(p1, T1u1)∆p1

u1 + µΦ1(u1) = f1(x, T1u1, T2u2,∇(T1u1),∇(T2u2)) in Ω,

−K(p2, T2u2)∆p2u2 + µΦ2(u2) = f2(x, T1u1, T2u2,∇(T1u1),∇(T2u2)) in Ω,

u1 = u2 = 0 on ∂Ω.
(7)

3. Proof of Theorems 1.1. Starting with a subsolution-supersolution of problem2

(1), (u1, u2), (u1, u2) ∈ W 1,p1(Ω)×W 1,p2(Ω) satisfying condition (H1), we consider3

the ordered intervals given by4

[ui, ui] = {u ∈ W 1,pi(Ω) : ui(x) ≤ u(x) ≤ ui(x) for a.a. x ∈ Ω}, i = 1, 2. (8)

Furthermore, we introduce the Nemytskij operator

N : [u1, u1]× [u2, u2] ⊂ W 1,p1(Ω)×W 1,p2(Ω)

→ L
p1
ν1 (Ω)× L

p2
ν2 (Ω) ↪→ W−1,p′

1(Ω)×W−1,p′
2(Ω)

given as follows5

N(u1, u2) = (f1(x, u1, u2,∇u1,∇u2), f2(x, u1, u2,∇u1,∇u2)). (9)

Referring to the ordered intervals in (8), hypothesis (H1) ensures that the above6

Nemytskij operator is bounded and completely continuous (it follows by the Rellich-7

Kondrachov compactness embedding theorem).8

For a suitable positive parameter µ > 0 we consider the nonlinear operator9

A : W 1,p1

0 (Ω)×W 1,p2

0 (Ω) → W−1,p′
1(Ω)×W−1,p′

2(Ω) defined by10

A(u1, u2) = (A1(u1, u2), A2(u1, u2)) (10)

:= (−K(p1, T1u1)∆p1
u1 + µΦ1(u1),−K(p2, T2u2)∆p2

u2 + µΦ2(u2))

−N(T1u1, T2u2).

Hipothesis (H1) together with (5), (8), (9) give us that the operator A is well11

defined, bounded and continuous. Furthermore, we prove that A : W 1,p1

0 (Ω) ×12

W 1,p2

0 (Ω) → W−1,p′
1(Ω)×W−1,p′

2(Ω) possesses some regularity properties. The key13

property to establish is the pseudomonotonicity. Consistent with the definition of14

pseudomonotone operator (see Definition 2.1 (ii)), we assume the weak convergence15

(u1,n, u2,n)
w−→ (u1, u2) in W 1,p1

0 (Ω)×W 1,p2

0 (Ω) and the limit condition16

lim sup
n→+∞

⟨A(u1,n, u2,n), (u1,n − u1, u2,n − u2)⟩ ≤ 0. (11)

Hypothesis (H1) says us that the constants νi satisfy the inequality pi

pi−νi
< p∗i for

i = 1, 2. Hence, we deduce the strong convergence

(u1,n, u2,n) → (u1, u2) in L
p1

p1−ν1 (Ω)× L
p2

p2−ν2 (Ω).

Now, keeping in mind the estimate in (5) we obtain the following limit17

lim
n→+∞

∫
Ω

φi(x, ui,n(x))(ui,n − ui)dx = 0, i = 1, 2. (12)

Appealing again to the Rellich-Kondrachov compactness embedding theorem and18

involving Hölder inequality, then the weak convergence (u1,n, u2,n)
w−→ (u1, u2) in19

W 1,p1

0 (Ω)×W 1,p2

0 (Ω) leads to the following convergence20 ∫
Ω

|αi| |ui,n − ui|dx ≤ ∥αi∥γ′
i
∥ui,n − ui∥γi → 0 as n → +∞. (13)
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Next step is to show that1 ∫
Ω

|∇(Tiui,n)|νi |ui,n − ui|dx → 0 as n → +∞. (14)

Referring to the definition of the truncation operator (see (3)), we deduce that2 ∫
Ω

|∇(Tiui,n)|νi |ui,n − ui|dx =

∫
{ui,n<ui}

|∇ui|νi |ui,n − ui|dx

+

∫
{ui≤ui,n≤ui}

|∇ui,n|νi |ui,n − ui|dx

+

∫
{ui,n>ui}

|∇ui|νi |ui,n − ui|dx.

