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Abstract. We consider a nonlinear Dirichlet problem driven by a (p, q)-
Laplace differential operator (1 < q < p). The reaction is (p−1)-linear near
±∞ and the problem is noncoercive. Using variational tools and truncation
and comparison techniques together with critical groups, we produce five
nontrivial smooth solutions all with sign information and ordered. In the
particular case when q = 2, we produce a second nodal solution for a total
of six nontrivial smooth solutions all with sign information.

1. Introduction

Let Ω ⊆ RN be a bounded domain with a C2-boundary ∂Ω. In this paper
we study the following (p, q)-Dirichlet problem:

−∆pu(z)−∆qu(z) = f(z, u(z)) in Ω, u
∣∣
∂Ω

= 0. (1)

In this problem 1 < q < p < ∞. For any r ∈ (1,∞) by ∆r we denote the
r-Laplace differential operator defined by

∆ru = div(|∇u|r−2∇u) for all u ∈ W 1,r
0 (Ω).

The reaction f(z, x) is a Carathéodory function, that is, for all x ∈ R
z → f(z, x) is measurable and for a.a. z ∈ Ω x → f(z, x) is continuous.
We assume that f(z, ·) exhibits (p − 1)-linear growth at ±∞ (that is, f(z, ·)
is (p − 1)-homogeneous at ±∞). However, the problem is noncoercive since

asymptotically as x → ±∞ the quotient
f(z, x)

|x|p−2x
stays above the principal

eigenvalue λ̂1(p) > 0 of (−∆p,W
1,p
0 (Ω)). Similarly asymptotically as x → 0,

the quotient
f(z, x)

|x|q−2x
stays above λ̂1(q) > 0 of (−∆q,W

1,q
0 (Ω)). Hence the

origin can not be a local minimizer of the energy functional and this does not
permit the use of the mountain pass theorem directly on the energy functional.
Nevertheless by assuming an oscillatory behavior of f(z, ·) near zero, and
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using variational methods based on the critical point theory together with
suitable truncation and comparison techniques and with the use of critical
groups (Morse theory), we prove two multiplicity theorems producing five and
six nontrivial smooth solutions respectively, all with sign information. Coercive
(p, q)-equations were studied by Papageorgiou-Rădulescu-Repovš [18], Papageorgiou-
Vetro-Vetro [21] (with q = 2), Marano-Papageorgiou [15] and Medeiros-Perera
[16]. In these works the authors prove the existence of three or four nontrivial
solutions, and nodal solutions (that is, sign changing solutions) were obtained
only in [17], [20]. Noncoercive (p − 1)-linear equations were investigated by
Cingolani-Degiovanni [2] and Papageorgiou-Rădulescu-Repovš [18], [19]. In [2]
we find only an existence result, while in [18], [19] q = 2 and the equation is
parametric. The authors produce up to four solutions for small values of the
parameter. Our work complements that of Gasiński-Papageorgiou [7], where
an analogous multiplicity theorem is proved for equations driven by the p-
Laplacian only and with a reaction which satisfies more restrictive conditions
and no nodal solutions are obtained. Finally we mention the recent works of
He-Lei-Zhang-Sun [10] (with q = 2 and (p − 1)-superlinear reaction) and of
Papageorgiou-Vetro-Vetro [22] (also with q = 2, parametric concave-convex
problems).

2. Mathematical Background

The main spaces in the analysis of (1) are the Sobolev space W 1,p
0 (Ω) and

the Banach space C1
0(Ω) = {u ∈ C1(Ω) : u

∣∣
∂Ω

= 0}. By ∥ · ∥ we denote the

norm of the Sobolev space W 1,p
0 (Ω). On account of the Poincaré inequality, we

have
∥u∥ = ∥∇u∥p for all u ∈ W 1,p

0 (Ω).

The Banach space C1
0(Ω) is ordered with positive (order) cone C+ = {u ∈

C1
0(Ω) : u(z) ≥ 0 for all z ∈ Ω}. This cone has a nonempty interior given by

intC+ =

{
u ∈ C+ : u(z) > 0 for all z ∈ Ω,

∂u

∂n

∣∣∣∣
∂Ω

< 0

}
,

with
∂u

∂n
= (∇u, n)R and n(·) being the outward unit normal on ∂Ω.

For x ∈ R, we set x± = max{±x, 0}. Then for u ∈ W 1,p
0 (Ω), we define

u±(z) = u(z)± for all z ∈ Ω. We know that u± ∈ W 1,p
0 (Ω) and u = u+ − u−,

|u| = u+ + u−. For u, v ∈ W 1,p(Ω) with u ≤ v, we set

[u, v] =
{
h ∈ W 1,p

0 (Ω) : u(z) ≤ h(z) ≤ v(z) for a.a. z ∈ Ω
}
,

intC1
0 (Ω)[u, v] = the interior in C1

0(Ω) of [u, v] ∩ C1
0(Ω),
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[u) =
{
h ∈ W 1,p

0 (Ω) : u(z) ≤ h(z) for a.a. z ∈ Ω
}
.

Given r ∈ (1,∞), by Ar : W
1,r
0 (Ω) → W−1,r′(Ω) = W 1,r

0 (Ω)∗
(
1

r
+

1

r′
= 1

)
,

we denote the nonlinear map defined by

⟨Ar(u), h⟩ =
∫
Ω

|∇u|r−2(∇u,∇h)RNdz for all u, h ∈ W 1,r
0 (Ω).

This map has the following properties (see Gasiński-Papageorgiou [8], p.
279).

Proposition 1. Ar : W
1,r
0 (Ω) → W−1,r′(Ω) is bounded (that is, maps bounded

sets to bounded sets), continuous, strictly monotone (hence maximal monotone
too) and of type (S)+ which means that the following property is true:

un
w−→ u, lim sup

n→+∞
⟨Ar(un), un − u⟩ ≤ 0 ⇒ un → u in W 1,r

0 (Ω).

We consider the following nonlinear eigenvalue problem

−∆ru(z) = λ̂|u(z)|r−2u(z) in Ω, u
∣∣
∂Ω

= 0, 1 < r <∞. (2)

It is well-known that (2) has a smallest eigenvalue λ̂1(r) which has the
following properties (see Gasiński-Papageorgiou [5]):

(a) 0 < λ̂1(r) = inf

[
∥∇u∥rr
∥u∥rr

: u ∈ W 1,r
0 (Ω), u ̸= 0

]
, (3)

(b) λ̂1(r) is isolated (that is, if σ̂(r) denotes the spectrum of (2),

then we can find ε > 0 such that (λ̂1(r), λ̂1(r) + ε) ∩ σ̂(r) = ∅).

(c) λ̂1(r) is simple (that is, if û, v̂ ∈ W 1,r
0 (Ω) are eigenfunctions corresponding to

λ̂1(r), then û = ξv̂ with ξ ∈ R \ {0}).

