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Abstract. Let A be a superalgebra with graded involution or superinvolution ∗ and let c∗n(A), n = 1, 2, . . . , be

its sequence of ∗-codimensions. In case A is finite dimensional, in [6, 15] it was proved that such a sequence is
polynomially bounded if and only if the variety generated by A does not contain the group algebra of Z2 and a

4-dimensional subalgebra of the 4×4 upper-triangular matrices with suitable graded involutions or superinvolutions.

In this paper we study the general case of ∗-superalgebras satisfying a polynomial identity. As a consequence
we classify the varieties of ∗-superalgebras of almost polynomial growth, i.e., varieties of exponential growth such

that any proper subvariety has polynomial growth, and we give a full classification of their subvarieties which was

started in [18].

1. Introduction

Let A be an associative algebra satisfying a polynomial identity over a field F of characteristic zero. An
important invariant of the identities of A is given by the growth of the sequence of the codimensions cn(A). Such
a sequence was introduced by Regev in [33] who proved that if A is a PI-algebra, i.e., it satisfies a non-trivial
polynomial identity, then cn(A), n = 1, 2, . . . , is exponentially bounded.

A celebrated theorem of Kemer (see [20]) characterizes the varieties of algebras of polynomial growth, i.e., with
a polynomially bounded codimension sequence, as follows. If G is the infinite dimensional Grassmann algebra over
F and UT2 is the algebra of 2 × 2 upper-triangular matrices over F then a variety of algebras V has polynomial
growth if and only if G,UT2 6∈ V. Hence var(G) and var(UT2) are the only varieties of almost polynomial growth,
i.e., they grow exponentially but any proper subvariety grows polynomially.

The varieties of polynomial growth were extensively studied in later years [8, 10, 11, 22, 23, 24] also in the setting
of varieties of graded algebras, algebras with involution, graded involution and superinvolution [6, 13, 14, 15, 21].

The purpose of this paper is to study a similar phenomenon in the setting of algebras with superinvolution or
graded involution, which have been extensively studied recently [1, 3, 5, 7, 17, 18, 19, 32, 34].

In analogy with the ordinary case, one defines the sequence of ∗-codimensions of a ∗-algebra A, i.e., an algebra
endowed with a graded involution or a superinvolution ∗. It turns out that if A satisfies an ordinary identity, then
its sequence of ∗-codimensions is exponentially bounded (see [6, 15]).

Recently, much interest has been devoted to the study of varieties of ∗-algebras of polynomial growth. More
precisely in [6, 15] it was proved that a finite dimensional ∗-algebra has polynomial growth of the ∗-codimensions if
and only if the corresponding variety does not contain the following algebras: the group algebra of a group of order
2 and a 4-dimensional subalgebra of UT4, both algebras with suitable graded involutions or superinvolutions. Such
algebras are the only finite dimensional ∗-algebras, up to T ∗2 -equivalence, generating varieties of almost polynomial
growth. Recall that, given two ∗-algebras A and B, we say that A is T ∗2 -equivalent to B and we write A ∼T∗

2
B in

case A and B satisfy the same ∗-identities.
In this paper we study the general case with no restriction on the generating algebra of the variety.
We find out that in case ∗ is a graded involution the list of algebras, up to T ∗2 -equivalence, generating varieties

of almost polynomial growth does not change.
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In the setting of algebras with superinvolution, we find out that there are two more algebras to add to the list
of the algebras generating different varieties of almost polynomial growth: the infinite dimensional Grassmann
algebra with natural grading and suitable superinvolutions.

Also we complete the classification of all subvarieties of the varieties of almost polynomial growth started in
[18] and we describe the ∗-algebras whose ∗-codimensions are bounded by a linear function.

2. Preliminaries and basic results

Throughout this paper F will denote a field of characteristic zero and A = A0⊕A1 an associative superalgebra
(also called Z2-graded algebra) over F satisfying a non-trivial polynomial identity (PI-algebra). Recall that the
elements of A0 and A1 are called homogeneous of degree zero (or even elements) and of degree one (or odd
elements), respectively.

Now assume that the superalgebra A is endowed with a graded involution, i.e., an involution preserving the
grading or with a superinvolution that is a graded linear map ∗ : A −→ A such that (a∗)∗ = a for all a ∈ A and
(ab)∗ = (−1)(deg a)(deg b)b∗a∗, for any homogeneous elements a, b ∈ A. Here deg c denotes the homogeneous degree
of c ∈ A0 ∪A1.

Notice that if A = A0 ⊕ A1 is a superalgebra such that A2
1 = 0 then the superinvolutions on A coincide with

the graded involutions on A and, in particular, with the involutions on A, if A1 = 0.
In what follows we shall denote by ∗ a graded involution or a superinvolution on A and we shall say that A is a

∗-algebra. In case A2
1 = 0 we shall call ∗ a gs-involution (i.e., a graded involution and also a superinvolution). We

say that A is endowed with the trivial gs-involution if A1 = 0 and ∗ is the trivial involution.
Notice that if A = A0 ⊕A1 is a ∗-algebra, then A0 is just an algebra with involution.
Since charF = 0, we can write A = A+

0 ⊕ A
−
0 ⊕ A

+
1 ⊕ A

−
1 , where for i = 0, 1, A+

i = {a ∈ Ai | a∗ = a} and
A−i = {a ∈ Ai | a∗ = −a} denote the sets of symmetric and skew elements of Ai, respectively.