Using again the inequality pi

pi−νi
< p∗i , we get the following convergences, via3

suitable estimates,4 ∫
{ui,n<ui}

|∇ui|νi |ui,n − ui|dx ≤ ∥∇ui∥νi
pi
∥ui,n − ui∥ pi

pi−νi

→ 0,∫
{ui≤ui,n≤ui}

|∇ui,n|νi |ui,n − ui|dx ≤ ∥∇ui,n∥νi
pi
∥ui,n − ui∥ pi

pi−νi

→ 0,∫
{ui,n>ui}

|∇ui|νi |ui,n − ui|dx ≤ ∥∇ui∥νi
pi
∥ui,n − ui∥ pi

pi−νi

→ 0.

Combining the above results, we deduce immediately that the convergence (14)5

holds true. Adopting and adapting the similar arguments as above, we easily6

conclude that the following is the case: for i ̸= j we get7 ∫
Ω

|∇(Tjuj,n)|
νipj
pi |ui,n − ui|dx ≤ ∥∇(Tjuj,n)∥

νipj
pi

pj ∥ui,n − ui∥ pi
pi−νi

→ 0. (15)

For i = 1, 2, (H1) together with the convergences (13), (14), (15) give us8

lim
n→+∞

∫
Ω

fi(x, T1u1,n, T2u2,n,∇(T1u1,n),∇(T2u2,n))(ui,n − ui)dx = 0. (16)

From (11), using (12) and (16) we deduce the following limit condition9

lim sup
n→+∞

[⟨−K(p1, T1u1,n)∆p1
u1,n, u1,n − u1⟩ (17)

+ ⟨−K(p2, T2u2,n)∆p2u2,n, u2,n − u2⟩] ≤ 0.

Next, we establish that (17) leads to the following result10

lim sup
n→+∞

⟨−K(pi, Tiui,n)∆pi
ui,n, ui,n − ui⟩ ≤ 0, i = 1, 2. (18)

To this aim, we argue by contradiction, hence we suppose that the following is the11

case12

lim
n→+∞

K(p1, T1u1,n)⟨−∆p1
u1,n, u1,n − u1⟩ > 0, (19)

lim
n→+∞

K(p2, T2u2,n)⟨−∆p2
u2,n, u2,n − u2⟩ < 0. (20)

Since the Kirchhoff terms K(p1, T1u1,n),K(p2, T2u2,n) are positively bounded
away from a0 > 0 (by (H2), see also (2)), then (19) and (20) lead to

lim
n→+∞

⟨−∆p1
u1,n, u1,n − u1⟩ > 0,

lim
n→+∞

⟨−∆p2u2,n, u2,n − u2⟩ < 0.



SYSTEMS OF KIRCHHOFF TYPE EQUATIONS 9

The (S)+-property of the p2-Laplacian differential operator on the Dirichlet1

Sobolev space W 1,p2

0 (Ω) (see [13, p. 39] and recall Definition 2.1 (i)) together with2

the last inequality above, give us the convergence u2,n → u2 inW 1,p2

0 (Ω), a contradiction3

to (17), and hence (18) is established.4

From (18), appealing to the (S)+-property of −∆pi
on W 1,pi

0 (Ω) we conclude
that

(u1,n, u2,n) → (u1, u2) in W 1,p1

0 (Ω)×W 1,p2

0 (Ω) as n → +∞.

It follows that, for all (v1, v2) ∈ W 1,p1

0 (Ω)×W 1,p2

0 (Ω), we get

lim
n→+∞

⟨A(u1,n, u2,n), (u1,n − v1, u2,n − v2)⟩ = ⟨A(u1, u2), (u1 − v1, u2 − v2)⟩,

and hence A : W 1,p1

0 (Ω)×W 1,p2

0 (Ω) → W−1,p′
1(Ω)×W−1,p′

2(Ω) is a pseudomonotone5

operator.6

The second property possessed by our operator A is the coercivity. By Definition7

