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Introduction

The use of fiber products in commutative algebra dates back for the first time to
Prüfer and Krull’s works about polynomial rings [21] and then had been studied
for many years by several authors who discovered a lot of features and properties
regarding this particular and universal algebraic structure, whose strong point is
the versatility with which it is applied to produce examples and which allows it to
adapt well to different algebraic and not-algebraic contexts. For this reason, several
kinds of fiber products have been discovered, studied and formalized in order to
be applied in the most suitable way to describe conveniently some geometrical and
algebraic structures. Referring to the notation of the special type of fiber product R
considered by Gabelli and Houston in [24]:

R −−−→ Dy y
B ϕ−−−→ K

where D and B are domains, m is a maximal ideal of B, K ∼= B
m

and ϕ : B −→ K
is the canonical map, let us collect chronologically the most important steps in the
progresses in their use and applications [21].

1. The classical D+M construction, with which Seidenberg [30, 1954] studied
the Krull’s dimension of the polynomial rings and Nagata [28, 1962] treated
the composition of valuations and presented an example inspiring the whole
fiber products’ theory;

2. A formalization of the classical D+M construction, where B is a valuation
domain of the form K + m [25, Theorem A, 1968] by Gilmer; develops on
overrings and divisorial ideals of the D + M rings [4, 1973] by Bastida and
Gilmer;

3. The CPI extension [10, 1977] by Boisen and Sheldon;

4. The D + XDS[X] construction [15, 1978] by Costa, Mott and Zafrullah;

5. A topological approach to the pullbacks [19, 1980] by Fontana;
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6. Studies about pairs of rings with the same prime ideals and a characterization
of pseudo-valuation domains in terms of fiber products [1, 1982] by Anderson
and Dobbs;

7. The B. I. D. construction [14, 1988, page 505] by Cahen, which consists of
couple of rings which share a common ideal.

Among the several fiber products mentioned above, the one which best lends itself
to dealing with the topics covered by this research work, is the ring R which appears
in the B. I. D. construction [14, 1988, page 505] by Cahen. Passing from Cahen’s
notation to Beil’s one, the ring B will be denoted by S and the ring D will be an
algebraically closed field K and we will adopt this set as follows:

R = K + I −−−→ Ky y
S −−−→ S

I

Also, we will make S an integral domain first and additionally a finitely generated
K-algebra, with K an algebraically closed field then, with the aim to propose and
adopt respectively two new constructions of fiber product which let us to obtain the
results of Beil’s article in a more direct, fast and simple way and to generalize some
of them from a more algebraic point of view:

1. Weak depiction-Weakly depicted fiber product: Let S be an integral do-
main, R = K + I ⊆ S any ring extension, with I a nonmaximal and nonzero
ideal of S, then let us define S a weak depiction of R and R a weakly depicted
fiber product of S.

2. Almost depiction-Almost depicted fiber product: Let K be an algebraically
closed field, S be both a finitely generated K - algebra and an integral domain,
R = K+I ⊆ S, with I a nonmaximal and nonzero ideal of S, then let us define
S an almost depiction of R and R an almost depicted fiber product of S.

The idea to adapt the fiber products’ theory to Beil’s article [6, Nonnoetherian Ge-
ometry], treating almost all its examples as pullbacks, comes from the [6, Remark
3.4, page 12], in which he notices that one the most emblematic examples of his
work, as well as the most classical example of depiction:

K + xK[x, y] = K[x, xy, xy2, . . .] = K[x, y]×K[y] K ⊂ K[x, y]

is geometrically described in the article Gluing schemes and a scheme without
closed points [29, Example 3.7] by Schwede as a fiber product and it is based on
the gluing of schemes proposed by Fontana in [19].
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So we realized that Beil is strongly moved by geometrical intents, in particular by
the wish to give a geometrical explanation of a variety of a nonNoetherian subalge-
bra R of a polynomial ring in a finite number of variables, S, with which, sometimes,
it shares one of its maximal ideal I. For this reason he realizes that the maximal
spectrum Max(R) coincides with the algebraic variety Max(S), except that the zero
locus Z(I) ⊂ Max(S) is identified as a single "smeared-out" point [8], as he clarifies
in several examples.

Even for the depictions of nonNoetherian algebras R, a new geometric structure
introduced by Beil in his work [6], he is directed to focus his point of view on
the geometrical aspect, defining them as the finitely generated algebras that are as
close as possible to R, in a suitable geometric sense ([6], [5] and [8]) and so they
have enabled various notions in, for example, not commutative algebraic geometry,
such as not commutative crepant resolution [31], homological homogeneity [12],
Azumaya loci [8] and possible directions towards a new theory of quantum gravity
[9], [7], most of them purely geometric. In contrast to this path followed by Beil,
recognizing the algebraic power of the fiber products with which we have decided
to deal with the topics of his articles, we set out to extrapolate from it new results
of a more generically algebraic nature, extending the point of view from the pure
geometrical aspect to the algebraic one, overcoming the correspondence between
closed of Zariski’s topology and radical ideals of the polynomial ring with a finite
number of variables and coefficients in algebraically closed fields. For this reason,
we demonstrated, for example, some results of Beil’s article eliminating the hy-
pothesis of radicality which is, in this case, specifically geometrical, obtaining the
following:

1. Generalization of Proposition 2.8: If K is an algebraically closed field, S is
both a finitely generated K - algebra and an integral domain, R = K+I ⊆ S,
with I a nonmaximal and nonzero ideal of S, then U = Z(I)c;

2. Generalization of Corollary 3.14: If K is an algebraically closed field, S is
both a finitely generated K - algebra and an integral domain, R = K+I ⊆ S,
with I a nonmaximal and nonzero ideal of S, R is Noetherian if and only if
dim

(S
I

)
= 0.

In particular we presented an innovative example of depiction of a fiber product of
the B. I. D. construction [14], in which I is a nonradical ideal of B.

Moreover, the great innovation and the strength of this work is to have treated, for
the first time, the depictions of Beil [6], using specifically the fiber products’ theory,
in order to deduce in an immediate way some known Beil’s results and to determine
some new properties of them. So, analyzing all the examples of depictions and not
depictions presented in [6, Nonnoetherian geometry], and subsequent Beil’s articles
[5], [8], we realized that almost all of them are depictions of fiber products (and
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these are all polynomial rings in a finite number of indeterminates). For this reason
we first conjectured that each finitely generated K - algebra which is a polynomial
ring in a finite number of indeterminates, with K an algebraically closed field, is
depiction of some fiber product. Later we came across an example of depiction of
a nonfiber product.

The key fact will be to observe that R could not be a fiber product for S because S
and R could not admit in any case a common ideal. This example invalidates our
"conjecture" and led us to deal separately with the depictions of fiber and nonfiber
products.

In this sense great relevance assume the almost depicted fiber products, for which
several results have been obtained, the most important of those and of our whole
work is a characterization of depictions of fiber products with prime ideals of the
overring.

This thesis is structured as follows
In the first chapter we will give all the preliminaries notations, definitions and
known propositions to approach appropriately to this work; in particular we will
present the crucial definition of fiber product, that one which best describes Beil’s
examples and we will provide two possible settings to deal with his arguments.
Thus, first we will give some known facts on fiber products used in the thesis as a
support to prove the new results, then we will show some new facts on fiber prod-
ucts.

In the second chapter we will present the principal Beil’s results, reorganized in a
more general way (eliminating the hypothesis of radicality) which we obtained just
adopting fiber products’ theory, that represent the strength of this work, and some
other ones immediately and, in some cases, more easily deducible using the well
note fiber products.

In the third chapter we will focus on Beil’s examples of depictions and not (collect-
ing them in the first section); in particular we will present the emblematic example
of a depiction that is not a fiber product which invalidates our "conjecture" that
each finitely generated K - algebra which is a polynomial ring in a finite number
of indeterminates, with K an algebraically closed field, is depiction of some fiber
product. This fact will bring us to distinguish between and treat separately depic-
tions of fiber and nonfiber products and will let us to discover that, in both cases,
some properties of them are involved in depictions with a positive feedback; for this
reason we will define respectively the weak/almost depicted fiber product and the
depiction of weak/almost depicted fiber product, we will find some properties and
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characterizations of them and some new interesting examples of depictions and not
depictions, like a depiction of a fiber product with a nonradical ideal of it.

