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Abstract— Although Heart Period (HP) variability is the 

most widely used measure to assess cardiovascular 

oscillations, its evaluation combined with that of Pulse 

Arrival Time (PAT) variability may provide additional 

information about cardiac dynamics and cardiovascular 

interactions. In this study, we computed the transfer entropy 

from PAT to HP in 76 subjects monitored at rest and during 

orthostatic and mental stress using both a model-free (k-

Nearest Neighbors) and a linear parametric estimator. Our 

results show how the information flow between these two 

variables depends on the physiological condition and how the 

nonlinear measure captures more information than the linear 

one during orthostatic stress. 

I. INTRODUCTION 

Several mechanisms involved in the regulation of 
cardiovascular hemodynamics, such the baroreflex and 
other neural and mechanical effects, contribute to heart rate 
variability (HRV) [1]. While HRV is most commonly 
assessed measuring the R-R intervals (RRI) from the 
electrocardiogram (ECG), other physiological signals, such 
as blood pressure (BP), thoracic impedance, etc., allow to 
extract additional physiological variables of interest for the 
study of cardiovascular regulation. Among these, the Pulse 
Arrival Time (PAT) defined as the time interval between 
the electrical depolarization of the heart left ventricle and 
the arrival of the pressure wave at the body periphery [2], 
contains information about the time delay between cardiac 
depolarization and blood ejection onset from the left 
ventricle (during the pre-ejection period, PEP) and the 
propagation time of the pressure wave traveling from the 
aortic valve to the peripheral arteries (characterized by the 
Pulse Transit Time, PTT). Since all these variables are 
affected by the neuro-autonomic regulation, investigating 
their beat-to-beat interactions may provide useful 
information about common physiological mechanisms 
determining the oscillations of PAT and RRI. In this 
context, the purpose of this work is to investigate the 
relation between the pulsatile activity of blood moving 
from the heart to the extremities of the body and HRV 
under different physiological stressors. To this end, we 
implement linear parametric and nonlinear model-free 
estimates of the Transfer Entropy (TE) from PAT to RRI in 
healthy subjects undergoing a protocol including 
orthostatic and mental stress. 
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II. MATERIALS AND METHODS 

A. Experimental protocol and time series extraction 

The analyzed database consists of ECG and BP signals 
acquired synchronously from 76 young healthy subjects 
(32 males and 44 females; age 18.4±2.7 years), 
normotensive and with a normal body mass index 
(21.3±2.3 kg/m2). All subjects underwent a five-phases 
protocol: (a) baseline (B); (b) head-up tilt (T); (c) first rest 
(R1); (d) mental arithmetic (M) and (e) final rest (R2). As 
shown in Fig. 1 (a), starting from these data, the RRI and 
PAT time series were extracted respectively as the time 
differences between two consecutive ECG R peaks and the 
time differences between each BP maximum and the 
preceding R peak. For each subject and condition, artifact-
free stationary time series of 300 beats were extracted, de-
trended using a zero-phase high-pass AR filter and 
normalized to zero mean and unit variance. More details 
about database acquisition can be found in [3]. 

B. Estimation of Transfer entropy 

Denoting the PAT series as X and the RRI series as Y, 
we compute the directed information transferred from X to 
Y extending the definition of Transfer Entropy (TE) to 
account for instantaneous effects [4]. Specifically, the TE 
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thereby conceiving the presence of an immediate effect in 
the exchange of information between processes [4]. The 
use of iTE in the context of this work is meaningful 
because, according to the definition of PAT, the part of this 
interval that corresponds with the PEP is included in the 
RR interval of the same heartbeat, so an immediate effect is 
expected. 