The infimum in (3) is realized on the one-dimensional eigenspace corresponding

to λ̂1(r) (see (c)). It is easy to see from (a) and (c) that the elements of this
eigenspace have fixed sign. Let û1(r) be the positive, Lr-normalized (that

is, ∥û1(r)∥r = 1) eigenfunction corresponding to λ̂1(r) > 0. The nonlinear
regularity theory (see Lieberman [14]), implies that û1(r) ∈ C+\{0}. Moreover,
the nonlinear maximum principle (see Pucci-Serrin [23], p. 120) implies that
û1(r) ∈ intC+. Using the Lusternik-Schnirelmann minimax scheme, in addition

to λ̂1(r) we can have a whole sequence {λ̂k(r)}k≥1 of distinct eigenvalues of

(2) such that λ̂k(r) → +∞ as k → +∞. These are known as variational or
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LS-eigenvalues. We do not know if they exhaust σ̂(r). This is the case if r = 2
(linear eigenvalue problem) or if N = 1.

We will also deal with a weighted version of (2). So, let m ∈ L∞(Ω) such
that m(z) ≥ 0 for a.a. z ∈ Ω, m ̸≡ 0. We consider the following eigenvalue
problem:

−∆ru(z) = λ̃m(z)|u(z)|r−2u(z) in Ω, u
∣∣
∂Ω

= 0. (4)

The spectrum σ̃(m, r) of (4) has the same properties as σ̂(r) and by λ̃(m, r)
we denote the eigenvalues of (4). In this case the variational characterization

of λ̃1(m, r) has the following form

0 < λ̃1(m, r) = inf

[
∥∇u∥rr∫

Ω
m(z)|u|rdz

: u ∈ W 1,r
0 (Ω), u ̸= 0

]
. (5)

Using (5), we easily infer the following monotonicity property for the map

m→ λ̃1(m, r).

Proposition 2. If m, m̂ ∈ L∞(Ω), 0 ≤ m(z) ≤ m̂(z) for a.a. z ∈ Ω, m ̸≡ 0,

m̂ ̸≡ m, 1 < r <∞, then λ̃1(m̂, r) < λ̃1(m, r).

We mention that for both eigenvalue problems (2) and (4), only the first
eigenvalue has eigenfunctions of constant sign. All the other eigenvalues have
eigenfunctions which are nodal (sign changing).

Let X be a Banach space and φ ∈ C1(X,R). By Kφ we denote the critical
set of φ, that is,

Kφ = {u ∈ X : φ′(u) = 0}.
Also, if c ∈ R, then we set

φc = {u ∈ X : φ(u) ≤ c}.

We say that φ ∈ C1(X,R) satisfies the “C-condition”, if the following holds:

“Every sequence {un}n≥1 ⊆ X such that {φ(un)}n≥1 ⊆ R is bounded and

(1 + ∥un∥X)φ′(un) → 0 in X∗ as n→ +∞,

admits a strongly convergent subsequence”.

This is a compactness-type condition on the functional φ(·) which compensates
for the fact that the ambient space X is not locally compact (being in general
infinite dimensional).

Let (Y1, Y2) be a topological pair such that Y2 ⊆ Y1 ⊆ X. For every k ∈ N0,
by Hk(Y1, Y2) we denote the k

th-relative singular homology group with integer
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coefficients for the pair (Y1, Y2). Then the critical groups of φ(·) at an isolated
u ∈ Kφ with c = φ(u), are defined by

Ck(φ, u) = Hk(φ
c ∩ U,φc ∩ U \ {u}) for all k ∈ N0,

with U being a neighborhood of u such that

Kφ ∩ φc ∩ U = {u}.

The excision property of singular homology implies that the above definition
of critical groups is independent of the isolating neighborhood U .

Suppose that φ satisfies the C-condition and inf φ(Kφ) > −∞. Let c <
inf φ(Kφ). Then the critical groups of φ at infinity are defined by

Ck(φ,∞) = Hk(X,φ
c) for all k ∈ N0.

The second deformation theorem (see Papageorgiou-Rădulescu-Repovš [20],
Theorem 5.3.12, p. 386) implies that this definition is independent of the
choice of the level c < inf φ(Kφ).

Assume that Kφ is finite. We set

M(t, u) =
∑
k∈N0

rank Ck(φ, u)t
k for all t ∈ R, all u ∈ Kφ,

P (t,∞) =
∑
k∈N0

rank Ck(φ,∞)tk for all t ∈ R.

Then the Morse relation says that∑
u∈Kφ

M(t, u) = P (t,∞) + (1 + t)Q(t) for all t ∈ R, (6)

where Q(t) =
∑
k∈N0

βkt
k is a formal series in t ∈ R with nonnegative integer

coefficients βk.
Finally given h1, h2 ∈ L∞(Ω), we write h1 ≺ h2 if for all K ⊆ Ω compact,

there exists cK > 0 such that

cK ≤ h2(z)− h1(z) for a.a. z ∈ K.

If h1, h2 ∈ C(Ω) and h1(z) < h2(z) for all z ∈ Ω, then clearly h1 ≺ h2.
Also for k, n ∈ N0, by δk,n we denote the Kronecker symbol defined by

δk,n =

{
1 if k = n

0 if k ̸= n.
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3. Constant Sign Solutions

In this section we produce constant sign smooth solutions for problem (1).
The hypotheses on the reaction f(z, x) are the following:

H1: f : Ω × R → R is a Carathéodory function such that f(z, 0) = 0 for a.a.
z ∈ Ω and

(i) |f(z, x)| ≤ a(z)[1 + |x|p−1] for a.a. z ∈ Ω, all x ∈ R, with a ∈ L∞(Ω);
(ii) there exists a function η ∈ L∞(Ω) such that

λ̂1(p) ≤ η(z) for a.a. z ∈ Ω, λ̂1(p) ̸≡ η,

η(z) ≤ lim inf
x→±∞

f(z, x)

|x|p−2x
uniformly for a.a. z ∈ Ω;

(iii) there exists a function η0 ∈ L∞(Ω) such that

λ̂1(q) ≤ η0(z) for a.a. z ∈ Ω, λ̂1(q) ̸≡ η0,

η0(z) ≤ lim inf
x→0

f(z, x)

|x|q−2x
uniformly for a.a. z ∈ Ω;

(iv) there exist ϑ− < 0 < ϑ+ such that f(z, ϑ+) ≤ ĉ0 < 0 < ĉ1 ≤ f(z, ϑ−)
for a.a. z ∈ Ω;

(v) for every ρ > 0, there exists ξ̂ρ > 0 such that for a.a. z ∈ Ω, the
function

x→ f(z, x) + ξ̂ρ|x|p−2x

is nondecreasing on [−ρ, ρ].

Remark 1. HypothesesH1(iii), (iv) imply that f(z, ·) has an oscillatory behavior
near zero. Hypothesis H1 (v) is a one-sided local Lipschitz condition and it is
satisfied if for a.a. z ∈ Ω, f(z, ·) is differentiable and for every ρ > 0, we can

find ξ̃ρ > 0 such that

f ′
x(z, x)x ≥ −ξ̃ρ|x|p for a.a. z ∈ Ω, all |x| ≤ ρ.

First using only the growth condition H1(i) and the local conditions near
zeroH1(iii), (iv), we will produce two nontrivial constant sign smooth solutions.

Proposition 3. If hypotheses H1(i), (iii), (iv) hold, then problem (1) has two
constant sign solutions

u0 ∈ intC+, u0(z) < ϑ+ for all z ∈ Ω,

v0 ∈ −intC+, ϑ− < v0(z) for all z ∈ Ω.
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Proof. First we produce the positive solution. To this end, we introduce the

Carathéodory function f̂+(z, x) defined by

f̂+(z, x) =

{
f(z, x+) if x ≤ ϑ+,

f(z, ϑ+) if ϑ+ < x.
(7)

We set F̂+(z, x) =
∫ x
0
f̂+(z, s)ds and consider the C1-functional φ̂+ : W 1,p

0 (Ω) →
R defined by

φ̂+(u) =
1

p
∥∇u∥pp +

1

q
∥∇u∥qq −

∫
Ω

F̂+(z, u)dz for all u ∈ W 1,p
0 (Ω).