At the end of this last chapter we will raise a new interesting and open question
about fiber products and depictions treated with the fiber products’ theory which we
consider intuitively productive and subject of possible future studies.
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Chapter 1

Preliminaries

1.1 Notations
In the following, unless otherwise specified, with the term ring we will mean al-
ways a commutative unitary ring, with the term overring we will mean a subring
of a domain and containing his fraction field. Moreover, if R and S are rings and
f : R −→ S is a ring homomorphism, we will assume that f maps the identity of R
into the identity of S.

Every prime ideal of a ring is, in particular, a proper ideal. If R is a ring, we set:

Spec(R) := {p ⊆ R : p is a prime ideal of R},

Max(R) := {m ⊆ R : m is a maximal ideal of R},

J(R) :=
⋂

m∈Max(R)

m, the Jacobson radical of R,

N(R) :=
⋂

p∈Spec(R)

p, the nilradical of R.

Unless otherwise specified, we shall consider the set Spec(R) endowed with the
Zariski topology, i. e. the topology whose closed sets are the subsets of Spec(R) of
the form VR(a) := {p ∈ Spec(R) : p ⊇ a}, for each ideal a of R. When there is no
danger of confusion, we denote VR(a) simply by V(a).

If f : R −→ S is a ring homomorphism, let us denote by

f ∗ : Spec(S) −→ Spec(R)
q 7→ f−1(q)

the induced continuous mapping of spectra.
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Let us recall the relevant notion of valuative dimension of an integral domain.

Definition 1.1. If D is an integral domain, we say that D has valuative dimension
n, and we write dimv D = n, if each valuation overring of D has dimension at most
n and if there exists a valuation overring of D of dimension n. If no such integer n
exists, we say that the valuative dimension of D is infinite.

Proposition 1.2 ([26, Theorem 30.9]). Let D be an integral domain, and let n be a
positive integer. The following conditions are equivalent:

1. dimv D = n;

2. each overring of D has dimension at most n, and there exists an overring of
D of dimension n.

Proposition 1.3 ([26, Corollary 30.10]). Let D be a n-dimensional Noetherian do-
main, and n be a positive integer, then dimv D = n.

Besides, according to Beil’s positions adopted in his article [6, Nonnoetherian ge-
ometry], for the rest of this work and until it will not be specified in a different way,
K will be an algebraically closed field, S an integral domain and a finitely generated
K - algebra, R a subalgebra of S and I a maximal ideal of R which is not necessarily
an ideal of S (when it happens, the maximality of I in R is insured by Proposition
1.16 of the article [3, Sous-Anneaux de la forme D + I d’une K-algebre integre] by
Ayache, whose starting sets coincide with the ones of Beil’s article [6] mentioned
above).
Moreover, let us recall some Beil’s notations:

• U := U S
R

:= {m ∈ Max(S) : Sm = RR∩m}

• Z(I) := {m ∈ Max(S) : m ⊇ I}

• dim(Z(I)) := dim
(S

I

)
and let us give the two following definitions:

Definition 1.4. [6, Definition 3.1] An integral domain and finitely generated K -
algebra S is a depiction of a subalgebra R ⊆ S if:

(D1) the mapping
i S

R
: Spec(S) → Spec(R)

q 7→ q ∩ R
is surjective, or equivalently, the inclusion of R in S is LO (lying-over),

(D2) for each n ∈ Max(S), Rn∩R is Noetherian if and only if n ∈ U,
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(D3) U ̸= ∅.

Definition 1.5. [6, page 19] A depiction of R is said to be maximal (resp. minimal)
if it is not contained in (resp. does not contain) any other depiction of R.

Finally, let us recall the crucial definition of fiber product, on which all our research
work is based.

Definition 1.6. [19, page 334] Let u : A → C be a ring-homomorphism and v :
B → C a surjective ring-homomorphism. Then the subring D := A ×C B :=
u×C v := {(a, b) ∈ A×B : u(a) = v(b)} of A×B is called the fiber product of u
and v (or the pull-back of A and B over C). Besides, let us denote by u′ : D→ B and
v′ : D → A the restriction to D of the canonical projections. Let X := Spec(A),
Y := Spec(B), Z := Spec(C), W := Spec(D), and let us consider the induced
ring-homomorphisms by maps on spectra α := u∗ : Z −→ X, β := v∗ : Z −→ Y,
α′ := u′∗ : Y −→W, β′ := v′∗ : X −→W.

D v′
−−−→ A

u′

y yu

B v−−−→ C

W β′
←−−− X

α′

x xα

Y β←−−− Z

The map β, being a closed embedding, let us to identify Z with its image in Y, in
order to simplify the notations.

Among the several fiber products which have been studied over the years, the one
which best lends itself to deal with the topics of Beil’s article (as we will see in the
next section) is presented in the following definition:

Definition 1.7. [14, page 505] Let B be a ring, I an ideal of B, D a subring of the
quotient ring B

I and R the set of the elements of B of which the class module I is in
D. We will say that R is the ring of the B. I. D. construction. In these hypotheses
D is isomorphic to the quotient ring R

I and the following Cartesian square (studied
by Fontana) is determined:

R −−−→ D ∼= R
Iy y

B −−−→ B
I

1.2 Settings
In order to approach in a confidential way with the topics of Beil’s article [6, Non-
noetherian geometry], making the most of the fiber products’ theory, we can use
these two more general settings which derive from the [14, B. I. D. construction]
by Cahen:
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1) Let A ⊆ S be a ring extension, I an ideal of S. Then R = A + I is a subring
of S which contains A. Also R is the fiber product of the canonical projection
π from S to S

I and of the embedding i from A
I∩A to S

I as follows:

R = A + I −−−→ A
I∩Ay yi

S π−−−→ S
I

2) Let R ⊆ S be a ring extension, I a common ideal of R and S, then R is the
fiber product of canonical projection π from S to S

I and of the embedding i
from R

I to S
I as follows:

R −−−→ R
Iy yi

S π−−−→ S
I

Besides, considering the same hypotheses, if we also set K an algebraically
closed field, R′ a subalgebra of S and R = K[R′, I], we obtain a generalization
of some Beil’s results, like [6, Proposition 2.8].

Example 1.8. Using this last setting we can also deduce the [16, Remark
2.13.b, page 3] about amalgamations, seeing 0 × I as a common ideal of
R = R′ ▷◁ I and of its extension S = R′ × (R′ + I).

If we set A := K an algebraically closed field (so I is a maximal ideal of R and
not of S) and if we suppose that S is a finitely generated K-algebra and an integral
domain (so R is a K-subalgebra of S), in both the cases just described, since A

I∩A is
isomorphic to A+I

I , we have that these fiber products coincide in the following: (∗)

R = K + I −−−→ Ky yi

S π−−−→ S
I

which is just what we find in the most part of the examples in Beil’s article and
which represent the almost depicted fiber products we will present and formally
define later.

1.3 Known facts on fiber products used in the thesis
In this section we collect some known results about fiber products, which will be
used to reach our goals.
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Proposition 1.9 ([19, Theorem 1.4]). With the notation and hypotheses of Definition
1.6, let X ∪α Y be the topological space obtained by attaching X to Y, over the
closed set Z, by the continuous map α (where X ∪α Y is the quotient space of the
disjoint union of X and Y, modulo the equivalent relation generated by: α(z) ∼ z,
for each z ∈ Z). Then X ∪α Y is a spectral space homeomorphic to Spec(D).
From the definition of D itself, it follows that:

(a) v′ is a surjective homomorphism (and therefore, β′ is a closed embedding; we
identify for greater convenience X with its image in W under β).

(b) Let b = ker (v) and d = ker (v′), then u′|d : d → b is an isomorphism
of modules (subordinate to u′ : D → B). Therefore, the conductor of u′

contains d and, hence, it is easily seen that, for every h ∈ d, the canonical
homomorphism Dh → Bu′(h) is an isomorphism.

(c) For every prime ideal p of D, p ⊉ d, if q is the unique prime ideal of B such
that u′−1(q) = p, then q ⊉ b and Bq

∼= Dp.