As in the case of graded algebras or of algebras with involution, one can define a graded involution or a
superinvolution on the free algebra F 〈X〉 in a natural way. We write the set X as the union of two disjoint infinite
sets Y and Z, requiring that their elements are of homogeneous degree 0 and 1, respectively. Then each set is
written as the disjoint union of two other infinite sets of symmetric and skew elements, respectively. The free
algebra with graded involution or superinvolution is denoted F 〈Y ∪ Z, ∗〉 and we write

F 〈Y ∪ Z, ∗〉 = F 〈y+1 , y
−
1 , z

+
1 , z

−
1 , y

+
2 , y

−
2 , z

+
2 , z

−
2 , . . .〉,

where y+i stands for a symmetric variable of even degree, y−i for a skew variable of even degree, z+i for a symmetric
variable of odd degree and z−i for a skew variable of odd degree.

We denote by Id∗(A) = {f ∈ F 〈Y ∪Z, ∗〉 | f ≡ 0 on A} the T ∗2 -ideal of ∗-identities of A, i.e., Id∗(A) is an ideal
of F 〈Y ∪ Z, ∗〉 invariant under all graded endomorphisms of F 〈Y ∪ Z〉 commuting with ∗.

We next state, in our language, the following results given in [13] for algebras with involution.

Lemma 2.1. [13, Lemma 2.4] Let A be a ∗-algebra. If (y−)d ∈ Id∗(A) for some d ≥ 1, then there exists t ≥ 1
such that y−1 · · · y

−
t ∈ Id∗(A).

As a consequence we get the even skew analogue of the Nagata-Higman theorem (see [4, Theorem 8.3.2]).

Theorem 2.1. [13, Theorem 2.5] Let A be a ∗-algebra. If (y−)d ∈ Id∗(A), then there exists t ≥ 1 such that

y−1 w1y
−
2 w2 · · ·wt−1y−t ∈ Id∗(A),

where w1, . . . , wt−1 are (eventually empty) words in elements of Y .

As in the super case, it is easily seen that in characteristic zero, every ∗-identity is equivalent to a system of
multilinear ∗-identities. Hence if we denote by

P ∗n = spanF {wσ(1) · · ·wσ(n) | σ ∈ Sn, wi = y+i or wi = y−i or wi = z+i or wi = z−i , i = 1, . . . , n}

the space of multilinear polynomials of degree n in the variables y+1 , y
−
1 , z

+
1 , z

−
1 , . . . , y

+
n , y

−
n , z

+
n , z

−
n , the study of

Id∗(A) is equivalent to the study of P ∗n ∩ Id∗(A), for all n ≥ 1. The non-negative integer

c∗n(A) = dimF
P ∗n

P ∗n ∩ Id∗(A)
, n ≥ 1,



SUPERALGEBRAS WITH INVOLUTION OR SUPERINVOLUTION 3

is called the n-th ∗-codimension of A.
If A is a PI-algebra, then c∗n(A), n = 1, 2, . . . , is exponentially bounded (see [6], [15]).
Let n ≥ 1 and write n = n1 + · · · + n4 as a sum of non-negative integers. We denote by Pn1,...,n4

⊆ P ∗n the
vector space of multilinear ∗-polynomials in which the first n1 variables are even symmetric, the next n2 variables
are even skew, the next n3 variables are odd symmetric and the last n4 variables are odd skew. The group
Sn1 × · · · × Sn4 acts on the left on the vector space Pn1,...,n4 by permuting the variables of the same homogeneous
degree which are all symmetric or all skew at the same time. Thus Sn1

permutes the variables y+1 , . . . , y
+
n1
, Sn2

permutes the variables y−n1+1, . . . , y
−
n1+n2

, and so on. In this way Pn1,...,n4 becomes a module over the group algebra
F (Sn1

× · · · × Sn4
). Now Pn1,...,n4

∩ Id∗(A) is invariant under this action and so the vector space

Pn1,...,n4
(A) =

Pn1,...,n4

Pn1,...,n4
∩ Id∗(A)

is an (Sn1
× · · · × Sn4

)-module with the induced action. It is immediate to see that

(1) c∗n(A) =
∑

n1+···+n4=n

(
n

n1, . . . , n4

)
dimF Pn1,...,n4

(A),

where

(
n

n1, . . . , n4

)
=

n!

n1! · · ·n4!
stands for the multinomial coefficient.

Given V a variety of ∗-algebras (∗-variety) the growth of V is defined as the growth of the sequence of ∗-
codimensions of any algebra A generating V, i.e., V = var∗(A) (in this case we write Id∗(V) = Id∗(A)). Then we
say that V has polynomial growth if c∗n(V) is polynomially bounded and we say that V has almost polynomial
growth if c∗n(V) is not polynomially bounded but every proper subvariety of V has polynomial growth.

3. Finite dimensional ∗-algebras generating varieties of almost polynomial growth

In this section we shall describe some finite dimensional ∗-algebras generating varieties of almost polynomial
growth and we shall recall the characterization of the varieties of ∗-algebras of polynomial growth given in [6, 15].
Given polynomials f1, . . . , fn ∈ F 〈Y ∪ Z, ∗〉, we denote by 〈f1, . . . , fn〉T∗

2
the T ∗2 -ideal generated by f1, . . . , fn.