From (2) it is clear that φ̂+(·) is coercive. Also, using the Sobolev embedding
theorem, we see that φ̂+(·) is sequentially weakly lower semicontinuous. So,
by the Weierstrass-Tonelli theorem, we can find u0 ∈ W 1,p

0 (Ω) such that

φ̂+(u0) = inf
[
φ̂+(u) : u ∈ W 1,p

0 (Ω)
]
. (8)

On account of hypothesis H1(iii), given ε > 0, we can find δ > 0 such that

F (z, x) ≥ 1

q
[η0(z)− ε] |x|q for a.a. z ∈ Ω, all |x| ≤ δ. (9)

We choose t ∈ (0, 1) small such that tû1(q)(z) ∈ [0, δ] for all z ∈ Ω (recall
that û1(q) ∈ intC+). We have

φ̂+(tû1(q)) ≤
tp

p
∥∇û1(q)∥pp +

tq

q

[
λ̂1(q)−

∫
Ω

η0(z)û1(q)
qdz + ε

]
(10)

(see (9) and recall that ∥û1(q)∥q = 1). Note that∫
Ω

η0(z)û1(q)
qdz − λ̂1(q) =

∫
Ω

[η0(z)− λ̂1(q)]û1(q)
qdz = β0 > 0

(see hypothesis H1(iii) and recall û1(q) ∈ intC+). So, if we choose ε ∈ (0, β0),
from (10) we have

φ̂+(tû1(q)) ≤ c1t
p − c2t

q for some c1, c2 > 0.

Since 1 < q < p, choosing t ∈ (0, 1) even smaller if necessary, we will have

φ̂+(tû1(q)) < 0,

⇒ φ̂+(u0) < 0 = φ̂+(0) (see (8)),

⇒ u0 ̸= 0.

From (8) we have

φ̂′
+(u0) < 0,
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⇒ ⟨Ap(u0), h⟩+ ⟨Aq(u0), h⟩ =
∫
Ω

f̂+(z, u0)hdz for all h ∈ W 1,p
0 (Ω). (11)

In (11) we choose h = −u−0 ∈ W 1,p
0 (Ω) and obtain

∥u−0 ∥p ≤ 0 (see (7)),

⇒ u0 ≥ 0, u0 ̸= 0.

Next in (11) we choose h = (u0 − ϑ+)
+ ∈ W 1,p

0 (Ω). Then

⟨Ap(u0), (u0 − ϑ+)
+⟩+ ⟨Aq(u0), (u0 − ϑ+)

+⟩

=

∫
Ω

f(z, ϑ+)(u0 − ϑ+)
+dz (see (7))

≤ 0 (see hypothesis H1(iv)),

⇒ u0 ≤ ϑ+.

So, we have proved that

u0 ∈ [0, ϑ+], u0 ̸= 0. (12)

From (12), (7) and (11), we infer that u0 is a positive solution of (1) and

−∆pu0(z)−∆qu0(z) = f(z, u0(z)) for a.a. z ∈ Ω. (13)

Invoking Theorem 7.1, p. 286, of Ladyzhenskaya-Ural′tseva [12] we have
that u0 ∈ L∞(Ω). Then the nonlinear regularity theory of Lieberman [14]
implies that u0 ∈ C+ \ {0}. On account of hypotheses H1(i), (iii), given ε > 0,
we can find c3 = c3(ε) > 0 such that

f(z, x) ≥ [η0(z)− ε]xq−1 − c3x
p−1 for a.a. z ∈ Ω, all x ≥ 0. (14)

Since q < p, we see that for ε, δ > 0 small, for a.a. z ∈ Ω, the function

x→ [η0(z)− ε]xq−1 − c3x
p−1

is nondecreasing on [0, δ]. Then (13), (14) and Theorem 5.4.1, p. 111, of
Pucci-Serrin [23] imply that

0 < u0(z) for all z ∈ Ω.

Finally invoking the nonlinear boundary point theorem (see Pucci-Serrin
[23], Theorem 5.5.1, p. 120), we have

u0 ∈ intC+.

Let ξ̂ϑ+ > 0 be as postulated by hypothesis H1(v). We have

−∆pu0(z)−∆qu0(z) + ξ̂ϑ+u0(z)
p−1

= f(z, u0(z)) + ξ̂ϑ+u0(z)
p−1
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≤ f(z, ϑ+) + ξ̂ϑ+ϑ
p−1
+

≤ −∆pϑ+ −∆qϑ+ + ξ̂ϑ+ϑ
p−1
+ .

Invoking Proposition 3.2 of Gasiński-Papageorgiou [9] we obtain

u0(z) < ϑ+ for all z ∈ Ω.

For the negative solution, we introduce the Carathéodory function f̂−(z, x)
defined by

f̂−(z, x) =

{
f(z, ϑ−) if x < ϑ−,

f(z,−x−) if ϑ− ≤ x.
(15)

We set F̂−(z, x) =
∫ x
0
f̂−(z, s)ds and consider the C1-functional φ̂− : W 1,p

0 (Ω) →
R defined by

φ̂−(u) =
1

p
∥∇u∥pp +

1

q
∥∇u∥qq −

∫
Ω

F̂−(z, u)dz for all u ∈ W 1,p
0 (Ω).

Working with φ̂−(·) as above and using (15), we produce a negative solution
v0 such that

v0 ∈ [ϑ−, 0] ∩ (−intC+), ϑ− < v0(z) for all z ∈ Ω.

□

Now using u0, v0 from the above proposition and making use also of hypothesis
H1(ii) (the asymptotic condition as x → ±∞), we will generate two more
nontrivial constant sign smooth solutions of (1), which are localized with
respect to u0 and v0.

Proposition 4. If hypotheses H1(i)−(iv) hold, then problem (1) has two more
constant sign solutions û ∈ intC+ and v̂ ∈ −intC+ such that u0 ≤ û, u0 ̸= û
and v̂ ≤ v0, v0 ̸= v̂.

Proof. First we produce the second positive solution.
Let u0 ∈ intC+ be the positive solution produced in Proposition 3. We

introduce the Carathéodory function g+(z, x) defined by

g+(z, x) =

{
f(z, u0(z)) if x ≤ u0(z),

f(z, x) if u0(z) < x.
(16)

We setG+(z, x) =
∫ x
0
g+(z, s)ds and consider the C1-functional ψ+ : W 1,p

0 (Ω) →
R defined by

ψ+(u) =
1

p
∥∇u∥pp +

1

q
∥∇u∥qq −

∫
Ω

G+(z, u)dz for all u ∈ W 1,p
0 (Ω).
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Claim 1: ψ+(·) satisfies the C-condition.
We consider a sequence {un}n≥1 ⊆ W 1,p

0 (Ω) such that {ψ+(un)}n≥1 ⊆ R is
bounded and

(1 + ∥un∥)ψ′
+(un) → 0 in W−1,p′(Ω) = W 1,p

0 (Ω)∗ as n→ +∞ (17)

(recall that 1
p
+ 1

p′
= 1).