(d) The map α′ : Y → W restricted to Y \ Z = α′−1(W \ X) establishes a
scheme-isomorphism (and hence, in particular, an homeomorphism between
topological spaces and an order-isomorphism between partially ordered sets)
with W \ X (we notice that X ∼= V(d) and α′−1(X) ∼= V(b) ∼= Z).
The equality β′ ◦ α = α′ ◦ β allows us to affirm that:

(e) There exists a unique continuous map σ : X ∪α Y→W which commutes the
following diagram:

X

X ∪α Y W

Y

β ′

σ

α′

From the statements (a) and (d) it follows that:

(f) σ : X∪α Y→W is a bijective map; therefore, in particular W = X∪α′(Y).

Proposition 1.10 ([19, Corollary 1.5]). We preserve the notations and hypotheses
of the previous theorem.

(1) The map a 7→ v′−1(a) establishes an isomorphism between the lattice of all
the ideals of A and that of all the ideals of D containing d. This map defines,
by restriction, an isomorphism between Pospec(A) and the partially ordered
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subset of Pospec(D) which consists of all prime ideals of D containing d (this
isomorphism, obviously, coincides with the one which can be deduced from
the closed embedding β′ : Spec(A)→ Spec(D)).

(2) For every prime ideal q of B, q ⊉ b, the map h 7→ u′−1(h) establishes a
bijection, which preserves the inclusion, between the set of all the ideals of B
which are primary for q and the set of all the ideals of D which are primary
for p = u′−1(q)(⊉ d).

(3) The map defined in the statement (2), by restriction to the prime ideals, deter-
mines the isomorphism Spec(B) \V(b)→̃Spec(D) \V(d) described formally
in Theorem (1.4 (d)) above.

(4) If u : A→ C is injective [resp. surjective, of finite type, integral, finite], then
u′ : D→ B is injective [resp. surjective, of finite type, integral, finite].

(5) If u is an injective homomorphism and if b is a regular ideal of B, then
Tot(B) ∼= Tot(D) (where Tot(−) denote the total ring of fractions of the
ring –).

Proposition 1.11 ([19, Corollary 1.6]). We preserve the notations and hypotheses
of the previous theorem. W and Z are Noetherian spaces, if and only if, X and Y
are Noetherian spaces.

Proposition 1.12 ([19, Proposition 1.8]). We preserve the notations and hypotheses
of the previous theorem. A×CB and C are Noetherian rings, u′ is a finite homomor-
phism if, and only if, A and B are Noetherian rings and u is a finite homomorphism.

Proposition 1.13 ([19, Proposition 1.9]). We preserve the notations and hypotheses
of the previous theorem. If S is a multiplicatively closed set in the ring D, then
indicating SA = v′(S), SB = u′(S), SC = u ◦ v′(S) = v ◦ u′(S), we obtain that

S−1D ∼= S−1
A A×S−1

C C S−1
B B.

Conversely, if SA is a multiplicatively closed set of A and if SB is a multiplicatively
closed set of B and if u(SA) = v(SB) = SC, then

S−1
A A×S−1

C C S−1
B B ∼= (SA ×SC SB)−1D.

Proposition 1.14 ([20, Proposition 1.6]). Let K be a field, S both a finitely generated
K - algebra and an integral domain and I a nonzero ideal of S. Let R := K + I
and let us suppose that dim S

I = 0, then S is a finite type R - module and, so, R is a
Noetherian domain.

Proposition 1.15 ([32, Proposition 1.1]). Let K be a field,
S = K[x1, . . . , xt] having Krull dimension n > 0 and R := D + I a subring of S
(where D is a subring of K and I is a nonzero, proper ideal of S). Then the following
conditions are equivalent:
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1. R is Noetherian.

2. D is a field, K is a finite extension of D, and I is of height n in S.

Proposition 1.16 ([3, Proposition 1.2]). Let K be a field, S a Noetherian, integral
domain, catenarian and coequidimensional of dimension n ∈ N finite, I a nonzero,
proper ideal of S such that S

I contains K and R is the ring of the (S, I,K) type; then
R is an integral, catenarian and coequidimensional domain of dimension n and I is
a maximal ideal of R of height n for R.

Proposition 1.17 ([3, Proposition 1.7]). Let K be a field, S a finitely generated K
- algebra and I a nonzero, proper ideal of S. Let R := K + I. Then the following
conditions are equivalent:

i) I has maximal height over S.

ii) S
I is a finite K - algebra.

iii) S is integral over R.

Proposition 1.18 ([3, Théorème 3.1]). Let K be a field, S a finitely generated K-
algebra and an integral domain, and let I be a nonzero, proper ideal of S. Let
R := D + I, where D is a subring of K with fraction field k. Then the following
properties hold:

(i) dim R = dim D + dim S.

(ii) R is Noetherian if and only if D is a field, K is a finite extension of k and I is
of maximal height over S.

Proposition 1.19 ([14, Proposition 5]). Let R and S be distinct rings, R ⊆ S such
those they share a common nonzero, proper ideal I, then htS(I) ≤ htR(I) ≤ dim S.

1.4 Known relevant facts on depictions used in the
thesis

Let us collect here some significant results of the depictions by Beil which have
been frequently mentioned for their relevance in this work.

Proposition 1.20 ([6, Theorem 3.12]). Let S be a depiction of R. Then the following
conditions are equivalent:

1. R is Noetherian;

2. U S
R

= Max(S);

3. S = R.
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In particular, if R is Noetherian, then its only depiction is itself.

Proposition 1.21 ([8, Corollary B]). Let K be an algebraically closed field, S is
both a finitely generated K - algebra and an integral domain, R = K + I ⊆ S, with
I a nonmaximal, nonzero and radical ideal of S, then the following conditions are
equivalent:

1. R is nonNoetherian;

2. dim S
I ≥ 1;

3. R is depicted by S.

1.5 Useful new facts on fiber products
The new obtained results on fiber products, collected in this section, are preparatory
to present some examples, theorems and remarks of the next chapter. The following
one describes two variants of Proposition 1.21, because it is obtained replacing the
hypothesis of radicality for I, with two different particular conditions.

Proposition 1.22. Let K be an algebraically closed field, S be both a finitely gen-
erated K - algebra and an integral domain, R = K + I ⊆ S, with I a nonmaximal
and nonzero ideal of S. Suppose at least one of the following conditions is satisfied.

1. I is strictly contained in a prime, nonmaximal ideal of S;

2. I is a prime, nonmaximal ideal of S.

Then R is nonNoetherian.

Proof. In both cases, there exist maximal ideals m of S such that I ⊊ m. Intersecting
both of the terms of this last inclusion with R and considering the fact that both I
(by Proposition 1.16) and m ∩ R are maximal ideals of R, we obtain:

I ∩ R = I = m ∩ R,

for every maximal ideal m of Z(I) = Uc, which is nonempty because I is a non-
maximal ideal of S (this last equality is guaranteed by the generalization of Propo-
sition 2.8, above introduced); so Sm properly contains RI and dim Sm is strictly
bigger than dim RI := n, with n ∈ N finite, (by both the hypotheses for I, since
dim Sm = ht(m) and dim RI = ht(I). Moreover, we are sure of the fact that there
exist no prime ideals p of R contained in I different from the corresponding prime
ideals q of S by Proposition 1.10. However, if R was Noetherian by a contradiction,
then RI is a Noetherian domain and by Proposition 1.3 dimv RI = dim RI = n.
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This fact, for Proposition 1.2, is equivalent to assert that Sm, overring of RI, has
dimension at most n; for this reason the following chain of inequality holds:

n = dim RI < dim Sm ≤ n,

and we obtain a contradiction.

It is important to make a preliminary clarification about R ⊆ S when R has a
structure of fiber product.

Proposition 1.23. Let K be an algebraically closed field, S be both a finitely gen-
erated K - algebra and an integral domain, R = K+ I ⊆ S; I is a nonmaximal and
nonzero ideal of S if and only if R ̸= S.

Proof. (⇒) If I is a nonmaximal ideal of S, it exists a maximal ideal m of S such
that I ⊊ m. Besides, I is a maximal ideal of R for the fiber products’ theory and
I = m ∩ R. If by a contradiction R = S, then I = m ∩ R = m ∩ S = m, a
contradiction.