2.1 (iii), we can say that A : W 1,p1

0 (Ω) × W 1,p2

0 (Ω) → W−1,p′
1(Ω) × W−1,p′

2(Ω) is8

coercive if for every sequence (u1,n, u2,n) ⊂ W 1,p1

0 (Ω) × W 1,p2

0 (Ω) satisfying the9

norm condition ∥(u1,n, u2,n)∥ → +∞, then the following is the case10

lim
n→+∞

⟨A(u1,n, u2,n), (u1,n, u2,n)⟩
∥(u1,n, u2,n)∥

= +∞. (21)

Since api(x) ≥ a0 > 0 for a.a. x ∈ Ω (by hypothesis (H2)) and in view of (H1),11

using the estimate in (6) we obtain that12

⟨A1(u1,n, u2,n), u1,n⟩ = ap1(x)∥∇u1,n∥p1
p1

+
bp1

p1
∥∇Tu1,n∥p1

p1
∥∇u1,n∥p1

p1

+µ

∫
Ω

φ1(x, u1,n)u1,ndx−
∫
Ω

f1(x, T1u1,n, T2u2,n,∇(T1u1,n),∇(T2u2,n))u1,ndx

≥ a0∥∇u1,n∥p1
p1

+ µ
(
r1,1∥u1,n∥

p1
p1−ν1

p1
p1−ν1

− r2,1

)
−
∫
Ω

α1(x)|u1,n|dx

−β1

∫
Ω

|∇(T1u1,n)|ν1 |u1,n|dx− β1

∫
Ω

|∇(T2u2,n)|
ν1p2
p1 |u1,n|dx.

Now, we establish useful estimates for each one of the three integrals involved above.
To simplify the notation, we will denote by C > 0 any positive constant whose
value may change from line to line, furthermore every relevant dependencies will
be underlined by using round parentheses (as in the case of C(ε) below, where we
point out the dependence by ε). We note that the following is the case∫

Ω

α1(x)|u1,n|dx ≤ ∥α1∥γ′
1
∥u1,n∥γ1

≤ C∥∇u1,n∥p1
.

For the second integral, involving Young inequality with any ε > 0, we deduce that13 ∫
Ω

|∇(T1u1,n)|ν1 |u1,n|dx ≤ ε∥∇(T1u1,n)∥p1
p1

+ C(ε)∥u1,n∥
p1

p1−ν1
p1

p1−ν1

≤ ε∥∇u1,n∥p1
p1

+ ε∥∇u1∥p1
p1

+ ε∥∇u1∥p1
p1

+ C(ε)∥u1,n∥
p1

p1−ν1
p1

p1−ν1

.

The similar arguments as above lead to the following estimate of the third integral14 ∫
Ω

|∇(T2u2,n)|
ν1p2
p1 |u1,n|dx ≤ ε∥∇(T2u2,n)∥p2

p2
+ C(ε)∥u1,n∥

p1
p1−ν1

p1
p1−ν1

≤ ε∥∇u2,n∥p2
p2

+ ε∥∇u2∥p2
p2

+ ε∥∇u2∥p2
p2

+ C(ε)∥u1,n∥
p1

p1−ν1
p1

p1−ν1

.
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Combining the obtained estimates, we conclude that1

⟨A1(u1,n, u2,n), u1,n⟩ ≥ (a0 − ε)∥∇u1,n∥p1
p1

− C∥∇u1,n∥p1
(22)

+(µr1,1 − C(ε))∥u1,n∥
p1

p1−ν1
p1

p1−ν1

− ε∥∇u2,n∥p2
p2

− Ĉ(ε),

for some constant Ĉ(ε) > 0. Following the similar calculations with respect to A2,2

we obtain the following estimate3

⟨A2(u1,n, u2,n), u2,n⟩ ≥ (a0 − ε)∥∇u2,n∥p2
p2

− C∥∇u2,n∥p2
(23)

+(µr1,2 − C(ε))∥u2,n∥
p2

p2−ν2
p2

p2−ν2

− ε∥∇u1,n∥p1
p1

− Ĉ(ε),

for some constant Ĉ(ε) > 0.4

Since p1, p2 > 1, taking ε > 0 sufficiently small and µ > 0 sufficiently large in5

(22) and (23) we deduce that the limit in (21) is reached. Hence, we established6

that A : W 1,p1

0 (Ω) × W 1,p2

0 (Ω) → W−1,p′
1(Ω) × W−1,p′

2(Ω) is a coercive operator7

too.8

This allows us to invoke Theorem 2.2. So, corresponding to the pseudomonotone,
bounded, and coercive operator A, we can find (u1, u2) ∈ W 1,p1

0 (Ω) × W 1,p2

0 (Ω)
solving the equation

A(u1, u2) = 0.