From (17) we have∣∣∣∣⟨Ap(un), h⟩+ ⟨Aq(un), h⟩ −
∫
Ω

g+(z, un)hdz

∣∣∣∣ ≤ εn∥h∥
1 + ∥un∥

(18)

for all h ∈ W 1,p
0 (Ω), with εn → 0+. In (18) we choose h = −u−n ∈ W 1,p

0 (Ω) and
obtain

∥∇u−n ∥pp ≤ c4
[
1 + ∥u−n ∥

]
for some c4 > 0, all n ∈ N (see (16)),

⇒ {u−n }n≥1 ⊆ W 1,p
0 (Ω) is bounded. (19)

Suppose that {u+n }n≥1 ⊆ W 1,p
0 (Ω) is not bounded. We may assume that

∥u+n ∥ → +∞ as n→ +∞. (20)

We set yn =
u+n
∥u+n ∥

, n ∈ N. Then ∥yn∥ = 1, yn ≥ 0 for all n ∈ N. We may

assume that
yn

w−→ y in W 1,p
0 (Ω), yn → y in Lp(Ω), y ≥ 0. (21)

From (18) and (19) we have∣∣∣∣⟨Ap(u+n ), h⟩+ ⟨Aq(u+n ), h⟩ −
∫
Ω

g+(z, u
+
n )hdz

∣∣∣∣ ≤ c5∥h∥

for some c5 > 0, all h ∈ W 1,p
0 (Ω) (see (16)),

⇒
∣∣∣∣⟨Ap(yn), h⟩+ 1

∥u+n ∥p−q
⟨Aq(yn), h⟩ −

∫
Ω

g+(z, u
+
n )

∥u+n ∥p−1
hdz

∣∣∣∣ ≤ c5∥h∥
∥u+n ∥p−1

(22)

for all h ∈ W 1,p
0 (Ω).

From (16) and hypothesis H1(i), we have

|g+(z, x)| ≤ c6[1 + |x|p−1] for a.a. z ∈ Ω, all x ∈ R, some c6 > 0.

Hence we have∣∣∣∣g+(z, u+n )∥u+n ∥p−1

∣∣∣∣ ≤ c6

[
1

∥u+n ∥p−1
+ yp−1

n

]
for all n ∈ N,

⇒
{
g+(·, u+n (·))
∥u+n ∥p−1

}
n≥1

⊆ Lp
′
(Ω) is bounded (see (20)). (23)
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From (23), hypothesis H1(ii) and by passing to a subsequence if necessary
we have

g+(·, u+n (·))
∥u+n ∥p−1

w−→ η̂(·)yp−1 in Lp
′
(Ω) as n→ +∞, (24)

where η̂ ∈ L∞(Ω), η(z) ≤ η̂(z) for a.a. z ∈ Ω (see Aizicovici-Papageorgiou-
Staicu [1], proof of Proposition 29).

In (22) we choose h = yn − y ∈ W 1,p
0 (Ω), pass to the limit as n → +∞ and

use (21), (24) and (20). We obtain

lim
n→+∞

⟨Ap(yn), yn − y⟩ = 0,

⇒ yn → y in W 1,p
0 (Ω) and so ∥y∥ = 1, y ≥ 0 (see Proposition 1). (25)

If in (22) we pass to the limit as n→ +∞ and use (24), (25) and (20) (recall
q < p), then we have

⟨Ap(y), h⟩ =
∫
Ω

η̂(z)yp−1hdz for all h ∈ W 1,p
0 (Ω),

⇒ −∆py(z) = η̂(z)y(z)p−1 for a.a. z ∈ Ω, y
∣∣∣
∂Ω

= 0. (26)

Recall that η(z) ≤ η̂(z) for a.a. z ∈ Ω. So, on account of hypothesis H1 (ii)
and Proposition 2, we have

λ̃1(η̂, p) < λ̃1(λ̂1(p), p) = 1. (27)

From (26) and (27) it follows that y must be nodal, a contradiction (see
(25)). This means that

{u+n }n≥1 ⊆ W 1,p
0 (Ω) is bounded,

⇒ {un}n≥1 ⊆ W 1,p
0 (Ω) is bounded (see (19)).

So, we may assume that

un
w−→ u in W 1,p

0 (Ω) and un → u in Lp(Ω). (28)

In (18) we choose h = un − u ∈ W 1,p
0 (Ω), pass to the limit as n→ +∞ and

use (22). Then

lim
n→+∞

[⟨Ap(un), un − u⟩+ ⟨Aq(un), un − u⟩] = 0,

⇒ lim sup
n→+∞

[⟨Ap(un), un − u⟩+ ⟨Aq(u), un − u⟩] ≤ 0 (since Aq(·) is monotone),

⇒ lim sup
n→+∞

⟨Ap(un), un − u⟩ ≤ 0 (see (28)),

⇒ un → u in W 1,p
0 (Ω) (see Proposition 1).
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So ψ+(·) satisfies the C-condition and this proves Claim 1.
Using (16) and the nonlinear regularity theory (see Lieberman [14]), we

obtain that
Kψ+ ⊆ [u0) ∩ intC+. (29)

Without any loss of generality, we may assume that

Kψ+ ∩ [u0, ϑ+] = {u0}. (30)

Otherwise we already have a second positive smooth solution bigger than u0
and so we are done.

Claim 2: u0 is a local minimizer of the functional ψ+(·).
Consider the following truncation of g+(z, ·):

ĝ+(z, x) =

{
g+(z, x) if x ≤ ϑ+,

g+(z, ϑ+) if ϑ+ < x.
(31)

This is a Carathéodory function. We set Ĝ+(z, x) =
∫ x
0
ĝ+(z, s)ds and

consider the C1-functional ψ̂+ : W 1,p
0 (Ω) → R defined by

ψ̂+(u) =
1

p
∥∇u∥pp +

1

q
∥∇u∥qq −

∫
Ω

Ĝ+(z, u)dz for all u ∈ W 1,p
0 (Ω).

From (31) we see that ψ̂+(·) is coercive. Also, it is sequentially weakly lower
semicontinuous. So, we can find û0 ∈ W 1,p

0 (Ω) such that

ψ̂+(u0) = min
[
ψ̂+(u) : u ∈ W 1,p

0 (Ω)
]
,

⇒ û0 ∈ Kψ̂+
. (32)

Using (31) we see that

Kψ̂+
⊆ [u0, ϑ+] ∩ intC+, (33)

ψ̂+

∣∣∣
[0,ϑ+]

= ψ+

∣∣∣
[0,ϑ+]

, ψ̂′
+

∣∣∣
[0,ϑ+]

= ψ′
+

∣∣∣
[0,ϑ+]

. (34)

Then from (32), (33), (34) and (30), we infer that

û0 = u0 ∈ intC+.

Recall that

u0(z) < ϑ+ for all z ∈ Ω (see Proposition 3).

