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Abstract

Computational resources of quantum computing can enhance robotic motion,
decision making, and path planning. While the quantum paradigm is being
applied to individual robots, its approach to swarms of simple and interacting
robots remains largely unexplored. In this paper, we attempt to bridge the
gap between swarm robotics and quantum computing, in the framework of a
search and rescue mission. We focus on a decision-making and path-planning
collective task. Thus, we present a quantum-based path-planning algorithm
for a swarm of robots. Quantization enters position and reward information
(measured as a robot’s proximity to the target) and path-planning decisions.
Pairwise information-exchange is modeled through a logic gate, implemented
with a quantum circuit. Path planning draws upon Grover’s search algo-
rithm, implemented with another quantum circuit. Our case study involves
a search and rescue scenario, inspired by ant-foraging behavior in nature, as
an example of swarm intelligence. We show that our method outperforms
two ant-behavior simulations, in NetLogo and Java, respectively, presenting
a faster convergence to the target, represented here by the source of food.
This study can shed light on future applications of quantum computing to
swarm robotics.
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1. Introduction

Be it an expedition in the wilderness, an overseas conference trip, or a
nearby weekend vacation, planning a journey requires finding a place where
to go and a way to reach it. Place location implies the use of geography
and cartography. A way to get to that place needs the knowledge of feasible
paths and transportation. Put it simply, we need a point in space and a path
toward it. If multiple people are traveling independently heading toward a
location but continuously exchanging information to reach it, we will have
different paths converging—hopefully—to the goal.

If we have a group of interacting, simple robots, path planning can
be faced computationally through pairwise information exchange and local
decision-making. In the literature, there are approaches to multiple-robot
groups [57, 53] path planning [39]. Other studies also discuss work frames
exploiting traditional combinatorial logic optimization to improve the effi-
ciency of quantum circuits, such as [24]. This is a key aspect also for quantum
Boolean networks implementing the path-planning logic in [10]. In this arti-
cle, we include the approach developed in [10] for a single robot, recurrently
calling this methodology at each step to solve a path-planning problem for a
swarm of robots.

Recently, the problem of path planning for a single robot has been faced
with quantum algorithms [39]. In particular, a version of the Grover search
algorithm has been proposed for robotic path-planning [10].

In fact, quantum computing [61, 54, 59] is more and more exploited in
robotics [51, 19, 39, 13, 5, 59, 3, 37, 4, 29]. The use of quantum computing
is mainly justified by its efficiency and computational power. Examples of
quantum computing applied to robots include algorithms for flying robots
and implementation for games [42], and vehicles and machines whose motion
rules are based on entanglement, using IBM computational tools [48] and in
particular Qiskit [46], which we used for our tests. Qiskit has been exploited
in recent quantum-computing applications for decision-making systems [41,
64].

In this research, we focus on path planning for a multi-robot system. In
particular, we consider a swarm of robots, where a complex behavior is emerg-
ing from simple, individual behaviors and decisions [56, 23, 15, 8, 66]. Robotic
swarms can also help understand morphogenesis patterns [58] and precision
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drug-delivery in human healthcare [14]. Artificial swarms are inspired by
natural swarms. Flocking birds [27], schooling fish [12, 70], working termites
[50] and foraging ants [6] are all examples of swarm intelligence [65, 16]. Ant
behavior, including foraging and food transporting, has inspired studies on
swarm-robotic modeling [35]. A wise use of constrains about environment
and on-site individual behavior allows one to broaden artificial models of
swarm foraging [26]. In addition, the quantum approach can be seen as a
particular case of probability-based model, which had already been proved to
be a valid alternative to precise single-robot formalization for swarm robotics
[33].

A robotic swarm is characterized by redundancy (a loss of one robot does
not affect the whole behavior), flexibility (no specialization required), and
scalability (algorithm efficacy is size-invariant) [23]. Recent quantum ap-
proaches to robotic swarms include the definition of logic gates [34] to model
robots’ decision-making [44]. So far, there is still little work on quantum
formalization of robotic swarms. While there are some pioneering quantum-
approaches to robotics, the field is yet to be explored. Here, we try to bridge
studies on robotic swarms, decision-making systems, and quantum-based the-
oretical and computational approaches. As described in [64], we can use tree
diagrams to formalize robotic decision making, and apply quantum comput-
ing over these trees. However, this approach becomes quite expensive when
it comes to robotic swarms. Also, an over-detailed individual approach may
hide emerging swarm behavior, hindering its understanding.

In this paper, we design a quantum-based, swarm-robotic path-planning
method. We propose a new algorithm, obtained as the union of logic-gate
suggested positions of robots in a swarm at each time point, and the Grover
approach to path planning. Thus, we consider where robots have to go,
and how, which paths should they follow, also considering the presence of
obstacles.

The paper is organized as follows. In Section 2, we present our back-
ground. We first summarize the logic-gate approach [44] in a two-dimensional
case [45] (Subsection 2.1) and then the Grover-search path-planning approach
[10] (Subsection 2.2). In Section 3, we present our new, mixed code. In Sec-
tion 4, we propose an implementation with IBM quantum simulators. We
present some outputs and we compare our method with foraging-ant simula-
tions implemented in NetLogo [62, 63] and Java [36]. Actually, ant colonies
inspired several studies on robotic path planning [11, 67]. For our compar-
isons, we take into account the algorithm complexity, the Fréchet distance

3



between trajectory polylines and the number of direction changes. As a mat-
ter of fact, there are studies on the preference for straight path in ant-motion
trajectories [7].

2. Background: Where? and How?

In this section, we summarize two recent algorithms, before proposing
a new one, built up as the union of them (Section 3), which constitutes a
promising generalization of the path-planning approach with the quantum re-
sources intervening in several steps. First, we describe a quantum gate-driven
algorithm to find positions to be reached at each time point (the Where?) in
an ant-foraging scenario. Second, we describe a Grover-inspired path plan-
ning, to find the path between a starting and a final position (the How?). In
Section 3, we join these two approaches, inserting the path-planning between
the steps of the swarm-searching code. The result is a new algorithm which
can be implemented to drive real swarms of robots in a search and rescue
mission.