(⇐) Let R ̸= S and let us suppose, by a contradiction that I is a maximal
ideal of S. Then, since S is a finitely generated K - algebra, then S = K + I = R;
thus R = S, a contradiction.

Let us study a way to create nontrivial fiber products in the polynomial ring charac-
terized by some prime ideals of a certain fixed height:

Proposition 1.24. Let K be an algebraically closed field and consider the polyno-
mial ring T = K[x1, . . . , xn]. Take a nonmaximal proper ideal I of T such that
there is a maximal ideal m = (x1 − a1, . . . , xn − an)T satisfying

1. I ⊆ m;

2. I ̸⊆ p := (x1 − a1, . . . , xn−1 − an−1)T,

where a1, . . . , an ∈ K.
Consider the ring R = K + I and notice that I ∈ Max(R). Then htR(I) = n.

Proof. Let us show that:

• p ∩ R ⊊ I, that is htR(I) > 1.
As a matter of fact, take an element ϕ ∈ R, i. e. ϕ = k + i(x1, . . . , xn), where
k ∈ K and i(x1, . . . , xn) ∈ I. Since T = K[x1, . . . , xn−1][xn − an], we can
write

i(x1, . . . , xn) =
r∑

h=0

γh(x1, . . . , xn−1)(xn − an)h,

for some γh(x1, . . . , xn−1) ∈ K[x1, . . . , xn−1].
Since I ⊆ m, then γ0(a1, . . . , an−1) = 0. Then ϕ ∈ p if and only if

ϕ(a1, . . . , an−1, xn) = 0



15

if and only if

k +
r∑

h=1

γh(a1, . . . , an−1)(xn − an)h = 0

and then we infer that k = 0 and that ϕ ∈ I. Finally the inclusion p ∩ R ⊊ I
is strict, otherwise p ∩ R = I implies that I ⊆ p, which is a contradiction.

• htR(I) = n.
Indeed, consider the chain of prime ideals of T:

(0) ⊊ p1 = (x1 − a1) ⊊ p2 = (x1 − a1, x2 − a2) ⊊, . . . ,⊊ pn−1 =

= (x1 − a1, x2 − a2, . . . , xn−1 − an−1) = p.

Since R is a fiber product and pj ⊋ I for every j, we get the following chain
of prime ideals of R:

(0) ⊊ p1 ∩ R ⊊ p2 ∩ R ⊊, . . . ,⊊ pn−1 ∩ R = p ∩ R ⊊ I,

for the first part. Suppose by a contradiction, that htR(I) > n. Thus we can
pick a chain in Spec(R) of length n + 1;

(0) ⊊ q1 ⊊ q2 ⊊, . . . ,⊊ qn ⊊ I.

Clearly qj ⊋ I for every j. Since the contraction mapping:

Spec(T)\V(I) −→ Spec(R)\V(I)

h 7−→ h ∩ R

is an isomorphism of partially ordered sets, there is a chain:

(0) ⊊ h1 ⊊ h2 ⊊, . . . ,⊊ hn

in Spec(T)\V(I) such that hj ∩R = qj , for every j. Moreover hn ∈ Max(T)
and thus

hn = {f ∈ T : f(α1, . . . , αn) = 0, for every (α1, . . . , αn) ∈ Kn}.

Choose a polynomial g ∈ I\qn, i. e. λ := g(α1, . . . , αn) ̸= 0, and let
g̃(x1, . . . , xn) := λ − g(x1, . . . , xn) ∈ K + I = R. Since g̃(α1, . . . , αn) :=
λ − λ = 0, we infer that g̃(x1, . . . , xn) ∈ hn ∩ R = qn ⊊ I. It follows that
0 ̸= λ ∈ I, a contradiction.
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Chapter 2

Fiber products involved in Beil’s re-
sults

2.1 Principal results
Let us present the two most relevant Beil’s results we dealt with fiber products. The
innovation in using fiber products consists in the possibility to obtain valid results
for a more general category of ideals, those ones not specifically radical. In order
to do this, let us recall (see Section 1.2) the fact that if R ⊆ S is a ring extension
and I is a common ideal of R and S, then R is the fiber product of the canonical
projection π from S to S

I and of the embedding i from R
I to S

I as follows:

R −−−→ R
Iy yi

S π−−−→ S
I

Besides, considering the same hypotheses, if we also set K an algebraically closed
field, R′ a subalgebra of S and R = K[R′, I] we obtain a generalization of some
Beil’s results, like the following one:

1) [6, Proposition 2.8]. Let K be an algebraically closed field, S an integral do-
main and a Noetherian K - algebra. Consider a subalgebra R′ of S, an ideal
I of S, and form the algebra R = K[R′, I]. Then U contains the open subset
Z(I)c of Max(S). Furthermore, if I ⊂ S is a nonmaximal radical ideal and
R = K[I] = K + I, then U = Z(I)c.

Proposition 2.1 (Generalization of [6, Proposition 2.8]). If K is a field, S is
an integral domain and R = K + I ⊆ S, with I a nonmaximal and nonzero
ideal of S and K is a proper subring of the quotient ring S

I , then U = Z(I)c.
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Proof. (⊇) For every m ∈ Z(I)c, m ∈ U, by Proposition 1.9 and Proposition
1.10.

(⊆) For every m /∈ Z(I)c, m ∈ Z(I), then m ⊇ I and m∩R ⊇ I∩R = I.
Since I is a maximal ideal of R it follows that m ∩ R = I. So we can write

RR∩m = (K + I)I =
{

k + i

1 + j

∣∣∣∣∣k ∈ K, i, j ∈ I
}

,

because every element of this set has the form k1+i1
k2+j1

, with k1 ∈ K, k2 ∈
K∗, i1, j1 ∈ I, so it can be returned to the form k+i

1+j
, dividing both numerator

and denominator by k2 thanks to the fact that it is in K∗. Thus, if m ∈ U then
S ⊆ Sm = RR∩m, so for every s ∈ S exist k ∈ K, i, j ∈ I such those s = k+i

1+j
.

From this last equality it follows that s + sj = k + i, that s = k + i− sj and
that s = k + i′ for some i′ ∈ I. Then s ∈ K + I = R, from that it derives that
S ⊆ R and that S = R, a contradiction. So m ∈ Uc and this fact implies that
Z(I) ⊆ Uc and then U ⊆ Z(I)c.

In the previous proof, unlike Beil did in his article, we did not use this fol-
lowing hypotheses:

1. K is integrally closed;

2. I is a radical ideal;

3. S is a finitely generated K - algebra.

Befor proceeding with the following Proposition, let us recall that if S is a
ring and I is an ideal of S, then dim(Z(I)) := dim

(
S
I

)
.

2) [6, Corollary 3.14]. Let K be an algebraically closed field, I a radical ideal of
a finitely generated K - algebra S. Then the ring R = K+ I is nonnoetherian
if and only if dim Z(I) ≥ 1.

Proposition 2.2 (Generalization of [6, Corollary 3.14]). If K is an alge-
braically closed field, S is both a finitely generated K - algebra and an in-
tegral domain, R = K + I ⊆ S, with I a nonmaximal and nonzero ideal of
S, R is Noetherian if and only if dim

(S
I

)
= 0.

Proof. (⇐) Since K is a field and S is a finitely generated K - algebra, S
is Noetherian and S

I is, so for the hypotheses and the characterization of the
Artinian rings, S

I is Artinian. Moreover S
I is a finitely generated K - algebra,

since S is, so the embedding i from K to S
I is finite by [2, Chapter 8, Exercise

3] and it follows that R is Noetherian, since both K and S
I are too, by Propo-

sition 1.10.
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(⇒) It follows immediately from Proposition 1.14 or from Proposi-
tion 1.15 or from Proposition 1.18. In particular, the second condition of this
last one is equivalent to assert that dim S

I = dim S − ht I = dim S − n =
dim S− dim S = 0.

Remark 2.3. Even in this case we don’t use the hypothesis of radicality for the
ideal I, as opposed to the direction followed by Beil in his article, showing that this
result is valid in a more general sense.