Let F ⊕F be the two dimensional group algebra of Z2. We denote by D the algebra F ⊕F with trivial grading
and exchange gs-involution ∗ given by (a, b)∗ = (b, a), for all (a, b) ∈ D. Such an algebra generates a variety of
almost polynomial growth and Id∗(D) = 〈[x1, x2], z+, z−〉T∗

2
(see [6, 12]).

Now we consider a non-trivial grading on F ⊕ F . We denote by Dsup and Dsup,ex the superalgebra F ⊕
F = F (1, 1) ⊕ F (1,−1) with trivial and exchange (graded) involution, respectively. The algebras Dsup and
Dsup,ex generate varieties of almost polynomial growth with Id∗(Dsup) = 〈[x1, x2], y−, z−〉T∗

2
and Id∗(Dsup,ex) =

〈[x1, x2], y−, z+〉T∗
2

(see [12, 15]).
Let

M = F (e11 + e44)⊕ F (e22 + e33)⊕ Fe12 ⊕ Fe34,
be a subalgebra of UT4, the algebra of 4 × 4 upper-triangular matrices, endowed with the reflection involution
∗, i.e., the involution obtained by reflecting a matrix along its secondary diagonal. Hence, if a = α(e11 + e44) +
β(e22 + e33) + γe12 + δe34 then

a∗ = α(e11 + e44) + β(e22 + e33) + δe12 + γe34.

If we regard M as endowed with trivial grading, then the above involution is a gs-involution. Such an algebra
generates a variety of almost polynomial growth with T ∗2 -ideal of identities Id∗(M) = 〈y−1 y

−
2 , z

+, z−〉T∗
2

(see
[6, 15, 31]).

Next we consider a non-trivial grading on M : we denote by Msup the algebra M with grading M0 = F (e11 +
e44)⊕ F (e22 + e33) and M1 = Fe12 ⊕ Fe34. Notice that the reflection involution on Msup is a gs-involution, since
M2

1 = 0. The algebra Msup generates a variety of almost polynomial growth with Id∗(Msup) = 〈y−, z1z2〉T∗
2

(see
[6, 15]).

The above algebras characterize the varieties of ∗-algebras of polynomial growth.
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Theorem 3.1. [6, Theorem 5.1] Let A be a finite dimensional algebra with superinvolution. Then var∗(A) has
polynomial growth if and only if D,M,Msup 6∈ var∗(A).

Theorem 3.2. [15, Theorem 8.6] Let A be a finite dimensional algebra with graded involution. Then var∗(A) has
polynomial growth if and only if D,Dsup, Dsup,ex,M,Msup 6∈ var∗(A).

4. Infinite dimensional algebras with superinvolution generating
varieties of almost polynomial growth

In this section we shall introduce and study two infinite dimensional algebras with superinvolution generating
varieties of almost polynomial growth.

Let G = 〈1, e1, e2, . . . | eiej = −ejei〉 be the infinite dimensional Grassmann algebra over F with its natural
grading G = G0 ⊕ G1. Here G0 is the span of all monomials in the ei’s of even length and G1 is the span of all
monomials in the ei’s of odd length.

We endow G = G0 ⊕G1 with two superinvolutions as follows.

1) We let G] be the algebra G with natural grading and superinvolution ] induced by setting e]i = ei. Hence
(G])+0 = G0, (G])+1 = G1, (G])−0 = (G])−1 = 0 and it is immediate to see that Id∗(G]) = 〈[y, x], z1z2 +
z2z1, y

−, z−〉T∗
2

.

2) We denote by G? be the algebra G with natural grading and superinvolution ? induced by setting e?i = −ei.
In this case (G?)+0 = G0, (G?)−1 = G1, (G?)−0 = (G?)+1 = 0 and Id∗(G?) = 〈[y, x], z1z2 + z2z1, y

−, z−〉T∗
2

.

In the next lemma we characterize the proper subvarieties of var∗(G]) and var∗(G?), respectively.

Lemma 4.1. Let U be a subvariety of var∗(G]) (resp. var∗(G?)). Then U is a proper subvariety if and only if
there exists p ≥ 1 such that z+1 · · · z+p ∈ Id∗(U) (resp. z−1 · · · z−p ∈ Id∗(U)).

Proof. Since z+1 · · · z+p 6∈ Id∗(G]) for all p ≥ 1, one direction is obvious. Now assume that U is a proper subvariety.

Then there exists a multilinear polynomial f such that f ∈ Id∗(U) and f 6∈ Id∗(G]). Hence f must be of the type
f = f(y+1 , . . . , y

+
r , z

+
1 , . . . , z

+
n−r). Since [y, x], z1z2 + z2z1 ∈ Id∗(U), we get that f (mod Id∗(U)) is a monomial of

the type

αy+1 · · · y+r z
+
1 · · · z

+
n−r.

With the substitution y+i = [z+n−r+2i−1, z
+
n−r+2i], i = 1, . . . , r, we get the desired conclusion since [z+i , z

+
j ] = 2z+i z

+
j .

In a similar way we prove the other case. �

The following remark can be proved as in [14, Remark 1].

Remark 4.1. If g(z+1 , . . . , z
+
p ) ∈ Id∗(G]) (resp. g(z−1 , . . . , z

−
p ) ∈ Id∗(G?)) is a multilinear polynomial of degree

p ≥ 1 then, in the free algebra with superinvolution F 〈Y ∪ Z, ∗〉, we have that∑
σ∈Sp

(sgnσ)g(z+σ(1), . . . , z
+
σ(p)) = 0 (resp.