2.1. Where? Quantum gate-driven search

Let us consider a search and rescue task to be accomplished by a swarm
of robots. This is typically related to an exploration task [32]. For a biolog-
ical comparison, we can think of a foraging-ant scenario. We can imagine a
cluster of robo-ants starting, initially, from close positions, as exiting from
their nest, and looking for the food source. Then, they shuffle their posi-
tions, exchanging messages about their perception of target proximity—e.g.,
through their distance-assessment as smell of the food source. We can assume
a broadcast communication, where each robot of the swarm sends messages
to all the other robots. Each robo-ant will thus compare the information
coming from their peers, and follow the most successful robot—the robot
assessing to be closer to the food source, the target.

We can model a pairwise interaction, where each robot is getting informa-
tion and pondering to which point should it be heading according to position
precision and reward assessment of their peers and of itself. We call reward
here the perception of target proximity for each robot. If a robot declares
“unsuccess” in target search, then the other robots should examine different
parts of the space. If a robot declares “success” with some degree of preci-
sion, but with a great incertitude on position location, then the other robots
cannot follow its suggestion—at least, they can, with some incertitude. If a
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robot declares “success” with a good degree of certitude, and position with
some precision as well, then that position should be reached by its robotic
peers.

The information on position and reward can be coded through quantum
state superposition. We can set “failure” as 0 and “success” as 1, with
respective probability amplitudes, for the i-th robot Ri, γi and δi. Similarly,
in a squared and unitary arena, we can indicate as 0 and 1 the left and right
extremes of a segment x. Numbers αxi , β

x
i will thus describe the probability

amplitudes to be in the left or in the right point, respectively, for the i-th
robot. Same idea for the y-axis, see eq. (1) and (2).

|q0⟩ = αx1 |0⟩+ βx1 |1⟩,
|q1⟩ = αy1|0⟩+ βy1 |1⟩,
|q2⟩ = γ|0⟩+ δ|1⟩

(1)

|αji |2 + |β
j
i |2 = 1,

|γi|2 + |δi|2 = 1,

(i = 0, ..., N − 1; j = x, y)

(2)

Pairwise interaction terms can be modeled upon a logic gate. In the
1-dimensional case, with movements along either the x- or y-axis, we can
build up a reversible logic gate [44], a quantum version of an XNOR. In
fact, a “failure” of a robot along one extreme of the [0, 1] segment would
suggest a search of the robot in the direction of the other extreme. In a
2-dimensional arena, a failure in a quadrant requires a search through the
three other quadrants. Therefore, for the same output of the gate, there
exists more than one input [45]. Because of this indeterminacy, the gate is
non-reversible, see Table 1. The Table contains the following information:
|q0⟩ is the x-position of Ri at t1; |q1⟩ is the y-position of Ri at t1; |q2⟩ is the
reward of Ri at t1; |q3⟩ is the suggested x-position of Rj at t2, and |q4⟩ is the
suggested y-position of Rj at t2. The information concerning the reward of
Ri, that is, |q2⟩, is copy-pasted to the right side of the table to have the same
number of inputs and outputs. The proposed logic gate can be implemented
through the quantum circuit shown in Figure 1, where the input state used
as example is |q0⟩ = 0, |q1⟩ = 1, and |q2⟩ = 1. If Ri is at 1 (|q0⟩ , |q1⟩=1)
and it is successful (|q2⟩ = 1), then the suggested positions |q3⟩ , |q4⟩ for Rj

(the probability amplitudes to be in 1 on x and y) are set to 1 by the Toffoli
gates. If Ri is at 0 along x, y and it is successful, the Toffoli gates are not
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activated, and Rj will explore around 0, 0. The Toffoli gates are not activated
also if Ri is not successful (reward 0). If this is the case, Rj has to explore
other regions of space; thus we have an indeterminacy of the positions along
x and y to be reached, and the peak of the wavefunction is on the center of
the [0, 1]× [0, 1] square where the robots move. For this reason, we use two
Hadamard gates, one for each dimension. In fact, if |q2⟩ = 0, the NOT gate
switches 0 to 1, activating the Hadamard gates. Conversely, if |q2⟩ = 1, the
NOT gate switches it to 0, and the Hadamard gates are not activated. The
second NOT gate sets back |q2⟩ to the input state.

Table 1: Truth table for two robots Ri, Rj on the xy-plane

q0 q1 q2 q3 q4 q2
x-pos y-pos reward x-pos y-pos reward
Ri Ri Ri Rj Rj Ri

0 0 0 0/1 0/1 0
0 0 1 0 0 1
0 1 0 0/1 0/1 0
0 1 1 0 1 1
1 1 1 1 1 1
1 0 0 0/1 0/1 0
1 1 0 0/1 0/1 0
1 0 1 1 0 1

Algorithm 1 quantum-gate driven search

1: initialize robots’ positions as state superpositions
2: if all rewards are below a certain threshold then
3: for each robot do
4: randomly reshuffle positions
5: end for
6: end if
7: find the robot with the highest reward and let it enter the circuit
8: find the new suggested position through the circuit
9: for all robots do

10: evaluate the new rewards
11: end for
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Figure 1: Quantum circuit implementing the logic gate of Table 1.

The circuit can be embedded in a search and rescue algorithm for a robotic
swarm, modeling pairwise interactions between robots of the swarm. GivenN
robots, there are N ! interaction terms, so the circuit should be ran N ! times.
To reduce computational time and increase efficiency, instead of computing
all terms, we can just select only the robot with the highest reward and let
it enter the gate. The circuit will thus be computed just once. The output
of the gate will suggest the x, y-positions for all the robots at the following
time point. The pseudocode of this approach is proposed in Algorithm 1 [45],
whose lines 7 and 8 concern the discussed quantum circuit.

2.2. How? Grover-search path planning

In both ideal and practical scenarios, the swarm behavior is also affected
by the environment the robots exist in. Being aware of the surroundings
of the swarm entities means determining the optimal shortest path from a
starting point to the evaluated destination, while at the same time taking into
account the presence of impediments or forbidden areas of the map. Finding
such optimal path is historically a burdensome endeavor and therefore an
ideal candidate for quantum computation.