It follows that such (u1, u2) ∈ W 1,p1

0 (Ω)×W 1,p2

0 (Ω) is a solution to the auxiliary9

problem (7) (see (10)).10

4. Proof of Theorem 1.2. By the proof of Theorem 1.1, we can deduce the
existence of a solution

(u1, u2) = (u1(µ), u2(µ))

to the auxiliary problem (7) for sufficiently large values of the parameter µ > 0. By11

using an appropriate choice of the cut-off functions (recall (4)) we will establish the12

existence of a solution to problem (1) within the ordered rectangle determined by13

a subsolution-supersolution provided that hypothesis (H1) is verified. Namely, we14

consider a solution (u1, u2) ∈ W 1,p1

0 (Ω) × W 1,p2

0 (Ω) to problem (7) as established15

by Theorem 1.1, then we are going to prove that (u1, u2) ∈ [u1, u1] × [u2, u2] (see16

(8)).17

The first step of the proof is in verifying that

u1(x) ≤ u1(x) for a.a. x ∈ Ω.

Starting from the definitions of solution to problem (7) and of supersolution to
problem (1), we consider the test function

v = (u1 − u1)
+ = max{u1 − u1, 0} ∈ W 1,p1

0 (Ω),

so that we have18

⟨−K(p1, T1u1)∆p1u1, (u1 − u1)
+⟩+ µ

∫
Ω

φ1(x, u1)(u1 − u1)
+dx

=

∫
Ω

f1(x, T1u1, T2u2,∇(T1u1),∇(T2u2))(u1 − u1)
+dx (24)

and19

⟨−K(p1, u1)∆p1u1, (u1 − u1)
+⟩ ≥

∫
Ω

f1(x, u1, w2,∇u1,∇w2)(u1 − u1)
+dx (25)
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whenever w2 ∈ W 1,p2(Ω) with u2(x) ≤ w2(x) ≤ u2(x) a.a. x ∈ Ω. Referring to the
definition of the truncation operator T2 we note that

u2 ≤ T2u2 ≤ u2

and hence we can use w2 = T2u2 in the inequality (25) to deduce that1

⟨−K(p1, u1)∆p1
u1, (u1 − u1)

+⟩ (26)

≥
∫
Ω

f1(x, u1, T2u2,∇u1,∇(T2u2))(u1 − u1)
+dx.

Subtracting (26) from (24) we obtain the following non-positivity condition2

⟨−K(p1, T1u1)∆p1u1 − (−K(p1, u1)∆p1u1), (u1 − u1)
+⟩

+ µ

∫
Ω

φ1(x, u1)(u1 − u1)
+dx

≤
∫
Ω

[f1(x, T1u1, T2u2,∇(T1u1),∇(T2u2))

− f1(x, u1, T2u2,∇u1,∇(T2u2))](u1 − u1)
+dx

= 0 (recall that T1u1 = u1 on the set {u1 > u1}).

Hence, from api
(x) ≥ a0 > 0 for a.a. x ∈ Ω (by (H2)) and (3) for i = 1 we have3

a0

∫
{u1>u1}

(|∇u1|p1−2∇u1 − |∇u1|p1−2∇u1)(∇u1 −∇u1)dx

+
bp1

p1

∫
{u1>u1}

|∇Tu1|p1dx

∫
{u1>u1}

|∇u1|p1−2∇u1(∇u1 −∇u1)dx

−bp1

p1

∫
{u1>u1}

|∇u1|p1dx

∫
{u1>u1}

|∇u1|p1−2∇u1(∇u1 −∇u1)dx

+µ

∫
{u1>u1}

(u1 − u1)
p1

p1−ν1 dx ≤ 0.