∑
σ∈Sp

(sgnσ)g(z−σ(1), . . . , z
−
σ(p)) = 0).

Now we are in a position to characterize the varieties not containing G] (resp. G?) in terms of ∗-identities and
we can prove that var∗(G]) and var∗(G?) have almost polynomial growth.

Recall that Str(x1, . . . , xr) =
∑
σ∈Sr

(sgnσ)xσ(1) · · ·xσ(r) is the standard polynomial of degree r.

Theorem 4.1. Let V be a variety of algebras with superinvolution. Then G] 6∈ V if and only if Stp(z
+
1 , . . . , z

+
p ) ∈

Id∗(V), for some p ≥ 1.

Proof. Let Stp(z
+
1 , . . . , z

+
p ) ∈ Id∗(V). Since Stp(z

+
1 , . . . , z

+
p ) 6∈ Id∗(G]), then G] 6∈ V and we are done.

Suppose now that G] 6∈ V. Then V ∩ var∗(G]) ( var∗(G]) and by Lemma 4.1, there exists p ≥ 1 such that

z+1 · · · z+p ∈ Id∗(V ∩ var∗(G])) = Id∗(V) + Id∗(G]).
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It follows that there exists g ∈ Id∗(G]) such that z+1 · · · z+p + g ∈ Id∗(V). Moreover, by the multihomogeneity of

T ∗2 -ideals, we may assume that g = g(z+1 , . . . , z
+
p ). Now by alternating z+1 · · · z+p + g with respect to the variables

z+1 , . . . , z
+
p and by applying Remark 4.1, we get∑

σ∈Sp

(sgnσ)z+σ(1) · · · z
+
σ(p) ∈ Id∗(V).

�

The following theorem is proved similarly.

Theorem 4.2. Let V be a variety of algebras with superinvolution. Then G? 6∈ V if and only if Stq(z
−
1 , . . . , z

−
q ) ∈

Id∗(V), for some q ≥ 1.

Theorem 4.3. The algebras G] and G? generate varieties of almost polynomial growth.

Proof. We prove the result for G]. The proof concerning G? is similar.
Let n1 + · · ·+ n4 = n. Since G] is a PI-algebra, we already know that c∗n(G]) is exponentially bounded. Since

dimPn1,...,n4
(G]) = 0 if n2 6= 0 or n4 6= 0 and dimPn1,...,n4

(G]) = 1 in all other cases, we get

c∗n(G]) =
∑

n1+···+n4=n

(
n

n1, . . . , n4

)
dimPn1,...,n4(G]) =

∑
n1+n3=n

(
n

n1, n3

)
dimPn1,0,n3,0(G]) =

n∑
n1=0

(
n

n1

)
= 2n.

Thus var∗(G]) has exponential growth and we are left to prove that any proper subvariety of var∗(G]) has poly-
nomial growth. Let U be a proper subvariety of var∗(G]). By Lemma 4.1, we have that z+1 · · · z+p ∈ Id∗(U) for

some p ≥ 1 and, since [y+, z+] ∈ Id∗(U), we get that Pn1,0,n3,0 ⊆ Id∗(U), as soon as n3 ≥ p. Moreover, since
y−, z− ∈ Id∗(U), it follows that Pn1,...,n4 ⊆ Id∗(U) if n2 6= 0 or n4 6= 0. Then we have

c∗n(U) =
∑

n1+n3=n

(
n

n1, n3

)
dimPn1,0,n3,0(U) ≤

∑
n−n1<p

(
n

n1

)
≤ αnp.

�

5. Varieties of polynomial growth

In this section we shall characterize the varieties of algebras with graded involution or superinvolution of
polynomial growth. We start with the following lemma concerning D.

Lemma 5.1. Let A be a ∗-algebra. Then D 6∈ var∗(A) if and only if (y−)
d ∈ Id∗(A), d ≥ 1.

Proof. Since (y−)
d 6∈ Id∗(D), one implication is obvious. Suppose now that D 6∈ var∗(A). Then Id∗(A) * Id∗(D)

and let f ∈ Id∗(A) be a multilinear polynomial such that f 6∈ Id∗(D). Since z+, z− ∈ Id∗(D), f is a polynomial of
the type

f = f(y+1 , . . . , y
+
r , y

−
1 , . . . , y

−
n−r)

and it does not vanish on a basis of D. Since {a = (1, 1)} and {b = (1,−1)} are bases of D+
0 and D−0 , respectively,

we get
0 6= f(a, . . . , a, b, . . . , b) = f(b2, . . . , b2, b, . . . , b) = αbn+r,

where α 6= 0, is the sum of all the coefficients of f . But (y−)
2

is an even symmetric variable and so it follows that

f((y−)
2
, . . . , (y−)

2
, y−, . . . , y−) = α (y−)

n+r ∈ Id∗(A). Since α 6= 0, we get (y−)
n+r ∈ Id∗(A). �

Lemma 5.2. If D 6∈ var∗(A), then there exists t ≥ 1 such that [y1, y2] · · · [y2t−1, y2t] ∈ Id∗(A).

Proof. Since D 6∈ var∗(A), by Lemma 5.1, (y−)
d ∈ Id∗(A) for some d ≥ 1. Hence, by Theorem 2.1, there exists

t ≥ 1 such that any monomial in symmetric and skew variables of homogeneous degree 0 containing at least t even
skew variables must lie in Id∗(A).