Then from (34) we have that

u0 is a local C1
0(Ω)-minimizer of ψ+(·),

⇒ u0 is a local W 1,p
0 (Ω)-minimizer of ψ+(·) (see Gasiński-Papageorgiou [6]).
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This proves Claim 2.
From (29) it is clear that we may assume that

Kψ+ is finite. (35)

Otherwise we already have an infinity of positive smooth solutions of (1)
which are bigger than u0.
From Claim 2, (35) and Theorem 5.7.6, p. 449, of Papageorgiou-Rădulescu-

Repovš [20], we know that we can find ρ ∈ (0, 1) small such that

ψ+(u0) < inf [ψ+(u) : ∥u− u0∥ = ρ] = m+. (36)

On account of hypotheses H1(i), (ii) and (16), we see that given ε > 0 we
can find c7 = c7(ε) > 0 such that

G+(z, x) ≥
1

p
[η(z)− ε]xp − c7 for a.a. z ∈ Ω, all x ≥ 0. (37)

Then we have

ψ+(tû1(p)) ≤
tp

p
λ̂1(p) +

tq

q
∥∇(tû1(p))∥qq −

tp

p

∫
Ω

η(z)û1(p)
pdz +

εtp

p
+ c8

for some c8 > 0 (see (37) and recall that ∥û1(p)∥p = 1)

=
tp

p

[∫
Ω

[λ̂1(p)− η(z)]û1(p)
pdz + ε

]
+
tq

q
∥∇(tû1(p))∥qq + c8.

Since û1(p) ∈ intC+, using hypothesis H1(ii) we see that

β̂ =

∫
Ω

[η(z)− λ̂1(p)]û1(p)
pdz > 0.

Choosing ε ∈ (0, β̂), we obtain

ψ+(tû1(p)) ≤
tq

q
∥∇(tû1(p))∥qq − c9t

p + c8 for some c9 > 0, all t > 0,

⇒ ψ+(tû1(p)) → −∞ as t→ +∞ (recall that q < p). (38)

Then Claim 1, (36) and (38) permit the use of the mountain pass theorem.
So, we can find û ∈ W 1,p

0 (Ω) such that

û ∈ Kψ+ and m+ ≤ ψ+(û). (39)

From (39), (36) and (29), we infer that

û ∈ [u0) ∩ intC+, û ̸= u0,

⇒ û ∈ intC+ is a positive solution of (1) (see (16)), u0 ≤ û, u0 ̸= û.
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To produce a second negative solution, we introduce the Carathéodory
function g−(z, x) defined by

g−(z, x) =

{
f(z, x) if x < v0(z),

f(z, v0(z)) if v0(z) ≤ x
(40)

(v0 ∈ −intC+ is the negative solution from Proposition 3).
We setG−(z, x) =

∫ x
0
g−(z, s)ds and consider the C1-functional ψ− : W 1,p

0 (Ω) →
R defined by

ψ−(u) =
1

p
∥∇u∥pp +

1

q
∥∇u∥qq −

∫
Ω

G−(z, u)dz for all u ∈ W 1,p
0 (Ω).

Working as above, using this time ψ−(·), (40) and ϑ− < 0, we produce a
second negative solution v̂ ∈ W 1,p

0 (Ω) such that

v̂ ∈ −intC+, v̂ ≤ v0, v0 ̸= v̂.

□

Next we will show that problem (1) admits extremal constant sign solutions,
that is, a smallest positive solution u∗ ∈ intC+ and a biggest negative solution
v∗ ∈ −intC+. In Section 4 we will use these extremal constant sign solutions
in order to produce a nodal solution for problem (1).

To produce the extremal constant sign solutions, we need to do some preparatory
work. Hypotheses H1(i), (ii) imply that given ε > 0, we can find c10 = c10(ε) >
0 such that

f(z, x)x ≥ [η0(z)− ε]|x|q − c10|x|p for a.a. z ∈ Ω, all x ∈ R. (41)

Motivated by this unilateral growth condition on the reaction f(z, ·), we
introduce the following auxiliary Dirichlet (p, q)-problem{

−∆pu(z)−∆qu(z) = [η0(z)− ε]|u(z)|q−2u(z)− c10|u(z)|p−2u(z) in Ω,

u
∣∣
∂Ω

= 0, 1 < q < p, ε > 0.

(42)

Proposition 5. For all ε > 0 small, problem (42) admits a unique positive
solution u ∈ intC+ and since the problem is odd, v = −u ∈ −intC+ is the
unique negative solution of (42).

Proof. First we prove the existence of a positive solution for problem (42) when
ε > 0 is small.

To this end, let σ+ : W 1,p
0 (Ω) → R be the C1-functional defined by

σ+(u) =
1

p
∥∇u∥pp+

1

q
∥∇u∥qq−

1

q

∫
Ω

[η0(z)−ε](u+)qdz+
c10
p
∥u+∥pp for all u ∈ W 1,p

0 (Ω).
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Since q < p, it is clear that σ+(·) is coercive. Also, it is sequentially weakly
lower semicontinuous. So, we can find u ∈ W 1,p

0 (Ω) such that

σ+(u) = min
[
σ+(u) : u ∈ W 1,p

0 (Ω)
]
. (43)

Let t ∈ (0, 1). We have

σ+(tû1(q)) ≤ c11t
p +

tq

q

[
λ̂1(q)−

∫
Ω

η0(z)û1(q)
qdz + ε

]
for some c11 > 0 (recall that ∥û1(q)∥q = 1)

= c11t
p − tq

q

[∫
Ω

[η0(z)− λ̂1(q)]û1(q)
qdz − ε

]
.

Note that

γ0 =

∫
Ω

[η0(z)− λ̂1(q)]û1(q)
qdz > 0

(see hypothesis H1(iii) and recall that û1(q) ∈ intC+). So, if we let ε ∈ (0, γ0),
then

σ+(tû1(q)) ≤ c11t
p − c12t

q for some c12 > 0.

Since q < p, choosing t ∈ (0, 1) small, we have

σ+(tû1(q)) < 0,

⇒ σ+(u) < 0 = σ+(0) (see (43)),

⇒ u ̸= 0.

From (43) we have

σ′
+(u) = 0,

⇒ ⟨Ap(u), h⟩+ ⟨Aq(u), h⟩ =
∫
Ω

[η0(z)− ε] (u+)q−1hdz − c10

∫
Ω

(u+)p−1hdz

for all h ∈ W 1,p
0 (Ω).

Let h = −u− ∈ W 1,p
0 (Ω). Then

∥∇u−∥pp + ∥∇u−∥qq = 0,

⇒ u ≥ 0, u ̸= 0,

⇒ u is a positive solution of (42).

The nonlinear regularity theory implies that u ∈ C+ \ {0}. Also, we have

∆pu(z) + ∆qu(z) ≤ c10u(z)
p−1 for a.a. z ∈ Ω,

⇒ u ∈ intC+ (see Pucci-Serrin [23], pp. 111, 120).
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Next we show the uniqueness of this positive solution. To this end, let ũ ∈
W 1,p

0 (Ω) be another positive solution of (42). Again the nonlinear regularity
theory implies that ũ ∈ intC+. We consider the integral functional j : L1(Ω) →
R = R ∪ {+∞} defined by

j(u) =


1

p
∥∇u1/q∥pp +

1

q
∥∇u1/q∥qq if u ≥ 0, u1/q ∈ W 1,p

0 (Ω),

+∞ otherwise.

From Lemma 1 of Dı́az-Saa [3], we have that j(·) is convex. Let dom j = {u ∈
L1(Ω) : j(u) < ∞} (the effective domain of j(·)). Let h = uq − ũq ∈ C1

0(Ω).
Then for |t| ≤ 1, we have

uq + th ∈ dom j and ũq + th ∈ dom j.