Again, since T1u1 = u1 on the set {u1 > u1}, we deduce that4

a0

∫
{u1>u1}

(|∇u1|p1−2∇u1 − |∇u1|p1−2∇u1)(∇u1 −∇u1)dx

+
bp1

p1

∫
{u1>u1}

|∇u1|p1dx

×

(∫
{u1>u1}

(|∇u1|p1−2∇u1 − |∇u1|p1−2∇u1)(∇u1 −∇u1)dx

)

+µ

∫
{u1>u1}

(u1 − u1)
p1

p1−ν1 dx ≤ 0.

From the classical theory of monotone operators (see also [12] for more information
about the pi-Laplacian differential operator), for all ζ, η ∈ RN with ζ ̸= η, we recall
the following inequality

(|ζ|p1−2ζ − |η|p1−2η)(ζ − η) > 0,

which gives us that u1(x) ≤ u1(x) for a.a. x ∈ Ω.5
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The second step of the proof consists in obtaining the boundedness from below,
that is, we have to show that

u1(x) ≤ u1(x) for a.a. x ∈ Ω.

Since this result can be easily written following the similar arguments as above,
we omit the details to avoid repetitions. Finally a judicious choice of the test
functions for needed comparison and analogous calculations to the ones developed
above, lead us to obtain that

u2(x) ≤ u2(x) ≤ u2(x) for a.a. x ∈ Ω.

Summing up, we conclude that the solution (u1, u2) to the auxiliary problem (7)1

leaves into the rectangle [u1, u1] × [u2, u2]. Consequently, by (3) we deduce that2

Tiui = ui and by (4) we get that Φiui = 0 for i = 1, 2. This means that the3

auxiliary problem (7) reduces to the main problem (1), equivalently we can say4

that (u1, u2) ∈ [u1, u1]× [u2, u2] is a weak solution to (1).5

The following example satisfies the hypotheses of Theorem 1.26

Example 2. Let (u1, u2), (u1, u2) ∈ W 1,p1(Ω)×W 1,p2(Ω) be a subsolution-supersolution7

of the following problem8 
−(a0 + ∥∇u1∥p1

p1
)∆p1

u1 = g1(x, u1, u2) + |∇u1|p1−1 + |∇u2|
p2
p′1 in Ω,

−(a0 + ∥∇u2∥p2
p2
)∆p2

u2 = g2(x, u1, u2) + |∇u1|
p1
p′2 + |∇u2|p2−1 in Ω,

u1 = u2 = 0 on ∂Ω,

(27)

where for i = 1, 2, K(pi, ui) = a0 + ∥∇ui∥pi
pi

for all ui ∈ W 1,pi

0 (Ω) with a0 > 0, the

functions gi : Ω × R × R → R, are of Carathéodory and there exist αi ∈ Lp′
i(Ω)

satisfying the following conditions

|gi(x, s1, s2)| ≤ αi(x)

for a.a. x ∈ Ω, all s = (s1, s2) ∈ [u1(x), u1(x)]× [u2(x), u2(x)].9

Referring to Remark 1, we recall that

pi − 1 =
pi
p′i

<
pi

(p∗i )
′ for i = 1, 2,

and hence the right-hand side lower order vector field in problem (27) satisfies10

hypothesis (H1) for constants γi = pi, βi = 1 and νi = pi

p′
i
∈ [0, pi

(p∗
i )

′ [, i = 1, 2.11

As hypothesis (H2) is also trivially satisfied, then we can apply Theorem 1.2 to12

conclude that problem (27) admits a weak solution (u1, u2) ∈ W 1,p1

0 (Ω)×W 1,p2

0 (Ω)13

satisfying the enclosure property ui(x) ≤ ui(x) ≤ ui(x) for a.a. x ∈ Ω, i = 1, 2.14

5. Positive solutions. An interesting byproduct of the involved strategy is the15

fact that we can provide precise information about the sign of solutions. To illustrate16

this approach, we consider the following problem17 
−(a0 + ∥∇u1∥p1

p1
)∆p1u1 = β̂1[u

q1
1 + |∇u1|q1 ] in Ω,

−(a0 + ∥∇u2∥p2
p2
)∆p2

u2 = β̂2[u
q2
2 + |∇u2|q2 ] in Ω,

u1 = u2 = 0 on ∂Ω,

(28)

where for i = 1, 2, β̂i > 0, 1 < qi < +∞ and, according to (2), we involve again the
Kirchhoff terms K(pi, ui) defined by

K(pi, ui) = a0 + ∥∇ui∥pi
pi

for all ui ∈ W 1,pi

0 (Ω), some a0 > 0.