In order to get [y1, y2] · · · [y2t−1, y2t] ∈ Id∗(A), it is enough to prove that [w1, w2] · · · [w2t−1, w2t] ≡ 0, where the
wi’s are either symmetric or skew variables of homogeneous degree zero. But each commutator [w2i−1, w2i] either
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evaluates to an even skew element (if both w2i−1 and w2i are even symmetric variables) or contains at least one
even skew variable. In any case g = [w1, w2] · · · [w2t−1, w2t] evaluates to a linear combination of monomials each
containing at least t skew elements of degree zero and the proof is complete. �

Next we shall prove that a variety not containing D satisfies a Capelli identity in even variables. Recall that,
if x1, . . . xm, x

′
1, . . . x

′
m+1 are variables in X, then the Capelli polynomial of rank m is

Capm
(
x1, . . . , xm;x′1, . . . , x

′
m+1

)
=
∑
σ∈Sm

(sgnσ)x′1xσ(1)x
′
2xσ(2) · · ·x′mxσ(m)x

′
m+1.

We say that an algebra A satisfies the Capelli identity of rank m if it satisfies all polynomials obtained from
Capm

(
x1, . . . , xm;x′1, . . . , x

′
m+1

)
by eventually setting the variables x′i equal to 1 in all possible ways.

Proposition 5.1. Let A = A0 ⊕A1 be a ∗-algebra. If D 6∈ var∗(A) then A0 satisfies a Capelli identity.

Proof. Since D 6∈ var∗(A), by Lemma 5.2, there exists t ≥ 1 such that [y1, y2] · · · [y2t−1, y2t] ∈ Id∗(A). Since

St2t (y1, . . . , y2t) =
1

2t

∑
σ∈S2t

(sgnσ)[yσ(1), yσ(2)] · · · [yσ(2t−1), yσ(2t)]

we get St2t (y1, . . . , y2t) ∈ Id∗(A) and the proof follows by [16, Theorem 7.1.4]. �

Our next goal is to find conditions which ensure that the standard polynomial in odd variables is an identity
for a ∗-algebra A.

Remark 5.1. Let A be a ∗-algebra. If Stn (w1, . . . , wn) ∈ Id∗(A) for some n ≥ 1, then Stn+1 (w1, . . . , wn, wn+1) ∈
Id∗(A), for all w1, . . . , wn+1 ∈ Y ∪ Z.

Proof. Let n be even. Since Stn (w1, . . . , wn) ∈ Id∗(A) then f = Stn (w1, . . . , wn)wn+1 +wn+1Stn (w1, . . . , wn) ∈
Id∗(A). If we now alternate f with respect to the variables w1, . . . , wn+1 we get that 2n!Stn+1 (w1, . . . , wn, wn+1) ∈
Id∗(A) and we are done in this case.

If n is odd the proof is similar by considering f = [Stn (w1, . . . , wn) , wn+1]. �

Now we are in a position to prove the following lemma.

Lemma 5.3. Let A be a ∗-algebra. If Stp
(
z+1 , . . . , z

+
p

)
and Stq

(
z−1 , . . . , z

−
q

)
∈ Id∗(A) for some p, q ≥ 1, then

Stp+q (z1, . . . , zp+q) ∈ Id∗(A).

Proof. Notice that

Stp+q (z1, . . . , zp+q) =
∑

ai∈{+,−}

Stp+q
(
za11 , . . . , z

ap+q

p+q

)
.

Since Stp
(
z+1 , . . . , z

+
p

)
∈ Id∗(A), by Remark 5.1 we get that Stp+q

(
z+1 , . . . , z

+
r , z

−
1 , . . . , z

−
p+q−r

)
∈ Id∗(A), for all

r = p, . . . , p + q. Similarly, Stq
(
z−1 , . . . , z

−
q

)
∈ Id∗(A) implies Stp+q

(
z+1 , . . . , z

+
p+q−s, z

−
1 , . . . , z

−
s

)
∈ Id∗(A), for all

s = q, . . . , p+ q. In this way Stp+q
(
za11 , . . . , z

ap+q

p+q

)
∈ Id∗(A) for all ai ∈ {+,−}, i = 1, . . . , p+ q and the proof is

complete. �

In the following two propositions we find conditions ensuring that the standard polynomial in odd variables is
an identity for a ∗-algebra A.

Proposition 5.2. Let A = A0 ⊕ A1 be an algebra with superinvolution. If G], G? 6∈ var∗(A) then A1 satisfies a
standard identity.

Proof. Since G], G? 6∈ var∗(A), by Theorems 4.1 and 4.2 we obtain that Stp
(
z+1 , . . . , z

+
p

)
and Stq

(
z−1 , . . . , z

−
q

)
are

identities of A for some p, q ≥ 1. Hence, by Lemma 5.3, A1 satisfies a standard identity. �

Proposition 5.3. Let A = A0 ⊕ A1 be an algebra with graded involution. If D 6∈ var∗(A) then A1 satisfies a
standard identity.
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Proof. Since D 6∈ var∗(A), by Lemma 5.1, we have that (y−)d ∈ Id∗(A). Then by Lemma 2.1, there exists t ≥ 1
such that y−1 · · · y

−
t ∈ Id∗(A). Since [z+1 , z

+
2 ] and [z−1 , z

−
2 ] are even skew variables, we get

[z+1 , z
+
2 ] · · · [z+2t−1, z

+
2t], [z

−
1 , z

−
2 ] · · · [z−2t−1, z

−
2t] ∈ Id∗(A).