In practical analysis, TE measures were obtained using 
both linear (lin) and k-nearest neighbors (knn) estimators 
[5]. With regard to the linear parametric analysis, estimates 
of the prediction errors of autoregressive (AR),  
i.e. 	
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, and cross-autoregressive (ARX),  
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, models were obtained; the 
number of lagged components determining the model order 
was fixed to 2, so that �
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��. Regarding the model-free 

analysis, the number of neighbors used for the knn 
estimator was set to k=10 and the number of lagged 
components was fixed to 2 as in the linear case, again 
considering the instantaneous effect. Fig. 1 (a) depicts the 
time dependences considered for the estimation of iTE. The 
statistical significance of iTE estimated for each subject, 
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condition and estimator was assessed using surrogate data, 
generating 100 surrogates through circular shift of the 
target time series (minimum shift of 20 lags, significance 
threshold set at 95% of iTE computed for surrogates, one-
sided test). 

III. RESULTS AND DISCUSSION 

Fig. 1 (b) shows the distributions of the iTE values 
measured from PAT to RRI using both linear and knn 
estimators across the five considered physiological 
conditions. Using both estimators, the iTE is significantly 
higher during orthostatic stress than mental stress and the 
second recovery period, and significantly lower during 
mental stress than orthostatic stress and the baseline and 
first recovery. The knn estimator leads also to higher iTE 
values during T compared with B and R1; this suggests the 
presence of nonlinear interactions during the orthostatic 
stress, which are also emphasized by the detection of 
significantly higher values of the knn estimates of iTE 
compared with the linear estimates in this phase. These 
results highlight that physiological stress conditions are 
associated with significant changes in the information flow 
from PAT to RRI variability. The underlying physiological 
mechanisms are likely multiple, as PAT-RRI interactions 
reflect both the coupling between PEP and RRI, which is 
expected to result from the involvement of sympathetic 
cardiac control in both left ventricular contractility 
underlying PEP and cardiac chronotropy responsible for 
RRI length [6], and changes in cardiovascular regulatory 

mechanisms associated with the pulsatile activity of blood, 
mostly represented by PTT. Previous studies have shown 
also how respiration, leading among others to changes of 
arterial blood flow [7], as well as blood pressure regulation, 
which is strongly related to PTT [8], have significant 
effects on cardiovascular variability during stress. 

Although the mechanisms of cardiovascular regulation 
are characterized by numerous nonlinear behaviors, in the 
short-term their combination may often lead to linear 
dynamics of cardiovascular oscillations in the resting state, 
as evidenced in previous studies using local nonlinear 
prediction methods in connection with surrogate data [9]. 
As regards the orthostatic stress, most of the results in the 
literature of HRV evidence that the activation of the 
sympathetic system reduces nonlinear dynamics during the 
postural challenge. The apparent disagreement with our 
results can be ascribed to the fact that we are characterizing 
the PAT, which is an index closely related to the nonlinear 
mechanical properties of arteries as well as to its nonlinear 
relationship with the BP signal [10]; our findings suggest 
that the joint analysis of PAT and RRI can disclose 
complex, nonlinear interactions. In addition, a higher 
sensitivity to nonlinear dynamics can be provided by the 
knn estimator, which has been shown to detect larger 
amounts of nonlinear dynamics during orthostatic stress 
compared with other model-free entropy estimators (e.g. 
binning, kernel) [5], [11]. Therefore, future research may 
focus on the study of cardiovascular dynamics between 
PAT and RRI using different nonlinear estimators. 
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Fig. 1. (a) Schematic representation of beat-to-beat RRI and PAT time 

series extracted from ECG and BP signals (Y and X respectively); 

arrows depict the time dependences of the current state of the target 

process 	
 on its past �


 and on the driver’s past �



 (solid arrow), 

and the instantaneous effect from �
 to 	
 (dashed arrow). (b) 

Distributions of iTE computed from PAT to RRI for all subjects 

during baseline (B), head-up tilt (T), mental arithmetic test (M) and 

supine rest phases (R1, R2) with both linear (triangular markers on the 

left) and knn (square markers on the right) estimators. Statistical 

analysis: #, p<0.05, Kruskal-Wallis test for both estimators; phase 

name, p<0.05, pairwise Wilcoxon signed rank test with Bonferroni-

Holm correction; *, p<0.05 lin vs. knn, Wilcoxon signed rank test. 

The percentage shown below each distribution indicates the amount 

of subjects displaying statistically significant iTE values according to 

surrogate analysis. 