SYSTEMS OF KIRCHHOFF TYPE EQUATIONS 13

Now, to establish the existence of weak solutions to problem (28) whose components1

are both positive (namely, (u1, u2) ∈ W 1,p1

0 (Ω)×W 1,p2

0 (Ω) such that ui(x) > 0 for2

a.a. x ∈ Ω, i = 1, 2), we develop a comparison argument with the non-Kirchhoff3

Dirichlet boundary value problem for the following system of elliptic equations4 
−∆p1

w1 = β̂1[w
q1
1 + |∇w1|q1 ] in Ω,

−∆p2w2 = β̂2[w
q2
2 + |∇w2|q2 ] in Ω,

w1 = w2 = 0 on ∂Ω.

(29)

Let wi > 0 be a positive solution of the Dirichlet problem5 {
−∆pi

w = β̂i[w
qi + |∇w|qi ] in Ω,

w = 0 on ∂Ω
(30)

and set6

ui = τi
wi

∥wi∥
. (31)

For the sake of simplicity, since ∥ui∥ = ∥∇ui∥pi (by Poincaré inequality), we observe7

that the following is the case8

−(a0 + ∥∇ui∥pi
pi
)∆piui = −(a0 + ∥ui∥pi)∆piui

= −
(
a0 +

∥τiwi∥pi

∥wi∥pi

)(
τi

∥wi∥

)pi−1

∆piwi

= − (a0 + τpi

i )τpi−1
i

∥wi∥pi−1
∆pi

wi.

Since |∇ui|qi =
(

τi
∥wi∥

)qi
|∇wi|qi (by (31)), we deduce easily that

β̂i[u
qi
i + |∇ui|qi ] = β̂i

τ qii
∥wi∥qi

[wqi
i + |∇wi|qi ].

Thus, ui > 0 is a positive solution of the problem9 {
−(a0 + ∥∇u∥pi

pi
)∆pi

u = β̂i[u
qi + |∇u|qi ] in Ω,

u = 0 on ∂Ω,
(32)

provided that τi > 0 is a solution of the equation

(a0 + τpi

i )τpi−1
i

∥wi∥pi−1
=

τ qii
∥wi∥qi

,

that is,10

(a0 + τpi

i )τpi−qi−1
i = ∥wi∥pi−qi−1. (33)

A similar comparison argument was considered in the case of Kirchhoff type Laplacian11

differential operator (but without convection) by Alves et al. [2]; see also the12

references therein. On this basis we have the following general existence and13

multiplicity type result.14

Proposition 1. If problem (29) has a weak positive solution (w1, w2) ∈ W 1,p1

0 (Ω)×
W 1,p2

0 (Ω) such that

0 < wi(x) for a.a. x ∈ Ω, i = 1, 2,
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then problem (28) admits as many positive weak solutions (u1, u2) ∈ W 1,p1

0 (Ω) ×
W 1,p2

0 (Ω) such that

0 < ui(x) for a.a. x ∈ Ω, i = 1, 2,

as well as the equation (33) admits solutions τi > 0, i = 1, 2.1

We note that the existence of solution (as well as the construction of subsolution-
supersolution) for the type problem (30) can be obtained following the usual approach
based on the first eigenvalue of the pi-Laplacian differential operator (see also [6]).

Let us recall some basic facts about the spectrum of (−∆pi ,W
1,pi

0 (Ω)) (see Gasiński-
Papageorgiou [8]). Hence, we consider the following nonlinear eigenvalue problem{

−∆piw = λ̂|w|pi−2w in Ω,

w = 0 on ∂Ω

We say that λ̂ ∈ R is an “eigenvalue” of (−∆pi
,W 1,pi

0 (Ω)), if the above problem2

admits a nontrivial solution ŵ ∈ W 1,pi

0 (Ω) known as an eigenfunction corresponding3

to the eigenvalue λ̂. By σ̂(pi) we denote the set of eigenvalues of (−∆pi ,W
1,pi