Hence we obtain that St2t
(
z+1 , . . . , z

+
2t

)
and St2t

(
z−1 , . . . , z

−
2t

)
are identities of A and so the proof follows by Lemma

5.3. �

Now we are ready to prove the following.

Theorem 5.1. Let V be a ∗-variety.

- If ∗ is a graded involution and D 6∈ V then A satisfies a Capelli identity.

- If ∗ is a superinvolution and D,G], G? 6∈ V then A satisfies a Capelli identity.

Proof. Let A = A0 ⊕ A1 be a generating ∗-algebra of V. First we assume that ∗ is a graded involution. Since
D 6∈ var∗(A), by Propositions 5.1 and 5.3 we have that A0 satisfies a Capelli identity and A1 satisfies a standard
identity. In case ∗ is a superinvolution, by Propositions 5.1 and 5.2 we get that A0 satisfies a Capelli identity and
A1 satisfies a standard identity.

The conclusion now follows by applying [16, Lemma 11.4.1]. �

The following theorem follows by the proof of [16, Theorem 11.4.3].

Theorem 5.2. Let V be a ∗-variety. If V satisfies a Capelli identity of some rank, then V = var∗(B), for some
finitely generated ∗-algebra B.

By putting together Theorems 5.1 and 5.2 we get the following corollary.

Corollary 5.1. Let V be a ∗-variety. Then V = var∗(B), for some finitely generated ∗-algebra B, if

1. ∗ is a graded involution and D 6∈ V,

2. ∗ is a superinvolution and D,G], G? 6∈ V.

In order to characterize the ∗-varieties of polynomial growth we need to apply the following result, proved in
[1] in the setting of algebras with superinvolution. Here we remark that a similar proof holds also in the case of
algebras with graded involution.

Theorem 5.3. [1]. Let V be a ∗-variety generated by a finitely generated ∗-algebra B over an algebraically closed
field F of characteristic zero. Then V = var∗(C), for some finite dimensional ∗-algebra C over F.

From now on, we assume that F is an algebraically closed field of characteristic zero.
The following theorems characterize the varieties of ∗-algebras of polynomial growth.

Theorem 5.4. Let V be a variety of algebras with superinvolution. Then V has polynomial growth if and only if
M,Msup, D,G], G? 6∈ V.

Proof. Since M,Msup, D,G], G? generate varieties of exponential growth one direction is obvious.
On the other hand, since D,G], G? 6∈ V, by Corollary 5.1 and Theorem 5.3, we get that V = var∗(C), for some

finite dimensional ∗-algebra C. Finally the result follows by Theorem 3.1. �

Theorem 5.5. Let V be a variety of algebras with graded involution. Then V has polynomial growth if and only
if M,Msup, D,Dsup, Dsup,ex 6∈ V.

Proof. Since M,Msup, D,Dsup, Dsup,ex generate varieties of exponential growth one direction is obvious.
On the other hand, since D 6∈ V, by Corollary 5.1 and Theorem 5.3, we get that V = var∗(C), for some finite

dimensional ∗-algebra C and the result follows by Theorem 3.2. �

As an immediate consequence we obtain the following corollaries.

Corollary 5.2. There is no ∗-variety of intermediate growth between polynomial and exponential.

Corollary 5.3. The varieties of algebras with superinvolution var∗(D), var∗(M), var∗(Msup), var∗(G]) and
var∗(G?) are the only ones of almost polynomial growth.



8 ANTONIO GIAMBRUNO, ANTONIO IOPPOLO, AND DANIELA LA MATTINA

Corollary 5.4. The varieties of algebras with graded involution var∗(D), var∗(Dsup), var∗(Dsup,ex), var∗(M) and
var∗(Msup) are the only ones of almost polynomial growth.

As a consequence of Theorem 5.3 and [18] it is possible to get a classification, up to T ∗2 -equivalence, of the
∗-algebras generating varieties of at most linear growth. Such a classification for ∗-algebras with trivial grading
was given in [30].

Theorem 5.6. Let A be an algebra with graded involution or superinvolution ∗ such that c∗n(A) ≤ an, for some
constant a. Then

A ∼T∗
2
B1 ⊕ · · · ⊕Bm ⊕N,

where Bi ∈ var∗(M) or Bi ∈ var∗(Msup), for all i = 1, . . . ,m and N is a nilpotent ∗-algebra.

Proof. Let ∗ be a superinvolution (resp. graded involution). Since c∗n(A) is polynomially bounded, by Theorem
5.4 (resp. Theorem 5.5), we get that M,Msup, D,G], G? 6∈ var∗(A) (resp. M,Msup, D,Dsup, Dsup,ex 6∈ var∗(A)).
Hence, by Corollary 5.1 and Theorem 5.3, we may assume that A is a finite dimensional ∗-algebra and the result
follows by [18, Theorem 7.1]. �

A finer classification, up to T ∗2 -equivalence, of the ∗-algebras of at most linear growth is given in [18].

6. Classifying the subvarieties of var∗(G]), var∗(G?) and var∗(Dsup,ex)

In this section we complete the classification of the subvarieties of the ∗-varieties of almost polynomial growth
started in [18]. First we recall some basic results.