2.2 Other Beil’s results immediately deduced from
fiber products

Two trivial corollaries obtained by the results of the previous section are:

Corollary 2.4. If K is a field, S is both a finitely generated K - algebra and an
integral domain, R = K + I ⊆ S, with I a nonzero, radical ideal of S, then R is
Noetherian if and only if I is intersection of a finite number of maximal ideals of S.

Proof. (⇒) If R is Noetherian, then by Proposition 2.2 it follows that dim(S
I ) = 0

and this happens if I is intersection of a finite number of maximal ideals of S.
(⇐) If I is intersection of a finite number of maximal ideals of S, then

dim(S
I ) = 0 and it follows that R is Noetherian by Proposition 2.2.

Corollary 2.5. If K is a field, S is both a finitely generated K - algebra and an
integral domain, R = K + I ⊆ S, with I a nonzero and radical ideal of S, then

I =
⋂

m∈Uc

m.

Proof. Since S is a Jacobson ring, then every radical ideal of S is intersection of the
maximal ideals of S which contain it. So

I =
⋂

m∈Z(I)

m =
⋂

m∈Uc

m

by Proposition 2.1.

Besides, the advantage to use fiber products is to derive immediately some Beil’s
results from authors who already proved them a long time ago dealing with fiber
products’ theory, often with a more light proof. Let us present the most relevant
ones.

Proposition 2.6. If K is an algebraically closed field, S is both a finitely generated
K - algebra and an integral domain, R = K + I ⊆ S, with I a nonzero ideal of S,
then U ̸= ∅.
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Proof. If U is empty, then Z(I)c is empty, by Proposition 2.1, so it does not exist
any maximal ideal m of S such that I is not contained in m, or, in other words, every
maximal ideal m of S contains I, that is Z(I) = Max(S). Thus I is contained in
the Jacobson radical of S which coincides with the nilradical of S because S is a
finitely generated K - algebra. However, S is an integral domain and the nilradical
of every integral domain is zero. So we can conclude that I is the zero ideal, a
contradiction.

This basic proposition, in case of fiber products, is essential to deduce the following
results of Beil’s works [6], [8], just simply using some known ones of Fontana and
their derivations.

Proposition 2.7 ([6, Proposition 2.4.1]). If K is an algebraically closed field, S is
both a finitely generated K - algebra and an integral domain, R = K + I ⊆ S, with
I a nonzero ideal of S, then S is an overring of the integral domain R.

Proof. It follows by Proposition 2.6 using Proposition 1.10.

Proposition 2.8 ([8, Lemma 4.3 and Proposition 4.4.1]). If K is an algebraically
closed field, S is both a finitely generated K - algebra and an integral domain,
R = K + I ⊆ S, with I a nonmaximal and nonzero ideal of S, then the morphism

i Sα
Rα

: Spec(Sα)→ Spec(Rα)

q 7→ q ∩ Rα

is surjective for every element α ∈ I and if S is depiction of R, then Sα is a depiction
of Rα.

Proof. It follows by Proposition 1.9.

Proposition 2.9 ([6, Theorem 2.5.3]). If K is an algebraically closed field, S is both
a finitely generated K - algebra and an integral domain, R = K + I ⊆ S, with I a
nonmaximal and nonzero ideal of S, then Max(S) and Max(R) are homeomorphic
on an open dense subset and thus birationally equivalent.

Proof. It follows by Proposition 2.6 using Proposition 1.9 and Proposition 1.10.

Proposition 2.10 ([6, Theorem 2.5.4]). If K is an algebraically closed field, S is
both a finitely generated K - algebra and an integral domain, R = K + I ⊆ S, with
I a nonmaximal and nonzero ideal of S, then dim S = dim R.

Proof. It follows by Proposition 2.6 using Proposition 1.18.

Proposition 2.11 ([6, Lemma 3.7.1]). If K is an algebraically closed field, S is both
a finitely generated K - algebra and an integral domain, R = K + I ⊆ S, with I a
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nonmaximal and nonzero ideal of S, if p is a prime ideal of R and q is a prime ideal
of S lying over p and

i S
R

: Spec (S) → Spec (R)
q 7→ q ∩ R = p

is surjective, then ht(q) ≤ ht(p).

Proof. It follows by Proposition 2.6 using Proposition 1.19 and repeating Beil’s
proof without using the hypothesis S is depiction of R, in particular avoiding to use
(D2).

Proposition 2.12 ([6, Generalization of Lemma 3.7.2]). If K is an algebraically
closed field, S is both a finitely generated K - algebra and an integral domain,
R = K + I ⊆ S, with I a nonmaximal and nonzero ideal of S, then, if m ∈ Max(R)
and

i S
R

: Spec (S) → Spec (R)
q 7→ q ∩ R

is surjective, then ht(m) = dim R.

Proof. It follows by Proposition 2.6 using Proposition 1.17 and repeating Beil’s
proof without using the hypothesis S is depiction of R, in particular avoiding to use
(D2).
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Chapter 3

Depictions and fiber products

3.1 Known examples of depictions and not depictions
We choose to add this section, which could be considered the most important of this
work, because it collects all the ideas that gave us the intuition to produce this work,
the starting point of our research, the inspiration of all our results. In the following
examples K is an algebraically closed field.

1. Nonpolynomial case of depiction-Nonuniqueness of maximal depictions [6,
Proposition 3.19.2]
T = K[x, y, z]
R = K + xyT
T is a depiction of R.
S := T[x−1] is a depiction of R
S′ := T[y−1] is a depiction of R
S′′ := T[x−1, y−1] is not a depiction of R.

Remark 3.1. This example is really relevant because it shows that exist de-
pictions of subalgebras which cannot share any common ideal with them and
consequently which are not depictions of any fiber product, as it happens in
this case for S. which is depiction of R. We will see in detail the insights of
this fact below, in the following section.

2. [6, Remark 3.3]
S = K[x, y, z] is a depiction of R = K + x(y, z)S
S[x−1] is a depiction of R.

3. [6, Example 3.15]
Let S be a finitely generated K-algebra and let m1,m2, . . .ml be a finite set of
maximal ideals of S. Then S is not a depiction of R = K +√m1 · · ·ml.
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4. Nonexistence of minimal depictions [6, Proposition 3.19.1]
S = K[x, y]
R = K + xS
Sl = R[yl, yl+1, yl+2, . . .] = K[x, xy, xy2, . . . , xyl−1, yl, yl+1, . . . , y2l−1] is a
depiction of R and Sl+1 ⊊ Sl, for every l ∈ N.

Remark 3.2. This example shows that, in general, the intersection of some
depictions is not a depiction because

R =
⋂
ℓ≥1

Sℓ,

so it cannot happen that R is a depiction because the depictions are Noetherian
but R is not.

5. [5, Example 5.2]
S = K[x, y] is a depiction of R = K + x(x− 1, y)S
S[x−1] is the only maximal depiction of R.

6. [5, Example 5.3]
S = K[x, y] is the only maximal depiction of
R = K + xS = K[x, xy, xy2, . . .] = K[x, y]×K[y] K.

7. [5, Example 5.1]
Sj = K[x, y, xz, yz, xz2, yz2, . . . , xzj−1, yzj−1, zj], for every j ≥ 1
S1 = K[x, y, z]
R = K + (x, y)S1
S1 is the only maximal depiction of R
Sj ⊆ S1 is a depiction of R, for every j ≥ 1.

3.2 An example of a depiction of a ring that is not a
fiber product of a quotient of its depiction

Investigating Beil’s examples of depictions we found depictions of subalgebras
which are fiber products and not.