Here, we approach quantum path planning with the methodology de-
scribed in [10], where this task is interpreted as a search problem and a
Grover procedure is applied to solve it. With E and S being respectively the
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number of elements of the search space and the number of solutions to the
problem, the quantum search algorithm is able to achieve a O(

√
E/S) time

complexity [49], a quadratic speed-up over the classical approach. Depend-
ing on the structure of the tree that is searched on, the improvement over
traditional search may be slightly less than quadratic, and if certain condi-
tions are met, it may even perform worse than randomly guessing elements
from the search space. The study of [10] also discusses the compatibility
between the Grover procedure and the path-planning problem, showing that
a speed-up over classical techniques is always present, and that also, as the
map instances get larger, the quantum algorithm asymptotically behaves as
one with the maximum possible speed-up to achieve with respect to the linear
complexity of the classical unstructured search counterpart.

Setting up a Grover procedure means developing a suitable encoding of
the problem and individually constructing the components of the Grover
operator, namely the oracle Uω and the diffuser Uψ, to implement the am-
plitude amplification technique that evolves the initial uniform superposition
of the search space |ψ⟩ into a solution state |ω⟩, where any of the solutions
can be measured with near-certainty.

The encoding stage is arguably the most crucial one in terms of design
choices, since both the complexity of the system and its use of resources
strictly depend from it. In this context, the path-planning problem is for-
mulated as finding the sequence of actions (i.e., the moves) the robot should
carry out to reach the goal. Particularly, the path that we are trying to
determine is that of a robot within a n×n grid map with obstacles, from the
starting position rstart to a goal cell g. This type of environment can be in-
terpreted as a taxicab geometry [47], with the single grid cells corresponding
to the taxicab points and their adjacency being modeled by the connections
between neighbor nodes. In this world, the taxicab metric to quantify the
distance between two points, which in our case are vectors in a 2-dimensional
vector space with fixed Cartesian coordinate system, is the L1 Manhattan
distance, which can be directly used to evaluate the overall number of moves
that need to be carried out in order to trace the desired path.

The starting environment is therefore masked with a square lattice, which
is interpreted as we would do for a n×n matrix, where each cell is labeled the
same way as a matrix element mij with 0 ≤ i, j ≤ n− 1; in this regard, m00

and mn−1 n−1 are associated respectively with the top-leftmost and bottom-
rightmost cells. These positions are encoded with ηMAP (n) = ⌈log2 n2⌉
qubits. Similarly, in regard to movement encoding, the taxicab interpre-
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tation of the grid maps allows only for vertical and horizontal movements,
and not diagonal ones; it follows that, in its most general form, the infor-
mation about the 4 possible movement directions, up, down, left, and right
can be encoded with a superposition of a total of 2 qubits for each action.
In the sample case of a 2× 2 map, movement can also be viewed as either a
clockwise or an anti-clockwise rotation, requiring just 1 qubit to encode the
binary choice of rotation direction.

One such encoding crucially affects the composition of the corresponding
quantum circuit that solves the path-planning problem in the sense that
most of the operators that implement the algorithm, while having an overall
defined behavior shared across all of the differently-coded instances, have an
inner gates’ structure that is highly depending on the way the system’s state
is fed to them. This also goes for the final measurement, where the resulting
classical bitstring, in this case, needs to be interpreted as a sequence of pairs
corresponding to the sequence of moves that achieve the desired planned
path.

That being said, the quantum circuit that achieves a Grover search is
constructed by preparing the inputs, applying the Grover operator G = UψUω
for O(

√
N/S) times, and then measuring the designated result registers.

On one hand, the diffusion operator Uψ always takes the form Uψ =
2 |ψ⟩ ⟨ψ|− I, which can be implemented on a quantum computer considering
that

Uψ = H⊗kX⊗k(MCZ)X⊗kH⊗k (3)

where H is the Hadamard gate, X the Pauli-X gate and MCZ corresponds
to the multi-controlled-Z operation; k is the number of qubits that encode
the search space. This is convenient for us, since this definition is problem-
independent, so that the quantum circuit realization of the diffuser Uψ is
always that of expression (3).

On the contrary, considering that the oracle Uω tests solution states on
the result of a processing of the input register (i.e., we search on the moves,
but check if the target has been reached on the positions those moves result
into) some additional considerations must be embedded, and designing a
suitable Grover oracle becomes the main concern of solving the path-planning
problem.

Our Uω operator is broken down into submodules, the M and T blocks:
the former performs a quantum move, that is, it takes as input the super-
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position of the movement and current position registers, and outputs the
combination of all of the valid1 positions that can be reached from the start-
ing point. The latter tests if the output state of the M operator contains
the target cell and marks the solution by inverting the phase of the oracle
qubit. The presence of obstacles is wired directly into each of the M op-
erators, where a quantum move toward an obstacle results in the output of
the same position it was fed as input. As an example, the Grover oracle for
a 2 × 2 map instance, where the starting and target positions are encoded
respectively in the [0, 0] and [1, 1] cells, has the structure of Figure 2.

Figure 2: Block scheme of the oracle for the 2× 2 case where start and target cells lie on
the opposite corners of the map, as depicted in [10].

The qubits of the structure are organized as follows:

• the |r⟩ register has ηMAP (2) = ⌈log2 22⌉ = 2 qubits that encode the
position of the robot;

• the |m⟩ register is that of moves, with size m = d1(rstart,g) = 2; m
also corresponds to the number of cascaded M operators in the circuit
before the test on solutions is performed with a T block;

• |c⟩ is the ensemble of auxiliary qubits of the oracle workspace, needed
to achieve reversibility of the movement computations;

• |q⟩ is the oracle qubit used to mark the solutions of the problem.

1A non-valid move is one that either brings the robot into an obstacle or makes it jump
from an edge of the map to another.
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After the required M and T operators have been applied, the information
about the solution states is kicked back to the qubits that encode the search
space through an uncomputing stage. Indeed, the elaborations of the M
and T operators are mirrored with respect to the controlled operation on the
oracle qubit, in the sense that each of the individual operators is inverted
(which is possible to do since they have been constructed with reversibility
in mind in the first place) and applied in reverse order. This oracle struc-
ture, together with the diffuser Uψ, which is appended to the |m⟩ register,
completes the Grover operator G that performs one iteration of the quantum
search algorithm.