Exploiting the convexity of j(·), we see that the Gateaux derivative of j(·)
at uq and at ũq in the direction h exists and via the nonlinear Green’s identity
we have

j′(uq)(h) =
1

q

∫
Ω

−∆pu−∆qu

uq−1 hdz,

j′(ũq)(h) =
1

q

∫
Ω

−∆pũ−∆qũ

ũq−1
hdz.

The convexity of j(·) implies the monotonicity of j′(·). Hence we have

0 ≤ c10
q

∫
Ω

[
ũp−q − up−q

]
(uq − ũq)dz,

⇒ ũ = u (since q < p).

This proves the uniqueness of the positive solution u ∈ intC+ of problem (42).
Since the problem is odd, v = −u ∈ −intC+ is the unique negative solution
of (42). □

Let S+ (resp. S−) be the set of positive (resp. negative) solutions of problem
(1). We know that

∅ ≠ S+ ⊆ intC+ and ∅ ≠ S− ⊆ −intC+ (see Proposition 3).

Proposition 6. If hypotheses H1 hold, then u ≤ u for all u ∈ S+ and v ≤ v
for all v ∈ S−.

Proof. Let u ∈ S+ and consider the Carathéodory function k+(z, x) defined by

k+(z, x) =

{
[η0(z)− ε](x+)q−1 − c10(x

+)p−1 if x ≤ u(z),

[η0(z)− ε]u(z)q−1 − c10u(z)
p−1 if u(z) < x.

(44)



ON NONCOERCIVE (p, q)-EQUATIONS 17

We setK+(z, x) =
∫ x
0
k+(z, s)ds and consider the C1-functional σ̂+ : W 1,p

0 (Ω) →
R defined by

σ̂+(u) =
1

p
∥∇u∥pp +

1

q
∥∇u∥qq −

∫
Ω

K+(z, u)dz for all u ∈ W 1,p
0 (Ω).

From (44) it is clear that σ̂+(·) is coercive. Also, it is sequentially weakly
lower semicontinuous. So, we can find ũ ∈ W 1,p

0 (Ω) such that

σ̂+(ũ) = min[σ̂+(u) : u ∈ W 1,p
0 (Ω)]. (45)

As before (see the proof of Proposition 5), since q < p, we have that

σ̂+(ũ) < 0 = σ̂+(0),

⇒ ũ ̸= 0.

From (45) we have

σ̂′
+(ũ) = 0,

⇒ ⟨Ap(ũ), h⟩+ ⟨Aq(ũ), h⟩ =
∫
Ω

k+(z, ũ)hdz for all h ∈ W 1,p
0 (Ω). (46)

In (46), we choose h = −ũ− ∈ W 1,p
0 (Ω). Then

∥∇ũ−∥pp + ∥∇ũ−∥qq = 0 (see (44)),

⇒ ũ ≥ 0, ũ ̸= 0.

Next in (46) we choose h = (ũ− u)+ ∈ W 1,p
0 (Ω). Then

⟨Ap(ũ), (ũ− u)+⟩+ ⟨Aq(ũ), (ũ− u)+⟩

=

∫
Ω

(
[η0(z)− ε]uq−1 − c10u

p−1
)
(ũ− u)+dz (see (44))

≤
∫
Ω

f(z, u)(ũ− u)+dz (see (41))

= ⟨Ap(u), (ũ− u)+⟩+ ⟨Aq(u), (ũ− u)+⟩ (since u ∈ S+),

⇒ ũ ≤ u.

We have proved that

ũ ∈ [0, u], ũ ̸= 0. (47)

Then from (47), (44), (46), we infer that ũ is a positive solution of problem
(42). Therefore ũ = u ∈ intC+ (see Proposition 5). So, we have

u ≤ u for all u ∈ S+.

Similarly we show that v ≤ v for all v ∈ S−. □



18 NIKOLAOS S. PAPAGEORGIOU, CALOGERO VETRO, FRANCESCA VETRO

Now we are ready to produce the extremal constant sign solutions of problem
(1). As we already mentioned, in Section 4 using these solutions, we will be
able to produce a nodal solution.

Proposition 7. If hypotheses H1 hold, then problem (1) admits extremal
constant sign solutions, that is,

• there exists u∗ ∈ S+ such that u∗ ≤ u for all u ∈ S+;
• there exists v∗ ∈ S− such that v ≤ v∗ for all v ∈ S−.

Proof. From Filippakis-Papageorgiou [4] we know that S+ is downward directed
(that is, if u1, u2 ∈ S+, then we can find u ∈ S+ such that u ≤ u1, u ≤ u2).
Invoking Lemma 3.10, p. 178, of Hu-Papageorgiou [11], we can find {un}n≥1 ⊆
S+ decreasing such that

inf
n≥1

un = inf S+.

We have

⟨Ap(un), h⟩+ ⟨Aq(un), h⟩ =
∫
Ω

f(z, un)hdz for all h ∈ W 1,p
0 (Ω), all n ∈ N,

(48)

u ≤ un ≤ u1 for all n ∈ N. (49)

From (48) with h = un ∈ W 1,p
0 (Ω) and (49), it follows that {un}n≥1 ⊆

W 1,p
0 (Ω) is bounded. So, we may assume that

un
w−→ u∗ in W 1,p

0 (Ω) and un → u∗ in Lp(Ω). (50)

In (48) we choose h = un− u∗ ∈ W 1,p
0 (Ω), pass to the limit as n→ +∞ and

use (50). Then as in the proof of Proposition 4 (see Claim 1), we obtain

un → u∗ in W 1,p
0 (Ω). (51)

So, if in (48) we pass to the limit as n→ +∞ and use (51), we obtain

⟨Ap(u∗), h⟩+ ⟨Aq(u∗), h⟩ =
∫
Ω

f(z, u∗)hdz for all h ∈ W 1,p
0 (Ω).

Since u ≤ u∗ (see (49)), we infer that

u∗ ∈ S+ and u∗ = inf S+.

The set of negative solutions S− is upward directed (that is, if v1, v2 ∈ S−,
then we can find v ∈ S− such that v1 ≤ v, v2 ≤ v). So we can find {vn}n≥1 ⊆
S− increasing such that

sup
n≥1

vn = supS−.
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Reasoning as above, we obtain that

vn → v∗ in W 1,p
0 (Ω), v∗ ∈ S−, v∗ = supS−, v∗ ≤ v.

□

4. Nodal Solutions

In this section using the extremal constant sign solutions produced in Proposition
6 and by strengthening the condition on f(z, ·) near zero, we produce a nodal
solution.

The new hypotheses on the reaction f(z, x) are the following:

H2: f : Ω × R → R is a Carathéodory function such that f(z, 0) = 0 for
a.a. z ∈ Ω, hypotheses H2(i), (ii), (iv), (v) are the same as the corresponding
hypotheses H1(i), (ii), (iv), (v) and

(iii) lim
x→0

f(z, x)

|x|q−2x
= +∞ uniformly for a.a. z ∈ Ω,

there exists 1 < τ < q such that

lim
x→0

f(z, x)

|x|τ−2x
= 0 uniformly for a.a. z ∈ Ω,

0 ≤ lim inf
x→0

τF (z, x)− f(z, x)x

|x|p
uniformly for a.a. z ∈ Ω,

with F (z, x) =
∫ x
0
f(z, s)ds.