Given an algebraically closed field K, let

• R = K + xyT,

• T = K[x, y, z] and

• S := T[x−1] a depiction of R.
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It is trivial to notice that R could not be a fiber product because S and R could
not admit in any case a common ideal. In order to prove this, if we show that the
conductor of the extension R ⊆ S is the zero ideal, we reach our goal, since the
conductor of an extension is the biggest ideal of the subring shared with the bigger
ring. So, let

J := R : S := {0} ∪ {r ∈ R \ {0} : rS ⊆ R}

be the conductor of the extension R ⊆ S, and let us suppose by a contradiction that
r = k + i, with k ∈ K and i ∈ I is a nonzero element of J then:

1. if k = 0 then r = i ∈ I \ {0}, thus r = xmylf(x, y, z), for some f(x, y, z) ∈
T\xT and for some m and l ∈ N∗. So r · 1

xm = ylf(x, y, z), with f(x, y, z) ∈
T \ xT, which is not in R, a contradiction;

2. if i = 0 then r = k ∈ K∗ and the ideal J of R would explode in the whole R,
a contradiction;

3. if r = k + i, with k ∈ K∗ and i ∈ I \ {0}, and we multiply it for z ∈ S,
we obtain an element which is not in R because r · z = kz + iz and the first
addend of this sum surely is not in R because k ̸= 0, a contradiction.

So, we can conclude that S and R cannot admit any kind of common ideal.

Then, for this reasons we took care of separately analyzing the depictions of fiber
and nonfiber products as follows.

3.3 Depictions of fiber products

3.3.1 Subalgebras of fiber products: the almost depictions!
Focusing our point of view on depictions of fiber products, we realized that some
of them are well described by fiber products properties and we are able to present
these useful remarks, which let us to give (see below) a new definition of depiction:

Remark 3.3. Let K be an algebraically closed field, S be both a finitely generated
K - algebra and an integral domain, R = K + I ⊆ S, with I a nonmaximal and
nonzero ideal of S:

• (D3) is guaranteed by Proposition 2.6;

• for (D1), since I is a finitely generated ideal of S, according to the Proposition
1.9, all the prime ideals of R are I and p ∩ R, where p is any prime ideal
of S which does not contain all together the generators of I. Moreover, by
Proposition 1.9, the mapping

Spec(S)\V(I) → Spec(R)\V(I)
q 7→ q ∩ R
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is a homeomorphism of topological spaces and, in particular, an isomorphism
of partially ordered sets. This fact let us to conclude that in this case (D1)
is always verified because every prime ideal of R is the contraction of some
prime ideal of S to R.

For the previous remark, the following definition naturally arises:

Definition 3.4. Let S be an integral domain, R = K + I ⊆ S any ring extension,
with I a nonmaximal and nonzero ideal of S, then let us define S a weak depiction
of R and R a weakly depicted fiber product of S.

Let us posing in the particular case of Beil’s set, we can rearrange the previous
definition in this new following one:

Definition 3.5. Let K be an algebraically closed field, S be both a finitely generated
K - algebra and an integral domain, R = K + I ⊆ S, with I a nonmaximal and
nonzero ideal of S, then let us define S an almost depiction of R and R an almost
depicted fiber product of S.

Dealing with almost depicted fiber products, in order to show that they are also
depictions in suitable cases, it is necessary to make the following premise:

Remark 3.6. Let K be an algebraically closed field, S be both a finitely generated K
- algebra and an integral domain, R = K+I ⊆ S and I is a nonmaximal and nonzero
ideal of S. In every theorem in which we want to prove that S is a depiction of R, we
have to suppose that R is nonNoetherian because otherwise, by Proposition 1.20, if
S is depiction of R, then R = S and it happens by Proposition 1.23 if and only if I
is a maximal ideal of S, a contradiction.

Remark 3.7. Considering the previous remarks, we can conclude that, dealing with
overrings of fiber products which are integral domains and finitely generated K -
algebras too, with K an algebraically closed field, (D1) and (D3) are immediately
verified and in order to discover if we are in presence of a depiction it will be
sufficient only to prove that (D2) holds.

By the previous remark, let us give the following proposition, whose proof is trivial:

Proposition 3.8. Let K be an algebraically closed field, S be both a finitely gener-
ated K - algebra and an integral domain, R = K + I ⊆ S, with I a nonmaximal
and nonzero ideal of S (S an almost depiction of R) which satisfies (D2), then S is
a depiction of R.

Remark 3.9. Each depiction S (which is both a finitely generated K - algebra and
an integral domain, with K an algebraically closed field) of a fiber product R =
K + I ⊆ S, with I a nonmaximal and nonzero ideal of S is an almost depiction.

The converse is not true. Let us give a counterexample of this fact:
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Example 3.10. Let K be an algebraically closed field, S be both a finitely generated
K - algebra and an integral domain, R = K + I ⊆ S, with I a nonmaximal and
nonzero ideal of S (S an almost depiction of R) such that R is Noetherian, then the
localization RI is Noetherian and S is not a depiction of R, for the next theorem.
For instance, it is sufficient to take I radical as an intersection of a finite number of
maximal ideals of S, by Corollary 2.4.

Example 3.11. There exist depictions of a subring R which are not almost de-
pictions of it because they cannot share any ideal with R, like the example in [6,
Proposition 3.19.2].

Let us give the most relevant result of our work for the almost depictions:

Theorem 3.12. Let K be an algebraically closed field, S be both a finitely generated
K - algebra and an integral domain, R = K + I ⊆ S, with I a nonmaximal and
nonzero ideal of S (S is almost depiction of R), then RI is Noetherian if and only if
S is not a depiction of R.

Proof. (⇒) By Proposition 2.1, we know that I is equal to m∩R for every maximal
ideal m of Z(I) = Uc (which is nonempty because I is a nonmaximal ideal of S), so
exists m ∈ Uc such that RR∩m is Noetherian, fact that contradicts (D2).

(⇐) We prove that if RI is nonNoetherian, then S is a depiction of R.
(D1) and (D3) are immediately verified by Proposition 3.8; so, since I is a maximal
ideal of R by Proposition 1.16, which is nonmaximal in S, then the only maximal
ideals m of S which contract to the ideal I are the ones that contain I, by Proposition
1.9. So it follows that I = m ∩ R. Thus, by the choice of the maximal ideals m
which are in Z(I) = Uc (by Proposition 2.1) and by the hypothesis we have that
RI = Rm∩R is nonNoetherian for every maximal ideal m of Uc and these are the
only ones of S accepted, according to fiber products’ theroy; thus, passing to the
complements, we obtain that Rm∩R is Noetherian if and only if m ∈ U, which is
(D2). Then, since all the conditions required for being a depiction are verified, we
can conclude that S is a depiction of R.

So, in case of a radical ideal of almost depicted fiber products, it is possible to
deduce the following interesting characterization:

Corollary 3.13. Let K be an algebraically closed field, S is both a finitely generated
K - algebra and an integral domain, R = K+ I ⊆ S, with I a nonmaximal, nonzero
and radical ideal of S, then R is Noetherian if and only if RI is Noetherian.

Proof. (⇒) Trivial.
(⇐) If, by a contradiction, RI is nonNoetherian, then S is a depiction of R

by Theorem 3.12, hence R is nonNoetherian, by Proposition 1.21, that is a contra-
diction.
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Let us concentrate now just on a note result of Beil, the Proposition 1.21, which can
be seen like an extension of Proposition 2.2 and which follows just from Theorem
3.12. We choose to treat it replacing the hypothesis of radicality for the ideal I
with the reasonable hypothesis I has not any embedded prime ideal of S in order to
reach the aim to regardless of the pure geometrical aspect of radicality, preferring
instead a more algebraic focus on the Beil’s results. For this reason, let us give the
following variant of Proposition 1.21.

Corollary 3.14. Let K be an algebraically closed field, S is both a finitely generated
K - algebra and an integral domain, R = K + I ⊆ S, with I a nonmaximal and
nonzero ideal of S which has no embedded prime ideal of S, then the following
conditions are equivalent:

1. R is nonNoetherian;

2. dim S
I ≥ 1;

3. R is depicted by S.

Proof. (1)⇔ (2) It is just Proposition 2.2.
(3)⇒ (1) It is a trivial consequence of Proposition 1.20, since S ̸= R.
(1)⇒ (3) It is sufficient to observe that, under the hypothesis I has not any

embedded prime ideal of S, RI is nonNoetherian. This fact happens because if we
replace in the proof of Proposition 1.21 the hypothesis of radicality for I, with I has
not any embedded prime ideal of S, then the existence of the h which appears in
the proof is guaranteed, otherwise the ideal n of S would be contained in the union
of all the pi, for i = 1, 2, ..., n and for the primary avoidance theorem n would be
contained in some of the pi, for i = 1, 2, ..., n, which is a contradiction. So S is
depiction of R by Theorem 3.12.