The following Section describes the newly proposed quantum swarm plan-
ning procedure, where the single-robot motion planning methodology we just
outlined (summarized in the pseudocode of Algorithm 2) is embedded within
the more complex scenario of a searching and rescuing robotic swarm: for
each single robot in the swarm a path is quantumly planned on its (current)
starting position and the evaluated target cell computed by the swarm algo-
rithm. As a result, when dealing with swarms, the quantum circuit to plan
the path of each entity is dynamically constructed according to the desti-
nation, the presence of obstacles and the number of moves of the desired
minimum-length path.
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Algorithm 2 quantum path planning

Inputs: map dimension n, initial and target positions of one robot,
obstacles’ positions
Preprocessing: compute the number of iterations of the procedure and
the number of moves m
Procedure:

1: initialize |r⟩ and |m⟩ in a uniform superposition with H⊗(ηMAP (n)+m) and
|q⟩ as |−⟩

2: for each iteration do
3: for move in m do
4: cascade an M operator to the circuit
5: end for
6: apply a T operator on the output of the final M
7: perform the controlled operation on |q⟩
8: apply the inverse T †

9: for move in m do
10: cascade an M †

11: end for
12: append the diffuser Uψ
13: end for
14: measure the output registers
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3. Where + How: The new, mixed code

Having introduced the individual components of the approaches of [44,
45, 10], we now describe how the methodology for modeling the complete
behavior of the robotic swarm was assembled. As previously mentioned, we
take advantage of the swarm algorithm to compute the locations of the robots
according to their global target and the interactions with each other, sub-
sequently evaluating, for each of them, the optimal trajectory to reach such
destinations, according to the path-planning algorithm. The full procedure
is able to exhaustively model any complex system with swarm agents that
operates within a 2-dimensional world at the significantly improved speeds
of quantum computation.

In the interest of merging the discrete taxicab world described in Section
2.2 with the continuous world the swarm algorithm of 2.1 is designed for,
a discretization phase of the frame of work is required. Masking the initial
map with a square mesh means both interpreting the environment as a grid
and locating the position of the robots, target, and obstacles with the corre-
sponding cells they fit into. Grid encoding has been recently used to model
robotic-swarm behavior in probabilistic terms [32].

While an arbitrarily-sized single-layer lattice is sufficient to achieve such
a discrete representation of the environment, increasing the n dimension
of the grid can appreciably grow the overall spatial complexity and qubit
utilization of the quantum path-planning algorithm. To contrast this resource
expenditure, we considered grids whose individual cells are hierarchically
partitioned (with at most the same dimension as the outermost grid) and
interpreted as smaller map portions themselves, with their own sub-cells that
can in turn be further decomposed, and so on. The main advantage of this
strategy consists in the fact that there is not a single, large quantum planning
circuit anymore, rather, a number (depending on the amount of subdivision
layers) of smaller circuits now cooperate for the determination of a useful
path of the robots. These reduced circuits are easier to run as they both
take up fewer qubits and have a shallower time evolution, compensating for
the intermediate size of quantum processors and lack of stable error correcting
codes of the state-of-the-art current technologies of the NISQ era. Generally,
the space partitioning can be varied in accordance with the desired resolution
and precision that a specific problem is required to have. In this sense, both
the maps at each layer can be square grids of any dimension, and they also
need not be the same; however, in the case that two or more subdivision
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layers shared the same partitioning dimension, the same circuit structure
can be applied for all such cases, sparing the effort of redefining multiple
different sub-routines for each of the hierarchies. The hierarchical nature of
the strategy also allows for a depth of micro-subdivision that is also arbitrary,
and is again left as a design choice. Practically, all of such parameters should
be selected in regard to considering the smallest cells (those at the deepest
layer) as units of space, that is, of the same dimension order of the static
entities of the problem, namely the target and the obstacles. An obstacle that
spans over more than one such cells is translated to a set of unit obstacles
on the respective cells it covers.

In this work, we developed our approach on the assumption that the
meshed representation of the map is known. However, it should be noted
that, in the case that this information was not given beforehand, getting
to it can be done classically and in a very efficient way through the use of
quadtrees [20] and the related algorithms for fast single-point location on
planar maps [18, 25].

We can contextualize this approach with a use case that takes into con-
sideration a tessellation of the robots’ environment with a 2× 2 grid, where
each of the cells is referred to as a macro-cell (Figure 3a). Each macro-cell
is consequently split into a smaller 2× 2 map, whose squares are micro-cells,
as Figure 3b shows.

With the grid being laid out, the elements of the environment are placed
inside it, with their locations, continuous, being associated with the discrete
centroids of the micro- and macro-cells they belong to. These centroids
correspond to the binary matrix indexing referenced in Section 2.2: for each
cell, a tuple containing the indices of the micro- and macro-cells is considered;
as an example, a robot located in the top-leftmost corner of the map of Figure
3b is associated with the 2-tuple ([0, 0], [0, 0]), where the indices respectively
refer to those of the micro- and macro-cell of the robot. This allows us to
both deal with the swarm behavior in a continuous way, while at the same
time having a discrete representation that can be directly exploited by the
quantum path-planning algorithm.

A path within such partitioned map is therefore interpreted as a combi-
nation of micro- and macro-paths, each computed through the micro- and
macro-displacements between the starting cells and the new evaluated po-
sitions of the swarm algorithm. As a consequence, four distinct path types
arise from the problem instance of Figure 3b:

14



a. macro: the robot changes macro-cell but stays in the same micro-cell;

b. micro: the robot changes micro-cell but stays in the same macro-cell;

c. macro and micro: the robot changes both macro and micro cells;

d. if the new position is in the same micro- and macro-cell, nothing hap-
pens.

(a) Binary encoding of macro-cells and movement directions.

(b) Organization of micro- and macro-cells.

Figure 3: Schematic representation of cells and robotic movements.

Figure 4 shows a displacement of type a where the computed location ends
up in a cell that has the same micro-indices of the starting one, but different
macro ones. We apply the quantum path-planning algorithm for each micro-
and/or macro-paths; in the c case, where both classes of trajectories need to
be evaluated, the global macro-path is computed first, and then the route is
narrowed down with the appropriate micro-path.
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That being said, the complete joint algorithm is composed by taking the
swarm logic of Algorithm 1 and inserting the path planning stage each time a
robot changes position, whether it happens through a randomized reshuffling,
or through the evaluation of the quantum circuit of 2.1.