Remark 2. Evidently hypothesis H2(iii) is more restrictive than hypothesis
H1(iii). Note that H1(iii) allowed nonlinearities with (p − 1)-linear growth
near zero. Under hypothesis H2(iii) this is no longer possible.

Example 1. The following function satisfies hypotheses H2 (for the sake of
simplicity we drop the z-dependence):

f(x) =

{
η[|x|r−2x− |x|s−2x] if |x| ≤ 1,

η[|x|p−2x− |x|η−2x] if 1 < |x|,

with η > λ̂1(p) and 1 < s < r < q, η < p.

Proposition 8. If hypotheses H2 hold, then problem (1) admits a nodal solution
ŷ ∈ [v∗, u∗] ∩ C1

0(Ω) and if q = 2, then ŷ ∈ intC1
0 (Ω)[v∗, u∗].

Proof. Let u∗ ∈ intC+ and v∗ ∈ −intC+ be the two extremal constant sign
solutions of (1) produced in Proposition 7. We introduce the Carathéodory
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function w(z, x) defined by

w(z, x) =


f(z, v∗(z)) if x < v∗(z),

f(z, x) if v∗(z) ≤ x ≤ u∗(z),

f(z, u∗(z)) if u∗(z) < x.

(52)

Also we consider the positive and negative truncations of w(z, ·), namely the
Carathéodory functions

w±(z, x) = w(z,±x±) for all (z, x) ∈ Ω× R. (53)

We set W (z, x) =
∫ x
0
w(z, s)ds and W±(z, x) =

∫ x
0
w±(z, s)ds and consider

the C1-functionals β̂, β̂± : W 1,p
0 (Ω) → R defined by

β̂(u) =
1

p
∥∇u∥pp +

1

q
∥∇u∥qq −

∫
Ω

W (z, u)dz,

β̂±(u) =
1

p
∥∇u∥pp +

1

q
∥∇u∥qq −

∫
Ω

W±(z, u)dz for all u ∈ W 1,p
0 (Ω).

Using (52) and (53) we can easily check that

Kβ̂ ⊆ [v∗, u∗] ∩ C1
0(Ω), Kβ̂+

⊆ [0, u∗] ∩ C+, Kβ̂−
⊆ [v∗, 0] ∩ (−C+).

The extremality of v∗ and u∗ implies that

Kβ̂ ⊆ [v∗, u∗] ∩ C1
0(Ω), Kβ̂+

= {0, u∗}, Kβ̂−
= {v∗, 0}. (54)

From (52) and (53) it is clear that β̂+(·) is coercive. Also, it is sequentially
weakly lower semicontinuous. So, we can find û∗ ∈ W 1,p

0 (Ω) such that

β̂+(û∗) = min
[
β̂+(u) : u ∈ W 1,p

0 (Ω)
]
. (55)

On account of hypothesis H2(iii) we have that

β̂+(û∗) < 0 = β̂+(0),

⇒ û∗ ̸= 0. (56)

From (55) we have that û∗ ∈ Kβ̂+
, hence û∗ = u∗ (see (54), (56)).

Note that β̂
∣∣
C+

= β̂+
∣∣
C+

. So, it follows that

u∗ is a local C1
0(Ω)-minimizer of β̂,

⇒ u∗ is a local W 1,p
0 (Ω)-minimizer of β̂ (see Gasiński-Papageorgiou [6]).

(57)

Similarly we show that

v∗ is a local W 1,p
0 (Ω)-minimizer of β̂. (58)
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We assume thatKβ̂ is finite or otherwise on account of (54) and the extremality

of u∗ and v∗, we already have an infinity of nodal solutions. Then (57), (58)
and the mountain pass theorem imply that we can find ŷ ∈ W 1,p

0 (Ω) such that

ŷ ∈ Kβ̂ ⊆ [v∗, u∗] ∩ C1
0(Ω) (see (54)), ŷ ̸∈ {v∗, u∗}.

So, if we can show that ŷ ̸= 0, then ŷ will be a nodal solution of problem
(1).

Hypothesis H2(iii) and Proposition 6 of Leonardi-Papageorgiou [13] imply
that

Ck(β̂, 0) = 0 for all k ∈ N0. (59)

On the other hand, we know that ŷ ∈ Kβ̂ is a critical point of mountain
pass type. Therefore

C1(β̂, ŷ) ̸= 0 (60)

(see Papageorgiou-Rădulescu-Repovš [20], Theorem 6.5.8, p. 527). From (59)
and (60) it follows that ŷ ̸= 0 and so it is a nodal solution of (1).

Finally we show that ŷ ∈ intC1
0 (Ω)[v∗, u∗], when q = 2.

As in the proof of Proposition 3, using the tangency principle of Pucci-Serrin
[23] (Theorem 2.5.2, p. 35), we have

v∗(z) < ŷ(z) < u∗(z) for all z ∈ Ω. (61)

Set ρ = max{∥v∗∥∞, ∥u∗∥∞} and let ξ̂ρ > 0 be as postulated by hypothesis

H2(v) = H1(v). Let ξ̃ρ > ξ̂ρ. We have

−∆pŷ(z)−∆ŷ(z) + ξ̃ρ|ŷ(z)|p−2ŷ(z)

= f(z, ŷ(z)) + ξ̂ρ|ŷ(z)|p−2ŷ(z) + [ξ̃ρ − ξ̂ρ]|ŷ(z)|p−2ŷ(z)

≤ f(z, u∗(z)) + ξ̂ρu∗(z)
p−1 + [ξ̃ρ − ξ̂ρ]u∗(z)

p−1

(see (61) and hypothesis H2(v) = H1(v))

= −∆pu∗(z)−∆u∗(z) + ξ̃ρu∗(z)
p−1 for a.a. z ∈ Ω. (62)

Note that

f(z, ŷ(z)) + ξ̂ρ|ŷ(z)|p−2ŷ(z) ≤ f(z, u∗(z)) + ξ̂ρu∗(z)
p−1 for a.a. z ∈ Ω,

⇒ [ξ̃ρ − ξ̂ρ]|ŷ|p−2ŷ ≺ [ξ̃ρ − ξ̂ρ]u
p−1
∗ (see Section 2).

So, from (62) and Proposition 3.2 of Gasiński-Papageorgiou [9], we have

u∗ − ŷ ∈ intC+.

In a similar fashion, we show that

ŷ − v∗ ∈ intC+.
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We conclude that

ŷ ∈ intC1
0 (Ω)[v∗, u∗].

□

We can state the following multiplicity theorem for problem (1).

Theorem 1. If hypotheses H2 hold, then

(a) problem (1) admits at least five nontrivial solutions
u0, û ∈ intC+, u0 ≤ û, u0 ̸= û,
v0, v̂ ∈ −intC+, v̂ ≤ v0, v0 ̸= v̂,
ŷ ∈ [v0, u0] ∩ C1

0(Ω) and ŷ ∈ intC1
0 (Ω)[v0, u0] if q = 2;

(b) problem (1) admits extremal constant sign solutions
u∗ ∈ intC+ and v∗ ∈ −intC+

(that is, u∗ ≤ u for all u ∈ S+ = set of positive solutions of (1) and
v ≤ v∗ for all v ∈ S− = set of negative solutions of (1)).