Let us consider now the possibility to intercept other intermediate depictions of
depictions containing as subring an almost depicted fiber product, obtaining under
an appropriate hypothesis a positive feedback.

Proposition 3.15. Let K be an algebraically closed field, S be both a finitely gener-
ated K - algebra and an integral domain, R = K+ I ⊆ S, with I a nonmaximal and
nonzero ideal of S (so S is an almost depiction of R), then each finitely generated K
- subalgebra of S containing as subring R is an almost depiction.

Proof. Since each intermediate subring H of S containing as subring the fiber prod-
uct R shares with this last one each common ideal to R and S, even the rings R and
H share the common ideal I. So R is a fiber product for each intermediate ring H,
too. Thus, the thesis immediately follows for H by Proposition 3.8 by the hypotesis
H finitely generated K - algebra. Besides, H is a integral domain, because it is a
subring of an integral domain.
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Corollary 3.16. Let K be an algebraically closed field, S be both a finitely gener-
ated K - algebra and an integral domain, R = K+ I ⊆ S, with I a nonmaximal and
nonzero ideal of S, S depiction of R and H a finitely generated K - subalgebra of S
containing as subring R; if

i S
H

: Spec (S) → Spec (H)
q 7→ q ∩ H

is surjective or H ⊆ S is an integral ring extension, then H is a depiction of R.

Proof. (D1) and (D3) follow from the previous proposition. In order to try (D2), we
can observe that since H is a finitely generated K - algebra, it becomes Noetherian
and at the same way each its localization for every prime ideal is. So, if we consider:

R ⊆ H ⊆ S,

for every maximal ideal m of S, we can pass to the localizations and we obtain:

Rm∩R ⊆ Hm∩H ⊆ Sm.

By (D2), since S is depiction of R, if Rm∩R is Noetherian then Rm∩R = Sm; in
this case, by the previous chain of inclusions it follows that R(m∩H)∩R = Rm∩R =
Hm∩H = Sm, that is Rh∩R = Hh, for every maximal ideal h of H. Conversely, if Rh∩R
is equal to Hh for every maximal ideal h of H, then Rh∩R is Noetherian, because Hh

is.

Giving the sufficient condition of minimality for a principal ideal of an almost de-
piction, even in this case we obtain a depiction:

Proposition 3.17. Let K be an algebraically closed field, S be both a finitely gen-
erated K - algebra and an integral domain, R = K + I ⊆ S (S is almost depiction
of R), with I a nonmaximal and nonzero ideal of S and a minimal principal prime
ideal of S with htR(I) > 1, then S is a depiction of R.

Proof. In order to show (D2), it will be sufficient to apply the Krull’s height theorem
to the ideal I of R. The rest of the proof follows from Proposition 3.8.

An exemplification of that is just the following extension of the example in [6,
Proposition 3.19.2].

Example 3.18. Let K be an algebraically closed field,
T := K[x, y, z, w]
R := K + xywT := K + I
S := T[x−1, y−1] is a depiction of R, because the ideal I is principal and minimal in
T and in S and has height equal to 4.

Let us concentrate, now, on the depiction as a sufficient condition of finiteness:
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Proposition 3.19. If K is an algebraically closed field, S is both a finitely gener-
ated K - algebra and an integral domain, R = K+ I ⊆ S, with I a nonmaximal and
nonzero ideal of S (S is almost depiction of R) and S is depiction of R, then the mor-
phism h : K → S

I defined in the following commutative square (∗), representative
of the fiber product R is not finite.

R = K + I −−−→ K

u
y yh

S π−−−→ S
I

Proof. It immediately follows applying Proposition 1.12 to (∗), thanks to which we
have:

R Noetherian
S
I Noetherian
u finite

}
⇐⇒

{ S Noetherian
K Noetherian
h finite

If, by a contradiction, h was finite, then R is Noetherian, a contradiction with the
hypothesis R is depicted by S.

3.3.2 New relevant examples of depictions and not depictions of
fiber products

The following example give credit to our starting insight to obtain some Beil’s re-
sults without using the hypothesis of radicality for the ideal of an (almost) depicted
fiber product and represents the starting point which inspired us to write this thesis.

Example 3.20. Let K be an algebraically closed field,

S := K[x, y, z]

R := K + x2y2K[x, y, z] := K + I,

then S is depiction of R thanks to Proposition 3.17 because I is a minimal and
principal prime ideal of S such that htR(I) = 3 by Proposition 1.17. Besides, I is a
nonradical ideal.

The following example is obtained as a particular case of Proposition 1.24 and rep-
resents a generalization of the one in [6, Proposition 3.19.2].

Example 3.21. Let K be an algebraically closed field and consider the polynomial
ring T = K[x1, . . . , xn], with n greater or equal to 2. Take a nonmaximal, principal,
proper ideal I of T such that there is a maximal ideal m = (x1 − a1, . . . , xn − an)T
satisfying

1. I ⊆ m;
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2. I ̸⊆ p := (x1 − a1, . . . , xn−1 − an−1)T,

where a1, . . . , an ∈ K.
Consider the ring R = K + I, then T is a depiction of R, by the Krull’s height
theorem.

Let us give now an extension of the [6, Example 3.18].

Example 3.22. Let K be an algebraically closed field, S := K[x, y, z, w] and
R := K[x, xy, xy2, . . . , z, zw, zw2, . . .], then R is depicted by S by Proposition 1.21
because:

1. R and S share the common ideal I := xzK[x, y, z, w]; in order to show this
fact, let us try that each generator of I is in R and it can be written as a product
of two elements of R:

(a) xz = x · z ∈ R;

(b) x2z = x · xz ∈ R;

(c) xyz = xy · z ∈ R;

(d) xz2 = xz · z ∈ R;

(e) xzw = x · zw ∈ R.

So we can deduce that each element of I is a polynomial which can be written
as algebraic sum of elements of R and thus that the ideal I of S is an ideal of
R, too.

2. R ̸= T := K + I because x ∈ R \K + I.

3. I is a radical ideal of S because it is intersection of two prime ideals of S,
xK[x, y, z, w] and zK[x, y, z, w].

4. T is nonNoetherian by Proposition 2.2 because dim S
I ̸= 0.

5. S is depiction of T by Proposition 1.21.

3.4 Depictions of subrings which are not fiber prod-
ucts

Replacing the hypothesis of almost depiction with (D1) and (D3) (which, as we
know, are guaranteed from this structure just by Proposition 3.8), some results of the
previous section clearly keep to hold in a more general situation like the following
one:



30

Proposition 3.23. Let K be an algebraically closed field, S be both a finitely gen-
erated K - algebra and an integral domain, R ⊆ S and S is a depiction of R; if H
is a finitely generated K - subalgebra of S containing as subring R such that:

iH
R

: Spec (H) → Spec (R)
q 7→ q ∩ R

is a surjective map or R ⊆ H is an integral ring extension and

UH
R
̸= ∅,

then H is a depiction of R.

Proof. (D1) and (D3) are verified by the hypotheses. (D2) is identically showed by
the proof of Corollary 3.16, since even in that one such condition was independent
of the other two.

3.5 One open question about depictions
Let us recall now the example described in Section 3.2 of the present chapter. Take
an algebraically closed field K, consider the polynomial ring T := K[x, y, z], and
let R := K + xyT, S := T[x−1]. Then it is observed that S is a depiction of R and
the unique common ideal of R and S is 0. In particular R cannot be presented in the
form K + I, for every ideal I of S. Thus the following question naturally arises.

Question. Let K be an algebraically closed field, let S be a finitely generated K-
algebra which is also an integral domain and let R be a K-subalgebra of S such that
S is a depiction of R. Under what conditions on the ring extension R ⊆ S does an
ideal I of S such that R = K + I exist?