It should also be noted that a real, practical scenario would also need to
take into account the possibility for dynamic obstacles. The methodology
presented in this article is necessarily a quantum-classical hybrid one in na-
ture, i.e., we make quantum computation do the heavy lifting, while keeping
the sensor processing and teleo-reactivity classical. Specifically, the physical
robots read data from the environment, process it, and subsequently build
the appropriate quantum circuits for the swarm behavior and path-planning
tasks. That being said, non-static obstacles can be essentially dealt with in
two ways, corresponding to the two main possible situations that may occur:

• a fixed-position obstacle suddenly appears in the path of a robot as
it is traveling it: here, teleo-reactivity is achieved by simply halting
the course of action, stopping the robot in order to avoid collision, and
constructing a new procedure initialized with the current system’s state
and a map representation with the updated impediments;

• a moving obstacle is detected: in this case, the classical intra-quantum
sensory reading and processing will also be required to compute an
estimate of the future positions of the robot, and accordingly build the
swarm planning quantum circuits by considering an obstacle in each of
the cells that the expected trajectory it computed to be in.

The full procedure starts by preparing the grid mesh over the environment
and locating, through the corresponding centroids, the starting position of
the swarm of N robots Ri with i = 0, ..., N − 1 (initially, the robots take
off from the same micro-cell, that is, rstart is equal for all Ri), together with
that of obstacles Oj with j = 0, ..., o − 1 (where o is the total number of
micro-obstacles in the map) and target T , associated with the goal cell g.
Then, we initialize the robots’ rewards δi, checking if any of them is above
the θ = 0.8 threshold, which assimilates to a “good enough” proximity to the
goal; generally, at time t0, these rewards should be approximately all equal
to each other, and below the threshold.

Once the initialization stage is complete, on the assumption that none
of the rewards is above θ, a randomized reshuffling scatters the robots over
the map; to improve the convergence of the algorithm, the reshuffling is
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performed in a goal-oriented manner, in the sense that it is evaluated over
the sub-rectangle pinpointed by the micro-cells of the target g and the robot
with lowest reward rfarthest (i.e., the farthest from the goal, with the idea
of maximum coverage of the working map to restrict the occurrence of local
minima). For each of the new evaluated positions, a path-planning procedure
is applied, with the exception of those that result into an obstacle micro-cell,
which are discarded and recomputed; this is done to improve efficiency and
reduce resources utilization by avoiding the construction and execution of
the quantum circuits that plan a path toward a forbidden location.

The rewards get updated, and the α, β, γ, and δ parameters of the Rclosest

robot, the one that is the closest to the target, are extracted and fed to the
quantum circuit of Figure 1. The output of the circuit is filtered on a subset
of the states that have been measured with the highest probabilities and
is used to weigh the outcome positions of the robots with non-maximum
rewards. Those robots reach the new location following the path evaluated
by the procedure of 2.2.

Ultimately, the δi are updated once again and the swarm is routed toward
the position of the robot with the new highest reward, the new Rclosest. In
the case that δi > θ for none of the robots, another informed reshuffling is ex-
ecuted, and the algorithm undergoes another iteration. These considerations
are summarized by Algorithm 3.

Figure 4: Example of macro-only displacement.
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Algorithm 3 quantum swarm planning

Preprocessing: arrange the space partitioning of the map and locate the
problem’s entities with the centroids of the cells they belong to
Procedure:

1: initialize the rewards δi for each robot Ri with i = 1, ..., N
2: while δi < θ for every robot do
3: do
4: randomly reshuffle each robot’s position on the sub-rectangle

spanned by rfarthest and g
5: while every position does not end up in a cell associated with any of

the obstacles Oj

6: for each Ri and its new position do
7: apply the path-planning procedure from the current position to

the evaluated destination
8: update δi
9: end for

10: Rclosest ←− max
δ

Ri

11: extract the parameters α, β, γ, and δ from Rclosest and input them to
the swarm algorithm

12: filter the p most probable states from the swarm algorithm output
13: compute the weighted position outcome on the p states
14: for each Ri ̸= Rclosest do
15: travel to the evaluated position outcome through the appropriate

planned path
16: update δi
17: end for
18: parse the new Rclosest

19: for each Ri ̸= Rclosest do
20: reach Rclosest through the appropriate planned path
21: update δi
22: end for
23: end while
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4. Results

In this Section, we first evaluate our algorithm, investigating its scala-
bility for swarms of different sizes (paragraph 4.1). Then, we compare our
method against two foraging-ant simulations (paragraph 4.2), quantitatively
analyzing the findings. In our study, we focus on a theoretical approach and
on its simulated implementation. An experimental validation with physi-
cal robots, at this stage, would not add any information to the core of our
study. A physical implementation will be the object of future research, and
it will involve conditions such as hardware choice, message exchanging pro-
tocols, communication strategies. A simulation in Webots, with the e-pucks,
provides an idea of how an experimental setup could look like.

4.1. Evaluation of the proposed algorithm

In this paragraph we present some outcomes of the Python code (available
at [69]) that implements the full procedure of Algorithm 3; we build our
quantum circuits with IBM’s Qiskit SDK [46] and execute them through the
Aer simulator. First, we visualize the different stages of the procedure and
the scheme of movement across cells for a swarm composed of 2 robots. Then,
a 10-robot swarm is considered in order to show the improved convergence
speed of higher-numbered swarms. Ultimately, we exhibit a situation where
a single iteration of the algorithm is not sufficient to reach an adequate
proximity to the target, so that one more cycle of reshuffling and gate is
required. For the sake of comparison, we keep the map partitioning, obstacle,
and position targets the same for each of these three scenarios, in particular:

• the environment is tessellated as of Figure 3b of Section 3;

• the swarm starts in the top-leftmost cell, that associated with the cen-
troids ([0, 0], [0, 0]);

• a single obstacle is present in the cell ([1, 0], [1, 0]);

• the target is located in ([1, 1], [1, 1]).

