

G. Cozzo¹, P. Pagano^{1,2}, F. Reale^{1,2}, P. Testa³, J. Martinez-Sykora^{4,5,6,7}, V. Hansteen^{4,6}, B. De Pontieu^{4,5,6}, J. Reid⁸, A. W. Hood⁸, A. Petralia², C. Argiroffi^{1,2}

1. Dipartimento di Fisica & Chimica, Università di Palermo, Italy, **gabriele.cozzo@unipa.it**; **2.** INAF-Osservatorio Astronomico di Palermo, Italy; **3.** Harvard–Smithsonian Center for Astrophysics, MA, USA; **4.** Lockheed Martin Solar & Astrophysics Laboratory, CA, USA; **5.** Rosseland Centre for Solar Physics, University of Oslo, Norway; **6.** Institute of Theoretical Astrophysics, University of Oslo, Norway; **7.** Bay Area Environmental Research Institute, CA, USA, **8.** School of Mathematics and Statistics, University of St Andrews, UK.

Abstract. In the solar corona, heating might stem from numerous, localised and impulsive episodes of magnetic energy release, referred to as "**nanoflares**". During avalanche-like processes, misaligned magnetic field lines can rupture and reconnect, thus generating a nanoflare storm. Small-angle field line reconnection is known to produce the acceleration of collimated outflow jets, named "**nanojet**s" [1]. Detection and analysis of such reconnection nanojets becomes then important, because they are a signature of the reconnection. We performed full 3D magnetohydrodynamic (MHD) simulations of interacting and twisted coronal flux tubes strands [2]. In this work we address the nanojets which form from reconnection episodes, at Parker energies (about 10^{24} erg) and at speeds of few 100 km/s , and we study their detectability, in particular considering EUV observations with the **Atmospheric Image Assembly** (AIA) on-board Solar Dynamics Observatory and the forthcoming **MUltislit Solar Explorer** (MUSE) [3].

 $\ddot{}$ **Figure 1.** *Left*: 3D rendering of the magnetic field lines before (top, t=0) and after (bottom, t= 500 s) the avalanche. *Right*: current density, velocity, and temperature mid plane cuts.

A nanojet. We identified an outflow event generated by small angle magnetic reconnection (Fig. 2). This event exhibits typical features of nanojets, such as an energy budget of 10^{24} erg and outflow velocity of few hundreds km/s. In particular, it is up to **8 MK** hot and \sim 200 **km** s^{−1} fast.

Forward modelling. AIA 94Å and MUSE 108Å channels are sensitive to such 8 MK outflow event, although with small count rates due to low density $(n \leq 10^9 \text{ cm}^{-3})$. The Fe XIX 108 Å line profile, when sampled along the nanojet propagation axis, shows a doublepeak shape, with peaks shifted to $\mathbf{v} \approx \pm 200 \text{ km s}^{-1}$ (Fig. 3, *left*). Fig. 3 also shows MUSE Fe XIX line (*middle*) and AIA 94 A channel (*right*) images (15 s exposure time) from a point of view which captures the bidirectional outflow structure of the jet. AIA 94 Å channel includes emission from cooler plasma (~1 MK).

Introduction. In our model the magnetised atmosphere is stratified from the high-beta chromosphere to the corona through the narrow transition region. In our simulation with the PLUTO 3D MHD code [4], photospheric rotation stresses the flux tubes until they become kink-unstable and determine an "**MHD avalanche**" [5] of reconnection episodes with the formation, fragmentation, and dissipation of current sheets akin to a nanoflare storm (Fig. 1).

Figure 2. 3D rendering of the reconnecting field lines (**green** and **blue**) and the nanojet flow (**black** arrows) at the current sheet formation (*left*) and during nanojet acceleration (*right*, 30 s after), nanojet direction is marked (**orange** arrows).

Figure 3. *Left*: Fe XIX line profile along the nanojet propagation axis; *middle*: MUSE Fe XIX emission on the nanojet plane; *right*: AIA 94Å channel emission

Automatic detection. To study nanojets statistically we device a method to pick up them automatically in the simulations. The method is based on the velocity component perpendicular to the magnetic field $(v_{\perp B}$, nanojet wings, Fig. 4, *top-left*), and on the magnetic dissipation region (its core, *top-right*). We applied the detection method to a set of MHD avalanche simulations with different injected to a set of MHD avalanche simulations with different injected Poynting fluxes at the boundaries and made some cluster analysis. On average, nanojets **internal and kinetic energy scale as the** Poynting flux, the higher the background magnetic field, the more energetic will be the detected nanojets (*bottom-right*).

Conclusions. Numerous high temperature ~ 8MK nanojets can develop from MHD avalanches. Our automatic detection method allows us a statistical and cluster analysis. As a first output, we expect an **easier detection for higher background magnetic field** $($ > 10 G). MUSE Fe XIX line will detect more likely events higher in the nanoflare energy range ($\leq 10^{25}$ erg) (with e.g., for $\dot{B} = 40 \text{ G}$).

Figure 4. *Top*: mid plane cuts of v_{⊥B}; current density. *Bottom:* detected nanojets, each color is a different nanojet; scatter plot of nanojets magnetic energy vs. internal energy.

References. [1] P. Antolin, P. Pagano, P. Testa, A. Petralia, and F. Reale. Reconnection nanojets in the solar corona. Nature Astronomy, 5(1):54–62, 2021 [2] G. Cozzo, J. Reid, P. Pagano, F. Reale, A. W. Hood, *Coronal energy release by MHD avalanches. Effects on a structured, active region, multithreaded coronal loop,* A&A, 678, A40 [3] B. De Pontieu, et al. Probing the physics of the solar atmosphere with the multi-slit solar explorer (MUSE). i. coronal heating. ApJ, 926(1):52, 2022
[4] A. Mignone et al. Pluto: a numerical code for computational astr