31

Ringraziamenti

A conclusione di questa bellissima esperienza di vita, che rappresenta per me la re-
alizzazione di uno dei miei più ambiti e importanti sogni nel cassetto del mio cuore,
sento doverosamente il bisogno di ringraziare coloro i quali, grazie alla loro indis-
pensabile presenza, mi hanno permesso di arrivare fino a questo punto: aggiungere
una nuova minuscola pagina nell’infinito libro della matematica, il libro più bello
dello scibile umano! Grazie in primis a mia sorella Gemma, che mi ha letteral-
mente "spinto" con tutta la sua determinazione, aspirazione e audacia nel fantastico
e a me ignoto mondo del dottorato.... Grazie ai miei straordinari tutor Professor
Marco D’Anna e Carmelo Antonio Finocchiaro, le mie costantemente presenti e
sempre disponibili guide professionali, spirituali e culturali, coloro i quali mi hanno
permesso di sviscerare nel profondo l’infinito e affascinante mondo dell’algebra e
di apprezzarne le sfaccettature più piccole e significative, coloro i quali mi hanno
permesso di interagire con matematici del calibro di Marco Fontana e Alan Loper,
i cui suggerimenti e consigli matematici mi hanno arricchito e hanno contribuito
significativamente al perfezionamento di questo lavoro. Grazie alla mia famiglia,
per aver sempre sperato e creduto in me, nel mio valore e nel raggiungimento di
questo traguardo, probabilmente più di quanto abbia mai fatto io con me stesso.
Grazie a mia nipote Helena, perchè nei momenti di sconforto ho sempre trovato in
lei la forza di non mollare, di mostrarmi forte e imperturbabile, volendo essere il
suo punto di riferimento, il suo modello da imitare nel presente e nel futuro. Grazie
a tutti i miei cari, vicini e lontani, presenti e passati, in terra e in cielo, a cui va un
pensiero speciale...Grazie infine, ancora una volta, all’Algebra e alla Matematica
tutta, per aver fatto emergere ai miei occhi sottoforma di equazioni ciò che si cela
nel profondo di tutte le cose: perfezione! Grazie di cuore!



32

Bibliography

[1] D. F. Anderson, D. E. Dobbs, Pairs of rings with the same prime ideals, Canad.
J. Math., Vol. 32, N. 2, Pag. 362-384, 1980.

[2] M. F. Atiyah, I. G. Macdonald, Introduction to commutative algebra, Addison-
Wesley Publishing Company. J. Math., Vol. 32, N. 2, Pag. 362-384, 1969.

[3] A. Ayache, Sous-Anneaux de la forme D + I d’une K-algebre integre, Portu-
galiae Mathematica, Vol. 50, Fasc. 2, 1993.

[4] E. Bastida, R. Gilmer, Overrings and divisorial ideals of rings of the form
D + M, Michigan Math. J., Vol. 20, Pag. 79-95, 1973.

[5] C. Beil, Nonnoetherian coordinate rings with unique maximal depictions,
Communications in Algebra, Vol. 46, No. 6, 1392533, 18 January 2018.

[6] C. Beil, Nonnoetherian geometry, Journal of Algebra and Its Applications,
Vol. 15, No. 9, 1650176, 6 January 2016.

[7] C. Beil, Nonnoetherian Lorentzian manifolds, arXiv:2103. 3743.

[8] C. Beil, Nonnoetherian singularities and their noncommutative blowups, J.
Noncommut. Geom., Vol. 17, Pag. 469-499, 2023.

[9] C. Beil, The Bell states in noncommutative algebraic geometry, Int. J. of Quan-
tum Inf., Vol. 12, No. 5, 2014.

[10] M. B. Boisen, Jr. and P. B. Sheldon, CPI-extensions: overrings of integral
domains with special prime spectrums, Canad. J. Math., Vol. 29, N. 4, Pag.
722-737, 1977.

[11] J. Brewer and E. Rutter, D+M construction with general overrings, Michigan
Math J., Vol. 23, Pag. 33-41, 1976.

[12] K. Brown, C. Hajarnavis, Homologically homogeneous rings, Trans. Amer.
Math. Society, Vol. 15, Pag. 197-208, 1984.

[13] P.-J. Cahen, Construction B,I, D et anneaux localement ou residuellement de
Jaffard, Arch. Math., Vol. 54, Pag. 125-141, 1990.



33

[14] P.-J. Cahen, Couples d’anneaux partageant un idéal, Arch. Math., Vol. 51,
Pag. 504-514, 1988.

[15] D. Costa, J. Mott and M. Zafrullah, The construction D + XDS[X], J. Algebra,
Vol. 53, Pag. 423-439, 1978.

[16] M. D’Anna, M. Fontana, An amalgamated duplication of a ring along an
ideal: the basic properties, math.AC, 0605602v2, 11 September 2018.

[17] M. D’Anna, C. A. Finocchiaro, M. Fontana, Amalgamated algebras along an
ideal, math.AC, 0901.1742v1, 13 January 2009.

[18] C. A. Finocchiaro, Amalgamation of algebras and the ultrafilter topology on
the Zariski spaces of valuation overrings of an integral domain, Tesi di dot-
torato, 2010/2011.

[19] M. Fontana, Topologically Defined Classes of Commutative Rings, Annali di
Matematica Pura ed Applicata, Vol. 123, Pag. 331-355, 1980.

[20] M. Fontana, L. Izelgue, S.-E. Kabbaj, Sur quelques propriétés des sous-
anneaux de la forme D + I d’un anneau intègre, Communications in Algebra,
7 January 2010.

[21] G. Fusacchia, Pullback Contructions: a topological approach, Tesi di laurea,
Ottobre 2006.

[22] S. Gabelli, M. Fontana, On the class group and the local group of pullback, J.
Algebra, Vol. 181, No. 3, Pag. 803-835, 1996.

[23] S. Gabelli, E. Houston, Coherentlike conditions in pullbacks, Michigan Math.
J., Vol. 44, No. 1, Pag. 99-123, 1997.

[24] S. Gabelli, E. Houston, Ideal theory in pullbacks, Non-Noetherian Commuta-
tive Ring Theory, Mathematics and its Applications, Maia, Springer, Vol. 520,
Pag. 199-227, 2000.

[25] R. Gilmer, Multiplicative ideal theory, Queen’s Paper in Pure and Applied
Mathematics, No. 12, Queen’s University, Kingston, Ontario, 1968.

[26] R. Gilmer, Multiplicative ideal theory, Queen’s Paper in Pure and Applied
Mathematics, Vol. 90, 1992.

[27] T. G. Lucas, Examples built with D + M, A + XB[X] and other pullback con-
structions, Non-Noetherian Commutative Ring Theory, Mathematics and its
Applications, Maia, Springer, Vol. 520, Pag. 341-368, 2000.



34

[28] M. Nagata, Local rings, Interscience Tracts in Pure and Applied Mathematics,
No. 13, Interscience Publisher a division of John Wiley & Sons, New York-
London, 1962.

[29] K. Schwede, Gluing schemes and a scheme without closed points, Recent
Progress in Arithmetic and Algebraic Geometry, AMS Contemporary Mathe-
matics Series, American Mathematical Society, 2005.

[30] A. Seidenberg, On the dimension theory of rings II, Pacific J. Math, Vol. 4,
Pag. 603-614, 1954.

[31] M. Van de Bergh, Non-commutative crepant resolutions, The legacy of Niels
Henrik Abel, Pag. 749-770, Springer, Berlin, 2022.

[32] S. Visweswaran, Subrings of K[y1, . . . , yn] of the Type D + I, Journal of alge-
bra, Vol. 117, Pag. 374-389, 29 October 1986.

[33] M. Zafrullah, Various facets of rings between D[X] and K[X], Comm. Algebra,
Vol. 31, No. 5, Pag. 2497-2540, 2003.


	Preliminaries
	Notations
	Settings
	Known facts on fiber products used in the thesis
	Known relevant facts on depictions used in the thesis
	Useful new facts on fiber products

	Fiber products involved in Beil's results
	Principal results
	Other Beil's results immediately deduced from fiber products

	Depictions and fiber products
	Known examples of depictions and not depictions
	An example of a depiction of a ring that is not a fiber product of a quotient of its depiction
	Depictions of fiber products
	Subalgebras of fiber products: the almost depictions!
	New relevant examples of depictions and not depictions of fiber products

	Depictions of subrings which are not fiber products
	One open question about depictions

	Acknowledgements
	Bibliography