Figure 5 portrays the procedure applied to a 2-robot swarm, with a focus
on the evaluated paths by the quantum path-planning algorithm. Figure 5a
displays the state of the system at time t0, with the swarm agents (green
circles, the higher the i index of the robot Ri, the darker the color gradient
is), obstacle (red pentagon), and target (turquoise star). In Figure 5b the
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positions are randomly reshuffled in the goal-oriented manner; note that here,
in view of the fact that the swarm and the target have been initialized in
opposite corners of the map, the sub-rectangle defined by the farthest robot
and the target of the informed reshuffling described in Section 3 is indeed the
entire map. The arrows show the paths evaluated by the circuits constructed
with Algorithm 2; their color is of the same green gradient of the robot they
refer to: R0 (light green) reached its destination with a macro-micro path
type, which the quantum path-planning algorithm measured as the |11⟩ state
for both the macro- and micro-paths, meaning that the robot has to perform
two macro and two micro clockwise rotations to reach its destination. As
for R1 (in dark green), just one macro clockwise rotation is needed, since
the corresponding displacement was of the macro kind (the same as Figure
4) and the measured output of the circuit was the |1⟩ state. After updating
the rewards, R0 emerges as the closest to the target, and its attributes are
fed into the swarm algorithm that computes the new position of the rest
of the swarm, that is, R1. This is depicted in Figure 5c, together with the
worked out path from the previous location, which is of the macro-micro
type, with the moves encoded by the |0⟩ state for the macro trajectory and
|11⟩ for the micro one. After the gate, the closest robot to the goal is now
R1 and therefore R0 reaches it. Since this last manoeuvre occurs within the
same micro-cell (path of type d), no path planning is required, and the robot
travels to the end location in a straight line. The final configuration is that
of Figure 5d.

While the code output shown in Figure 5 is a good example of the overall
behavior of the proposed algorithm, we should take into account the fact
that this was indeed a “lucky” run, since the first randomized reshuffling got
immediately the R0 robot nearby the target. With 2 robots, this is not trivial
at all, and more often than not, with the randomized positions the robots do
not achieve such proximity.

When considering a bigger swarm, for example of 10 robots, the proba-
bility of getting shuffled on neighboring cells of the goal is much higher, for
the reason that more robots that are uniformly distributed ensure a better
coverage of the working environment. The case for 10 robots is represented
in Figure 6; to avoid cluttering the plots we omit the visualization of the
trajectories evaluated by the path-planning algorithm, which, as always, is
executed each time a robot requires to reach a new position with a non-zero
displacement for macro- and/or micro-cells. The steps of the procedure are
the exact same as the previous example, with the difference that here, after
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(a) Start (b) Reshuffle

(c) After the gate (d) Target reached!

Figure 5: An example of run of the code with 2 robots. The swarm is initialized within
a single micro-cell (a), then, each of the robots’ position is randomly reshuffled over the
map (b), so that the newly computed highest-reward robot is fed to the swarm algorithm
that outputs the an updated position for the rest of the swarm (c). Eventually, the robots
reunite toward the new Rclosest (d). An approximate rendition of the robotic paths is
shown by our simulation in Webots.

the initial reshuffling (Figure 6b), the swarm agents are more evenly spread
out over the map and more than one robot happens to be in the vicinity
of the target. Figure 6c highlights the fact that the swarm algorithm, exe-
cuted on Rclosest (in lighter green), made the remaining robots travel toward
the same computed location; as a consequence, the points that represent the
peaks of probability wavefunctions to find them in the target are overlapped.
The endmost stage (Figure 6d) shows the complete swarm that reached the
final location, where a negligible fluctuation on the robots’ position has been
artificially inserted to better display that every entity has in fact gotten to
its destination.

Practical cases often distinguish themselves with a limited amount of
resources that can be exploited to solve that particular problem. In our
context, it may not be always possible to arbitrarily increase the size of the
swarm to achieve fast convergence to the target, and working with just a few
robots may not get us as close to the target as we desire. This is why, in the
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(a) Start (b) Reshuffle

(c) After the gate (d) Target reached!

Figure 6: An example of run of the code with 10 robots.

case that at the end of the procedure we evaluate each of the robots’ rewards
to be below the threshold θ, we perform another iteration of the algorithm
to get as near to the goal as possible. This is repeated until the threshold
value is reached by at least one of the robots.

Figure 7 illustrates the stages of the algorithm for a problem instance
where a second iteration is required. The Figures 7a, 7b, and 7c are related
to the first run of the algorithm: as it can be easily seen, after the gate of
the swarm algorithm, the robots did get closer to the target with respect to
their starting positions, but they stopped roughly halfway through the actual
destination, meaning that the robots’ rewards ended up way lower than the θ
threshold. The condition of the outermost while loop of Algorithm 3 therefore
triggers another iteration, starting from the reshuffling stage, as shown in
Figure 7d. This particular plot also allows one to visualize a non-trivial
reshuffling (i.e., one that is not performed over the entire map), since the
sub-rectangle it is computed over is that of the cells located by the centroids
([1, 0], [0, 1]) —that of the farthest robot, which in this case is the same as the
other one, having the two been reunited at the end of the first iteration—and
([1, 1], [1, 1]), that of the target. Later on, the swarm algorithm is invoked
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once again, this time with Rclosest ←− R1, and the rest of the procedure is
carried out, with the final configuration being that of Figure 7e, where the
desired proximity to the target has been achieved.

(a) Start (b) Reshuffle (c) Gate

(d) Second reshuffle (e) Gate

Figure 7: An example of code run with a pair of robots and one additional cycle of
reshuffling and logic gate. In the second cycle, the reshuffle is restricted to high-reward
regions of the plane.

To quantitatively assess the reliability of our proposed methodology, we
compare the average rewards of robots at different steps of the process while
varying the size of the swarm.

First, we test our code for a 10-robot swarm, comparing the target-
reaching accuracy in 5 runs (Table 2). Then, we investigate target con-
vergence for robotic swarms of different sizes (Table 3).

Table 2 shows the evaluated average rewards of a swarm of 10 robots at
each of the four steps of the procedure. The gathered data exhibit the afore-
mentioned enhanced convergence of a bigger-sized swarm, which is translated
to a result, at time t3, which is above the θ = 0.8 threshold for each run.