By the Wedderburn-Malcev theorem for ∗-algebras (see [6], [15]), if B is a finite dimensional ∗-algebra over an
algebraically closed field, we can write B = B′+J , where B′ is a semisimple ∗-subalgebra of B and J = J(B) is its
Jacobson radical. Moreover B′ = B1⊕· · ·⊕Bk, where B1, . . . , Bk are simple ∗-algebras and J can be decomposed
into the direct sum of graded B′-bimodules

J = J00 ⊕ J01 ⊕ J10 ⊕ J11,
where for i ∈ {0, 1}, Jik is a left faithful module or a 0-left module according as i = 1 or i = 0, respectively.
Similarly, Jik is a right faithful module or a 0-right module according as k = 1 or k = 0, respectively and for
i, k, l,m ∈ {0, 1}, JikJlm ⊆ δklJim, where δkl is the Kronecker delta.

Theorem 6.1. [18, Theorem 2.4] Let A be a finite dimensional ∗-algebra over a field F of characteristic zero. Then
c∗n(A), n = 1, 2, . . . , is polynomially bounded if and only if A ∼T∗

2
B, where B = B1 ⊕ · · · ⊕ Bm with B1, . . . , Bm

finite dimensional ∗-algebras over F and dimBi/J(Bi) ≤ 1, for all i = 1, . . . ,m.

In order to study ∗-identities of algebras A with 1 we define the proper ∗-polynomials. We say that a polynomial
f ∈ P ∗n is a proper ∗-polynomial if it is a linear combination of elements of the type

y−i1 · · · y
−
is
z+j1 · · · z

+
jt
z−l1 · · · z

−
lr
w1 · · ·wm,

where w1, . . . , wm are left normed (long) Lie commutators in the variables of Y ∪ Z (here the symmetric even
variables appear only inside the commutators). We denote by Γ∗n the subspace of P ∗n of proper ∗-polynomials and
Γ∗0 = span{1}. The sequence of proper ∗-codimensions is defined as

γ∗n(A) = dim
Γ∗n

Γ∗n ∩ Id∗(A)
, n = 0, 1, 2, . . . .

If for some k ≥ 2, γ∗k(A) = 0 then γ∗m(A) = 0 for all m ≥ k (see [18]).
For an unitary ∗-algebra A, the relation between ∗-codimensions and proper ∗-codimensions (see [18]), is given

by the following:

(2) c∗n(A) =

n∑
i=0

(
n

i

)
γ∗i (A), n = 0, 1, 2 . . . .

Let now focus our attention on the subvarieties of var∗(G]). For k ≥ 1, let G]k denote the Grassmann algebra

with 1 on a k-dimensional vector space over F , i.e., G]k = 〈1, e1, . . . , ek | eiej = −ejei〉, with superinvolution

induced by G]. Next we describe explicitly the identities of G]k, for any k ≥ 1.
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Theorem 6.2. Let k ≥ 1. Then

1) Id∗(G]k) = 〈[y, x], z1z2 + z2z1, z1 · · · zk+1, y
−, z−〉T∗

2
.

2) c∗n(G]k) =

k∑
j=0

(
n

j

)
≈ 1

k!
nk.

Proof. Let I = 〈[y, x], z1z2 + z2z1, z1 · · · zk+1, y
−, z−〉T∗

2
. It is easily checked that I ⊆ Id∗(G]k). In order to prove

the opposite inclusion, let f be a ∗-identity of G]k of degree t. We may assume that f is multilinear and, since G]k
is an algebra with 1, we may take f proper. After reducing the polynomial f modulo I we obtain that f is the
zero polynomial if t ≥ k + 1 and f = αz+1 · · · z

+
t if t < k + 1. If α 6= 0, evaluating z+i = ei, i = 1, . . . , t, we get

f = αe1 · · · et 6= 0, a contradiction. Thus we get that Id∗(G]) = I.

The argument above also proves that γ∗t (G]k) = 1 for t < k + 1 and γ∗t (G]k) = 0 otherwise and 2) follows by
(2). �

A variety of ∗-algebras V is minimal of polynomial growth if c∗n(V) ≈ qnk for some k ≥ 1, q > 0, and for any
proper subvariety U ( V we have that c∗n(U) ≈ q′nt with t < k.

Theorem 6.3. For any k ≥ 1, G]k generates a minimal variety of polynomial growth.

Proof. Let A ∈ var∗(G]k) and suppose that c∗n(A) ≈ qnk, for some q > 0. We shall prove that A ∼T∗
2
G]k. Since

c∗n(A) is polynomially bounded, by Theorem 5.4 we have that M,Msup, D,G], G? 6∈ var∗(A). Hence, by Corollary
5.1 and Theorem 5.3, we get that A satisfies the same ∗-identities as a finite dimensional algebra. Thus, by
Theorem 6.1, we may assume that

A = B1 ⊕ · · · ⊕Bm,
where B1, . . . , Bm are finite dimensional ∗-algebras such that dimBi/J(Bi) ≤ 1, for all i = 1, . . . ,m. This implies
that either Bi ∼= F + J(Bi) or Bi = J(Bi) is a nilpotent ∗-algebra. Since c∗n(A) ≤ c∗n(B1) + · · · + c∗n(Bm), then
there exists Bi such that c∗n(Bi) ≈ bnk, for some b > 0. Hence

var∗(G]k) ⊇ var∗(A) ⊇ var∗(F + J(Bi)) ⊇ var∗(F + J11(Bi)).