0 (Ω)).4

This set is closed and has a smallest element λ̂1(pi) such that the following is the5

case:6

• λ̂1(pi) > 0;7

• λ̂1(pi) is isolated (namely, we can find ε > 0 such that (λ̂1(pi), λ̂1(pi) + ε) ∩8

σ̂(pi) = ∅);9

• λ̂1(pi) is simple (namely, if w, v are eigenfunctions corresponding to λ̂1(pi),10

then w = χv for some χ ∈ R \ {0}).11

We have the following variational characterization of this eigenvalue12

λ̂1(pi) = inf

{∥∇w∥pi
pi

∥w∥pi
pi

: w ∈ W 1,pi

0 (Ω), w ̸= 0

}
. (34)

The infimum in (34) is realized on the corresponding one dimensional eigenspace.

By (34) we get that the elements of this eigenspace have fixed sign. In fact λ̂1(pi) > 0
is the only eigenvalue with eigenfunctions of fixed sign. All other eigenvalues have
eigenfunctions which are sign changing. By ŵ1 = ŵ1(pi) we denote the positive

Lpi -normalized (namely, ∥ŵ1∥pi = 1) eigenfunction corresponding to λ̂1(pi) > 0.
The nonlinear regularity theory and the nonlinear maximum principle (see Pucci-
Serrin [17]) imply that ŵ1(pi) ∈ intC0

+, where C0
+ is the positive order cone of

C1
0 (Ω) = {w ∈ C1(Ω) : w

∣∣∣
∂Ω

= 0}. Precisely, we get

C0
+ =

{
w ∈ C1

0 (Ω) : w(x) ≥ 0 for all x ∈ Ω
}
,

and

intC0
+ =

{
w ∈ C0

+ : w(x) > 0 for all x ∈ Ω,
∂w

∂n

∣∣∣
∂Ω

< 0

}
,

where n(·) is the outward unit normal on ∂Ω.13

Now, starting from a weak solution (w1, w2) ∈ W 1,p1

0 (Ω)×W 1,p2

0 (Ω) to problem
(29) such that

0 < wi(x) for a.a. x ∈ Ω, i = 1, 2,
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and using the comparison arguments developed at the beginning of this section, we
deduce that

(u1, u2) :=

(
τ1

w1

∥w1∥
, τ2

w2

∥w2∥

)
is a weak positive solution to problem (28) for any suitable values τi > 0 solving1

the equation (33), i = 1, 2.2

Remark 2. For some precise results about the existence of at least a positive weak3

solution to certain Dirichlet boundary value problems with gradient dependence in4

the reaction term and satisfying suitable growth conditions, the reader can refer to5

[6, Theorem 3.1] and [15, Theorem 4.1].6
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[10] L. Gasiński and J. R. Santos Júnior, Nonexistence and multiplicity of positive solutions for31

an equation with degenerate nonlocal diffusion, Bull. Lond. Math. Soc., 52 (2020), 489–497.32

[11] G. Kirchhoff, Mechanik, Teubner, Leipzig, 1883.33

[12] P. Lindqvist, Notes on the stationary p-Laplace equation, SpringerBriefs in Mathematics,34

Springer, 208 Cham, 2019.35

[13] D. Motreanu, V.V. Motreanu and N. Papageorgiou, Topological and variational methods with36

applications to nonlinear boundary value problems, Springer-Verlag, New York, 2014.37

[14] D. Motreanu, C. Vetro and F. Vetro, A parametric Dirichlet problem for systems of quasilinear38

elliptic equations with gradient dependence, Numer. Funct. Anal. Optim., 37 (2016), 1551–39

1561.40

[15] D. Motreanu, C. Vetro, and F. Vetro, Systems of quasilinear elliptic equations with41

dependence on the gradient via subsolution-supersolution method, Discrete Contin. Dyn.42

Syst. Ser. S, 11 (2018), 309–321.43

[16] N.S. Papageorgiou and C. Zhang, Existence of positive solutions for nonlinear Robin problems44

with gradient dependence, Ann. Acad. Sci. Fenn. Math., 44 (2019), 739–753.45

[17] P. Pucci and J. Serrin, The maximum principle, Birkhäuser Verlag, Basel, 2007.46
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