We notice that our algorithm is scalable for a swarm of ≥ 5 robots: in
fact, all trials with this minimum size show an average reward higher than
the threshold. Scalability is an essential element of swarm behavior. Table
3 presents the average rewards obtained at each step for swarms of 2, 3, 5,
and 10 robots, respectively. In a few trials, the 2- and 3-robot swarms do
not reach the proposed convergence threshold. In those cases, an additional
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average reward
N trial t0 t1 t2 t3

10

1 0.245 0.669 0.765 0.898
2 0.252 0.703 0.687 0.858
3 0.248 0.774 0.756 0.883
4 0.261 0.701 0.888 0.910
5 0.247 0.673 0.802 0.921

Table 2: Mean values of rewards for a 10-robot swarm the beginning of the process (t0),
after the reshuffle (t1), after the logic gate (t2), and at the end (t3). The values have been
computed during five trials, with fixed swarm and target positions.

cycle of the whole code would be necessary to reach the target.

average reward
N trial t0 t1 t2 t3

2
1 0.249 0.689 0.682 0.760
2 0.217 0.637 0.777 0.781
3 0.245 0.534 0.698 0.733

3
1 0.244 0.694 0.779 0.801
2 0.256 0.546 0.585 0.673
3 0.271 0.756 0.836 0.920

5
1 0.253 0.778 0.798 0.892
2 0.245 0.637 0.831 0.899
3 0.241 0.685 0.774 0.856

10
1 0.256 0.596 0.684 0.821
2 0.251 0.661 0.843 0.878
3 0.255 0.601 0.833 0.924

Table 3: Comparison between average rewards for swarms of different size, with N =
2, 3, 5, 10 robots. The scalability of swarm behavior starts being visible for N ≥ 5,
showing a more robust convergence (final reward ≥ 0.8 in every run of the code).

4.2. Comparison against other methods

Finally, we compare our method against two ant-behavior computational
models. We choose the Ant Lines simulation coded in NetLogo [62, 63] and
another simulation of ant nest-food paths in Java. To compare the three
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methods, we consider computational complexity, maximum number of di-
rection changes, minimum number of robotic ants necessary for convergence
toward the food (Table 4). We consider the minimum number of ants re-
quired to the convergence, the computational time, and the approximate
number of direction changes. We find that our method presents a faster con-
vergence than the Java-based algorithm. The last one converges also with 50
ants, but with one third of the pheromonic decay constant. The duration of
pheromonic tracks left by foraging ants is currently investigated by entomol-
ogists [31]. In the considered simulation, a quicker convergence is ensured
by a null decay, which would however be unrealistic. We set up a decay of
0.003, half than the default value, but triple than the 0.001 required for a
50-ant swarm. Figure 9 shows the paths with NetLogo and Java simulators.
The choice of pheromonic-decay rate in ant-colonization models has been
studied in detail for a classically-driven robotic swarm [40]. In particular, if
the pheromonic-decay rate is beyond a certain threshold, ants even could not
reach the target at all. This fact justifies our choice of small decay values.

In general, the computational time in a swarm-robotic task is related
to the exploration time, which has been investigated in terms of number of
robots, characteristics of the environment, and complexity of the task [32].
Here, we chose a simple environment without obstacles, a variable number
of robots, and a simple task, but we focused on a new quantum approach.

our code NetLogo Java
min no. of ants for convergence 5 1 50

no. of ants considered in our comparison 10 10 100
time to convergence 10 sec. 14 sec. 3 min.

average no. of direction changes 3 10 6

Table 4: Parameter comparison between our method, the NetLogo Ant Lines, and the
Java-based ant simulation.

Let us now compare the mean paths of all robotic ants that we obtain
with the considered three methods. To find the mean path with our code,
we first consider a 10-robot simulation, taking into account the polylines
corresponding to the individual paths for each robot. We distinguish between
three chunks of the simulation: t0 → t1, t1 → t2, and t2 → t3. Observing the
trajectories in the first chunk, we notice that two robots present short paths,
which are exactly the one the opposite of the other, giving a null contribution
to the overall mean. Thus, we neglect these contributions, and we are left
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with 8 paths. In the second chunk, we again neglect the contribution of two
robots that were already at the target and in its closest cell, respectively.
These two robots presented the null path, and thus their contribution to the
overall mean is zero. In the third chunk, all robots are gathered around the
target. Then, we computed the pairwise distance of the remaining polylines
via the Dynamic Time Warping (DTW) algorithm, comparing corresponding
pairs of coordinates. As an example, Figure 8a shows the DTW between the
two robotic paths from Figure 5b. The mean of all components is the mean
path for all the robots. The so-obtained mean curve is then compared with
the mean paths resulting from the other methods (Figure 9). We apply
DTW to the robotic paths in each chunk. Concerning NetLogo and Java,
we divided the overall path according to direction changes, see Figure 9. In
this way, even though we are not considering a precise speed of each robot,
we can nevertheless create a comparison between the different steps of the
simulations.

(a) An example of DTW comparison between
the paths of the two robots from Figure 5b, ob-
tained with our method. The paths are green;
the grey segments indicate pairwise distances;
the black line is the mean curve.

(b) Visual comparison among average paths ob-
tained with our method (green), Java (orange),
and NetLogo (blue). The paths are rotated: the
closer the path to the x-axis, the closer to a
nest→food diagonal path.

Figure 8: Strategies for robotic-path comparison (a) and average robotic-path comparison
(b).

Observing the results (Table 5), we find that our quantum-based method,
similarly to the considered nature-inspired pheromonic track, allows robots to
reach the target from the nest in an approximately diagonal mean path, that
is, the shortest path.2 It means that our method confirms the expectations,

2We notice that a diagonal path is also observed in a classically-driven robotic swarm
modeling the ant-foraging behavior [40]. In addition, our method leads to a good conver-
gence already in the first run of the code, while other algorithms need a higher number of
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(a) Nest-food path of a 10-ant swarm simulated
with NetLogo.

(b) Pheromonic tracking and nest-food path of
a 100-ant swarm simulated with Java. Yellow
and red indicate weak and strong pheromonic
paths, respectively.