In order to complete the proof it is enough to show that F +J11(Bi) ∼T∗
2
G]k and so, without loss of generality,

we may assume that A is an unitary ∗-algebra. Hence

c∗n(A) =

k∑
i=0

(
n

i

)
γ∗i (A),

and γ∗i (A) 6= 0 for all i = 2, . . . , k. Now, since A ∈ var∗(G]k), we have that γ∗i (A) ≤ γ∗i (G]k) = 1. It follows that

c∗n(A) = c∗n(G]k) for all n and so A ∼T∗
2
G]k. �

Now we are in a position to classify all the subvarieties of var∗(G]).

Theorem 6.4. Let A ∈ var∗(G]). Then either A ∼T∗
2
G] or A ∼T∗

2
N or A ∼T∗

2
C ⊕ N or A ∼T∗

2
G]k ⊕ N ,

for some k ≥ 1, where N is a nilpotent algebra with superinvolution and C is a commutative algebra with trivial
superinvolution.

Proof. If A ∼T∗
2
G] there is nothing to prove. Let now A generate a proper subvariety of var∗(G]). Since var∗(G])

has almost polynomial growth, var∗(A) has polynomial growth and let c∗n(A) ≈ qnr for some r ≥ 0. If r = 0 then
either A ∼T∗

2
C ⊕ N or A ∼T∗

2
N . Let now r > 0. As before we may assume that A = B1 ⊕ · · · ⊕ Bm, where

B1, . . . , Bm are finite dimensional ∗-algebras such that either Bi is a nilpotent ∗-algebra or Bi ∼= (F + J11)⊕ J00,
since [y, x] is an identity of A (see [26, Lemma 5.1]). Hence

A = B1 ⊕ · · · ⊕Bm = B ⊕N,
where B is an unitary ∗-algebra, N is a nilpotent ∗-algebra and, for n large enough,

c∗n(A) = c∗n(B) =

r∑
i=0

(
n

i

)
γ∗i (B).
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In particular we get that Γ∗r+1 ⊆ Id∗(B). This implies that B ∈ var∗(G]r) and, since G]r generates a minimal

variety and c∗n(G]r) ≈ q′nr, we obtain that B ∼T∗
2
G]r, and so A ∼T∗

2
G]r ⊕N . �

As a consequence we get the following.

Corollary 6.1. An algebra with superinvolution A ∈ var∗(G]) generates a minimal variety of polynomial growth

if and only if A ∼T∗
2
G]k, for some k ≥ 1.

Next we shall classify the subvarieties of var∗(G?). For k ≥ 1, let G?k denote the Grassmann algebra with 1 on
a k-dimensional vector space over F with superinvolution induced by G?. The proof of the following results can
be obtained as the previous ones.

Theorem 6.5. Let k ≥ 1. Then

1) Id∗(G?k) = 〈[y, x], z1z2 + z2z1, z1 · · · zk+1, y
−, z+〉T∗

2
.

2) c∗n(G?k) =

k∑
j=0

(
n

j

)
≈ 1

k!
nk.

Theorem 6.6. Let A ∈ var∗(G?). Then either A ∼T∗
2
G? or A ∼T∗

2
N or A ∼T∗

2
C ⊕ N or A ∼T∗

2
G?k ⊕ N ,

for some k ≥ 1, where N is a nilpotent algebra with superinvolution and C is a commutative algebra with trivial
superinvolution.

As a consequence we get the following.

Corollary 6.2. An algebra with superinvolution A ∈ var∗(G?) generates a minimal variety of polynomial growth
if and only if A ∼T∗

2
G?k, for some k ≥ 1.

Next we classify, up to T ∗2 -equivalence, all the algebras with graded involution contained in the variety generated
by Dsup,ex, the algebra F ⊕ F with grading (F (1, 1), F (1,−1)) and exchange (graded) involution.

For k ≥ 2, let Ik be the k × k identity matrix and E1 =
∑k−1
i=1 ei,i+1, where the eij ’s denote the usual matrix

units. We denote by Csup,exk the commutative subalgebra of UTk

Csup,exk = {αIk +
∑

1≤i<k

αiE
i
1 | α, αi ∈ F} ⊆ UTk,

with elementary grading (see [2, 26]) induced by g = (0, 1, 0, 1, . . .) ∈ Zk2 and (graded) involution given by

(αIk +
∑

1≤i<k

αiE
i
1)∗ = αIk +

∑
1≤i<k

(−1)iαiE
i
1.

The following results can be obtained easily from [27, 28, 29].

Theorem 6.7. Let k ≥ 2. Then

1) Id∗(Csup,exk ) = 〈[x1, x2], z−1 · · · z
−
k , y

−, z+〉T∗
2
.

2) c∗n(Csup,exk ) =

k−1∑
j=0

(
n

j

)
≈ 1

(k − 1)!
nk−1.

Theorem 6.8. Let A ∈ var∗(Dsup,ex). Then either A ∼T∗
2
Dsup,ex or A ∼T∗

2
N or A ∼T∗

2
C ⊕ N or A ∼T∗

2

Csup,exk ⊕N, for some k ≥ 2, where N is a nilpotent algebra with graded involution and C is a commutative algebra
with trivial involution.

Corollary 6.3. An algebra with graded involution A ∈ var∗(Dsup,ex) generates a minimal variety of polynomial
growth if and only if A ∼T∗

2
Csup,exk , for some k ≥ 2.
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