Remark 3. We point out that in the above theorem, not only we provide sign
information for all the solutions produced, but the solutions are also ordered
(that is, v̂ ≤ v0 ≤ ŷ ≤ u0 ≤ û). In the above theorem the nodal solution was
obtained at the expense of requiring that f(z, ·) is strictly (q − 1)-sublinear
near zero (presence of a concave term near zero, see hypothesis H2(iii)). If
q = 2, then we can treat also the case of linear growth near zero. This is done
in the next section using critical groups.

5. The (p, 2)-Equation

In this section we deal with the following particular case of problem (1):

−∆pu(z)−∆u(z) = f(z, u(z)) in Ω, u
∣∣
∂Ω

= 0, 2 < p <∞. (63)

The hypotheses on the reaction f(z, x) are the following:

H3: f : Ω × R → R is a measurable function such that for a.a. z ∈ Ω
f(z, 0) = 0, f(z, ·) ∈ C1(R) and

(i) |f ′
x(z, x)| ≤ a(z)[1 + |x|r−2] for a.a. z ∈ Ω, all x ∈ R, with a ∈ L∞(Ω),

p ≤ r < p∗ =

{
Np
N−p if p < N

+∞ if N ≤ p
;

(ii) there exist a function η ∈ L∞(Ω) and c∞ > ∥η∥∞ such that

λ̂1(p) ≤ η(z) for a.a. z ∈ Ω, η ̸≡ λ̂1(p),

η(z) ≤ lim inf
x→±∞

f(z, x)

|x|p−2x
≤ lim sup

x→±∞

f(z, x)

|x|p−2x
≤ c∞ uniformly for a.a. z ∈ Ω;
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(iii) there exists m ∈ N, m ≥ 2 such that

λ̂m(2) ≤ f ′
x(z, 0) ≤ λ̂m+1(2) for a.a. z ∈ Ω,

f ′
x(·, 0) ̸≡ λ̂m(2), f ′

x(·, 0) ̸≡ λ̂m+1(2);

(iv) there exist ϑ− < 0 < ϑ+ such that f(z, ϑ+) ≤ ĉ0 < 0 < ĉ1 ≤ f(z, ϑ−)
for a.a. z ∈ Ω;

(v) for every ρ > 0, there exists ξ̂ρ > 0 such that for a.a. z ∈ Ω, the

function x→ f(z, x) + ξ̂ρ|x|p−2x is nondecreasing on [−ρ, ρ].

Remark 4. Hypothesis H3(iii) dictates a linear growth for f(z, ·) near zero.
This is in contrast to hypothesis H2(iii). In that hypothesis we required that
f(z, ·) is strictly (q − 1)-sublinear near zero.

Proposition 9. If hypotheses H3 hold, then problem (63) has at least two
nodal solutions ŷ, ỹ ∈ intC1

0 (Ω)[v∗, u∗].

Proof. Reasoning as in the proof of Proposition 8 and since m ≥ 2, we produce
a solution

ŷ ∈ intC1
0 (Ω)[v∗, u∗]. (64)

This solution is obtained via an application of the mountain pass theorem
(see the proof of Proposition 8). Therefore

C1(β̂, ŷ) ̸= 0 (see (60)). (65)

Let φ : W 1,p
0 → R be the energy functional of problem (63) defined by

φ(u) =
1

p
∥∇u∥pp +

1

2
∥∇u∥22 −

∫
Ω

F (z, u)dz for all u ∈ W 1,p
0 (Ω).

Note that φ ∈ C2(W 1,p
0 (Ω),R). Using (64) and a standard homotopy

invariance argument (see Papageorgiou-Rădulescu-Repovš [20], Theorem 6.3.6,
p. 505), we obtain that

Ck(φ, ŷ) = Ck(β̂, ŷ) for all k ∈ N0,

⇒ C1(φ, ŷ) ̸= 0 (see (65)),

⇒ Ck(φ, ŷ) = δk,1Z for all k ∈ N0,

since φ ∈ C2(W 1,p
0 (Ω),R), see Papageorgiou-Rădulescu [17], Claim 3, p. 412.

Therefore

Ck(β̂, ŷ) = δk,1Z for all k ∈ N0. (66)
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Using f ′
x(·, 0) ∈ L∞(Ω), we introduce the C2-functional γ̂ : H1

0 (Ω) → R
defined by

γ̂(u) =
1

2
∥∇u∥22 −

1

2

∫
Ω

f ′
x(z, 0)u

2dz for all u ∈ H1
0 (Ω).

On account of hypothesis H3(iii), we have

Ck(γ̂, 0) = δk,dmZ for all k ∈ N0, with dm = dim
⊕m

i=1E(λ̂i(2)), (67)

(see Papageorgiou-Rădulescu-Repovš [20], Proposition 6.2.6, p. 479). Here by

E(λ̂i(2)) we denote the eigenspace corresponding to the eigenvalue λ̂i(2).
Let γ = γ̂

∣∣
W 1,p

0 (Ω)
. Since W 1,p

0 (Ω) ↪→ H1
0 (Ω) densely, using Theorem 6.6.26,

p. 545, of Papageorgiou-Rădulescu-Repovš [20], we have

Ck(γ, 0) = Ck(γ̂, 0) for all k ∈ N0,

⇒ Ck(γ, 0) = δk,dmZ for all k ∈ N0 (see (67)). (68)

The norm continuity of critical groups (see Papageorgiou-Rădulescu-Repovš
[20], Theorem 6.3.4, p. 503), implies that

Ck(β̂, 0) = Ck(γ, 0) for all k ∈ N0,

⇒ Ck(β̂, 0) = δk,dmZ for all k ∈ N0 (see (68)). (69)

Since dm ≥ 2, from (66) and (69) it follows that

ŷ ̸= 0,

⇒ ŷ ∈ intC1
0 (Ω)[v∗, u∗] is a nodal solution of (63).

Recall that u∗ and v∗ are local minimizers of β̂ (see (68), (69)). Hence we
have

Ck(β̂, u∗) = Ck(β̂, v∗) = δk,0Z for all k ∈ N0. (70)

Recall that β̂ is coercive. Therefore we have

Ck(β̂,∞) = δk,0Z for all k ∈ N0. (71)

Suppose that Kβ̂ = {ŷ, 0, u∗, v∗}. Then from (66), (69), (70), (71) and the

Morse relation with t = −1 (see (6)), we have

(−1)1 + (−1)dm + 2(−1)0 = (−1)0,

⇒ (−1)dm = 0, a contradiction.

So, there exists ỹ ∈ Kβ̂, ỹ ̸∈ {ŷ, 0, u∗, v∗}. From (54) it follows that ỹ ∈
intC+ is nodal and as in the last part of the proof of Proposition 8, we have
that ỹ ∈ intC1

0 (Ω)[v∗, u∗]. □
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Therefore for problem (63) we can state the following multiplicity theorem.

Theorem 2. If hypotheses H3 hold, then

(a) problem (63) admits at least six nontrivial solutions
u0, û ∈ intC+, u0 ≤ û, u0 ̸= û,
v0, v̂ ∈ −intC+, v̂ ≤ v0, v0 ̸= v̂,
ŷ, ỹ ∈ intC1

0 (Ω)[v0, u0] nodal;

(b) problem (63) admits extremal constant sign solutions
u∗ ∈ intC+ and v∗ ∈ −intC+.
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