Figure 9: Paths obtained with NetLogo and Java simulations. The black vectors indicate
the steps of average paths.

and outperforms the Java-based algorithm thanks to the smaller number of
robots required for the convergence. In preliminary tests, we also found that
our method outperforms NetLogo simulation because of the higher stability
with respect to changes in target position. To compare these mean curves,
we use the Fréchet distance [21] (a generalization of DTW [22]) in its dis-
crete version [17] (Table 5). Rotating the nest-food diagonal path, we can
compare the three polylines against the x-axis. We immediately notice that
our method (green path) outperforms the other two ones, being closer to
the horizontal line (Figure 8b). This qualitative information is confirmed
by quantitative distance measurements, see Table 6. The complexity of the
Grover-search part of our code is discussed in Section 2.2. The for loops are
running over the number of robots, and thus they contribute as O(n). In
addition, we are dealing with quantum complexity, while the two considered
ant simulations are completely classical. An assessment of computational
complexity for the NetLogo and Java simulation is not feasible because of
structural differences. For instance, the Java-app running time also depends
by the arena’s size, influencing the number of steps to return to the nest after
an unsuccessful food search. Regarding time, we ran our code on a quantum
simulator, requiring a time of the order of tens of seconds. However, running
time could be even shorter if a real quantum computer were to be used.

iterations [40].
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NetLogo (10 ants) Java (100 ants)
our method (10 ants) 2.63 2.46

Table 5: Values of the Fréchet distance between mean curves computed with the NetLogo
Ant Lines, Java-based ant simulation, and our method. We consider a different number of
ants, allowing for a good convergence. The lower the distance, the closer the mean paths.

our method NetLogo Java
(10 ants) (10 ants) (100 ants)

distance from the diagonal 1.0 2.37 2.12

Table 6: Distance from the perfect diagonal nest→food computed for each considered
method; see Figure 8b. The lower the distance, the faster the average-path convergence.

5. Discussion and Conclusions

In this research, we developed a quantum-based decision-making system
for the path planning of a robotic swarm. We started from two recent studies,
concerning a pairwise-communication modeling in a robotic swarm though
logic gates, and a Grover-based path-planning algorithm. Here, we proposed
a mixed code where the robots in a swarm exchange messages and plan their
path toward a target. We proved the scalability of our code for a swarm with
at least five elements.

Then, we contextualized our research in a natural-inspired search and
rescue scenario, considering the ant-foraging behavior. In particular, we fo-
cused on the path from the nest, in one of the micro-cells the arena has been
divided into, to the source of food, in another micro-cell. We proved that
our method outperforms two existing foraging-ant simulations, regarding the
computational speed of convergence, and it is more stable with respect to
changes of food position than a NetLogo implementation. In addition, our
method requires a smaller number of robots to ensure convergence: 5 or 10
robotic ants against the 50 robotic ants of the Java-based simulation. The
research we proposed is a first step toward experiments with real robots and
with swarms of different size.

The methodology we proposed aims to face the problem of path-planning
for a swarm of robots with the aid of quantum computing. This is not a
problem of optimization, while it has been proved that quantum computing
can, for instance, reduce computational times of a software. Proposing a
new method, we are open also to sub-optimal solutions. We notice that
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several recent optimization methods are also inspired by naturalistic models
such the ant-colony and foraging-ant models. The quantum enhancement
has been applied to optimization approaches; it is the case for instance of
quantum particle swarm optimization (quantum PSO). A search and rescue
approach might be optimized with a suitable objective function having, for
instance, a minimum in correspondence of the target. However, optimization
techniques are conceptually different from our approach. In fact, in quantum
PSO the use of “swarm” is a computational metaphor to solve problems of
minimum, while in our study we are interested in developing a method to let
an overall behavior emerge from local interactions in a swarm of robots. For
this reason, we do not set any optimization function.

In this regard, our approach differs from state-of-the-art enhancement
of ant-colony optimization algorithms. In [60], the ant-colony is explored
in a grid scenario with fixed obstacles. The authors find shortest path for
the ants. Here, we are not necessarily interested in the shortest individual
paths: we focus on the conceptually most clear approach which exploits
quantum computing in different steps of the process. In fact, our approach
is foundational, fundamental, in the sense that we are posing the bases for a
quantum-based methodology.

The limitations of our study concern the presence of fixed of moving ob-
stacles, whose position is really unknown. The issue might be solved with
robotic sensing, smell, radar detection, or target-proximity information re-
trieval through sound amplitude. These factors, in a real-world application,
should influence the individual measure of target proximity (the reward),
allowing the complete application of our method.

Our research might constitute a step forward in robotic-based stigmergy
studies, whose some noticeable examples are natural swarms [28]. Possible
scenarios of applications involve fire prevention, people search and rescue,
and water cleaning from trash [1, 2], in the field of environmental care.

The precision of the experiment can be improved with more qubits, also
involving one additional dimension and depth, and through a refinement of
cells, more precisely detecting spatial positions.

In our work, we ran the code on our laptop, remotely calling the IBM
Quantum simulator. However, the whole idea of the swarm also includes
local calculations and exchanges of information. Therefore, next steps of
the work will include the definition of an MQTT (Message Queuing Teleme-
try Transport) message-exchanging technique. A completely decentralized
robotic swarm delegates simple calculations to all elements of the swarm,
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realizing a fully-distributed structure. Indeed, a quantum swarm algorithm
can be considered a form of quantum distributed algorithm [9], enhanced by
the quantum component [38, 30]. Thus, the multiple processors required in a
distributed algorithm can be identified with the simple processors integrated
on each robot of the swarm.

In addition, further research can address comparisons with Markov-based
decision processes [68], comparing Markovian (memory-less) [32] with non-
Markovian time evolution [43], analyzing the necessary amount of informa-
tion to be retained for a successful search and rescue swarm mission.

The forthcoming application of the proposed code to MQTT will prepare
the ground for tests with real robots. Regarding possible future experiments,
we envisage a test with three Peppers. Pepper is a complex robot, diverse
from robots usually exploited for swarm robotics. However, mechanisms of
message exchanging, position set up, path planning, obstacle avoidance can
be implemented as well. Thus, we can imagine a toy-swarm constituted by
three Peppers. Messages can also be loudly spoken out by robots. The steps
of logic gate implementation and path planning of each robot (or, by an ex-
ternal computer connected with robots) can be verbalized through the inner
speech [52]. In such a research, we may borrow results from the quantum
vocal theory of sound [55].

Our research is meant to be a further step in quantum-computing resource
exploration. The application of quantum logic gates to robotic decision-
making systems fosters new developments in rapidly-developing interdisci-
plinary fields. This line of research opens the way to new scenarios of robotics,
industry, and ultimately, human knowledge.
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